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Abstract
Preserving the privacy of mobility data has been the center of active research in the last de-
cade as this data may reveal sensitive information about individuals (e.g., home, work places,
political, religious, sexual preferences). In this context, a large variety of Location Privacy Pro-
tection Mechanisms (LPPMs) have been proposed. To employ LPPMs more effectively for the
benefits of the users’ privacy, adaptive solutions that dynamically combine LPPMs have also
been investigated. These solutions apply various LPPMs on a given trace and choose the one
that better meets privacy and utility requirements. To meet this objective, adaptive solutions
often rely on a trusted proxy that gathers users’ traces and apply LPPMs locally. In this paper
we release this assumption by designing an approach, i.e., EDEN, where mobility data never
leaves the user’s device before being protected by an appropriate LPPM. Experimental evalua-
tion performed on real mobility traces shows that EDEN with its local and adaptive strategy
outperforms individual LPPMs both in terms of privacy and utility metrics.

Keywords : Mobility Data, Location Privacy, Re-identification Attacks, Federated learning.

1. Introduction

The last decade has witnessed the apparition of a wide variety of location based services (LBSs),
which are extensively used by increasing numbers of users. While LBSs offer useful services to
the customers (e.g., finding points of interests, geo-gaming), the latter massively collect (and
possibly share/sell) user location data. For instance, recent studies 1 have shown that among
30000 sampled iOS applications available in the App store, 51.1% collect location data when the
application is in use. The downside is that collecting users’ location data opens many privacy
threats if the latter falls between the hands of curious/malicious adversaries. For instance, mo-
bility data may very well reveal a user’s home and workplace, health status or even religious or
sexual preferences if the latter regularly visits health centers, worship places or libertine places
(respectively).
In order to mitigate the above threats, the research community has been actively proposing
Location Privacy Protection Mechanisms (LPPMs). Examples of proposed LPPMs include Geo-
indistinguishability [5], which adds spacial noise to a user’s GPS coordinates, Promesse [16],
which removes places where the user stops and Trilateration [10], which generates dummy
locations to obfuscate the user’s real location. In this context, one of the issues that has been

1. 2019 study on iOS App Permissions : https ://www.wandera.com/ios-app-permissions/
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exhibited by the research community is that there is no one size fits all LPPM that effectively pro-
tects users’ location data in all contexts. An additional dimension that makes it more complex
to protect users’ mobility data is that each LPPM can be configured differently hence offering
a different privacy vs utility trade-off. To deal with this issue, solutions that try to find the best
LPPM (and its corresponding proper configuration) to protect a given user mobility data at a
given point in time have been devised (e.g., MooD [11]). These solutions usually rely on known
attacks (e.g., [8, 12]) and utility metrics (e.g., the spacial distortion induced by the LPPM com-
pared to raw traces) to assess the effectiveness of LPPMs. Specifically, given a mobility trace on
which a set of LPPMs are applied, adaptive solutions would choose the one that better resists
state-of-the-art attacks while preserving data utility above a given threshold. However, these
solutions often rely on the assumption that a trusted proxy server collects users’ mobility data,
runs the attacks and consequently apply the appropriate LPPM. In this paper we aim at relea-
sing this assumption by designing an approach where mobility data never leaves the user’s
device before being protected by an appropriate LPPM. Specifically, we present EDEN a solu-
tion that relies on federated learning to train a decentralized attack model called FURIA. This
attack is then used locally along with a utility metric in order to choose the most appropriate
LPPM for a given mobility trace. We evaluated EDEN with a set of experiments using real
mobility data. We used EDEN to choose the best LPPM and its corresponding configuration
among nine possibilities (3 LPPMs and 3 different configurations). The results show that EDEN
outperforms individual LPPMs both in terms of privacy (better resilience against FURIA our
decetralized attack) and in terms of data utility. The remaining of this paper is structured as
follows. First, we present in Section 2, Background and related work. Then, we describe EDEN
design principles in section 3. Further, in section 4, we proceed to an experimental evaluation
of our attack. Finally, we conclude in section 5.
2. Background and Related Work

There are two parties involved in the context of our work : the Location-Based Service (LBS)
represented by an LBS server and the users represented by their mobile devices. We suppose
that users send queries to the LBS server with raw mobility data (single or multiple mobility
records). Therefore, the LBS provider has access to all raw mobility data of all users.
We consider the LBS as an honest but curious entity. It provides the users with the requested
information according to their locations but it may store the collected raw mobility data and
exploit it malliciously. The stored mobility traces are noted as the background knowledge of
the LBS, BK = {t1, t2, . . . , tm}. Where ti corresponds to the mobility trace of user ui.
After that, users start using Location Privacy Protection Mechanisms (LPPMs) in order to pro-
tect their mobility data. As of now, only obfuscated mobility data are sent to the LBS. The latter
tries to re-identify the owner of the data based on BK.
In the literature, we have many re-identification attacks suggestion. Among them, we find the
POI-attack [15], which uses the Point Of Interests (POIs) to represent mobility of a user, POIs
are locations where users spent an amount of time. PIT-attack [9] also uses Mobility Markov
chains where states are POIs and edges represent the probability of transition between POIs.
AP-attack[12] describes user mobility as a heatmap which inspires our work.

3. EDEN Design Principles

3.1. System Model
Let U = {U1, U2, . . . , Un} be the set of users. Each user Ui holds a mobile device which col-
lects and stores her raw mobility data. These data are used by geo-located services in order
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to respond to user’s requests. A user request contains the user ID (e.g., IP address), the user
location (i.e., GPS latitude and longitude), the time at which the request is issued, and the ac-
tual requested method (e.g., best restaurants nearby). We consider the record rj = (latj, lngj, tj)
as a mobility data record where latj and lngj respectively correspond to the latitude and the
longitude of GPS coordinates, and tj is a timestamp. A sequence of mobility data records forms
a mobility trace Tj = {r1 = (lat1, lng1, t1), r2 = (lat2, lng2, t2), . . .}.
3.2. Overview of EDEN
EDEN (Enforcing aDaptive location privacy with federated lEarNing) is a user side mobi-
lity data protection system. Thus, user sensitive data are kept locally and are not shared with
other entities, which increases privacy guarantees. EDEN’s main objective is to protect users
mobility data in online/semi-online services. EDEN includes and uses a distributed user re-
identification attack called FURIA (Federated User Re-Identification Attack). This allows EDEN
to better assess the resilience of protected data to privacy attacks.
The overall execution process of EDEN and FURIA is as follows. During the day, all or a subset
of users run mobile applications and get access to the LBS services at any time of the day.
The mobility data received by the LBS provider is continuously protected by EDEN thanks
to FURIA which improves its users mobility knowledge every day. For a given day j, let Ti =
{Ti1 , Ti2 , . . . Tik} be the set of mobility traces of user Ui collected over the whole day. At the end
of the day (e.g., at midnight), each user gets back the global model of FURIA ,transforms her
set of mobility traces Ti into a vector of features, trains the model locally and sends it back
to FURIA maintainer. Once The FURIA maintainer gets the users updates, it aggregates the
gradients and produces a updated global model which continuously learns new discriminative
mobility patterns. The latter helps to uniquely identify users. User mobility data features are
extracted from raw mobility traces in order to represent spatio-temporal behavior of users in a
compact way. The following mobility features are considered :
Spatial feature. The spatial information (i.e. lat and lng) is projected on a heat map. A heat
map is a set of cells of equal size. For each cell, the proportion of mobility records in a given
trace Tj that belong to that cell is computed. This corresponds to the cell visit rate.
Temporal feature. The temporal information is considered to differentiate similar mobility pat-
terns between day-night shifts, e.g., a user living near the working place of another user. If
temporal information is not taken into account, they may have similar heat maps but at dif-
ferent times of the day. A simple, yet effective, temporal information that is the average time of
the day of all the records in a given Tj. This is convenient in the case of online/semi-online LBS,
where mobility traces are minutes length (e.g., online session-based services) or hours length
(e.g., crowd-sensing systems), without exceeding a day.
Additional features. Other types of information are extracted to enrich the user mobility pro-
file. For instance, the number of mobility data records available in the trace Tj is considered.
This allows to represent location-based service usage intensity. We also extract the centroid of
the mobility trace Tj (i.e., centroid’s latitude and centroid’s longitude), to capture the average
position of the user in the map.

3.3. EDEN Architecture
The architecture of EDEN is depicted in the left part of Figure 1. EDEN takes as input a user
mobility trace T and a set of LPPMs with various configuration (i.e. low, medium and high
impact on mobility data) and returns as output an obfuscated mobility trace T ′

i which will
be publicly released for crowd-sensing campaign or sent to LBS server for a particular pur-
pose (e.g., search for nearby market). It has four main components, the first component Apply
LPPMs aims at applying the considered LPPMs on the raw mobility data T stored on the user
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mobile device (step 1 ). The second component Format Data transforms the different obfusca-
ted versions of the raw mobility trace, i.e., {T ′

1 , T
′

2 , . . . , T
′n} into feature vectors as enumerated

in section 3.1, (step 2 ). the third component Global Model FURIA is the crucial component in
the system. Once a day, the user retrieves the latest version of the Global Model FURIA. The
latter evaluates the re-identification of each vector of features of the obfuscated data, (step 3 ).
If the attack succeeds in predicting the right identity label associated to the mobility trace, the
latter will be deleted and not shared outside the user device. Otherwise, the protected mobility
trace is potentially elected to be sent to the LBS server. Finally, the last component Best coverage,
only the protected mobility trace against the most up to date joint model of FURIA with the
maximal area coverage is retained. Note that the area coverage is computed between the origi-
nal and the obfuscated mobility trace, T and T ′

i respectively, to measure the covered cells by T ′
i

in total cells of T [13], (step 4 ). Once the protected mobility trace with best utility is produced
and sent to the LBS server, the latter treats the user’s request and returns back the response to
the user’s device, (step 5 ).
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FIGURE 1 – EDEN and FURIA architecture

3.4. FURIA Architecture
FURIAS’s global model is an essential part of EDEN. It applies federated machine learning
over decentralized user mobility data, in order to learn user mobility models from different
users, in a privacy preserving way. It involves the following parties, c.f., Figure 1 - right side :
(i) mobile user devices where raw mobility data are kept at user’s own device, (ii) a master
server responsible of the Federated modeling and processing of the user re-identification at-
tack, i.e., an attack which aims to associate an anonymous mobility trace to its originating user
identity. First, The Master server initializes randomly a straightforward classification algorithm
which is Logistic regression and sends it to all participants (step 1 and 2 ). This model is de-
noted as FURIA0. Each participant Uj transforms its raw mobility data of the day to feature
vectors (step 3 ) and trains the model FURIA0 locally on the generated vectors. Notice that the
training phase is done in the user device and not in the Master server. Once all participants have
finished the first learning round, they send their local updates (i.e. gradients) of their current
local models to the Master server, (step 4 ). The Master server aggregates users’ gradients and
produces a new model, denoted FURIA1, ready for use at the following day. This process is
iteratively done once at the end of the day (e.g., midnight) for continuous learning of users’
mobility behavior.
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3.5. Threat Model
In this work, the following assumptions are made. First, as EDEN uses FURIA’s global model
to assess its effectiveness, the latter requires a trusted proxy server, the so called Master Ser-
ver. Its main task is to aggregate the local mobility updates of each participant and produce a
joint updated model. The latter can be implemented in Trusted Execution Environment. Mobile
user devices which participate collaboratively in building FURIA’s global model are not trus-
ted. This means that a malicious participant can use poisoning attacks to introduce backdoor
functionality into the global model and infer sensitive information. Many current researchers
are working on this aspect which is orthogonal to our research objectives [7]. In order to up-
date FURIA’s global model, users need to send their transformed mobility data at night to the
Master Server. User devices are supposed to be charging, idle and connected to WIFI. Finally,
the LBS is honest but curious. It responds to users’ requests on one hand but on the other hand
it may exploit the mobility data maliciously to infer personal information about the users.

4. Experimental Evaluation

4.1. Experimental Setup
EDEN is developed in Python by using Pytorch library [2] for developing the model and
Pysyft[1] for emulating the federated protocols and participants. For data preprocessing, we
use Scikit-learn [4] to scale data, and S2Geometry[3] to form the features vector, by gathering
mobility data on cells with edge length ranges from 850m to 1185m .
In our experiments, the training is done on multiple round, each round represents a day. We
assume that users train the model each midnight. On this way, on day x we train the model
on data collected the day before (i.e. day x-1) and we test the model on data collected that day.
We use the simple gradient descent algorithm as an optimizer for the logistic regression, with
a value of 0.001 for the learning rate parameter.
State-of-the-art LPPMs.In our scenario, we consider several existing LPPMs (location privacy
protection mechanisms), and compare them to our federated learning-based protection me-
chanism. In order to apply LPPMs in our dataset, we used an open source library [14], with
configurations described in Table 1.
Mobility Dataset. In our experiments, we use the Privamo dataset which contains real mobility
data of 48 users in Lyon [6]. We extracted the most active month (i.e. 30 days). For each user,
we formed traces by gathering all mobility data in chunks of 30 minutes, which corresponds to
a LBS that collects users’ mobility data every 30 minutes.

LPPM LPPM’s configuration
Geo-Indistinguishability (Geo-I) [5] 0.01, 0.005, 0.001
Promesse (PROM) [16] 50 m, 100 m , 200 m
Trilateration (TRL) [10] 1 km, 2 km, 3 km

TABLE 1 – State-of-the-art LPPMs and their configurations

4.2. Comparison of EDEN with State-of-the-Art LPPMs
In the following, we run our algorithm attack on protected data and compute the attack success
rate each day. Then, We compare EDEN with Geo-I, TRL, and PROM. Due to space constraints,
we represent in Figure 2 only results regarding to the best configuration in term of privacy for
each LPPM. We plot the curve associated to the attack over none obfuscated data (i.e. NOBF)
as a reference for the protection efficiency. For each case, we chose one color : orange, blue, red,
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green and pink for NOBF, Geo-I, TRL, PROM and EDEN respectively. The attack success rate
in our protection does not exceed 4%, as a comparison the accuracy for Geo-I range from 31%
to 75%, for TRL is from 10% to 63% and for PROM it does not exceed 10%. EDEN protect 100%
of the traces during 7 days and at 99% during 17 days. The accuracy decreases in all cases in
some days because of the appearance of new users.
Figure 3 presents the utility of data protected with state-of-the-Art LPPMs and compares it
to EDEN. Here, utility metric is the area coverage of the protected data compared to the raw
(i.e., non-protected) data. We consider three levels of utility : high utility if the area coverage
is higher than 60%, utility if it is between 30% to 60%, and low in other cases. We observe that
apart from the case of EDEN and PROM (configured with a 50 m distance), more than the half
of protected data have a low utility. Furthermore, EDEN has the highest ratio of protected data
with high utility.
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FIGURE 2 – Attack success rate with EDEN vs. state-of-the-art LPPMs
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5. Conclusion

In this paper we presented EDEN a solution that protects mobility data by choosing the best
among a set of off-the-shelf LPPMs, without relying on a trusted proxy. Specifically, EDEN
relies on federated learning to train a decentralized attack model called FURIA. This attack is
then used locally along with a utility metric in order to choose the most appropriate LPPM for a
given mobility trace. We evaluated EDEN by performing a set of experiments on real mobility
traces over a period of one month. We used EDEN to choose the best LPPM and its corres-
ponding configuration among nine possibilities. The results shown that EDEN outperforms
individual LPPMs both in terms of privacy (better resilience against our FURIA decetralized
attack) and in terms of data utility.
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