Nicholas Halliwell
email: nicholas.halliwell@inria.fr

Fabien Gandon
email: fabien.gandon@inria.fr

Freddy Lecue
email: freddy.lecue@inria.fr

A Simplified Benchmark for Non-ambiguous Explanations of Knowledge Graph Link Prediction using Relational Graph Convolutional Networks

Keywords: link prediction, Explainable AI, knowledge graphs. 1

Relational Graph Convolutional Networks (RGCNs) identify relationships within a Knowledge Graph to learn real-valued embeddings for each node and edge. Recently, researchers have proposed explanation methods to interpret the predictions of these black-box models. However, comparisons across explanation methods is difficult without a common dataset and standard evaluation metrics to evaluate the explanations. In this paper, we propose a method, including two datasets (Royalty-20k and Royalty-30k), to benchmark explanation methods on the task of explainable link prediction using Graph Neural Networks. We report the results of state-of-the-art explanation methods for RGCNs. 3

explanations [START_REF] Kang | Explaine: An approach for explaining network embedding-based link predictions[END_REF]. This approach is evaluated with four datasets, none of which include ground truth explanations. Additionally, computing ground truth explanations for these datasets is non-trivial.

On the task of link prediction on Knowledge Graphs, GNNExplainer remains untested. Neither GNNExplainer or ExplaiNE use the same dataset in their experiments. On the task of explainable link prediction on Knowledge Graphs, no standard datasets or scoring metrics exist to evaluate explanation methods.

In this work, we propose a method, including two datasets (Royalty-20k and Royalty-30k) to evaluate explanations methods for link prediction using RGCNs. We propose the use of a scoring metric on these datasets, and perform a benchmark comparing the explanations of ExplaiNE and GNNExplainer.

Building the Royalty Datasets with Explanations

We define ground truth explanations as a single justification for an entailment.

We use an open-source semantic reasoner with rule-tracing capabilities [START_REF] Corby | KGRAM Versatile Inference and Query Engine for the Web of Linked Data[END_REF] to generate ground truth explanations for each rule, allowing for each set of explanations to be precisely controlled and selected. We rely on a set of rules equivalent to strict Horns clauses i.e. disjunctions of literals with exactly one positive literal l c , all the other l i being negated: ¬l 1 ∨ ... ∨ ¬l n ∨ l c . The implication form of the clause can be seen as an inference rule assuming that, if all l i hold (the antecedent of the rule), then the consequent l c also holds, denoted l c ← l 1 ∧ ... ∧ l n . In our case, each literal is a binary predicate capturing a triple pattern of the Knowledge Graph with variables universally quantified for the whole clause.

For a given Knowledge Graph and a given set of rules, the semantic reasoner performs a forward chaining materialization of all inferences that can be made. Each time the engine finds a mapping of triples T 1 , . . . , T n making the antecedent of a rule true, it materializes the consequent triple T c , and records the explanations in the form T c ← (T 1 , . . . , T n), where T c is a generated triple, and triples T 1 , . . . , T n are its explanation.

For example, under the hasGrandparent rule, if two triples (Princess Marie Anne, hasParent, Louis XIV), and (Louis XIV, hasParent, Anne of Austria) are identified in a Knowledge Graph, the semantic reasoner generates a new triple (Princess Marie Anne , hasGrandparent, Anne of Austria). We compute explanation triples in a similar fashion for each logical rule defined in each dataset. In this example, the explanation for why (Princess Marie Anne, hasGrandparent, Anne of Austria) is a valid fact is because (Princess Marie Anne, hasParent, Louis XIV), and (Louis XIV, hasParent, Anne of Austria).

This approach to generating ground truth explanations can be applied to many Knowledge Graphs and many sets of rules from different domains. It also corresponds to the RGCN explanation methods, which provide explanations in the form of a set of evidence triples.

There may be several ways to define these logical rules. For example, hasSuccessor can be defined using its inverse relation hasPredecessor. In some cases, hasPredecessor could be correlated to the hasParent relation and therefore considered an explanation. Both explanations could be correct, thus the optimal explanation is ambiguous. In this work, we build two datasets with non-ambiguous explanations, where each logical rule is designed to give one and only one ground truth explanation for each triple in the training and test sets. This prevents an explanation method from having to arbitrarily select between alternative explanations.

Evaluating Explanations of RGCNs

In this benchmark, ExplaiNE and GNNExplainer were asked to identify existing triples in the graph as candidate explanations. We use the Jaccard similarity to score the similarity between predicted and ground truth explanations. This metric is appropriate, as it compares the triples in common between the predicted and ground truth without considering the order. Furthermore, this metric can be applied to data from different domains without relying on further assumptions. Benchmark results can be found in Table 2.

As an example of one of ExplaiNE's errors, for some triple (Albert III, Count of Everstein, hasSpouse, Richeza of Poland) and its ground truth explanation (Richeza of Poland, hasSpouse, Albert III, Count of Everstein), ExplaiNE predicted a first degree neighbor (Richeza of Poland, hasSpouse, Alfonso VIII of Leon and Castile) to be its explanation. Note the incorrectly predicted triple uses the hasSpouse predicate but in a wrong way.

Across both datasets, we observe GNNExplainer had the highest Jaccard and F 1 -Score performance on the hasSpouse predicate. GNNExplainer's best performing predicates were hasSpouse, hasSuccessor and hasPredecessor. On the Royalty-30k dataset, we observe performance drops across all metrics on the hasGrandparent predicate. We found GNNExplainer to have a recall of 1 for each predicate, meaning the triples in the ground truth explanation are always identified, however, many false positives are included in the predicted explanation set. Indeed a recall of 1 can be trivially achieved by including the entire input graph in the predicted explanation set. This was not the case for the predicted explanations of GNNExplainer, however, the predicted explanation sets were often too large (up to 20 triples on average), and had many false positives.

Table 2 also reports the results of ExplaiNE on the Royalty datasets. Similar to GNNExplainer, we observe the best Jaccard and F 1 -Score performance on the hasSpouse predicate. On the Royalty-30k dataset, we see lower relative performance on the predicates where larger explanations need to be predicted, such as the hasGrandparent rule.

Overall, we find ExplaiNE outperformed GNNExplainer in terms of Jaccard score for all rules across both datasets. While GNNExplainer outperforms Ex-plaiNE in terms of F 1 score on hasSpouse, and hasGrandparent, along with the Royalty-30k full dataset, this is likely due to GNNExplainer's high recall, indicating that the F 1 metric is not appropriate for this task.

Table 1 :

 1 Royalty datasets: Breakdown of each predicate in the dataset. # of Triples denotes the total number of triples with that predicate. Explanation Cardinality denotes the number of triples in the ground truth explanation set.

	Dataset	Predicate	# Triples	# Rule Generated Triples	# Unique Entities	Explanation Cardinality	Predicate Property
		hasSpouse	7,526	3,763	6,114	1 Symmetric
	Royalty-20k	hasSuccessor	6,277	2,003	6,928	1	Inverse
		hasPredecessor	6,277	2,159	6,928	1	Inverse
		Full data	20,080	7,924	8,861	-	-
		hasSpouse	7,526	3,763	6,114	1 Symmetric
	Royalty-30k	hasGrandparent	7,736	7,736	4,330	2	Chain
		hasParent	15,472	0	-	-	-
		Full data	30,734	11,499	11,483	-	-

Table 1

 1 Likewise, a predecessor is defined as one who held the throne immediately before the current holder. X is the predecessor of Y if Y is the successor of X. Equivalently, hasP redecessor(X, Y) ← hasSuccessor(Y, X). Indeed hasSuccessor and hasPredecessor follow an inverse relationship. A predicate p 1 is the inverse of p 2 if and only if (s, p 1 , o) ← (o, p 2 , s). Therefore triples with the hasSuccessor predicate are used to explain the triples with the hasPredecessor predicate and vice-versa. There are 6, 277 triples with hasSuccessor predicate, 2, 003 of which are generated by rules. Similarly, there are 6, 277 triples with hasPredecessor predicate, 2, 159 of which are generated by rules.Grandparent We define hasGrandparent using a chain property pattern. A predicate p is a chain of predicates p i if and only if (s, p, o) ← (s, p 1 , s 2) ∧ ... ∧ (s n , p n , o). Y is the grandparent of X if Y is the parent of X's parent P . Equivalently, hasGrandparent(X, Y) ← hasP arent(X, P) ∧ hasP arent(P, Y). There are 7, 736 triples with hasGrandparent predicate, all of which are generated by rules.

gives dataset statistics for each predicate. Each rule is detailed below.

Spouse Entity X is the spouse of Y if Y is the spouse of X, more formally, hasSpouse(X, Y) ← hasSpouse(Y, X). This is a symmetric relationship. A predicate p is said to be symmetric for some subject s and object o if and only if (s, p, o) ← (o, p, s). There are 7, 526 triples with the hasSpouse predicate in each dataset, 3, 763 of which are generated by rules. Note this rule is the same for both datasets.

Successor and Predecessor A successor in the context of royalty is one who immediately follows the current holder of the throne. X is the successor of Y if Y is the predecessor of X. Equivalently, hasSuccessor(X, Y) ← hasP redecessor(Y, X).

https://gitlab.com/halliwelln/royalty-datasets