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ABSTRACT
Despite a huge leap in performance of face recognition systems in
recent years, some cases remain challenging for them while being
trivial for humans. This is because a human brain is exploitingmuch
more information than the face appearance to identify a person.
In this work, we aim at capturing the social context of unlabeled
observed faces in order to improve face retrieval. In particular, we
propose a framework that substantially improves face retrieval by
exploiting the faces occurring simultaneously in a query’s context
to infer a multi-dimensional social context descriptor. Combining
this compact structural descriptor with the individual visual face
features in a common feature vector considerably increases the cor-
rect face retrieval rate and allows to disambiguate a large proportion
of query results of different persons that are barely distinguishable
visually.
To evaluate our framework, we also introduce a new large dataset of
faces of French TV personalities organised in TV shows in order to
capture the co-occurrence relations between people. On this dataset,
our framework is able to improve the mean Average Precision over
a set of internal queries from 67.93% (using only facial features ex-
tracted with a state-of-the-art pre-trained model) to 78.16% (using
both facial features and faces co-occurrences), and from 67.88% to
77.36% over a set of external queries.
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1 INTRODUCTION
Following the recent advances in deep learning, facial recogni-
tion techniques have improved significantly during the last decade
[6, 14, 17, 19]. The most advanced ones can nowadays compete
with humans on tasks such as person verification or identification.
On the well-known face verification benchmark LFW [9], a score
of 99.6% has been reached [17]. However, these state-of-the-art
methods are still prone to many mistakes that no human would
make; this is because a human brain does not only focus on facial
features to recognize a human face, but is using also contextual
information. For example, humans have been able to obtain an ac-
curacy of 94.27% on the LFW protocol, with all faces masked in the
original images [12]. A very powerful contextual information is the
co-occurrences of people appearing together: on TV, for example,
it will always be easier to identify a member of a music band if you
see them alongside the other ones, than alone. The same applies to
many local politicians, football players, actors. . .
Several approaches have been proposed in order to improve facial
recognition tasks, such as classification, verification, or retrieval,
using additional contextual information. The nature of this contex-
tual information is diverse: it can be a visual context, including the
whole body and clothes of the person of interest, a social context
from social media metadata, or categorical data. However, to our
knowledge, no attempt has been made at inferring the social rela-
tionship of persons occurring in a large database in an unsupervised
manner, and using it to improve the retrieval of persons in that
database.
Our goal is as follows: for one face, observed in a TV show alongside
other people, we want to retrieve all other instances of the same
person in a large dataset of TV show.
We introduce an unsupervised method that provides a contextual
embedding for groups of faces appearing together, based on their es-
timated co-occurrence relationships with other faces in the dataset.
It can be divided in three main steps:
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1) We use a soft clustering on face descriptors to approximate the
ground truth entities with clusters of faces.
2) We build a probabilistic co-occurrence matrix to map the clusters
to a contextual feature space capturing their co-occurrence rela-
tionships.
3) We fuse the contextual embeddings of all faces observed together
into a common embedding that best represents them all.
We experimentally show that this method can be used to substan-
tially improve face retrieval by merging facial feature vectors with
their corresponding contextual embedding. We evaluate our ap-
proach on a dataset of 548,686 faces, organized under 138,381 TV
shows containing the faces of people appearing together, in order
to naturally embed their social relationships. We show that our
method can increase the mean Average Precision obtained when
retrieving a set of internal queries in our dataset from 67.93%, when
using only facial features extracted with a pre-trained model, to
78.16%. We also show that our method reaches similar performance
on a set of external queries.

2 RELATEDWORK
2.1 Social context for person recognition
Using contextual information in order to improve person recogni-
tion is something that has been widely studied in the past. Some
are focusing on additional visual information, such as clothes or
specific body parts [13, 21].
The approach proposed by Stone et al. [18] uses the social rela-
tionships between users of a social media to recognize them. To
do this, they define potential functions based on the connections
of the users in the social media network, and the co-occurrences
of people in already annotated photos. All of this information is
directly available from the social media. Unfortunately, this can-
not be extended to different situation where social relationships
between subjects is completely unknown.
Coelho de Castro andNowrozin [5] introduced a theoretical Bayesian
model for person identification, in which the "context" is defined
as a discrete latent variable. This latent variable is drawn from a
probability that follows a Dirichlet prior, to allow for new con-
text to appear. Since all persons observed together are sharing the
same "context", this latent variable is supposed to embed the co-
occurrence relations between people.
In the work from Huang et al. [10], both a visual context and a
social context are used for person recognition, in photo albums
or movies dataset. The visual context consists in different regions
of the persons, like their upper body or whole body, while the so-
cial context is divided between the person-to-person relationships
(i.e. person co-occurrences), and the event-to-person relationships,
which aims at identifying events in the photo albums or movies
where each person is expected to appear. However, this method is
applied to classifying persons from a query set, based on a gallery
set from which those relationships are learned. This assumes that
we have at our disposal an already annotated subset from which
we can learn a social context. This is not the case for our retrieval
task in a non-annotated dataset.

2.2 Existing datasets of face images
The improvement of deep learning models for facial recognition has
been made possible by an increase in both the size and the quality of
the available datasets [1, 4, 7, 15]. Amongst themost recent ones, the
VGGFace2 dataset [4] contains 3.3M images, divided in 9,000 unique
identities. Other datasets have been built specifically in order to
address the issue of faces observed under unconstrained settings,
and to take advantage of some contextual information. The People
in Photo Albums (PIPA) dataset [21] contains 37K images in which
appear 63K instances of 2,356 unique identities. This is to date one
of the most important dataset of people co-occuring together in
different contexts; however the number of instances and unique
people is quite low in comparison to what can be seen on TV over a
few years. We can also mention the Celebrity Together dataset [22]
which contains 194K images where 2,622 labeled celebrities appear
together. However, there is no evidence that the co-occurrences
of the celebrities in this dataset are representative of their social
context.

3 DATASET
3.1 Motivation
Our motivation is to be able to retrieve faces in a large dataset of TV
shows by exploiting both the visual features of the faces observed
in them and various contextual information. However, evaluating
a model on this task requires to build a ground truth, which would
be a really tedious task on a large dataset of videos. We instead
decided to build a new dataset of face images, organized to reflect
the co-occurrences of faces observed under real conditions. This is
the dataset we use to evaluate our method.

3.2 Dataset structure
We introduce a new dataset1 of face images scraped with a search
engine and selected to be representative of the people that can
be observed on French TV. Our dataset is consisting of 548,686
instances of 42,655 unique persons. All of those instances are dis-
tributed into 138,381 shows. These shows are organised in order
to contain images of people who did appear in the same TV show
once, to capture the co-occurrence relationship between them.
The dataset was build as follows: Using a list of TV shows and of
people occurring in them, we scraped a search engine in order to
build a dataset of images of these people, that we annotated semi-
automatically: for each queried person, we applied a clustering on
the faces returned by the search engine to remove undesired results.
We removed duplicates and annotated manually ambiguous pairs of
classes for which the distance between facial descriptors obtained
with a pre-trained model was low. For all remaining images, the
corresponding ground truth is the name used as a query when
scraping with a search engine.
To each TV show in our list, we assign, when available, an instance
of all people that appear in it. No instance can be assigned to more
than one show. If all instances of one person have been assigned,
that person is no longer considered in the upcoming shows. Only
shows with at least two instances assigned to them are kept. See
Fig. 1 for an example.

1https://github.com/ina-foss/co-occurring_faces_in_tv
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Finally, we obtain 548,686 instances of 42,655 unique identities dis-
tributed between 138,381 shows. Between 2 and 55 instances are
assigned to each show, with an average of 3.96 instances per show.
Every unique identity has on average 12.86 instances.
Because the TV shows used to build this dataset are real TV shows
broadcasted between January 1990 and January 2020 on French TV,
it contains co-occurrences of persons representative of the French
television. To our knowledge, this is the largest public dataset of
faces to contain such a large amount of information on social rela-
tionships between each subject.

3.3 Baseline
For our baseline, we use a previously trained model to compute
facial features. It was trained as follows:

3.3.1 Training set and images pre-processing. We used the VG-
GFace2 training split [4] as our training set that chose for its
large size and its large number of distinct identities. We first pre-
processed the images using the OpenCV face detection network
[2] to detect the face positions in the images. Then, we use the
dlib library [11] for facial landmark detection and alignment. And
finally, we extract the aligned faces in images of 256 × 256 pixels
that are given to the network.

Figure 1: Example of shows containing face images. Donald
J. Trump, Recep Tayyip Erdogan and 4 french journalists
appeared together on the TV news on channel France 2 the
16/10/2019. We sample one image for each one of them and
assigned them to a common show (six first faces above). An-
other show is built with images of Edwige Antier, Marina
Carrère d’Encausse and Michel Cymès who all appeared on
a show on channel France 5, the 25/07/2001 (three last faces
above).

3.3.2 Neural network architecture. Thismodel is based on a ResNet18
architecture [8] trained from scratch. It outputs feature vectors of
128 dimensions.

3.3.3 Loss function. The loss function used for training is the
triplet loss, introduced in [17] for similarity metric learning. This
model thus learns a projection into a 128-dimensional vector space
where embeddings from similar face images are supposed to be
close and dissimilar ones further apart.

This model achieves a score of 98.98% on the LFW verification
protocol. On the evaluation protocol defined in 5.1, using the facial
features extracted with this model, we obtained a mAP over the
query set of 67.93%.
For all of methods described in this paper, only this model is used.
We will show how we can increase the mAP on our query set from
67.93%, with this trained model only, to more than 78% by exploiting
the co-occurrence relationships of people.

4 METHODOLOGY
4.1 Main approach
In order to exploit social relationships between entities to better
recognize each face, we first need to identify those entities. In other
works [10, 21], the entities are already known, as the ultimate goal
is not to retrieve other faces, but to classify a query in a set of
known identities, for which examples of social relationships are
known. In our case, however, we do not dispose of this information.

An overview of our approach is represented in Fig. 2. We call 𝑋
the set of instances in our dataset, and 𝑆 the list of shows, which are
subsets of 𝑋 . For practical reasons and for readability, in the rest
of this document, 𝑋 refers interchangeably to both the set of faces
observed in all shows and to the set of facial features extracted from
these faces with our model (see subsection 3.3).

As the real identities of all our instances is unknown, we estimate
these identities via a clustering of all of the face images from our
dataset, based on their visual features. Although there may be some
outliers or wrongly grouped faces, the list of identified clusters will
then be used as a proxy for the list of real identities, and we will
infer the social relationships among the clusters. We will compare
different clustering methods for approximating the real identities
in section 4.2.

Once identities have been approximated with clusters, we map
each cluster to a multidimensional feature space so that clusters
containing many co-occurring instances are mapped to close vec-
tors in the new feature space, while clusters with no co-occurring
instances are mapped to distant feature vectors. This part is detailed
in section 4.3.

To each show 𝑠 ∈ 𝑆 we can now assign a contextual feature
y𝑠 that combines the features of all the clusters appearing in that
show. The new combined contextual feature y𝑠 should be repre-
sentative of all instances of 𝑠 while being robust to outliers. We
compare two methods to combine the contextual features of the
clusters appearing in a show in subsection 4.4. The first one is using
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Figure 2: Our proposed framework. Similar faces appearing in the different shows 𝑠𝑖 are first grouped together into𝐶 clusters
using our approximate soft-clustering approach, operating on visual feature vectors x𝑖 . Cluster co-occurrences are registered
in a specific co-occurrencematrixMwhich is used to learn a contextual descriptormatrix M̂. For each show 𝑠 ∈ 𝑆 , the contextual
descriptors of all faces x𝑖 ∈ 𝑠 are then merged into a common descriptor y𝑠 that best represent them. Finally, the retrieval of
faces is performed on the concatenation x̃𝑖 of the facial descriptors x𝑖 and the contextual descriptors y𝑠 .

their average value, while the second is using the geometric median.

Finally, we define x̃ for x ∈ 𝑠 as the concatenation of the facial
feature vector of the instance x and the contextual descriptor y𝑠 of
show 𝑠 , after normalization. Retrieval is now applied on the con-
catenated feature vectors x̃.

4.2 Clustering methods
4.2.1 HDBSCAN. We compare three different clustering approaches.
The first one is the HDBSCAN clustering method [16], which is
based on DBSCAN [3]. Its main advantage is that it does not re-
quire to specify the number of expected clusters, as it is the case
in other approaches such as k-means. The only input it requires
is the minimum size of the clusters, which we set to 3 in order to
identify even the smaller ones. With HDBSCAN, every point can
be assigned to a cluster, or, if it is too far from any identified cluster,
be considered as an outlier.
The vectors c(x) can now be defined as one-hot encoders (c(x)𝑖 = 1
if x has been assigned to cluster 𝑖 , 0 otherwise). If an instance x
is considered as an outlier, then c(x) = 0. This means outliers are
not accounted for when building the co-occurrence matrix M (see
section 4.3).

4.2.2 Hard-clustering without outliers. In the second approach, we
assign all points, including those identified as outliers, to the nearest
clusters identified by HDBSCAN. The vectors c(x) can once again
be defined as one-hot encoders. This means we have more available
data to build the co-occurrence matrix M (see section 4.3) and to
combine contextual feature vectors for each show (see section 4.4);
however, these additional data are more likely to be noisy.

4.2.3 Approximated soft-clustering. The last approach is a trade-off
between excluding the outliers like in the first approach and using
all available information like in the second approach, by using soft
clustering.
For practical reasons, the probability distribution of all instances are
not computed over all identified clusters. Instead, the clusters are
once again identified with HDBSCAN. The probability distribution
is computed over the 𝑘-nearest clusters for each instance and a
probability of all other clusters is arbitrarily assigned to zero. Also,

all cluster distributions are considered isotropic Gaussians with a
common covariancematrixΣ = 𝜎I, and all clusters are considered to
have the same prior probability 𝑃 (𝑐𝑖 ). With these assumptions, the
posterior probabilities are equal to the likelihood: 𝑃 (𝑐𝑖 |x) ∝ 𝑃 (x|𝑐𝑖 ).
For an instance x and a cluster 𝑐𝑖 with mean value 𝜇i, the estimated
probability 𝑃 (𝑐𝑖 |x) is computed as follows:

𝑃 (𝑐𝑖 |x) = c(x)𝑖 ∝


exp
(
− ||x − 𝜇i | |

2𝜎

)
if c𝑖 ∈ 𝑘-nearest
clusters of x

0 otherwise
(1)

The case 𝑘 = 1 is equivalent to the hard clustering described in
4.2.2.

4.3 Co-occurrence matrix
After clustering 𝑋 (detailed in subsection 4.2), 𝐶 clusters are iden-
tified. For each instance x ∈ 𝑋 , we define a vector c(x) ∈ R𝐶 that
denotes the posterior probability of each identified cluster given x:

c(x)𝑖 = 𝑃 (𝑐𝑖 |x) for x ∈ 𝑋 and for 𝑖 ∈ {1...𝐶} (2)
that is, c(x) represents the probability mass function over all clus-
ters for a given instance.

We then define a probabilistic co-occurrence matrix M ∈ R𝐶×𝐶
as follows:

M𝑖, 𝑗 =

{ ∑
𝑠∈𝑆

∑
𝑥1,𝑥2∈𝑝,𝑥2≠𝑥1

c(x1)𝑖c(x2) 𝑗 if 𝑖 ≠ 𝑗

0 otherwise
(3)

The value M𝑖, 𝑗 , for 𝑖 ≠ 𝑗 , is thus equal to∑
𝑠∈𝑆

∑
𝑥1,𝑥2∈𝑠,𝑥2≠𝑥1

𝑃 (𝑐𝑖 |x1)𝑃 (𝑐 𝑗 |x2)

This element denotes the expected number of shows in which an
instance assigned to cluster 𝑖 co-occurs with an instance assigned
to cluster 𝑗 .

As𝐶 can be quite large, the matrix M is rather sparse containing
a great number of zeros as well as some redundancy. Further, each
line/column of M represents a contextual description that is very
long compared to the visual feature vectors. Thus the fusion of both
creates an imbalance that degrades the final retrieval performance.
Therefore, a Principal Component Analysis (PCA) is performed
on M and the 𝐷 most important components are kept (𝐷 < 𝐶),
transforming it into a new matrix M̂ ∈ R𝐶×𝐷 .



Each cluster 𝑐𝑖 , for 𝑖 ∈ {1...𝐶} is now associated with a (com-
pressed) contextual feature vector M̂𝑖 ∈ R𝐷 .

4.4 Combining contextual features for each
show

For a show 𝑠 , the list of clusters that occur in that show is the list
of clusters to which are assigned instances of that show: {c(x)}x∈𝑠 .
These clusters themselves have a contextual feature vector that
embeds their co-occurrence relationships. In order to map a show in
the same contextual feature space, different approaches are possible.

4.4.1 Average value. The first, straightforward approach consists
in simply computing the feature vector y𝑠 of show 𝑠 as the average
feature vector of the clusters appearing in it:

y𝑠 =
∑

x in 𝑠

∑𝐶
𝑖=1 c(x)𝑖M̂i∑

x in 𝑠

∑𝐶
𝑖=1 c(x)𝑖

(4)

4.4.2 Geometric median. The second approach consists in com-
puting the feature vector y𝑠 not as the average value, but as the
geometric median of the feature vectors of the clusters occurring
in 𝑠 . This allow for y𝑠 to be more robust to single feature vectors
that differ considerably from the other ones, which might be the
case when an instance has been assigned to the wrong cluster.

y𝑠 = argmin
y∈R𝐷

∑
x in 𝑠

𝐶∑
𝑖=1

c(x)𝑖 | |M̂i − y| |2 (5)

The algorithm used for inferring the geometric median is the one
detailed in [20].

Note that for both approaches, the feature vector of each cluster
𝑖 is weighted by the probability c(x)𝑖 = 𝑃 (𝑐𝑖 |x) for x ∈ 𝑠 . This
means that in the case of soft clustering, only the 𝑘-nearest clusters
identified in 4.2.3 are accounted for.
With the HDBSCAN clustering, it is possible that no instance of a
show 𝑠 have been assigned to a cluster:

∑
x in 𝑠

∑𝐶
𝑖=1 c(x)𝑖 = 0. In

this case, y𝑠 is set to the average value of all clusters contextual
feature vectors.

5 EXPERIMENTS
5.1 Experiments setup
Our dataset of faces distributed in TV shows is partitioned into
two disjoint sets: a training set of 137,381 TV shows, containing
544,863 faces, and a test set of 1,000 TV shows of 3,823 faces, 3,770
of which belonging to people also appearing in the training set.
We apply our pre-processing on the training set (i.e. clustering of
its instances, computation and reduction of the co-occurrence ma-
trix). Our method to improve the retrieval of faces is evaluated on
both internal and external queries. The internal queries are 9,820
instances from the training set, belonging to people appearing at
least one more time in the training set. The external queries are the
3,770 instances of the test set belonging to people who also appear
in the training set.
The mean Average Precision (mAP) obtained on each set of queries
is used as the performance metric. We compare the performance

of our approach for the different clustering methods (explained
in 4.2) applied on the training set, and the different feature vector
combinations explained in 4.4.
As a baseline, we use the model for facial features extraction de-
scribed in section 3.3. With the face descriptors extracted with this
model, we obtain a mAP of 67.93% on the internal query set and a
mAP of 67.88% on the external query set.

5.2 Internal queries results and analysis
The results obtained with internal queries in the different configura-
tions for clustering and for feature vector combination are detailed
in Table 1. The mAP is computed on the retrieval of the vectors
x̃. The dimensionality of the contextual features y𝑠 for 𝑠 ∈ 𝑠 is set
to 𝐷 = 300. We observe an increase of the mAP on the query set
from 67.93% using facial features only, to 78.16% by exploiting the
co-occurrences between the identified clusters, in the best configu-
ration.
Figure 3 shows the evolution of the mAP in the different configura-
tions as a function of the number of additional components from
the contextual features concatenated to the 128-dimensional face
descriptors. We can notice the score keeps increasing slightly for a
contextual features dimension 𝐷 higher than 300.
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Figure 3: Mean Average Precision over the internal queries
as a function of the number of additional components from
the contextual features, for different clustering methods
and configurations.

The results obtained using the HDBSCAN algorithm, where
some points are considered as outliers, are far below those obtained
when clustering all points or when using soft clustering. If some of
the points might be wrongly clustered, the gain we get from this
additional data is higher than the loss due to these errors.
Also, in the case of hard clustering without outliers, the clustering
errors can be mitigated by the geometric median (configuration
(4) in Table 1) when computing a show feature vector. The geo-
metric median will be more robust to outliers in the contextual
feature space, hence a small gain compared to the average value



Table 1: mAP over 9,820 internal queries under different configurations, for 300 additional components:

Clustering algorithm HDBSCAN Hard clustering w/o outliers Soft clustering 𝑘 = 20 Face descriptors only
Feature vector combination Average (1) Median (2) Average (3) Median (4) Average (5) Median (6)
mAP over 20K queries 73.13% 72.97% 77.09% 77.78% 77.15% 78.16% 67.93%

Table 2: Mean Average Precision over 3,770 external queries under different configurations, for 300 additional components:

Clustering algorithm Hard clustering w/o outliers Soft clustering 𝑘 = 20 Face descriptors only
Feature vector combination Average (3) Median (4) Average (5) Median (6)
mAP over 20K queries 76.15% 76.93% 76.22% 77.36% 67.88%

(configuration (3)). The best results are obtained when combining
the geometric median with the soft clustering (configuration (6)).
For a soft clustering approximated over the 𝑘 = 20 nearest clusters
of each instance, the mAP obtained while retrieving faces from the
query set reaches 78.16%.

With this best model, the average precision increased for 8,325
of the 9,820 internal queries. It decreased for 782 other queries and
remained unchanged for the 713 remaining ones.

5.2.1 Impact of the number of instances co-occurring with the query.
We observe that the variation of the Average Precision for a given
query does not depend on the amount of people occurring in the
show in which it appears : the improvement is visible for shows
with only 2 persons and remains stable for shows with more people.

5.2.2 Impact of the number of instances of the queried identity in the
dataset. Our model’s performance is slightly lower to the baseline
when retrieving a face with only 1 or 2 other instances in our
dataset.

This can be due to the fact that identities with fewer instances are
more likely to be assigned to neighbor clusters with co-occurrence
relationships that do not match their owns’. In this case, the con-
textual information used to improve our results is noisy. The gain
becomes clearly noticeable for identities occurring at least 4 times,
which are more likely to form their own cluster and to take advan-
tage of our approach.

5.2.3 Impact of the parameter 𝑘 for the approximated soft-clustering
on the results. In our soft clustering approach, the probability 𝑃 (𝑐𝑖 |x)
of an instance 𝑥 to belong to a cluster 𝑐𝑖 is approximated as de-
scribed in 4.2.3 and Eq. 1. We only assign a non-zero probability to
the 𝑘-nearest clusters. Setting 𝑘 to a small value means we only fo-
cus on very similar clusters (according to our model detailed in 3.3),
while choosing a higher value of 𝑘 means the instance could also
belong to clusters that are much more dissimilar, if their contextual
embeddings match.

We show that even if the mAP slightly varies with the value of
𝑘 , the choice of this parameter is not significant : for a given config-
uration where the contextual feature vectors have 300 components,
and the geometric median is used to combine each show contextual
features, the mAP increases from 78.12% for 𝑘 = 2 to 78.16% for
𝑘 = 20 and then reaches a plateau for higher values of 𝑘 .

5.3 External queries results and analysis
External queries are first assigned or soft-assigned to the nearest
clusters identified in the gallery set. The contextual features of the
external shows are computed based on these clusters. The results
obtained with external queries in the different configurations for
clustering and for feature vector combination are detailed in Table
2. The mAP is computed on the retrieval of the combined vectors x̃.
Similarly to what has been done with internal queries, the dimen-
sionality of the contextual features y𝑠 for 𝑠 ∈ 𝑆 is set to 𝐷 = 300.
The evolution of the mAP as a function of the dimensionality 𝐷

is displayed in Fig. 4. While the scores obtained on these external
queries is slightly lower to what was observed with internal queries,
they remain substantially higher to our baseline.
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Figure 4: Mean Average Precision over the external queries
as a function of the number of additional components from
the contextual features, for different clustering methods
and configurations.



6 CONCLUSION
In this paper, we describe a new unsupervised method to learn a
contextual descriptor mapping for a set of unlabeled faces occur-
ring together. Using a previously trained model to extract facial
feature vectors, we compute for each one of these faces a prob-
ability distribution over a set of possible contextual embeddings.
The probability distributions of these co-occurring faces are then
combined to determine a contextual embedding that best represent
the whole context. We show that the fusion of the facial feature
vectors and the combined contextual descriptor yields considerably
better results in the retrieval task than the facial feature vectors
alone.
We evaluated our method on a new dataset, built in order to capture
the diversity of people on TV and their co-occurrence relationships
in the different shows. We show that using no additional data, the
results of our method are clearly superior to those obtained using
only facial features on a retrieval task.
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