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Analysis of the equilibria and limit cycle oscillations of an airfoil with nonlinear aeroelasticity

The aeroelasticity of an airfoil may have nonlinear properties due to the nonlinear stiffness or control sensitivity. As a consequence, different types of limit cycle oscillations are created at the flutter speed. Bifurcation theory is used here in order to examine such nonlinear behaviours.

The main issue consists in determining the type of the Hopf bifurcation that is to say supercritical (creation of stable periodical orbits) or subcritical (creation of unstable periodical orbits) . It implies respectively slowly growing oscillations or large amplitude oscillations even before reaching the critical flutter airspeed. Besides the relevance of the model of induced velocity for the prediction of flutter properties can also be assessed. This study is focused on the nonlinear aeroelasticity of a bare airfoil mainly but deals also with the saturated feedback loop problem.

INTRODUCTION

The aeroelasticity of an airfoil may present nonlinear features. The ones which are considered here come from the pitch (torsional spring) or plunge stiffness (translational spring). As far as the overall behaviour is considered, they impact the way limit cycle oscillations are created near the critical flutter speed (the Hopf bifurcation point where the equilibrium changes of stability). In order to achieve this study, the bifurcation theory is used as nonlinear analysis tool and is helpful in order to examine and to explain such nonlinear behaviours.

Several issues are dealt with. The main one consists in determining the type of Hopf bifurcation that is to say whether it is supercritical with stable limit cycles or subcritical with unstable limit cycles. It implies respectively slowly growing oscillations or oscillations of large amplitude even before reaching the bifurcation critical speed. From the practical point of view, the last situation is quite dangerous and must be avoided.

In order to perform the concrete analysis, the different diagrams of bifurcation theory allow to determine the underlying dynamics and the structural changes. Beneath considering the algebraic expressions allows to calculate the Lyapounov coefficient of the Hopf bifurcation and thus to conclude about the Hopf bifurcation type. Numerical simulations are also performed so as to see the behaviours linked to the different situations e.g. periodical orbits, equilibria which are stable or unstable.

Several physical models found in the literature are taken into account. It concerns the stiffness or the aerodynamics for which several modelling types are studied such as the quasi-steady or unsteady Peters model. It is possible consequently to evaluate the impact of the physical parameters on the flutter properties. Moreover it could also be assessed how relevant a physical model is.

Another item is the closed loop design. Several types of schemes are examined and some conclusions are drawn about the changes of stability or phase portraits (qualitative structure of solutions) they imply when control parameters are varied. The limits in amplitude of the control has some effects which are also assessed.

After studying all these configurations, it can be stated that nonlinear analysis reveals to be efficient in examining the issues of airfoil nonlinear aeroelaticity.

CLASSICAL BIFURCATION DIA-GRAMS

In this first section, the model of airfoil aeroelasticity is presented and also the typical phenomenons linked to flutter occurrence such as the appearance of divergent behaviour (linear frame) or periodical motion (nonlinear frame).

The classical mathematical model is based on a force equation (including lift force, plunge stiffness) and a moment equation (including pitching moment, pitch stiffness). The aeroelastic model and its specificities are presented in similar studies such as [START_REF] Hajj | Uncertainty analysis of nonlinear aeroelastic systems[END_REF][START_REF] Ghommem | Control of limit cycle oscillations of a two-dimensional aeroelastic system[END_REF]11] for example. The sketch and variables used are presented in equation 1 and figure 1.
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Figure 1: Variables for the aeroelasticty problem of a two-dimensional airfoil [START_REF] Ghommem | Control of limit cycle oscillations of a two-dimensional aeroelastic system[END_REF] The calculations relative to dynamical systems are performed with the matcont package of matlab [START_REF] Dhooge | Matcont: A matlab package for numerical bifurcation analysis of odes[END_REF].

A first case study is furnished by [START_REF] Shukla | Feedback linearization based control of aeroelastic systems represented in modal coordinates[END_REF] for which there is a nonlinear pitch stiffness. A Hopf bifurcation occurs at a speed of U H ≈ 23.3m/s. The created limit cycle is unstable and the Lyapounov coefficient is positive. Thus the bifurcation is subcritical. Afterwards a bifurcation of limit cycles at U LPC ≈ 8.38m/s gives raise to stable periodical orbits. As a consequence, the subcritical Hopf bifurcation is very dangerous because it implies a jump in amplitude and also the existence of a stable periodical orbit before the flutter speed U H . The behaviour of the overall system below the flutter speed may surprise because for low initial conditions, the response decays to zero while for higher initial conditions, it stabilizes itself towards a stable limit cycle of high amplitude. The figure 2 shows the bifurcation diagram and all these specificities.

Figure 2: Bifurcation diagram with airspeed U as parameter presenting limit cycles and equilibria Another characteristic and noteworthy curve is traced. Indeed the locus of the bifurcation points permits to delimit several regions of control values for which the asymptotic behaviours may be very different. The description under the so-called normal form allows to delimit some critical values for which the situation can change of nature especially the first Lyapounov coefficient [START_REF] Dhooge | Matcont: A matlab package for numerical bifurcation analysis of odes[END_REF][START_REF] Ghommem | Control of limit cycle oscillations of a two-dimensional aeroelastic system[END_REF]. When this last one is zero, it is called a Generalized Hopf bifurcation as can be seen in figure 3 at a flap deflection β = 0.02rad and U = 20.3m/s on the one side and on the other side β = -0.04rad and U = 21.3m/s. Between these two critical values of β , a stable limit cycle is created but a bifurcation of limit cycles occurs directly afterwards such that the global behaviour remains more or less the same after all. There are two saddle-node bifurcations (or fold bifurcations) of limit cycles. The consequences remain the existence of oscillations with high amplitude near the flutter speed. This situation remains dangerous because amongst others there are stable periodical orbits for airspeeds lower than the flutter speed which are intuitively impossible to predict and may surprise.

After presenting the diverse situations which can be met in the frame of the nonlinear aeroelasticity of an airfoil, we focus our attention next on studying the way how several physical parameters influence the overall dynamics.

SENSITIVITY TO PHYSICAL PA-RAMETERS

Several conclusions can be drawn concerning the sensitivity to physical parameters. The plunge stiffness seems to be favourable that is to say to imply a supercritical Hopf bifurcation. On the contrary, the pitch stiffness seems to be unfavourable in the sense that they induce a subcritical Hopf bifurcation. These statements will be illustrated in the following section.

In the model furnished in [11] and [START_REF] Neil | Aeroelastic response of rigid wing supported by nonlinear springs[END_REF], the stiffness is hardened towards either plunge or pitch. The plunge stiffness comes from the spring constant for plunge degree of freedom K h 1 + ξ h 2 with ξ = 0.09 and ξ = 50. The Hopf bifurcation associated to ξ = 0.09 is subcritical and the one associated to ξ = 50 is supercritical as can be seen in the bifurcation diagrams (figure 5). Besides other physical or design parameters may play a role in the nature of the instability. Nevertheless it is an important thing to evaluate the influence of the model of induced velocity (quasi-steady, Peters, etc) on the flutter prediction that is to say its speed value (linear frame) and the type of limit cycles which are created (nonlinear frame). The benchmark furnished in [START_REF] Axisa | Vibrations sous écoulements[END_REF] is used in this section for the concrete calculations of the second case study. In figure 6, the Peters model is employed for the induced velocity and the pitch stiffness law is α → K α 1 + 10α 2 α. Two bifurcations are diagnosed. There is a classical Hopf bifurcation which is supercritical. In this case, there is also a branch point, this last one is linked to a real negative eigenvalue which becomes positive (the system remains globally unstable).

Concerning the limit cycle due to a nonlinear stiffness α → K α 1 + 20α 2 α, it is sometimes warped even if the flutter speed doesn't change much as can be seen in figure 7. We can note that it would also be interesting to study the softening of the stiffness such that the pitch spring constant is equal to K α α -K α 3 α 3 for example [START_REF] Dimitriadis | Introduction to nonlinear Aeroelasticity[END_REF] and its effects on the overall dynamics.

After analysing the open loop system and the characteristics of the nonlinear aeroelasticity of an airfoil, we are next concerned with the closed loop system.

FEEDBACK LOOP

The feedback loop permits to stabilize the unstable aeroelastic system when the airspeed is higher than the flutter speed. The command may be limited in amplitude (or variation speed) and this limitation may imply the appearance of bifurcations and limit cycles. For a critical value of command saturation, a saddle-node bifurcation (or fold bifurcation) of limit cycles appears and gives raise to a stable and an unstable orbit. It remains to determine if the situation is safe or not from a practical point of view.

The feedback loop is chosen here under the form β = k h h+k h ḣ+k α α +k α α (proportional derivative) and stabilizes the system with well chosen coefficients (thanks to the LQ method for example). The flap deflection β (angle of the control surface of the airfoil) is here limited in amplitude and one seeks the critical bound value β max (such that |β | ≤ β max ) for which an unexpected behaviour happens (in comparison with the unsaturated case). In figure 8, there is a saddle-node bifurcation (or fold bifurcation) of limit cycles at a maximum flap deflection β max = 0.159rad = 9.1 deg. Two limit cycles are created, one stable and one unstable. Below such a bound, a hazardous situation may happen. But in order to destroy the limit cycles, it is just necessary to increase a little bit the maximum value of flap deflection β max . In the case of β = 0.05rad, depending on the initial conditions, the system may converge to the limit cycle or to the zero equilibrium as shown in figure 9. One question remains to determine the basin of attraction of the zero equilibrium and its relative position towards the unstable limit cycle (of lowest amplitude). In order to compare and evaluate the impact of the nonlinear stiffness, the case of linear stiffness is also computed. A feedback loop is used so as to stabilize the airfoil movement for an airspeed higher than the flutter speed. The Hopf bifurcation at the origin is here subcritical and thus the created periodical orbits are unstable that is to say when the initial conditions are low, the system converges towards the zero equilibrium whereas when they are high, the system diverges.

For the design of the feedback loop, an adaptation of the LQ method is employed. With A z the reduction of the state matrix A to the eigenspace for which eigenvalues have positive real part, the algebraic Riccati equation has a unique solution A T z P + PA z -Pb z b T z P = 0 which furnishes a feedback gain K = -b T z P minimizing the energy of regulation J = ∞ 0 u T (t)u(t)dt [START_REF] Demenkov | Suppressing aeroelastic vibrations via stability region maximization and numerical continuation techniques[END_REF].

In order to get an energy of the responses such that

G 2 = ∑ ∞ 0 ŷ2 i (t)dt < γ 2 ,
a solution of the following LMI (Linear Matrix Inequalities) is searched:

AQ + QA T QC T CQ -I < 0, Z B T B Q > 0,trace Z < γ 2
The minimal value of γ is the H 2 norm of the system [START_REF] Dowell | A Modern Course in Aeroelasticity[END_REF].

Concerning the design of the feedback loop, the different coefficients k h , k h , k α , k α of the feedback loop may have different effects. It will be the subject of the next section. We are firstly looking for the effects of a feedback loop β = k h h. The different values of k h and U for which a Hopf bifurcation occurs are presented in the figure 10. In the case of an airspeed U = 15 m/s, for k h < 4.3 (supercritical Hopf bifurcation), the system is unstable, for k h > 37.2 the system is unstable and converges towards a limit cycle (subcritical Hopf bifurcation), for k h such that 4.3 < k h < 37.2, the system is stable. At the Bogdanov-Takens bifurcation, it is possible that the Hopf bifurcation at high k h disappears (ω ≈ 0) and that there remains only the one at low k h , but the time simulations seem to become divergent for lower values of k h .

Besides it can be noted that the feedback loop β = k α α has also a stabilizing effect for the aeroelastic system whereas the k α and k h don't seem to have any immediate effect on the stability (maybe with β = -k α α for which limit cycles around a nonzero mean value appear).

We can study the proportional derivative feedback β = k h h + k h ḣ. The Hopf bifurcations for the different values of gains k h and k ḣ are plotted in figure 11. The equilibria are unstable for (k h , k h ) couples below the curve and are stable for couples of gains above the curve. We can also evaluate the influence of the k α feedback gain on the (k h , k h ) locus of the Hopf bifurcations. For higher values of k α (0.1, 0.2, 0.4), the loci are shown in figure 12. We see that k α has a destabilizing effect for medium and high values of k h and a stabilizing effect for low values of k h . The simple proportional derivative feedback modifies the conditions for which the Hopf bifurcation occurs. The influence of the different gains k h , k h , k α , k α is seen thanks to the different bifurcation diagrams. In this frame, the onset is due to the physical nonlinearities or the saturation of the control.

CONCLUSION

As a conclusion, bifurcation theory reveals to be a powerful tool in order to analyse the behaviour of an airfoil of nonlinear aeroelasticty, to predict the dangerous situations and to help designing safer configurations. It was shown that the flutter speed corresponds to a Hopf bifurcation and that limit cycles of different stability are created. The sensitivity of the nonlinear stiffness towards the plunge or pitch variable prove to contribute more or less to the stability of the limit cycles. The saturation of the feedback loop and the associated bifurcations were also examined.

[11] T. W. Strganac, J. Ko, D. E. Thompson, and A. J.

Kurdila. Identification and control of limit cycle oscillations in aeroelastic systems. 
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 3 Figure 3: Locus of bifurcations with airspeed U and flap deflection β as parameters
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 4 Figure 4: Bifurcation diagram with airspeed U as parameter presenting limit cycles and equilibria for β = 0.1rad
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 5 Figure 5: Bifurcation diagrams with airspeed U as parameter presenting limit cycles and equilibria for ξ = 50 (up) and ξ = 0.09 (down)
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 6 Figure 6: Bifurcation diagrams with airspeed U as parameter presenting limit cycles and equilibria with Peters model of induced velocity
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 7 Figure 7: Limit cycles in the phase portrait (h, α) for an airspeed U = 70m/s for a quasi-steady (up) or Peters (down) model of induced velocity
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 8 Figure 8: Bifurcation diagram with flap deflection β as parameter presenting limit cycles
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 9 Figure 9: Time simulations of the closed loop system with maximum flap deflection β = 0.05
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 10 Figure 10: Locus of the bifurcation points associated to the feedback loop β = k h h with maximum flap deflection β = 0.05
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 11 Figure 11: Locus of the bifurcation points associated to the feedback loop β = k h h + k h ḣ (with maximum flap deflection β max = 0.05)
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 12 Figure 12: Locus of the bifurcation points associated to the feedback loop β = k h h + k h ḣ (with maximum flap deflection β max = 0.05) for several k α
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	NOMENCLATURE
	m T	total mass of the wing (kg)
	m W wing mass alone (kg)
	I α	mass moment of inertia about the elastic axis
	b	half chord length (m)
	x α	nondimensionalized distance between the center of mass and the elastic axis
	h	plunge (m)
	L	lift (N)
	M	pitching moment (N.m)
	V	airspeed (m/s)
	α	angle-of-attack/pitch (rad)
	β	flap deflection (rad)
	ρ	density (kg/m 3 )
	c h	plunge structural damping coefficient
	c α	pitch structural damping coefficients
	k h	plunge stiffness
	k α	pitch stiffness