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This contribution deals with the development of a four-node membrane composite finite element to analyse two-dimensional (2D) fibre-reinforced solids taking into account the local bending stiffness of fibres. This plane composite element is a combination of a four-node membrane element with rotational degrees of freedom (DOFs), modelling a unit of the matrix domain, and two-node Timoshenko beam elements that represent fibres crossing each matrix element. The so-called 'Projected Fibre Approach' is then considered to express the beam elements variables in terms of their corresponding matrix elements. Accordingly, the obtained system of equations size is equivalent to that of a non-reinforced medium which considerably reduces the computing cost. To assess the accuracy of the proposed plane element, three examples are presented and the obtained results are found to agree well with the reference solutions.

Introduction

Compared to metallic materials, composite materials generally present interesting specific mechanical properties which allow them to meet the requirements of technical specifications in various fields. Besides, thanks to their ability to custom-made, composite materials offer the designers the possibility to manufacture structures whose characteristics could be optimized according to the composite material constituents. To expand the use of composite materials in a reliable way, an accurate prediction of their macroscopic behaviour from those of their constituents is required. To this end, several micromechanical analytical models, based on the definition of a representative volume element (RVE) of the composite materials, have been firstly proposed to estimate their effective elastic properties. Most of these approaches are based on statistical continuum theories and mean-field approaches based on Eshelby's solution [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF] (see the review by Raju et al. [START_REF] Raju | A review of micromechanics based models for effective elastic properties of reinforced polymer matrix composites[END_REF] for more details). In particular, these models include the self-consistent method [START_REF] Hill | A self-consistent mechanics of composite materials[END_REF][START_REF] Budiansky | On the elastic moduli of some heterogeneous materials[END_REF][START_REF] Huang | A generalized self-consistent mechanics method for composite materials with multiphase inclusions[END_REF][START_REF] Benveniste | Revisiting the generalized self-consistent scheme in composites: Clarification of some aspects and a new formulation[END_REF] and the well known Mori-Tanaka model [START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF] or a combination of these two approaches as reported by Peng et al. [START_REF] Peng | Evaluation of mechanical properties of particulate composites with a combined self-consistent and MoriTanaka approach[END_REF]. Despite their simplicity of implementation, these analytical approaches present some limits such as the difficulty to take account of the microstructural characteristics like the size, the complex shape and the distribution of the reinforcement.

To overcome these limits, other numerical techniques, based essentially on the finite element method and facilitated by the progress of computing techniques and capabilities, have been also proposed to predict the effective mechanical behaviour of heterogeneous composite materials (see [START_REF] Vanalli | A simple way to introduce fibers into FEM models[END_REF][START_REF] Radtke | A partition of unity finite element method for obtaining elastic properties of continua with embedded thin fibres[END_REF][START_REF] Cunha | A finite element model with discrete embedded elements for fibre reinforced composites[END_REF][START_REF] Kebir | A specific finite element procedure for the analysis of elastic behaviour of short fibre reinforced composites. The projected fibre approach[END_REF][START_REF] Tian | Representative volume element for composites reinforced by spatially randomly distributed discontinuous fibers and its applications[END_REF][START_REF] Bernardo | Modeling and simulation techniques for polymer nanoparticle composites A review[END_REF][START_REF] Li | Evaluation of elastic properties of fiber reinforced concrete with homogenization theory and finite element simulation[END_REF][START_REF] Zhang | Discrete modeling of fiber reinforced composites using the scaled boundary finite element method[END_REF] among others). For instance, Vanalli et al. [START_REF] Vanalli | A simple way to introduce fibers into FEM models[END_REF] have developed a finite element formulation to predict the behaviour of arbitrarily placed short or long fibre-reinforced composites without explicitly model the reinforcement. In this case, no additional degree of freedom associated with the reinforcement is introduced in the model and some problems related to the node-by-node geometrical definitions and the complex mesh generation are hence avoided.

Some numerical examples have been considered to assess the formulation's accuracy, including the non-linear elastoplastic analysis of reinforced concrete beam under four-point bending, and the presented results were globally in good agreement with reference solutions. In another work, Cunha et al. [START_REF] Cunha | A finite element model with discrete embedded elements for fibre reinforced composites[END_REF] have proposed a numerical approach to predict the crack behaviour of steel fibre-reinforced concrete. In this model, the steel fibre-reinforced concrete has been treated as a two phase material in which the steel fibres are explicitly modelled with embedded cables within a three-dimensional (3D) mesh representing the matrix. The numerical simulations of tensile and three-point bending tests showed a good agreement with the experimental results. In a third work by Tian et al. [START_REF] Tian | Representative volume element for composites reinforced by spatially randomly distributed discontinuous fibers and its applications[END_REF],

3D representative volume elements of short carbon fibre-reinforced magnesium composites, with relatively high fibre volume fraction, have been generated by the random sequential absorption algorithm and then analysed by the FEA package ABAQUS. To this end, the 4-node tetrahedron element C3D4 has been considered to model the matrix and the short carbon fibres. The presented results showed firstly the increase of Young's modulus and secondly the decrease of Poisson's ratio with the fibre volume fraction. In addition to these works, Kebir and Ayad [START_REF] Kebir | A specific finite element procedure for the analysis of elastic behaviour of short fibre reinforced composites. The projected fibre approach[END_REF] have developed a plane three-node triangle composite element, named PFT3, based on the so-called 'Projected Fibre Approach'. This membrane finite element has been used to predict the elastic properties of short hemp fibre-reinforced polypropylene composite. Short hemp fibres with different volume fractions have been randomly generated within a 2D representative volume element initially discretized by three-node constant strain triangular elements, representing the matrix domain. Then, the intersections between the discrete short hemp fibres and the matrix mesh have been automatically handled by a specific algorithm developed by the authors. After this step, all fibres crossing each matrix element have been represented by two-node truss elements and the variables of these latter have been expressed in terms of their corresponding matrix element based on the assumption of a perfect bonding of the fibres to the matrix. This finite element formulation allowed to correctly estimate the experimental Young's modulus of 30%wt hemp-polypropylene composite and to predict the evolution of Young's modulus and Poisson's ratio with the fibre volume fraction.

Based on the same Projected Fibre Approach, Tiar et al. [START_REF] Tiar | A nonlinear finite element formulation for large deflection analysis of 2D composite structures[END_REF] have developed a geometrically non linear four-node quadrilateral membrane element to study 2D composite solids subjected to large deflection.

In this paper, we propose an extension of the finite element formulation proposed by Kebir and Ayad [START_REF] Kebir | A specific finite element procedure for the analysis of elastic behaviour of short fibre reinforced composites. The projected fibre approach[END_REF] and based on the Projected Fibre Approach. The main objective remains the modelling of 2D composite solids without explicitly model the reinforcement, which allows obtaining a system of equations equivalent to that of a non-reinforced medium. The first novelty of the finite element formulation proposed in this work concerns the modelling of discrete fibres with two-node Timoshenko beam elements to take account of their bending stiffness. In fact, modelling discrete fibres with two-node truss elements as considered in Kebir and Ayad [START_REF] Kebir | A specific finite element procedure for the analysis of elastic behaviour of short fibre reinforced composites. The projected fibre approach[END_REF] could result in erroneous prediction of the 2D composite solids effective behaviour, especially those subjected to bending-dominated loading. The second novelty of this work is the use of a four-node quadrilateral membrane finite element with rotational DOFs to model the matrix domain. This element, named PFR4, is based on a plane adaptation of the so-called Space Fibre Rotation (SFR) concept introduced by Ayad [START_REF] Ayad | Contribution to the numerical modeling of solids and structures and the non-newtonian fluids forming process. Application to packaging materials[END_REF][START_REF] Ayad | Enrichment of linear hexahedral finite elements using rotations of a virtual space fiber[END_REF]. This element has been shown to be much more accurate than the classical four-node quadrilateral membrane element even with coarse and distorted meshes [START_REF] Zouari | Quadrilateral membrane finite elements with rotational DOFs for the analysis of geometrically linear and nonlinear plane problems[END_REF]. The main advantage of modelling the matrix domain with PFR4 elements is the possibility to project the two-node Timoshenko beam elements variables onto those of their corresponding matrix elements.

Finite element approximation of a 2D composite medium

Consider a 2D fibre-reinforced solid B 0 as depicted in Figure 1. In the absence of body forces, the static mechanical equilibrium of B 0 requires locally:

     σ xx,x (x) + σ xy,y (x) = 0 σ xy,x (x) + σ yy,y (x) = 0 ∀ x ∈ B 0 (1) 
where σ xx , σ yy and σ xy are the plane components of the stress tensor at a local point x of B 0

(σ xx,x = ∂σ xx ∂x ).
By introducing the virtual displacement vector {δu} = {δu δv} T , the weak form of the equilibrium equation ( 1) is obtained as

δW = B 0 {δε} T {σ} dV δW int - ∂B 0 {δu} T {T }dS δWext = 0 ∀ δu (2) 
where {σ} = {σ xx σ yy σ xy } T is the vector of plane stresses, {δε} = {δε xx δε yy 2δε xy } T is the vector of virtual plane strains and {T } = {T x T y } T is the vector of external forces applied to ∂B 0 , the boundary of B 0 .

The finite element approximation of Equation ( 2) is constructed by dividing the 2D composite solid B 0 into elementary domains as shown in Figure 1. Accordingly, we present in this work the formulation of a composite membrane element named PFQ4R (Projected Fibre 4-node Quadrilat- eral element with Rotational variables) representing a unit of the matrix domain and the fibres crossing it (Figure 2). The formulation of PFQ4R is based on the so-called Projected Fibre Approach, introduced by Kebir and Ayad [START_REF] Kebir | A specific finite element procedure for the analysis of elastic behaviour of short fibre reinforced composites. The projected fibre approach[END_REF]. This approach allows taking account of the position, distribution and orientation of discrete fibres within the matrix domain as well as their mechanical properties. Discrete short or long fibres are represented by straight line segments before being introduced in the matrix medium. Then, their intersections with the matrix mesh are handled by a specific algorithm developed by the authors as shown in Figure 1. In a first approximation, Kebir and Ayad [START_REF] Kebir | A specific finite element procedure for the analysis of elastic behaviour of short fibre reinforced composites. The projected fibre approach[END_REF] and Tiar et al. [START_REF] Tiar | A nonlinear finite element formulation for large deflection analysis of 2D composite structures[END_REF] have proposed to model all fibres crossing an element of the matrix mesh by two-node truss elements. In this work, we propose an enrichment of this approximation by representing all fibres crossing a matrix element rather by two-node Timoshenko beam elements. The main advantage of representing fibres with Timoshenko beam elements instead of truss elements is to take account of their local bending stiffness which allows better predicting the behaviour of composite solids under bending loading. In order to reduce the computing cost of 2D fibre-reinforced solids, the beam elements variables, in particular their rotational DOFs, have to be projected onto those of their corresponding matrix elements as initially proposed by Kebir and Ayad [START_REF] Kebir | A specific finite element procedure for the analysis of elastic behaviour of short fibre reinforced composites. The projected fibre approach[END_REF]. To this end, a four-node quadrilateral membrane element with rotational DOFs is chosen to model a unit of the matrix domain (Figure 3). This element is named PFR4 and is based on a plane adaptation of the so-called Space Fibre Rotation (SFR) concept introduced by Ayad [START_REF] Ayad | Contribution to the numerical modeling of solids and structures and the non-newtonian fluids forming process. Application to packaging materials[END_REF] (see also [START_REF] Ayad | Enrichment of linear hexahedral finite elements using rotations of a virtual space fiber[END_REF] for more details about the SFR concept). The formulation of PFR4 is reported in Zouari et al. [START_REF] Zouari | Quadrilateral membrane finite elements with rotational DOFs for the analysis of geometrically linear and nonlinear plane problems[END_REF] and briefly recalled in the following for completeness. To simplify, we consider in the following only one fibre that reinforces a matrix unit as depicted in Figure 2. Besides, a perfect bonding of the fibre to the matrix is assumed and both are supposed to be elastic and isotropic. The proposed plane composite element PFQ4R is a combination of the SFR concept-based four-node membrane element, representing the matrix unit, and the classical two-node Timoshenko plane beam element that models the fibre crossing the matrix element.

Moreover, the index notation will be used in the following to facilitate the presentation of the formulation. The m and f characters are used to distinguish between the matrix and the fibre variables, respectively.

Stiffness matrix of the quadrilateral element presenting a unit of the matrix domain

At the element level, the weak form of the equilibrium (2) can be rewritten as

δW e = δW m int + δW f int -δW e ext (3) 
where δW m int and δW f int are, respectively, the unit matrix and the fibre internal virtual works.

For linear elastic problems, the internal virtual work δW m int of the matrix element is given by:

δW m int = V m {δε} T [C m ]{ε} d V m (4) 
where [C m ] is the (3 × 3)-sized plane elasticity matrix of the matrix domain.

We recall that the matrix element is based on a plane adaptation of the SFR concept and hence presents displacement and fictive rotational DOFs. We start by choosing one point p of the standard four-node quadrilateral membrane element as depicted in Figure 3. The SFR concept supposes for plane elements a fictive small out-of-plane rotation of the nodal fibre ip around the node i represented by the rotation vector θ i z. This fictive normal rotation leads to an additional vector θ i z∧ip that enhances the displacement vector approximation of the classical four-node quadrilateral element [START_REF] Ayad | Contribution to the numerical modeling of solids and structures and the non-newtonian fluids forming process. Application to packaging materials[END_REF][START_REF] Ayad | Enrichment of linear hexahedral finite elements using rotations of a virtual space fiber[END_REF][START_REF] Zouari | Quadrilateral membrane finite elements with rotational DOFs for the analysis of geometrically linear and nonlinear plane problems[END_REF]:

u(ξ, η) = 4 i=1 N m i (ξ, η) u i + θ i z ∧ iq ⇒      u v      = 4 i=1 N m i (ξ, η)      u i -(y -y i )θ i v i + (x -x i )θ i      (5) 
where

N m i (ξ, η) = 1 4
(1+ξ i ξ)(1+η i η) are the classical shape functions associated with the four-node quadrilateral element, x and y are the cartesian coordinates of p, x i and y i (i=1,4) are the nodal coordinates and u i , v i and θ i (i=1,4) are the nodal DOFs of the matrix element based on the SFR concept (two displacements and one fictive rotation per node).

The approximation ( 5) can be rewritten in a matrix form as:

     u v      = [N ] {u m n } ; [N ] =    {N u } T {N v } T    =       {N ui } T • • • • • • i = 1, 4 {N vi } T       (6) 
with

{N ui } = {N m i 0 -N m i (y -y i )} T ; {N vi } = {0 N m i N m i (x -x i )} T (7) 
and

{u m n } = {• • • | u i v i θ i | • • • i = 1, 4}
T is the nodal DOFs vector of the matrix element.

Using the approximation (6) of the displacement vector, we find the (3 × 6)-sized matrix [B m ] that relates the plane strain vector {ε} to the DOFs vector {u m n }:

{ε} = [B m ]{u m n } with [B m ] =       {N u,x } T {N v,y } T {N u,y } T + {N v,x } T       (8) 
The internal virtual work of the matrix element becomes:

δW m int = {δu m n } T V m [B m ] T [C m ][B m ] d V m [K m ] {u m n } (9) 
where [K m ] is the linear stiffness matrix of the quadrilateral membrane element presenting a unit of the matrix domain.

Stiffness matrix of the fibre element

In this work, each fibre crossing a matrix element is modelled with a two-node Timoshenko plane beam element to account for its bending stiffness (Figure 4). Local longitudinal and transverse displacements of the beam element are written as:

     u(x, y) = u 0 (x) -y θ(x) v(x, y) = v 0 (x) (10) 
where u 0 and v 0 are the local displacements of the reference line and θ is the small normal rotation of the beam element cross-section. u 0 and v 0 can be approximated by the one-dimensional shape The internal virtual work of the beam element δW f int is written as:

functions N f 1 = 1 -ξ 2 and N f 2 = 1 + ξ 2 : u 0 = N f 1 u a + N f 2 u b , v 0 = N f 1 v a + N f 2 v b , x = L 2 ξ with -1 ≤ ξ ≤ 1 (11) 
δW f int = L/2 -L/2 δe m N + δγ xy T y + δκ M z d x = L/2 -L/2 {δ Γ} T {Σ} d x (12) 
where e m = u 0,x , κ = -θ ,x (the bending strain), γ xy = v 0,x -θ (the shear strain), N = A σ xx dS (the axial force with σ xx is the axial stress), T y = A σ xy dS (the shear force with σ xy is the shear stress) and M z = A y σ xx dS (the bending moment). {Γ} and {Σ} are respectively the generalized strain vector and the stress resultant vector related through a (3 × 3)-sized matrix [C f ] given by:

{Γ} = {e m γ xy κ} T {Σ} = {N T y M z } T , [C f ] =        E f A 0 0 0 kG f A 0 0 0 E f I        , G f = E f 2 ( 13 
)
E f is Young's modulus of the fibre crossing the matrix element, I is the area moment of inertia of its cross-section about z and k is a shear correction factor.

Using the approximations [START_REF] Cunha | A finite element model with discrete embedded elements for fibre reinforced composites[END_REF], {Γ} is related to the local DOFs vector of the beam element

{u f n } = {u a v a θ a u b v b θ b } T through a (3 × 6)-sized matrix [B f ] as {Γ} = [B f ]{u f n } with [B f ] =        - 1 L 0 0 1 L 0 0 0 - 1 L -N f 1 0 1 L -N f 2 0 0 1 L 0 0 - 1 L        (14) 
Using Equations ( 13) and ( 14), the internal virtual work of the beam element becomes

δW f int = {δu f n } T L/2 -L/2 [B f ] T [C f ][B f ] d x [K f ] {u f n } (15) 
where [K f ] is the local stiffness matrix of the beam element. By introducing the following passage matrix [P ], the internal virtual work of the beam element reads:

δW f int = {δu f n } T [P ][K f ][P ] T [K f ] {δu f n } with [P ] =    [P ] 0 0 [P ]    , [P ] =       t x n x 0 t y n y 0 0 0 1       (16) 
t x , t y , n x and n y are the global coordinates of the unit vectors t and n, {u

f n } = {u a v a θ a u b v b θ b } T
is the global DOFs vector of the fibre element and [K f ] is its global stiffness matrix.

Stiffness matrix of the composite element PFQ4R

We recall that the internal virtual work of the composite element PFQ4R is given by

δW c int = δW m int + δW f int ( 17 
)
where δW m int is approximated by Equation ( 9) and δW f int is approximated by Equation ( 16). It is important to note that the fibre Young's modulus E f in the expression of [K f ] should be replaced by E f * = E f -E m to account for the matrix beam element removed from the matrix domain as explained in Figure 2.

In order to limit the total number of variables of the problem, the fibre beam element degrees of freedom are projected onto those of its corresponding matrix element. Accordingly, the obtained system of equations size is equivalent to that of a non-reinforced 2D medium. To this end, the geometrical merging of the beam element nodes a and b (Figure 4) into the matrix space is done by finding their isoparametric coordinates (ξ a , η a , ξ b , η b ) in terms of the nodal coordinates of the matrix and the fibre elements using the area coordinates method as discussed in [START_REF] Tiar | A nonlinear finite element formulation for large deflection analysis of 2D composite structures[END_REF]. The beam element isoparametric coordinates are then used to relate its global DOFs vector {u f n } to {u m n } through a (6 × 12)-sized matrix [T ] as:

{u f n } = [T ]{u m n }, [T ] =                        N m i (ξ a , η a ) 0 N m i (ξ a , η a ) × (y a -y i ) 0 N m i (ξ a , η a ) N m i (ξ a , η a ) × (x a -x i ) 0 0 N m i (ξ a , η a ) • • • • • • i = 1, 4 
N m i (ξ b , η b ) 0 N m i (ξ b , η b ) × (y b -y i ) 0 N m i (ξ b , η b ) N m i (ξ b , η b ) × (x b -x i ) 0 0 N m i (ξ b , η b )                        (18) 
Thanks to this projection, it is possible to write the internal virtual work of the composite membrane element PFQ4R only in terms of the DOFs vector of the matrix element {u m n } as:

δW c int = {δu m n } T [K m ] + [T ] T [K f ][T ] [K c ] {u m n } (19) 
where [K c ] is the stiffness matrix of the composite membrane element PFQ4R.

Numerical validation

The four-node quadrilateral composite plane element PFQ4R was implemented into the commercial finite element code ABAQUS via a user element subroutine (UEL). Numerical models (ABAQUS input files) of the following assessment tests were created by a Fortran program developed by the authors that automatically handles the intersections between the matrix mesh and the discrete fibres. To assess the accuracy of PFQ4R, three validation tests are considered in the following. The obtained results of PFQ4R are compared with those of the quadrilateral composite element PFQ4 developed by Tiar et al. [START_REF] Tiar | A nonlinear finite element formulation for large deflection analysis of 2D composite structures[END_REF] (a combination of the classical four-node quadrilateral membrane element and the two-node truss element). In addition to PFQ4, the solution of PFQ4R is compared with PFQ4R ⋆ which is a combination of the four-node quadrilateral membrane element with rotational DOFs (PFR4) and the two-node truss element. The main objective is to clearly evaluate the contribution of modelling discrete fibres by beam elements instead of truss elements.

Three-point bending of a composite beam reinforced with short fibres

In this first example, we study the deflection of a composite beam subjected to a three-point bending test as shown in Figure 5. This beam is constituted of a magnesium alloy AZ91D matrix We propose a plane modelling of this problem in which all short fibres extremities are projected onto the xy plane as explained in [START_REF] Kebir | A specific finite element procedure for the analysis of elastic behaviour of short fibre reinforced composites. The projected fibre approach[END_REF] and depicted in Figure 5. To obtain a reference solution of the composite beam centre deflection, its homogeneous elastic properties are required. We use the effective elastic properties reported by Tian et al. [START_REF] Tian | Numerical evaluation on mechanical properties of short-fiber-reinforced metal matrix composites: Two-step mean-field homogenization procedure[END_REF] based on tensile tests. They found globally an isotropic behaviour of the AZ91D/carbon composite material characterized by E = 50.450 GPa, ν = 0.342 and G = 19.020 GPa. Based on Euler-Bernoulli beam theory, the maximum deflection of the composite beam is given by the following expression:

δ c = F L 3 48EI + F L 4AG (20) 
where A corresponds to the beam cross section and I is its moment of inertia. This expression gives the reference central deflection of the composite beam:

δ ref c = 50.868 × 10 -2 mm.
Before studying the bending behaviour of the composite beam, we use the three plane finite elements PFQ4, PFQ4R and PFQ4R ⋆ to determine its homogeneous elastic properties. To this end, a representative volume element (RVE) of dimensions 1 × 1 mm 2 was considered and subjected to three loadings separately as discussed in Tiar et al. [START_REF] Tiar | A nonlinear finite element formulation for large deflection analysis of 2D composite structures[END_REF]: a tension along the x -direction, a tension along the y-direction and finally a shear test in the xy plane. This RVE was modelled with 20 × 20 quadrilateral elements. Table 1 summarizes the obtained effective elastic properties of the AZ91D/carbon composite material compared with the experimental results.

The results of Table 1 indicate a good agreement between the solutions of the three composite elements and the experimental results and confirms that the the AZ91D/carbon composite material is approximately isotropic. We also remark that PFQ4R firstly slightly overestimates the elastic moduli and the shear modulus and secondly slightly underestimates Poisson's ratios when compared with PFQ4 and PFQ4R ⋆ . This could be explained by the fact that the short carbon fibres which are oriented with respect to the x and y directions present a bending stiffness along these directions when they are modelled with beam elements. This brings an additional stiffness along the x and y directions and could explain the relative difference between the results of the three plane elements.

We now study the bending behaviour of the composite beam subjected to three-point bending as depicted in Figure 5. The half of the composite beam was modelled with four regular meshes constituted of 5 × 1, 10 × 2, 20 × 4 and 40 × 8 quadrilateral elements. Table 2 summarizes the obtained results of the three plane elements compared with the analytical central deflection and Figure 6 shows their convergence curves. We remark that the three composite plane elements globally agree well with the reference analytical deflection and convergence is obtained with mesh refinement. Besides, PFQ4R is found to converge more quickly to the reference solution than PFQ4 and PFQ4R ⋆ . Even if carbon fibres are short in this example, we note that modelling them with beam elements leads to slightly more accurate results than truss modelling if we compare PFQ4R and PFQ4R ⋆ solutions. 

Total number of elements

Normalized deflection

Transverse bending of three cantilever beams reinforced by long fibres

In this second example, we study the bending behaviour of three cantilever composite beams reinforced respectively by one, two and three long fibres and subjected to a transverse loading of 50 N at their free ends as depicted in Figure 7. The elastic properties of the matrix are E m = 2 GPa and ν m = 0.3 while those of the reinforcement are E f = 50 GPa and ν f = 0.3. For each beam, the diameter of fibres is chosen to obtain approximately the same fibre volume fraction for beams. PFQ4 and PFQ4R ⋆ are found to be inaccurate especially for the first beam as the central fibre placed along the neutral axis of this beam experiences only axial strains when modelled with truss elements. This inaccuracy decreases for the second and third beams as the number of fibres across the thickness increases. This example clearly illustrates the necessity to model flexural stiffness of long fibres to correctly predict the behaviour of composite solids and structures subjected to bending loading. 

Cantilever composite beam with an oriented long fibre

In this third example, we study the cantilever composite beam of Figure 8 reinforced by one long fibre and subjected to a tensile loading characterized by a pressure of 200 MPa applied at its free end. The long fibre has a cylindrical shape with length L f = 80 mm and diameter D f = 8 mm (V f ≈ 13.5%). We consider the same material properties as example 2 (E m = 2 GPa, ν m = 0.3, E f = 50 GPa and ν f = 0.3). The long fibre is oriented at an angle α with respect to the x-axis as depicted in Figure 8 and this causes bending of the composite beam as shown in Figure 9. The objective is to assess the accuracy of the three plane elements PFQ4, PFQ4R and PFQ4R ⋆ in the estimation of the longitudinal and transverse displacements of point A belonging to the free end (Figure 8). For comparison, the composite beam was modelled with a refined mesh of 73950 C3D20 elements which was found to assure converged results. For the plane mesh, the composite beam was discretized with 520 membrane elements as depicted in Figure 8. Table 4 summarizes the obtained results of the three plane composite elements for α = 0, 5, 10 and 15 • and Figure 10 shows the evolution of their relative errors with respect to the angle of orientation α. The results of Table 4 and Figure 8 indicate that PFQ4R and PFQ4R ⋆ present approximately the same result in the estimation of the longitudinal displacement of point A. However, PFQ4R is more accurate than PFQ4R ⋆ in the estimation of the transverse displacement of A. In fact, PFQ4R ⋆ overestimates by about 7% the transverse displacement of A when compared with the solution of PFQ4R. This difference is due to the bending stiffness of the long fibre, when this latter is oriented with respect to the x-axis, taken into account in the formulation of PFQ4R. 
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Conclusion

In this paper, a four-node quadrilateral membrane composite element, named PFQ4R, was formulated to analyse 2D fiber-reinforced solids. This element constitutes an extension of the composite four-node plane element PFQ4, developed by Tiar et al. [START_REF] Tiar | A nonlinear finite element formulation for large deflection analysis of 2D composite structures[END_REF], as it accounts for the local bending stiffness of short and long fibres. The PFQ4R formulation is based on the so-called Projected Fibre approach that can handle discrete short and long fibres in a continuum matrix without meshing them. In this study, fibres are represented by two-node Timoshenko plane beam elements while the matrix domain is modelled with four-node membrane elements with rotational DOFs. To obtain a numerical model equivalent to that of a non-reinforced medium, the beam elements variables are expressed in terms of their corresponding matrix elements. Three numerical examples were considered to assess the accuracy of PFQ4R and the obtained results were found to be more accurate than those of PFQ4 and to agree globally well with the reference solutions.

Data availability
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Figure 1 :

 1 Figure 1: The different steps followed to model a 2D fibre-reinforced solid based on the Projected Fibre Approach.

Figure 2 :

 2 Figure 2: The composite membrane element PFQ4R resulted from the combination of a four-node quadrilateral membrane element with rotational DOFs, named PFR4, and the classical two-node Timoshenko plane beam element.

Figure 3 :

 3 Figure 3: The four-node quadrilateral element with fictive rotational DOFs, named PFR4, representing a unit of the matrix domain.

Figure 4 :

 4 Figure 4: The Timoshenko beam element representing one fibre crossing a matrix element.

(E m = 45

 45 GPa and ν m = 0.35) reinforced by 10% in volume of randomly distributed T300 short carbon fibres (E f = 230 GPa and ν f = 0.25). The short carbon fibres present a cylindrical shape with length L f = 0.15 mm and diameter d f = 0.01 mm (L f /d f = 15). Thanks to symmetry, only the half of the composite beam is analysed.

Figure 5 :

 5 Figure 5: Short carbon fibre-reinforced magnesium composite beam under three-point bending.

Figure 6 :

 6 Figure 6: Convergence curves of PFQ4, PFQ4R and PFQ4R ⋆ in the estimation of the normalized central deflection of the composite beam subjected to three-point bending.

Figure 8 :

 8 Figure 8: Cantilever composite beam reinforced by one long fibre oriented at an angle α with respect to the x-axis.

Figure 9 :

 9 Figure 9: Deformations of the composite beam for α = 0 (left) and α = 10 • (right).

Figure 10 :

 10 Figure 10: Evolution of the relative errors of PFQ4, PFQ4R and PFQ4R ⋆ in the estimation of u A (left) and v A (right) with respect to the angle of orientation α.

Table 1 :

 1 Effective elastic properties of the AZ91D/carbon composite material predicted by the three composite plane elements and compared with the experimental results of Tian et al.[START_REF] Tian | Numerical evaluation on mechanical properties of short-fiber-reinforced metal matrix composites: Two-step mean-field homogenization procedure[END_REF] (the quantity inside parentheses indicates the relative error in %).

		Experiment PFQ4	PFQ4R	PFQ4R ⋆
		[21]			
	E x (GPa)	50.450	51.031	51.577	50.981
			(1.152)	(2.235)	(1.053)
	E y (GPa)	50.450	51.082	51.673	51.016
			(1.253)	(2.426)	(1.123)
	ν xy	0.342	0.347	0.335	0.348
			(1.461)	(-2.046)	(1.754)
	ν yx	0.342	0.348	0.334	0.348
			(1.754)	(-2.339)	(1.754)
	G xy (GPa)	19.020	18.911	19.353	18.884
			(-0.573)	(1.752)	(-0.715)

Table 2 :

 2 Central deflection of the AZ91D/carbon composite beam under three-point bending predicted by the three composite plane elements and compared with the analytical deflection (the quantity inside parentheses indicates the relative error in %).

	Mesh	PFQ4	PFQ4R	PFQ4R ⋆
	5 × 1	0.335	0.364	0.442
		(-34.025)	(-28.344)	(-13.011)
	10 × 2	0.447	0.508	0.562
		(-12.047)	(-0.134)	(10.599)
	20 × 4	0.491	0.5036	0.533
		(-3.476)	(-0.999)	(4.819)
	40 × 8	0.505	0.5042	0.519
		(-0.724)	(-0.881)	(2.027)

Table 3 :

 3 Transverse displacements (in mm) of point A belonging to the free ends of the composite beams reinforced by one, two and three long fibres (the quantity inside parentheses indicates the relative error in % with respect to C3D20 solutions).

		C3D20	PFQ4	PFQ4R	PFQ4R ⋆
	Beam 1	11.591	19.192	11.321	19.863
			(65.576)	(-2.329)	(71.365)
	Beam 2	4.802	5.291	4.831	5.351
			(10.183)	(0.603)	(11.432)
	Beam 3	4.757	5.096	4.809	5.166
			(7.126)	(1.093)	(8.597)

Table 4 :

 4 Longitudinal and transverse displacements (in mm) of point A belonging to the free end of the cantilever composite beam reinforced by one long fibre (the quantity inside parentheses indicates the relative error in % with respect to C3D20 solution).

		C3D20	PFQ4	PFQ4R	PFQ4R ⋆
	u A	4.818	4.399	4.661	4.661
	α = 0		(-8.695)	(-3.258)	(-3.258)
	v A	0	0	0	0
			(0)	(0)	(0)
	u A	5.045	4.909	4.929	4.939
	α = 5 •		(-2.869)	(-2.473)	(-2.275)
	v A	-3.659	-4.054	-3.798	-4.050
			(10.795)	(3.798)	(10.685)
	u A	5.697	5.371	5.537	5.576
	α = 10 •		(-5.722)	(-2.808)	(-2.123)
	v A	-6.346	-7.602	-6.748	-7.208
			(19.791)	(6.334)	(13.583)
	u A	6.487	6.444	6.396	6.455
	α = 15 •		(-0.662)	(-1.402)	(-0.493)
	v A	-7.618	-8.548	-7.973	-8.487
			(12.207)	(4.660)	(11.407)

the three composite beams (V f ≈ 25%). To this end, they were fixed to φ 1 = 4 mm, φ 2 = 2.827 mm and φ 3 = 2.308 mm. To model these composite beams, the matrix domain was discretized with a regular mesh constituted of 33 × 3 four-node quadrilateral elements and the objective is to estimate the transverse displacement of point A belonging to the free ends of the three composite beams using the plane elements PFQ4, PFQ4R and PFQ4R ⋆ . For comparison, the reference transverse displacements of point A were obtained by considering 3D models using the ABAQUS 20-node hexahedral element C3D20. Accordingly, the three composite beams were modelled with three converged meshes of 52800, 59000 and 67400 C3D20 elements, respectively, and both the matrix and the long fibres were modelled with this quadratic element. The reference transverse displacements of point A were found to be equal to 11.591 mm for the first beam, 4.802 mm for the second beam and 4.757 mm for the third beam. Table 3 summarizes the obtained results of the three plane elements compared with the reference solutions. Table 3 shows that PFQ4R results agree well with the reference solutions for the three composite