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We consider a branching stable process with positive jumps, i.e. a continuous-time branching process in which the particles evolve independently as stable Lévy processes with positive jumps. Assuming the branching mechanism is critical or subcritical, we compute the asymptotics of the maximum location ever reached by a particle of the process.

1. Statement of the main result 1.1. Introduction. We consider a one-dimensional branching stable Lévy process. It is a continuoustime particle system in which individuals move according to independent α-stable Lévy processes, and split at exponential times into a random number of children.

More precisely, the process starts at time t = 0 with a single particle located at the origin.

(1) When not branching, each particle moves independently as a strictly α-stable Lévy process L with positive jumps. We refer to Bertoin [START_REF] Bertoin | Lévy Processes[END_REF]Chapter VIII] for an overview of such process.

In particular, the existence of positive jumps implies that the scaling parameter α and the skew parameter β satisfy the conditions :

α ∈ (0, 1) ∪ (1, 2) and β ∈ (-1, 1] or α = 1 and β = 0.

(2) Each particle lives for an exponentially distributed time of parameter 1, independently of the others. When it dies, it splits into a random number of children with distribution p = (p n ) n≥0 . We assume that the distribution p is non trivial (i.e. p 1 = 1) and admits moments of order at least 3, i.e. E[p 3 ] < +∞.

Such process may be constructed by first running a standard continuous-time Markov branching process Z (see for instance [2, Chapter III]), and then running independent α-stable Lévy processes (L (i) ) along the edges. With this notation, for each t > 0, the number of particles alive at time t is thus given by Z(t), and their locations by

L (1)
t , . . . , L (Z(t)) t

.

(1.1)

It is classic that when E[p] ≤ 1, the process will go extinct in finite time with probability one. As a consequence, one may define the overall maximum M α,β ever attained by one of the particle. The main result of the paper is the computation of the asymptotics of its tail distribution :

u(x) = P (M α,β ≥ x) .
Theorem 1. Let κ α,β > 0 be the constant such that :

P (L 1 ≥ x) ∼ x→+∞ κ α,β x -α . i) Assume that E[p] < 1.
The asymptotics of M α,β is given by

P(M α,β ≥ x) ∼ x→+∞ κ α,β 1 -E[p] x -α . ii) Assume that E[p] = 1.
The asymptotics of M α,β is given by

P(M α,β ≥ x) ∼ x→+∞ 2κ α,β σ 2 x -α/2 where σ 2 = Var(p) = +∞ n=2 n(n -1)p n .
Remark 2. The constant κ α,β may be computed explicitly, but depends on the normalization chosen for L. For instance, following Sato [8, p.88], if the characteristic exponent of L is given by :

ln E e iλLt = -c α,β |λ| α 1 -iβ tan πα 2 sgn(λ) for α = 1 -|λ| for α = 1 (1.2) with c α,β = cos πβ 2 min(α, 2 -α) , then, κ α,β =      1 π Γ(α) sin πα 2 (1 + β) if α < 1 1 π if α = 1 1 π Γ(α) sin π 2 (α + αβ -2β) if α > 1
The occurrence of σ 2 is a classic feature of such asymptotics, and was already observed by Fleischman & Sawyer [START_REF] Fleischman | Maximum geographic range of a mutant allele considered as a subtype of a Brownian branching random field[END_REF] in the case of Branching Brownian motion, or by Lalley & Shao [START_REF] Lalley | On the maximal displacement of critical branching random walk[END_REF] in the case of Branching Random Walks.

In the symmetric case (i.e. β = 0) and when p 0 = p 2 = 1 2 , Theorem 1 was first obtained by Lalley & Shao [START_REF] Lalley | Maximal displacement of critical branching symmetric stable processes[END_REF], who prove that

P (M α,0 ≥ x) ∼ x→+∞ 2 α x -α/2 (1.3)
when choosing the normalization

E e iλL 1 = exp - R (1 -e iλx ) dx |x| α+1 = exp - π Γ(α + 1) sin πα 2 |λ| α .
In this case, from Remark 2 and the recurrence formula for the Gamma function, the constant κ α,0 equals

κ α,0 = π Γ(α + 1) sin πα 2 × 1 π Γ(α) sin πα 2 = 1 α hence (1.
3) agrees with Theorem 1 since σ 2 = 1 for this binary branching mechanism.

The starting point of [START_REF] Lalley | Maximal displacement of critical branching symmetric stable processes[END_REF] was to show that u is the solution of a pseudo-differential equation involving the generator of the symmetric stable Lévy process. This in turn allows to obtain a Feynman-Kac representation of u, and the authors then deduce the asymptotics of Theorem 1 after a careful analysis of the jumps of the underlying stable Lévy process. We shall propose here another approach and rather work with an integral equation. L s the running supremum of the stable Lévy process L, and let e be a standard exponential random variable of parameter 1, independent from L.

Lemma 3. The function u is a solution of the integral equation :

u(x) = P (S e ≥ x) + E 1 {Se<x} u(x -L e ) -Φ 0 (x) + Φ R (x) (1.4)
where the main term Φ 0 is given by

Φ 0 (x) = (1 -E[p])E 1 {Se<x} u(x -L e ) + 1 2 E p 2 -p E 1 {Se<x} u 2 (x -L e )
and the remainder Φ R satisfies the bounds

0 ≤ Φ R (x) ≤ E[p 3 ]E 1 {Se<x} u 3 (x -L e ) . (1.5) 
Proof. We start by applying the Markov property at the first branching event : α,β ) n∈N are independent copies of M α,β , which are also independent of the pair (L e , S e ). As a consequence, we obtain the integral equation :

P(M α,β < x) =
1 -u(x) = p 0 P (S e < x) + +∞ n=1 p n E 1 {Se<x} (1 -u(x -L e )) n .
(1.6)

Plugging the Taylor expansion with integral remainder

(1 -u) n = 1 -nu + n(n -1) 2 u 2 - n(n -1)(n -2) 6 u 3 1 0 (1 -ut) n-3 (1 -t) 2 dt in (1.6), we deduce that u(x) = P (S e ≥ x) + E 1 {Se<x} u(x -L e ) -Φ 0 (x) + Φ R (x)
where the remainder Φ R equals :

Φ R (x) = n≥3 p n n(n -1)(n -2) 6 1 0 E 1 {Se<x} u 3 (x -L e )(1 -u(x -L e )t) n-3 (1 -t) 2 dt.
Since 0 ≤ u(x) ≤ 1 for any x ≥ 0, the upper bound for Φ R is obtained by bounding the term to the power n -3 by 1.

Remark 4. Several terms in the equation (1.4) satisfied by u look like convolutions products. This will lead us to work with Laplace transforms and we thus set for a positive function f :

L[f ](λ) = +∞ 0 e -λx f (x)dx.
We shall repeatedly use in the following the standard Karamata's Tauberian theorem (see for instance Korevaar [START_REF] Korevaar | Tauberian theory. A century of developments[END_REF]Theorem 8.1]) which states that for γ ≥ 0 :

L[f ](λ) ∼ λ→0 1 λ γ h 1 λ ⇐⇒ x 0 f (z)dz ∼ x→+∞ 1 Γ(1 + γ) x γ h(x), (1.7) 
where h is a slowly varying function.

Remark 5. It may be noted that Equation (1.4) involves the distributions of L e and S e . The key observation is the following equivalence of asymptotics for strictly α-stable Lévy processes with positive jumps, see Bertoin [3, p.221] :

P (L 1 ≥ x) ∼ x→+∞ P (S 1 ≥ x) ∼ x→+∞ κ α,β x -α . (1.8)
We shall indeed prove, through Laplace transforms, that as x → +∞ :

P (L 1 ≥ x) ≤ (1 -E[p])u(x) + 1 2 E p 2 -p u 2 (x) ≤ P (S 1 ≥ x)
and the result will follow from the equivalence of both asymptotics.

The remainder of the paper is devoted to the proof of Theorem 1 : Section 2 is dedicated to the case α ∈ (0, 1] and Section 3 to the case α ∈ (1, 2). The general idea of the proof is the same in both cases, and is composed of three steps. We shall first write down some general inequalities involving Laplace transforms, then apply these inequalities to Equation (1.4) and finally pass to the limit and apply Karamata's tauberian theorem. The main difference between both cases is the existence of the first moment of L e when α ∈ (1, 2). This will require us to make some extra computations, in order to remove the "first order" terms.

2. The case 0 < α ≤ 1 2.1. Preliminary lemma. We start by writing some general bounds for the Laplace transform of the terms appearing in Equation (1.4). In the forthcoming proofs, we will frequently use the case f = u and f = u 2 . To simplify the notation, we set :

η α (λ) = Γ(1 -α)λ α-1 if α < 1 -ln(λ) if α = 1
and L + e = max(0, L e ). Note that using (1.8), the Tauberian theorem and the scaling property to remove the independent exponential random variable e, we have the asymptotics

1 -E e -λSe λ ∼ λ↓0 1 -E e -λL + e λ ∼ λ↓0 κ α,β η α (λ).
(2.1) Lemma 6. Assume that α ∈ (0, 1] and let f : [0, +∞) → [0, +∞) be a positive and decreasing function. The following inequalities holds :

i) Upper bound : +∞ 0 e -λx E 1 {Se<x} f (x -L e ) dx ≤ E e -λSe L[f ](λ)
ii) Lower bound :

+∞ 0 e -λx E 1 {Se<x} f (x -L e ) dx ≥ E e -λL + e L[f ](λ) + f (0) E e -λSe -E e -λL + e λ -E 1 {Le<0} -Le 0 e -λz f (z)dz iii) Assume that lim x→+∞ f (x) = 0, then lim λ↓0 1 η α (λ) E 1 {Le<0} -Le 0 e -λz f (z)dz = 0.
Proof. The upper bound i) is a direct consequence of the a.s. inequality L e ≤ S e . Indeed, since f is decreasing, the Laplace transform of the convolution product yields

+∞ 0 e -λx E 1 {Se<x} f (x -L e ) dx ≤ +∞ 0 e -λx E 1 {Se<x} f (x -S e ) dx = E e -λSe L[f ](λ).
For the lower bound ii), still using that f is decreasing and L e ≤ S e a.s.,

+∞ 0 e -λx E 1 {Se<x} f (x -L e ) dx = +∞ 0 e -λx E (1 {Se<x} -1 {Le<x} )f (x -L e ) dx + +∞ 0 e -λx E 1 {Le<x} f (x -L e ) dx ≥ f (0)
+∞ 0 e -λx (P (S e < x) -P (L e < x)) dx

+ +∞ 0 e -λx E 1 {Le<x} f (x -L e ) dx = f (0) E e -λSe -E e -λL + e λ + +∞ 0 e -λx E 1 {Le<x} f (x -L e ) dx.
We next decompose the remaining integral according as whether L e < 0 or L e ≥ 0 :

+∞ 0 e -λx E 1 {Le<x} f (x -L e ) dx = E e -λLe 1 {Le≥0} L[f ](λ) + +∞ 0 e -λx E 1 {Le<0} f (x -L e ) dx.
Then, the Fubini-Tonelli theorem and a change of variable in the last integral yields :

+∞ 0 e -λx E 1 {Le<0} f (x -L e ) dx = E 1 {Le<0} +∞ -Le e -λz-λLe f (z)dz ≥ P (L e < 0) L[f ](λ) -E 1 {Le<0} -Le 0 e -λz f (z)dz
and the result follows by gathering the two previous terms :

+∞ 0 e -λx E 1 {Le<0} f (x -L e ) dx ≥ E e -λL + e L[f ](λ) -E 1 {Le<0} -Le 0 e -λz f (z)dz .
It remains to compute the limit iii). Notice first that if β = 1 (and thus α < 1), then the process L is a subordinator, hence L e ≥ 0 a.s and the expectation is null. We thus assume now that β ∈ (-1, 1). Let ε > 0 and take A ε large enough such that f (x) ≤ ε for x ≥ A ε . We decompose :

1 η α (λ) E 1 {Le<0} -Le 0 e -λz f (z)dz ≤ 1 η α (λ) E 1 {-Aε<Le<0} Aε 0 e -λz f (z)dz + ε η α (λ) E 1 {Le<-Aε} -Le Aε e -λz dz ≤ A ε η α (λ) f (0) + ε η α (λ) +∞ 0 e -λz P(-L e > z)dz --→ λ↓0 εκ α,-β
where the limit of the integral follows from (2.1) since -L is a stable Lévy process with parameter α and -β.

We now apply Lemma 6 to study Equation (1.4).

Analysis of Equation (1.4).

Lemma 7. The Laplace transform of Φ 0 -Φ R satisfies the following bounds for λ > 0 :

λ 1 -E[e -λSe ] L[Φ 0 -Φ R ](λ) ≤ 1 and λ 1 -E e -λL + e L[Φ 0 -Φ R ](λ) ≥ 1 -λL[u](λ) - λ 1 -E e -λL + e E 1 {Le<0}
-Le 0 e -λz u(z)dz .

Proof. Taking the Laplace transform of (1.4) and using Point i) of Lemma 6 with f = u, we deduce that

L[u](λ) ≤ 1 -E e -λSe λ + L[u](λ)E e -λSe -L[Φ 0 -Φ R ](λ)
which yields the upper bound

λ 1 -E [e -λSe ] L[Φ 0 -Φ R ](λ) ≤ 1 -λL[u](λ) ≤ 1.
To get the lower bound, we apply Point ii) of Lemma 6 still with f = u. Since u(0) = 1, this yields

L[u](λ) + L[Φ 0 -Φ R ](λ) ≥ 1 -E e -λL + e λ + E e -λL + e L[u](λ) -E 1 {Le<0} -Le 0 e -λz u(z)dz
which gives the lower bound, after rearranging the terms.

It remains now to study the limit of both expressions when λ ↓ 0. Then letting λ ↓ 0 in Lemma 7 and using (2.1) and Point iii) in Lemma 6 with f = u, we obtain

L[Φ 0 ](λ) -L[Φ R ](λ) ∼ λ↓0 κ α,β η α (λ). (2.2)
To simplify the notations, we set

ϕ 0 (x) = (1 -E[p])u(x) + E[p 2 -p] 2 u 2 (x) (2.3) so that L[Φ 0 ](λ) = +∞ 0 e -λx E 1 {Se<x} ϕ 0 (x -L e ) dx.
Note that the function ϕ 0 is positive and decreasing since E[p 2p] > 0, as p is an integer-valued random variable. On the one hand, observe that since Φ R ≥ 0, we deduce from Lemma 6 with

f = ϕ 0 that L[Φ 0 ](λ) -L[Φ R ](λ) ≤ L[ϕ 0 ](λ) hence, from (2.2), κ α,β ≤ lim inf λ↓0 1 η α (λ) L[ϕ 0 ](λ).
On the other hand, fix ε > 0 small enough. Since lim x→+∞ u(x) = 0, there exists A ε > 0 such that u(x) ≤ ε for x ≥ A ε . This implies that there exists K, independent of ε, such that :

u 3 (x) ≤ εKϕ 0 (x) for x ≥ A ε .
As a consequence, using (1.5) and Point i) of Lemma 6 with f = u 3 , we deduce

L[Φ R ](λ) ≤ E p 3 Aε 0 e -λx u 3 (x)dx + +∞ Aε e -λx u 3 (x)dx ≤ E p 3 (A ε + εKL[ϕ 0 ](λ)) .
Then, using Point ii) of Lemma 6 with f = ϕ 0 ,

L[Φ 0 ](λ) -L[Φ R ](λ) ≥ E e -λL + e L[ϕ 0 ](λ) + ϕ 0 (0) E e -λSe -E e -λL + e λ -E 1 {Le<0} -Le 0 e -λz ϕ 0 (z)dz -E p 3 (A ε + εKL[ϕ 0 ](λ)) . (2.4)
Dividing both sides by η α (λ) and applying Point iii) of Lemma 6, we deduce that

κ α,β ≥ 1 -εKE p 3 lim sup λ↓0 1 η α (λ) L[ϕ 0 ](λ).
Finally, we have thus proven that

L[ϕ 0 ](λ) ∼ λ↓0 κ α,β η α (λ)
hence, by the Tauberian theorem,

x 0 ϕ 0 (z)dz ∼ x→+∞ κ α,β Γ(2 -α) η α 1 x .
The result now follows by differentiation, since ϕ 0 is decreasing.

3. The case 1 < α < 2

In this case, the existence of the first moment of S e prevents us from using directly the Tauberian theorem as in the previous case. Indeed, when α ∈ (1, 2), letting λ ↓ 0 in the first inequality of Lemma 7, one obtains :

lim sup λ↓0 L[Φ 0 ](λ) -L[Φ R ](λ) ≤ E[S e ].
Going back to (2.4), this implies that

1 -εKE p 3 lim sup λ↓0 L[ϕ 0 ](λ) ≤ (1 + ϕ 0 (0))E[S e ] + E[p 3 ]A ε -E[1 {Le<0} L e ]ϕ 0 (0) < +∞ (3.1)
i.e. we can only deduce, by the monotone convergence theorem, that

i) if E[p] < 1, +∞ 0 u(x)dx = E[M α,β ] < +∞, (3.2) ii) while if E[p] = 1, +∞ 0 u 2 (x)dx < +∞.
We shall thus made a technical modification of the previous proof, and write down some new inequalities. Proof. The proof of Lemma 8 is similar to that of Lemma 6. Point i) follows from the decomposition x = x -S e + S e , using the fact that f is decreasing and computing the Laplace transforms of the convolution products. Point ii) follows similarly from the decomposition x = x -L e + L e , by separating the case L e < 0 and L e ≥ 0. Finally, for Point iii), observe first that if β = 1, then the random variable (-L e ) + admits exponential moments, hence

λ 2-α E 1 {Le<0} -Le 0 e -λz zf (z)dz ≤ λ 2-α f (0)E 1 {Le<0} L 2 e --→ λ↓0 0.
Take now β ∈ (-1, 1) and let ε > 0. By assumption, there exists A ε > 0 such that f (x) ≤ ε for x ≥ A ε . We then decompose :

λ 2-α E 1 {Le<0} -Le 0 e -λz zf (z)dz ≤ λ 2-α E 1 {-Aε<Le<0} Aε 0 e -λz zf (z)dz + ελ 2-α E 1 {Le<-Aε} -Le Aε e -λz zdz ≤ λ 2-α A 2 ε f (0) + ελ 2-α +∞ 0 e -λz zP(-L e > z)dz --→ λ↓0 εκ α,-β
where the limit of the integral follows as before from (2.1) and the Tauberian theorem.

We now apply Lemma 8 to the equation (1.4) satisfied by u.

3.2. Analysis of Equation (1.4) in the case α ∈ (1, 2).

Lemma 9. The Laplace transform of x(Φ 0 -Φ R ) satisfies the following bounds :

λ 2 1 -E [e -λSe ] -λE [S e e -λSe ] L[x(Φ 0 -Φ R )](λ) ≤ 1 + λ 2 E S e e -λSe 1 -E [e -λSe ] -λE [S e e -λSe ] L[u](λ)
and

λ 2 1 -E e -λL + e -λE L + e e -λL + e L[x(Φ 0 -Φ R )](λ) ≥ 1 -λ 2 L[xu](λ) - λ 2 Ξ(λ) 1 -E e -λL + e -λE L + e e -λL + e where Ξ(λ) = E 1 {Le<0} -Le 0 e -λz zu(z)dz + E 1 {Le<0} (-L e ) L[u](λ).
Proof. We first multiply (1.4) by x before taking the Laplace transform of both sides:

L[xu](λ) = +∞ 0 e -λx xP (S e ≥ x) dx + +∞ 0 e -λx xE 1 {Se<x} u(x -L e ) dx -L[x(Φ 0 -Φ R )](λ).
Integrating by parts the first term on the right-hand side, we have

+∞ 0 e -λx xP (S e ≥ x) dx = 1 -E e -λSe -λE S e e -λSe λ 2 ∼ λ↓0 κ α,β Γ(2 -α)λ α-2 (3.3) 
from (2.1) and the Tauberian theorem. To get the upper bound, we apply Point i) of Lemma 8 with f = u :

L[x(Φ 0 -Φ R )](λ) + L[xu](λ) ≤ 1 -E e -λSe -λE S e e -λSe λ 2 + E e -λSe L[xu](λ) + E S e e -λSe L[u](λ).
Adding λE[S e e -λSe ]L[xu](λ) on the right-hand side and rearranging the terms yields the announced upper bound.

Similarly, to get the lower bound, we apply Point ii) of Lemma 8 with f = u : where the remainder R(λ) is given by :

L[x(Φ 0 -Φ R )](λ) + L[xu](λ) ≥ 1 -E e -λL + e -λE L + e e -λL + e λ 2 + E e -λL + e L[xu](λ) + E L e e -λL + e L[u](λ) -E 1 {Le<0} -Le
R(λ) = E 1 {Le<0} -Le 0 e -λz zu(z)dz -E 1 {Le<0} L e L[u](λ) + E L + e e -λL + e (λL[xu](λ) -L[u](λ)) .
Note that the last term on the right-hand side is negative and may thus be removed since, integrating by parts,

L[u](λ) -λL[xu](λ) = E M α,β e -λM α,β ≥ 0,
hence R(λ) ≤ Ξ(λ) which proves the lower bound.

3.3. Proof of Theorem 1 when α > 1. We now want to let λ ↓ 0 in Lemma 9. Notice first that, thanks to (2.1), the first terms on the left-hand side of both inequalities will converge towards the same quantity, which is given by (3.3). Also, by the monotone convergence theorem As a consequence, it only remains to show that

lim λ↓0 λ 2-α L[u](λ) = 0. (3.4) When E[p] < 1, this is a direct consequence of (3.2) since L[u](λ) ≤ E[M α,β ] < +∞.
The situation is trickier when E[p] = 1, and we shall rely on the following Lemma, which gives an a priori bound on u.

Lemma 10. Assume that α > 1 and E[p] = 1. Then, there exists a constant C > 0 such that for x large enough,

P (M α,β ≥ x) ≤ Cx -α/2 .
Proof. We mimic the arguments of [START_REF] Lalley | Maximal displacement of critical branching symmetric stable processes[END_REF]. Recall that since α > 1, the positivity parameter

ρ = P(L 1 ≥ 0) of L belongs to the interval [1 -1 α , 1 α ]. Denote by M (t)
α,β the maximum of the branching stable process on the interval [0, t] and by M (t) α,β the maximum of the branching stable process on the interval [t, +∞]. From the construction given in (1.1), we first deduce that

P (M α,β ≥ x) ≤ P M (t) α,β ≥ x + P M (t) α,β ≥ x ≤ P M (t) α,β ≥ x + P (Z(t) ≥ 1) .
Let us now denote by T x the first time at which a particle of the branching process reaches the level x. Then, by applying the Markov property at T x , we deduce that conditionally to {T x ≤ t} = {M (t) α,β ≥ x}, the expected number of particles above x at time t is greater than ρ :

E   Z(t) i=1 1 {L (i) t ≥x} M (t) α,β ≥ x   ≥ ρ ≥ 1 - 1 α which implies that P M (t) α,β ≥ x ≤ α α -1 E   Z(t) i=1 1 {L (i) t ≥x}   ≤ α α -1 E[Z(t)]P (L t ≥ x) = α α -1 P t 1/α L 1 ≥ x
since Z is independent from the positions (L (i) ), and E[Z(t)] = 1 for all t ≥ 0. Taking t = x α/2 , we have thus proven that

P (M α,β ≥ x) ≤ α α -1 P L 1 ≥ √ x + P Z(x α/2 ) ≥ 1
and the result follows by using (2.1) and the Kolmogorov's theorem, which states that

P (Z(t) ≥ 1) ∼ t→+∞ 2 σ 2 t see for instance Asmussen & Hering [1, Theorem 2.6].
We now come back to the limit (3.4). Applying Lemma 10 and the Tauberian theorem, we deduce that for λ small enough, there exists a constant C > 0 such that

λ 2-α L[u](λ) ≤ Cλ 1-α 2 --→ λ↓0 0 since α ∈ (1, 2 
). As a consequence, by letting λ ↓ 0 in Lemma 9, we obtain the asymptotics

L[xΦ 0 ](λ) -L[xΦ R ](λ) ∼ λ↓0 κ α,β Γ(2 -α)λ α-2 .
The remainder of the proof is now similar to the case α ∈ (0, 1]. First, applying Point i) of Lemma 8 with f = ϕ 0 and using that Φ R ≥ 0, we deduce that and the result now follows by differentiation, since ϕ 0 is decreasing, see Lemma 11 in the Appendix.

L[xΦ 0 ](λ) -L[xΦ R ](λ) ≤ L[xϕ 0 ](λ) + E[S e ]L[ϕ 0 ](λ) which implies the lower bound lim inf λ↓0 λ 2-α L[xϕ 0 ](λ) ≥ κ α,β Γ(2 -α).

Appendix

We briefly prove the following lemma, which allows to differentiate an asymptotics :

Lemma 11. Assume that u is a positive and decreasing function and γ ∈ (0, 1). Then, for any ξ ≥ 0 :

x 0 z ξ u(z)dz ∼ x→+∞ x γ ⇐⇒ u(x) ∼ x→+∞ γx γ-1-ξ
Proof. We only prove the implication =⇒ as its converse is classic. Since u is decreasing, we have for h > 0 : Fix ε > 0. Assuming that x is large enough, we deduce from the assumption that (x + h) γx γ -2ε((x + h) γ + x γ ) ≤ h(x + h) ξ u(x).

Dividing both sides by h, we further obtain since γ ∈ (0, 1) :

γ(x + h) γ-1 - 2ε((x + h) γ + x γ ) h ≤ (x + h) ξ u(x).
We now set h = √ εx, divide both sides by γx γ-1 and let x → +∞. This yields :

(1 + √ ε) γ-1 -2 √ ε (1 + √ ε) γ + 1 γ ≤ 1 + √ ε ξ lim inf x→+∞ x ξ u(x) γx γ-1
i.e., letting ε ↓ 0,

1 ≤ lim inf x→+∞ x ξ u(x) γx γ-1 .
The other bound is obtained similarly, by starting from 

1. 2 .

 2 An integral equation for u. We start by writing down the integral equation satisfied by the function u. Let us denote by S t = sup s∈[0,t]

  p 0 P (S e < x) + +∞ n=1 p n P S e < x, L e + M (1) α,β < x, . . . , L e + M

2. 3 .

 3 Proof of Theorem 1 when α ≤ 1. Notice first that from a change of variable and the monotone convergence theorem,

3. 1 .Lemma 8 . 0 eλ 2 -α E 1 {Le<0} -Le 0 e

 18020 Preliminary lemma. Assume that α ∈ (1, 2) and let f : [0, +∞) → [0, +∞) be a positive and decreasing function. We write xf for the function x → xf (x). Then, the following inequalities hold : i) Upper bound :+∞ 0 e -λx xE 1 {Se<x} f (x -L e ) dx ≤ E e -λSe L[xf ](λ) + E S e e -λSe L[f ](λ).ii) Lower bound :+∞ 0 e -λx xE 1 {Se<x} f (x -L e ) dx ≥ f (0) +∞ 0 e -λx x (P (L e ≥ x) -P (S e ≥ x)) dx + +∞ 0 e -λx xE 1 {Le<x} f (x -L e ) dxand +∞ -λx xE 1 {Le<x} f (x -L e ) dx ≥ E e -λL + e L[xf ](λ) + E L e e -λL + e L[f ](λ) -E 1 {Le<0} -Le 0 e -λz zf (z)dz . iii) Assume that lim x→+∞ f (x) = 0, then lim λ↓0 -λz zf (z)dz = 0.

0e 2 1- 2 1-

 22 -λz zu(z)dz Adding λE L + e e -λL + e L[xu](λ) in both sides and rearranging the terms, we obtain λ E e -λL + e -λE L + e e -λL + e L[x(Φ 0 -Φ R )](λ) ≥ 1λ 2 L[xu](λ) -λ E e -λL + e -λE L + e e -λL + e R(λ)

λ 2 Le

 2 Point iii) of Lemma 8 with f = u, -λz zu(z)dz = 0.

Next, we deduce

  from Point ii) of Lemma 8 with f = ϕ 0 that L[xΦ 0 ](λ) ≥ ϕ 0 (0) +∞ 0 e -λx x (P (L e ≥ x) -P (S e ≥ x)) dx + +∞ 0 e -λx xE 1 {Le<x} ϕ 0 (x -L e ) dx where +∞ 0 e -λx xE 1 {Le<x} ϕ 0 (x -L e ) dx ≥ E e -λL + e L[xϕ 0 ](λ) -E 1 {Le<0} -Le 0 e -λz zϕ 0 (z)dz + E L e e -λL + e L[ϕ 0 ](λ).Take ε > 0. As before, since lim x→+∞ u(x) = 0, there exists A ε > 0 and K > 0 such that u(x) ≤ ε andu 3 (x) ≤ εKϕ 0 (x) for x ≥ A ε .As a consequence, using (1.5) and Point i) of Lemma 8 with f = u 3 , we deduceL[xΦ R ](λ) ≤ E p 3 L[xu 3 ](λ) + E [S e ] L[u 3 ](λ) ≤ E p 3 A 2 ε + E [S e ] A ε + εK (L[xϕ 0 ](λ) + E [S e ] L[ϕ 0 ](λ)) ≤ C(1 + εL[xϕ 0 ](λ))for some constant C large enough since L[ϕ 0 ](λ) ≤ L[ϕ 0 ](0) < +∞ from (3.1). Then, using Point iii) of Lemma 8 with f = ϕ 0 , we obtain(1 -εC) lim sup λ↓0 L[xϕ 0 ](λ) ≤ κ α,β Γ(2α) which implies that L[xϕ 0 ](λ) ∼ λ↓0 κ α,β Γ(2α)λ α-2 .Finally, by the Tauberian theorem,

z

  ξ u(z)dz ≤ h(x + h) ξ u(x).

z

  ξ u(z)dz.