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Résumé
Dans cet article, nous proposons une méthode de calcul
de pose de caméra qui est robuste aux conditions d’obser-
vation et ne nécessite pas de modèle détaillé de la scène.
Cette méthode répond aux besoins croissants d’un déploie-
ment facile pour des applications de robotique ou de réalité
augmentée. Des travaux antérieurs ont montré que l’abs-
traction de la géométrie d’une scène d’objets par un nuage
d’ellipsoïdes permet d’estimer la pose de la caméra avec
une précision suffisante pour diverses applications. Bien
que prometteuses, ces approches utilisent les ellipses ins-
crites dans les boîtes de détection comme une approxima-
tion des objets imagés. Nous allons plus loin et proposons
une méthode basée sur l’apprentissage qui détecte des ap-
proximations elliptiques améliorées des objets, cohérentes
avec la projection de leur ellipsoïde 3D. Les expériences
montrent que la précision de la pose calculée augmente de
manière significative grâce à notre méthode 1.

Mots Clef
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Abstract
In this paper, we propose a method for coarse camera pose
computation which is robust to viewing conditions and
does not require a detailed model of the scene. This method
meets the growing need of easy deployment of robotics or
augmented reality applications in any environments. Pre-
vious works have shown that abstracting the geometry of
a scene of objects by an ellipsoid cloud allows to compute
the camera pose accurately enough for various application
needs. Though promising, these approaches use the ellipses
inscribed in the detection boxes as an approximation of the
imaged objects. In this paper, we go one step further and
propose a learning-based method which detects improved
elliptic approximations of objects which are coherent with
the 3D ellipsoid in terms of perspective projection. Experi-
ments prove that the accuracy of the computed pose signi-
ficantly increases thanks to our method 1.

Keywords
Camera pose, object detection, ellipse, ellipsoid

1. Code and models at https://github.com/zinsmatt/
3D-Aware-Ellipses-for-Visual-Localization.

FIGURE 1 – Camera pose estimation from objects.

1 Introduction
In the last few years, deep learning has invested all the
fields of computer vision. That of visual localization has
not escaped this wave, but the specific nature of this pro-
blem has led to it being approached from a wide va-
riety of angles. On one side, convolutional neural net-
works (CNNs) have been trained to detect visual beacons
independently of the camera viewpoint and environmen-
tal conditions [4, 23, 31]. These methods require an ac-
curate geometric model of the scene for both training and
actual pose computation, e.g. by PnP [16]. At the oppo-
site side of the spectrum, the six pose parameters are di-
rectly obtained from end-to-end CNN regression, thanks to
prior training on data associating images with ground truth
poses [15, 13, 20]. Intermediate or alternative approaches
have also emerged, making more or less intensive use of
geometric models [14, 30, 34].
While model-free methods perform poorly when compu-
ting the pose for images distant from the training data [29],
obtaining an accurate geometric model of a multi-object
scene can be challenging especially when specular or
textured-less objects are considered.
In this paper, we propose a method for coarse pose com-
putation which is robust to large changes in motion and
environmental conditions and does not require a detailed
model of the scene. This method meets the growing need
of easy deployment of robotics or augmented reality appli-
cations in any environments, especially those for which no
accurate model nor huge amount of ground truth data are
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available. Our method builds on [7, 8] where a model-based
method which operates at the level of objects is proposed.
Considering objects as features for pose computation al-
lows us to take advantage of the performance of recogni-
tion systems, especially their good invariance to pose and
environmental condition changes, while not necessitating
systematic retraining of the system when a new scene is
considered. In [7, 8], pose is computed from 2D/3D ob-
ject correspondences with 2D objects detected by any ob-
ject detection algorithm such as YOLO [26]. Approxima-
ting 2D objects with ellipses and 3D objects with ellipsoids
allowed the authors to obtain direct solutions for pose com-
putation without initial guess (Fig. 1).
Though the method is very promising, the main source of
inaccuracy originates from a poor approximation of objects
with an ellipse aligned with the image axes and inscribed in
the detection bounding box (BB). In this paper, we go one
step further and propose a learning-based method which
detects improved elliptic approximations of objects which
are coherent with the 3D ellipsoid i.e. that are likely to be
the projection of the ellipsoid. This way of detecting ellip-
tic abstractions of objects significantly improves the accu-
racy of the recovered pose. Our main contributions are as
follows :

— A network for predicting ellipses around objects
that are coherent with their 3D ellipsoidal abstrac-
tions. Its goal is to overcome the weaknesses of di-
rectly fitting the ellipses to the axis-aligned BBs.
We propose a data augmentation procedure that
allows for robustness to box boundaries variabi-
lity. We also show that, even if the box boundaries
contain a part of background that might be learnt
by the network, our method is almost unaffected in
typical scenarios, where the scene does not change
between training and testing.

— We show how the concept of ellipsoidal abstrac-
tions of objects and 3D-coherent ellipse predictions
can be used for robust pose computation when only
a small amount of data is available on the scene. We
show that the pose accuracy little depends on the
choice of this ellipsoidal abstraction, which makes
the method flexible and easy to use in practice.
Only three calibrated images need to be annotated
by hand to build the ellipsoid cloud. Annotations
of the object are then obtained by projection in the
training images.

Experiments prove that the accuracy of the computed pose
dramatically increases thanks to our 3D-aware ellipse de-
tection procedure and is close to the accuracy obtained with
learning-based methods that require an accurate 3D model
for training.

2 Background and related works
Pose computation from monocular RGB images is an im-
portant problem in computer vision which witnessed a
complete renaissance with the emergence of deep learning.

Thanks to the ability of such methods to detect features
across a wide range of viewpoints, largely independently
from environmental conditions, this opens the way towards
more robust localization and matching methods, especially
able to handle few-textured scenes.
One of the pioneering method in the use of deep learning
for pose computation is poseNet [15] where absolute ca-
mera pose is regressed. Besides the difficulty of balancing
rotation and translation errors in the cost function, a major
default of such approaches, pointed out by Sattler [29], is
that direct pose regression is more closely related to pose
approximation via image retrieval than to accurate pose es-
timation via 3D structure. As a result, such methods gene-
ralize poorly to trajectories far from the training sequences.
Other methods propose to regress dense 3D scene coordi-
nates [2, 3] and estimate the camera pose by solving a PnP
problem. These methods were coupled with advanced ver-
sions of RANSAC [1] and obtain very good performance,
but only on small-scale scenes.
In order to scale to large environments, [33] propose a me-
thod that relies on the detection on a set of objects of in-
terest and exploits dense 2D/3D correspondences between
them and reference images to estimate the pose. However,
their method is limited to planar objects.
Finding the pose of the camera from general shape ob-
jects can also be viewed as estimating the objects pose
in the camera frame. Many works exist on this subjects
[12, 18, 24, 25, 30, 31, 36]. They usually assume to have
access to a detailed model of the object in order to gene-
rate synthetic training data and, thereby enlarge the 6D
pose space where pose can be correctly recovered. SSD-
6D [12] extends the idea of 2D object detection and in-
fers 6D pose based on a discrete viewpoint classification
while an autoencoder is used in [30] to recover the object
orientation. Another way to infer object pose is by predic-
ting the 2D projections of the corners of the bounding box
of the 3D object with a CNN. This avoids the need for
a meta-parameter to balance the position and orientation
error since the 6D pose can be estimated with PnP from
2D/3D correspondences. In BB8 [25], segmentation is first
performed to detect the objects and a CNN then infers the
projection of the BBs. Data augmentation with a random
background is performed during training to reduce the in-
fluence of the scene context. Building on YOLO and BB8,
Tekin et al. [31] proposed a single-shot deep CNN archi-
tecture which directly predicts the 2D projections of the 3D
BB vertices in the image.
The BB of detected objects can be also used for localiza-
tion issues with the idea of decoupling the rotation and the
translation. In PoseRBPF [5], and PoseCNN [34] the trans-
lation is constrained to be along the vector from the camera
center to the center of the BB. Tz is then approximately de-
termined from the ratio between 3D ROI and 2D BB sizes.
An auto-encoder trained on the synthetic rendering of the
3D object is used for rotation estimation in PoseRBF, while
PoseCNN regresses a quaternion for rotation and a mask,



both with the need of an accurate model of the object. Wi-
thout accurate knowledge of the objects, but under some
assumptions on the scene, e.g. objects lying on a flat scene,
Li et al. [17] used object detections to estimate relative ca-
mera poses for viewpoints changes. Wang et al. [32] propo-
sed a category-level approach to predict normalized objects
coordinates without the need of detailed 3D models. Howe-
ver, the method is not straightforward for new objects from
unseen categories and depth information is needed to com-
pute the pose. In the context of autonomous driving, [21]
estimates the pose and the dimensions of an object’s 3D
BB from a 2D BB and the surrounding image pixels un-
der additional constraints on the box orientation. However,
modelling objects as 3D cuboids and the 2D detections by
rectangles does not allow to derive closed-form solutions
to projection equations and leads to solutions with a high
combinatorics.
Modeling 2D/3D objects correspondences based on el-
lipses/ellipsoids was already used by [28] in the context
of multiview reconstruction and by Nicholson et al.in [22]
in the context of SLAM. Resolution was based on the mi-
nimization of a geometric cost function over the six camera
parameters, using odometry sensors for initial position and
orientation. Recent works have proposed direct solutions
without the need of initial prior for pose computation from
ellipse-ellipsoid matches : [7] show that the problem of es-
timating the camera pose from ellipse-ellipsoid correspon-
dences has at most 3 degrees of freedom, since the position
can be obtained from its orientation. Direct closed form so-
lution can thus be estimated once the orientation is known.
In [8], a direct method for full recovery of the pose from
more than 2 ellipse-ellipsoid correspondences was propo-
sed under assumptions satisfied by many robotics applica-
tions. In practical experiments, axis-aligned ellipses are in-
ferred from the BBs detected by YOLO. The authors ho-
wever note that such an elliptic 2D approximation is not
always sufficiently accurate and may lead to a significant
error on the estimated pose.
Instead of just detecting a rectangular BB of 2D objects,
it is also possible to detect elliptic objects. An immediate
idea is to perform instance segmentation, as in Mask R-
CNN [9] and directly fit an ellipse to the output mask. A
recent work [6] shows that such a strategy fails to capture
the ellipse orientation and proposes a CNN for ellipse re-
gression. Such a work is typically dedicated to the detec-
tion of objects with elliptic shapes. Besides the fact that the
detection is not aware of a particular 3D model, another dif-
ference with our work is that we are interested in detecting
ellipsoids which approximate an object, whose shape may
be quite different from a perfect ellipsoid.

3 System overview
Our method uses an ellipsoid cloud as a light scene mo-
del, where each ellipsoid approximates an object. The pose
computation system consists of three main components
(Fig. 2, bottom part). The first component is a CNN de-

FIGURE 2 – Overview of our full system. The new ellipse
prediction block is the key part of our work.

signed to detect objects as BBs. The second component is
another CNN aimed at predicting, for each BB, the ellipse
corresponding to the projection of the object’s ellipsoid ac-
cording to the camera pose. Unlike global approaches, such
as PoseNet, which apply to the whole image, our predic-
tion network uses local patches around each detected ob-
ject. This has the advantage of restricting a lot the change
of appearance and should enable our prediction network
to better interpolate new views. Finally, the last component
aims at calculating the pose from the ellipses thus obtained,
the ellipsoid cloud and the labels associated with these fea-
tures.
The object detection network takes as input an image and
returns the BBs of the detected objects, with their class.
Many networks have already been proposed to solve this
task very efficiently [26, 27] and many types of objects are
already recognized by these networks. It is, moreover, easy
to fine-tune a pre-trained network in order to make it reco-
gnize new objects, as only a few images are required for
that purpose. In order to preserve the aspect ratio of the de-
tected object, the crop box is completed with the content
of the image to meet the ellipse prediction network’s input
requirement. From these cropped images, the network pre-
dicts the ellipse parameters expressed in the BB frame. All
the ellipses are then transferred to the initial image frame
according to the coordinates of the BBs. The transferred
ellipses, associated with the detection labels, are then used
along with the ellipsoid cloud to compute the pose.
Pose computation from one or more ellipse-ellipsoid pairs
is based on the work described in [7, 8]. The method
used depends on whether or not external orientation data
are available. Measuring camera orientation from image
content or sensor acquisitions is generally easier to do than
estimating the position. Indeed, position sensors are often
inaccurate (GPS) or have a limited range and are sensitive
to environmental disturbances (magnetic, acoustic sensors,
etc.). By contrast, automatic vanishing point detection may
lead to accurate orientation measures as long as the scene
satisfies the Manhattan world assumption [7]. On the other
hand, IMU sensors can be used, limiting drift and expres-
sing orientations in an absolute reference frame by taking
into account the Earth’s magnetic field and gravity. A very



FIGURE 3 – Bottom : Images and detections used for re-
construction. Middle : Reconstructed ellipsoid. Top : Pro-
jection in new views.

interesting result from a practical point of view is that kno-
wing the orientation of the camera, a closed form solu-
tion makes it possible to deduce its position from a single
ellipse-ellipsoid pair [7]. If the orientation is available, we
therefore use a RANSAC procedure with minimal sets of
one ellipse-ellipsoid pair [7]. Multiple association hypo-
theses may occur in case objects of the same class appear
in the image, but this only adds as many correspondences
to be included in the RANSAC draws, preserving a linear
algorithmic complexity. If orientation data is not available,
two ellipse-ellipsoid pairs are at least required to compute
the pose. We then use RANSAC with minimal sets of two
correspondences [8].

4 Ellipse prediction
4.1 Motivation for 3D supervision
We give here an intuition of why a 2D-only supervision
is not sufficient for detecting good ellipses. Pose estima-
tion from ellipse-ellipsoid pairs comes down to aligning
cones, which means that the accuracy is heavily influenced
by how much the ellipse detection satisfies the real pro-
jection of the ellipsoid. In Fig. 3, we simulated a "perfect"
2D detector by finding the minimum-area ellipse contai-
ning the object and reconstructed an ellipsoid from three
views. We can observe that the 2D detections in other views
are not fully coherent with the projection of this ellipsoid.
In fact, the deformations caused by perspective, the view-
points used for reconstruction and the shape of the object
have a significant impact. This is why our method relies
on 3D supervision and manages to be almost unaffected by
these factors.

4.2 Ellipse parameterization
Different parameterizations of an ellipse can be used,
among which the following were considered : (i) three
points (center and two points corresponding to the axes
ends), (ii) five parameters of the quadratic form matrix, (iii)
center, axes lengths and orientation angle.

Using the five parameters of the quadratic form gives a mi-
nimal representation, because an ellipse has five degrees of
freedom. However, these parameters have no physical in-
terpretation which makes the associated L2 distance loss
hard to optimize. Parameterizing an ellipse by three points
has the advantage of having a real physical sense. The first
point is chosen at the center of the ellipse and the other two
points at the end of each axis. An inconvenient of this re-
presentation is that there is no implicit constraint to force
orthogonality. Instead, we could choose to represent the
ellipse with its center, axes lengths and orientation angle.
Both parameterizations have ambiguities due to the ellipse
symmetries. A canonical form can be obtained by enfor-
cing the first axis to be the largest one, its endpoint to be
in the right half-circle and the second axis endpoint to be
in the bottom half-circle. Also, the angle is measured bet-
ween the horizontal axis and the largest axis. This parame-
terization, however, implies discontinuities in the orienta-
tion angle when the ellipse is almost vertical. Moreover, L2
loss functions with non-normalized heterogeneous quan-
tities are hard to optimize (e.g. the camera position and
orientation parameters in PoseNet [15]) are hard to opti-
mize.
To tackle these issues, we use the center, axes and orien-
tation parameterization but with a classified, rather than
regressed, orientation angle [21]. More specifically, this
angle is discretized into n overlapping bins distributed bet-
ween −π2 and π

2 . Our network predicts the corresponding
bin but also regresses a correction angle as a value added
to the mid-angle of the predicted bin.

4.3 MultiBin Loss
The center and dimensions of the ellipse are both optimized
using a L2 loss, respectively

Lcenter =
1

N
‖cgt − cpred‖2 (1)

Ldim =
1

N
‖dgt − dpred‖2 (2)

where cgt and cpred are the ground truth and predicted cen-
ters, dgt and dpred are the ground truth and predicted di-
mensions, and N is the number of images in the batch.
As proposed in [21], the angular part has been split into
both classification and regression. We use a standard cross-
entropy loss for the classification part (Lbin) and a correc-
tion loss is added to reduce the difference between the pre-
dicted angle and the ground truth angle in each of the bins
that overlaps with this angle (one or two bins).

Lcorrection = − 1

nθ∗

n∑
i

oi · cos(θ∗ − σi −∆θi) (3)

where θ∗ is the ground truth angle, nθ∗ is the number of
bins that overlap the ground truth angle (1 or 2), oi is either
0 or 1 and indicates if bin i overlaps the ground truth angle,
σi is the mid-angle of the i-th bin and ∆θi is the predicted



FIGURE 4 – Ellipse prediction network.

correction angle that is applied to the mid-angle of the bin.
This loss has effects only on the correction angles of the
bins that actually overlap with the ground truth angle.
The final loss of our network is a weighted combination of
each individual loss.

L = α(Lcenter + Ldim) + (Lbin + βLcorrection) (4)

The parameters α and β are used to balance the loss inten-
sities and were determined empirically. We used the same
values for all experiments (respectively 0.01 and 1.0).

4.4 Network architecture

Our architecture (Fig. 4) includes a base convolutional net-
work used for features extraction, followed by four parallel
branches. We used a pre-trained VGG-19 network as base
and just cut off the final softmax part, which is tradition-
nally used for classification. Then, the parallel branches
take these features as input and consist of three-layers fully
connected networks with ReLU as non-linear activations.
The center branch predicts two values corresponding to the
center coordinates. The dimensions branch regresses the
width and height of the ellipse. The bin branch predicts n
values, where n is the number of bins. These values corres-
pond to scores or confidences of belonging to a specific bin
and are then passed to a softmax layer. Finally, the correc-
tion branch regresses 2n values, cos(∆θi) and sin(∆θi)
for each bin. To get valid cosine and sine values, a norma-
lization step was added at the end of this branch.

4.5 Network architecture validation

We validated our network architecture and loss function
on synthetic data, consisting of multiple views of an ob-
ject with the camera placed on a semi-sphere around it and
random background from COCO dataset [19]. We sampled
100 values of azimuth and 20 of elevation for training and
test data were generated at intermediate positions. For eva-
luation, we computed the IoU between the predicted el-
lipse and the ground truth one. We obtained very high IoUs
(more than 0.95) on the test images, keeping in mind that
the viewpoints coverage of the training was quite large. Fi-
gure 5 also shows the advantage of the multibin strategy
over the direct regression.
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FIGURE 5 – Left : Mean IoUs obtained on test images for
an increasing number of training epochs. Right : Example
of predicted ellipse (green). The ground truth ellipse is in
red.

5 Data acquisition and augmenta-
tion

The only prerequisite for our system is that images of
the scene have been acquired and calibrated from various
viewpoints, i.e. we know for each training image the in-
trinsic parameters of the camera as well as its position and
orientation in a global frame. This is the minimum pre-
requisite of any visual pose computation methods using
deep learning. In practice, relatively few images are nee-
ded (around 200) both to fine-tune the detection network
(if required) and to train the prediction network. Obtaining
these data can be done in several ways, e.g. by using a diffe-
rential GPS coupled with orientation sensors, a Structure-
from-Motion (SFM) technique, or a marker [35].

5.1 3D model and training data generation
Once the calibrated images have been obtained, we pro-
pose a practical method to get both the ellipsoid cloud
and the ground truth boxes and ellipses in all training
images by just labeling a few boxes in a small number
of them. It consists of the following steps (Fig. 2, top) :
(i) choose a minimum of three images of the scene sho-
wing the object(s) from various viewing angles, (ii) de-
fine boxes around the objects visible in these images (blue
boxes Fig. 2, top) and associate a label to each box, (iii)
fit ellipses to these boxes, with axes parallel to those of the
boxes, (iv) build the ellipsoid cloud from the 2D ellipses
and projection matrices ; an analytic solution was obtai-
ned by Rubino et al. to solve this problem from only three
calibrated views [28], (v) reproject the ellipsoid cloud in
all training images by using the ground truth projection
matrices. The obtained ellipses (in red in Fig. 2) will be
used as ground truth data for training the ellipse prediction
CNN. (vi) If needed, the BBs of the projected ellipses (red
boxes in Fig. 2) will be used as ground truth BBs to fine-
tune the object detection CNN.
The ellipsoids obviously depend on the images chosen for
reconstruction. Fortunately, we show in Section 6 that their
size and orientation may vary significantly without degra-
ding the method performance. This is due to the fact that
the ellipsoids are only intermediate data used to calculate



the pose from the detected ellipses, themselves predicted
to match the perspective projection of the ellipsoids. The
only critical point is that the ellipsoids used to generate the
training data must be those used at runtime to compute the
pose. Also, the internal calibration of the camera does not
change between training and testing.

5.2 Data augmentation
Data augmentation plays an important role in the training
of our prediction network and its generalization with a re-
latively limited number of annotated images. Several stra-
tegies were performed online (during training) : (i) Co-
lor jittering randomly changes the brightness, contrast and
saturation of an image in order to simulate illumination
changes. (ii) Blurring filters the images with a randomly-
sized Gaussian kernel in order to accommodate different
resolutions caused by the object distance. (iii) Shifting ran-
domly translates the images so that the object is not always
perfectly centered, which should accommodate noisy ob-
ject crops. (iv) In-plane rotations as well as (v) perspective
deformations (homographies) were added to generate new
views of the object. The last two can, for example, simu-
late a camera which is not held upright, or not aiming at the
object center.

6 Experiments
6.1 Metrics
In our experiments, we used three common metrics : re-
projection error (in pixels), ADD (as in [10, 12, 25]) and
camera pose error (either only the position or the full 6D
pose). Unless otherwise specified, the percentages in the
tables represent the proportion of test images that satisfy a
certain threshold.

6.2 Camera position estimation
We evaluated the accuracy of the camera position estima-
ted using our predicted ellipses on the LINEMOD data-
set [10], which provides RGBD images of 15 objects in
cluttered environments with ground truth pose. Note that
we did not perform specific retraining for object detection
in LINEMOD and T-LESS and used the 2D boxes given by
the reprojected 3D object.
Using an initial ellipsoid, obtained by reconstruction from
a few images, we generated ellipse annotations and trained
our prediction network. We limit this experiment to the ca-
mera position because only one object can be used per se-
quence (the rest of the scene changes). Thus, the camera
orientation is assumed to be known. To be realistic, we ad-
ded a random noise uniformly sampled in [−2°, 2°] on each
of its Euler angle at test time. Figure 6 and Tables 1 and 2
show the results obtained in terms of reprojection error, po-
sition error and ADD. The experiments show a significant
improvement of the position estimation, compared to Gau-
dilliere et al.[7] (inscribed ellipse) and the obtained accura-
cies are comparable with Tekin et al.[31], a state-of-the-art
method trained using a detailed model of the object.

Tekin Gaudilliere
Method et al. et. al. Ours

[31] [7]
Thresh. 5 px 5 px 10 px 15 px 20 px 5 px 10 px 15 px

ape 92.10 95.39 100.0 100.0 100.0 100.0 100.0 100.0
cam 93.24 49.77 94.47 100.0 100.0 94.47 100.0 100.0
can 97.44 57.60 79.26 98.62 100.0 99.54 100.0 100.0
cat 97.41 68.20 98.62 100.0 100.0 90.32 100.0 100.0

driller 79.41 16.13 61.75 90.32 98.62 96.77 100.0 100.0
duck 94.65 89.40 100.0 100.0 100.0 100.0 100.0 100.0

eggbox 90.33 97.70 100.0 100.0 100.0 100.0 100.0 100.0
glue 96.53 54.38 88.02 95.85 99.54 94.93 99.08 100.0

holepunc 92.86 83.41 100.0 100.0 100.0 99.54 100.0 100.0
iron 82.94 17.05 51.15 78.34 93.09 90.78 99.54 100.0
lamp 76.87 18.43 60.37 84.79 97.24 92.63 99.54 100.0
phone 86.07 34.56 70.97 88.48 97.24 90.78 100.0 100.0

TABLE 1 – Reprojection error.

Tekin Gaudilliere
Method et al. et al. Ours

[31] [7]
Threshold

(% of diam.) 10% 10% 15% 25% 10% 15% 25%
ape 21.62 18.43 35.94 56.68 64.98 80.65 93.09
cam 36.57 34.10 56.68 84.33 47.47 69.12 87.56
can 68.80 12.90 18.43 31.34 72.81 87.56 98.16
cat 41.82 26.27 37.33 55.30 24.42 41.01 61.29

driller 63.51 42.86 57.14 76.04 88.48 95.85 99.54
duck 27.23 31.34 47.00 67.28 62.67 78.80 93.09

eggbox 69.85 16.59 22.58 40.09 78.34 91.71 98.16
glue 80.02 11.98 23.04 32.72 42.40 57.14 79.72

holepunc 42.63 12.90 20.74 30.88 76.50 88.94 97.70
iron 74.97 16.59 25.81 40.55 76.50 91.24 97.70
lamp 71.11 23.04 35.48 58.99 84.79 94.47 97.24
phone 74.74 22.12 29.03 42.86 64.98 82.03 96.31

TABLE 2 – ADD.

6.3 Full 6D pose estimation
We evaluated the performance of our method for the full
6D pose estimation on T-LESS [11], another RGBD da-
taset providing 20 scenes of texture-less objects. In each
scene, a few objects are placed on a board and images are
acquired with the camera placed on a semi-sphere of ra-
dius 75 cm. Compared to LINEMOD, several objects can
be used in a scene, allowing us to recover the full 6D pose
of the camera. We tested our method on a scene with 6
objects and 500 images, split in two halves for training and
tests. We obtained the ellipsoid of each object directly from
the CAD model and generated our training images. Table 3
shows the 6D-pose errors obtained with our method and
compares it with Gaudilliere et al.[8] (inscribed ellipses).
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FIGURE 6 – Proportion of positions correctly estimated
wrt. the error threshold (in cm) on the horizontal axis. Left :
using the inscribed ellipse. Right : using the predicted el-
lipse.



Method Gaudilliere et. al. [8] Ours
Error in orientation (in degrees) 3.15 (±1.96) 2.65 (±1.40)

Error in position (in cm) 4.09 (±2.42) 2.23 (±2.05)

TABLE 3 – Median error and standard deviation of the
orientation and position estimates.

FIGURE 7 – Inscribed ellipses (left) vs Predicted ellipses
(right). Noisy BBs used for cropping and extracting the el-
lipses used for pose computation are in green. Ground truth
projection of the ellipsoids are in red and ground truth ob-
jects BBs are in blue. Note that, despite noisy crops, the
predicted ellipses fit much better to the ground truth pro-
jections.

This confirms the improvement made by our predicted el-
lipses, that was previously demonstrated on the position
only.

6.4 Important points analysis
Robustness to detection noise. We show here that a ma-
jor strength of our learning-based approach is its robustness
to noisy object detections. As explained before, we use a
two-step approach for detecting an object in the form of an
ellipse. First, the object is detected with a 2D box, and then,
this box is transformed into an oriented ellipse. The object
detections step is not the focus of this work, but is never-
theless crucial. In the previous experiments, this step was
completely simulated using a 2D box given by the projec-
tion of the 3D model. This is not totally realistic and, thus,
we measured the influence of noisy objects detections on
the pose estimation. On the one hand, it is easy to see that
spatial noise on the BB has a direct impact on its inscri-
bed ellipse. On the other hand, our decoupling between the
box and the ellipse provides a much better robustness to
variance in the detection (Fig. 7 and 8). This is especially
true for the objects marked with the arrows in Fig. 7. Even
though the crop passed to the prediction network does not
contain the whole object, the inferred ellipses are still cor-
rect. This robustness is mostly achieved thanks to our data
augmentation which randomly shifts the image (equivalent
to shifting the BB before cropping).

Influence of the reconstructed ellipsoid. In this expe-
riment, we illustrate the influence of the ellipsoid chosen as
approximation of the target object. For that, we used three
different ellipsoids (Fig. 9). The first one (green) was ob-
tained by reconstruction from five images, the second one
(blue) by directly fitting to the CAD model and the third

0 5 10 15 20 25 30

3

4

5

6

7

8

9 predicted ellipse

bbox

0 5 10 15 20 25 30

2

4

6

8

10

12 pred. ell.

bbox

FIGURE 8 – Influence of noisy BB detections. Left : Orien-
tation error (in degrees). Right : Position error (in cm).
Both horizontal axes represent the half-range of the noisy
horiz. and vert. shifts applied on the 2 corners defining the
BB.

Metric Reprojection error Position error ADD
Threshold 5 pixels error 5 cm 10% of diameter
Ellipsoid 1 96.77 94.47 84.79
Ellipsoid 2 96.77 94.93 84.33
Ellipsoid 3 96.31 92.17 82.49

TABLE 4 – Results obtained with different ellipsoids.

one (red) was the same ellipsoid manually stretched and
rotated. The results, available in Table 4, are very similar,
which indicates that the choice of ellipsoid has no real in-
fluence and thus, that the network is able to learn the pro-
jection of more-or-less any ellipsoid. This is an important
point of our method, because this decoupling between the
ellipse and the object box detection allows us to use, for
example, only a sub-part of the object.

Comparison with instance segmentation. The previous
experiments clearly show the superiority of our method
compared to the axis-aligned ellipses. To get around this
axes alignment problem, an alternative could be to fit an el-
lipse to a mask predicted by an instance-segmentation net-
work. We chose Mask R-CNN [9], which obtains state-of-
the-art results for this task and fine-tuned it on the driller.
Table 5 shows that the ellipses fitted to the predicted masks
(Ell. Mask R-CNN) or even to the ground truth masks (Ell.
GT masks) do not reach the same level of accuracy as our
predicted ellipses. This confirms our intuition presented in
section 4.1.

FIGURE 9 – The three different ellipsoids used in our ex-
periment.



Method Position error ADD
Thresh. 5 cm 10 cm 15 cm 10% 15% 20% 25%

Ell. Mask R-CNN 59.91 94.93 99.08 38.71 55.76 68.20 81.57
Ell. GT masks 74.65 100.0 100.0 47.00 66.36 82.95 95.39

Ours 94.47 100.0 100.0 84.79 94.01 98.62 99.54

TABLE 5 – Comparison with an ellipse directly fitted to an
object segmentation.

Metric Reprojection error Position error ADD
5 pixels 5cm 10% of diameter

Ellipse inscr. pred. inscr. pred. inscr. pred.
ape 94.99 96.74 89.72 93.99 29.07 46.87

driller 21.17 17.15 47.81 52.19 25.91 24.45

TABLE 6 – Comparison between the use of inscribed or
predicted ellipses in case of a new scene configuration, wi-
thout retraining.

New scene configuration. We explain here how our me-
thod may adapt to new scene configurations, where some
objects are moved between training and runtime, without
the need to retrain the system. The underlying idea is to
exploit the capabilities of the initially trained predictor to
infer non axis-aligned ellipses which are then used to build
the ellipsoid from a few images. By reconstructing the
scene from these ellipses we should get ellipsoids close
to the initial ones and thus avoid having to train the net-
work again. This strategy has been tested on LINEMOD
test images of the same sequence, in which the scene has
been changed and the target object rotated. An "easy" (the
ape) and a "hard" (the driller) objects were chosen in this
experiment, depending on how much background is visible
in the object crop and how much the object shape changes
with a change of viewpoint. Table 6 shows that our method
still outperforms the direct BB fitting for the easy object
(ape) and reaches similar results for the hard ones (driller).
Even if our approach of cropping the object allows us to
be insensitive to most of the background, some of it is still
visible in the crop. This shows a limit to our light 3D su-
pervision. Having access to a 3D model (even an approxi-
mated one, but not just an ellipsoid) would enable us to be
more independent to the background by generating random
background during training.

6.5 Application on a real scenario
We demonstrate our full system on a real case using the
WatchPose dataset [35], which provides pose annotated
images of 10 objects in industrial environments. For each
object, around 200 images are provided. Half of them were
acquired "near" the object (around 60 cm) and the rest far-
ther away (1.4 m). This dataset differs from the previous
ones and is more representative of a real application. In-
deed, the images were acquired with a hand-held smart-
phone without specific care about motion noise, reflections
and shadows.
We follow the protocol explained in Section 5.1 to build the
ellipsoids and generate the ellipse annotations. The BBs of
the ellipses were used to fine-tune our object detection net-
work whereas the ellipses were used to train our ellipse pre-

Method Median error Threshold
(in mm) 5 cm 10 cm 15 cm 20 cm

Gaudilliere et. al. [7] 84.11 27.87 57.38 77.05 83.61
Ours 30.75 76.27 96.61 98.31 100

TABLE 7 – Position error in the easy case.

Method Median error Threshold
(in mm) 5 cm 10 cm 15 cm 20 cm

Gaudilliere et. al.[7] 120.31 14.61 38.20 66.29 85.39
Ours 63.90 34.01 75.00 90.91 96.59

TABLE 8 – Position error in the hard case.

diction network. Finally, the two trained networks are used
to relocalize the camera on test images. We tested two sce-
narios : an easy one, where a subset of near and far images
were used for training, and a hard one, where training was
done only on near images and testing on far images.
Our experiments show that our method is able to estimate
the camera position with a median error around 3 cm in
the easy case and 6.4 cm for the hard one. We compa-
red our approach to Gaudilliere’s method [7]. Our 3D-
supervised method shows a significant improvement (see
Tables 7, 8 and Fig. 10). For comparison with a global me-
thod (where the network uses the whole image), we trai-
ned PoseNet [15] during 5000 epochs on the near images.
While the mean position error obtained by testing also on
near images was quite good (around 3 cm), the generali-
zation to more distant images was not satisfactory at all (a
mean position error of 80 cm on far images). This confirms
that our learning on local object patches has a better gene-
ralization ability to handle new viewpoints.

FIGURE 10 – Predicted ellipses and ground truth projec-
tions of the ellipsoid in WatchPose.

7 Conclusion
In this paper, we proposed a method for object-based pose
estimation which does not require an accurate model of
the scene. Its main component is a new 3D-aware ellipse
prediction network. By learning from different viewpoints,
the network is able to map the object appearance to ellipse
parameters which are coherent with the projection of the
object ellipsoidal abstraction, and thus, improves the com-
puted pose a lot. Three key aspects of the method are its
robustness to variance in the box detection boundaries, its
good invariance to the chosen ellipsoidal abstraction and
its minimal amount of manual annotations required, ma-
king the method of large practical interest.
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