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Abstract. In order to clarify the relationship between renormalizable
network models and hierarchicalness, we elaborate on a recent binary
fitness-based renormalizable network model and evaluate how it can cope
with hierarchicalness, that was characterized in several ways in the lit-
erature, and remains an elusive concept.

To do so a benchmark hierarchical network is fit to a renormalizable
network recently proposed. We report thaht under specific conditions
the latter can accomodate hierarchicalness, examine various extensions,
and discuss future applications to real hierarchical networks.
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1 Introduction

In the present article, the relationship between renormalizable network models
and hierarchicalness is studied, for random graphs. Let G be such a graph,
composed of vertices V and edges E ∈ V ×V with a nested community structure.
Les A be its adjacency matrix with elements aij .

Renormalizable network models in this article refer to the existence of a
unique expression for the edge probabilities plij verified at several hierarchical
levels l, where i, j index the nodes. The availability of such an expression is
important: firstly it gives a simplified, coarse-grained representation of a net-
work. Secondly, it might shed light on scale-dependence issues, for example in
exponents of gravity-like networks models [1].

Hierarchicalness is often associated in the litterature to a modular structure
with modules arranged in a specific, nested way. Modules, or communities are
usually thought of as locally densely connected subnetworks. Similarly to renor-
malizable network models, hierarchicalness allows a simplified coarse-grained
and multi-scale representation of networks thats favors interpretability. In the
complex networks literature, several coarse-graining schemes are used, with the
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aim of understanding the existence of self-similarity1 since this concept turned
out to be of paramount importance in modern Physics2.

To make the comparison concrete we elaborate on a recently proposed fitness-
based renormalizable network model by Garuccio et al. [8] on one hand, and on
previously published definitions of hierarchicalness in networks that are summa-
rized below, on the other hand.

The renormalizable network model in [8], henceforth referred to as GLG,
aims at describing the connectivity of undirected unweighted networks displaying
nested community structure with a single probability plij .

The GLG model aims at preserving pij under coarse-graining. Interestingly
the authors show that under the hypotheses below, there is a unique functional
form for pij that ensures renormalizability:

– a hierarchical partition must be known a priori, for example in the form of
a dendrogram.

– nodes are associated with known fitnesses xi, that must sum across aggre-
gation.

The GLG model, described in more detail in the appendix, is analytically tractable
with an edge probability plij a level l, that depends on just one parameter δ to
tune the network density at level l = 0:

pil,jl(δ) = 1− e−δxil
xjl (1)

xil+1
=

∑
il∈il+1

xil (2)

where xil are node-specific predefined parameters, the fitnesses that must sum
across agregation.

Importantly, it is independent of geometry, and can accomodate constant or
random fitnesses. Optionnally it can take dyadic information (such as distances
between nodes, or group membership) as an input. Recent works started tackling
the weighted case but the topic is still open [11].

The GLG model relies on the notion of hierarchical levels. Our first contribu-
tion in this article is to remark that the definition of hierarchy in the GLG model
is implicit, and could be made explicit, and compared to existing definitions of
hierarchicalness available in the field.

Secondly, we start reviewing useful definitions of hierarchy, as well as statis-
tical tests to assess hierarchicalness, and related synthetic benchmark models.

1 for example geographical coarsening [10] considers graphs embedded in a 2d space
used to perfom box-covering, while fractal-oriented studies [6] use a shortest-path-
distance on a graph to perform renormalization without needing an embedding space.

2 for example the Renormalization Group (RG) theory uses coarse-graining extensively
and allows to classify lattice systems in universality classes independently of the
implementation details. Such universality classes results not available for complex
nets, but results exist for hierarchical networks.
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Lastly, given that the GLG model aims at preserving pij under coarse-
graining, we first ask if hierarchicalness in benchmark model is preserved under
fitting by the GLG model.

Selected definitions of hierarchicalness are reviewed in sec. 2. The represen-
tion by the GLG model of hierarchical networks is dealt with in sec. 3. Sec. 4
concludes.

2 Selected definitions of hierarchicalness

The seminal work of Simon [18] characterizes hierarchical systems as being com-
posed of interactive systems arranged in a nested way 3 and has inspired many
complex networks works.

Furthermore Simon mentions the fact that, alhough the etymology of the
term hierarchic refers to some notion of subordination or directedness, the defi-
nition should remain more general. We shall also adopt this point of view, and
consequently let aside the works that rely on directedness [12, 4, 5], which will
also ensure comparability with GLG.

In the field of complex networks, the work in [15] proposed hierarchical struc-
tures as a solution to the problem of exhibiting a synthetic network model dis-
playing several properties simultaneously (scale-freeness, high and size-independent
average clustering), as was observed in some empirical networks. A solution to
this problem involved nested assortative communities, in which nodes are densely
connected with each other, and weakly connected to other communities. The
deterministic fractal-like Ravasz-Barabási (RB) algorithm was proposed, and

features a C(k) ∼ k−1 scaling of the local clustering C(k) =
#triangles
ki(ki−1)/2 with

respect to the local degree ki =
∑
j 6=i aij . In conjunction with global clustering

C being independent on the network size, this is considered by the authors as a
signature of hierarchicalness. This algorithm was recently extended to generate
hierarchical benchmark models for community detection algorithms

In [3] the authors define hierarchical networks as being formed of assortative
communities, organized in a nested way, that is communities dividing recur-
sively4. The formal representation of a hierarchy is a dendrogram, with node
weights encoding the probability of connection among leaf nodes. The authors
use MCMC to learn the parameters of the model, and consensus clustering to
clean a population of dendrograms and retain dominant features. The repre-
sentation can express assortative communities only, but has been extended to
handle also disassortative communities [13]. However in both cases, the learning

3 ”By a hierarchic system, or hierarchy, I mean a system that is composed of inter-
related subsys tems, each of the latter being, in turn, hierarchic in structure until
we reach some lowest level of elementary subsystem.” [18], this type of structure is
supposed to allow a quicker evolution.

4 ”a fractal-like structure in which vertices cluster together into groups that then join
to form groups of groups, and so forth, from the lowest levels of organization up to
the level of the entire network” in [3]
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algorithm will always find a set of locally optimal parameters, and it is not clear
how to test if a given empirical network is hierarchical or not.

In the community finding literature, several popular algorithms use nested
communities [2, 16, 14], and model selection algorithms to learn their parameter.
The average depth associated to nodes is used as an indicator of hierarchicalness
of the graph [16]. But it was also reported [17] that related model selection
algorithms would select hierarchies with a significant depth, even though the
inspected graph contained none5.

In [17] a formal definition of hierarchicalness based on block models gen-
eralizes the notions of structural equivalence and equitable partitions while ac-
counting for the stochastic nature of connections. A spectral detection algorithm
is proposed as well. The definition can handle disassortative communities, but
is not able so far to reflect degree corrections in a way similar to the degree-
corrected stochastic block model (dc-SBM) [9], as discussed by the authors. Such
a generalization seems necessary in order to apply the model to real networks.

In the GLG model, the notion of hierarchy refers implicitly to a nested parti-
tion of the node set. Assortative and disassortative communities can be encoded
using the optional dyadic interaction term that can be tuned to mimick an SBM
model in its standard, non degree-corrected, version. In contrast to other works,
for example [17], the nested partition in the GLG model is extrinsic, since it
constitutes an input to the model, and is not necessarily a direct consequence of
the sole topology of the network.

In the next section we shall proceed to assessing how the hierarchical struc-
ture in a network is preserved by representing it with the GLG model.

3 Conservation of hierarchicalness

In this section the expressivity of hierarchicalness by the GLG model is assessed,
using the RB model and definition of hierarchy as a benchmark.

We set to approximate the deterministic Ravasz-Barabási (RB) network with
the GLG model, and to examine whether or not the property C(k) ∼ k−1 is
retained in the obtained GLG model. The graph GRB and the adjacency matrix
ARB of the RB network are shown in Fig. 1(a,b) for a network size n = 125
with a base motif of size m = 5. Then, a standard (non dc-corrected) SBM
is obtained by block-averaging ARB , which yields an average adjacency matrix
PRB composed of connection probabilities pij between edges (i, j), as shown in
Fig. 1(c). The conservation of hierarchicalness (in the RB sense) after block-
modelling can be assessed thanks to Fig. 1(d) displaying the local clustering
as a function of the degree C(k) = f(k), for a random sample of the SBM
fit of the RB graph, as well as for the related RB network with n = 3125

5 ”However, applying the hierarchical model of Peixoto (4) to this network produces
a hierarchical clustering (Fig. 1B). The reason is that the hierarchical model is
designed primarily to allow for the detection of communities that are smaller than the
resolution limit (31) imposed by the Bayesian model selection procedure employed”
in [17]
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nodes. Clearly, the C(k) ∼ k−1 scaling is observed in the case of the RB graph,
which is expected. More surprising is the same scaling applying to the SBM
model fitted as explained above, since the standard SBM is not able to retain
some scaling properties such as scale-freeness. A hand-waiving explanation can
concentrate on the central block of the SBM, corresponding to the central node
of the RB network, featuring the highest-degree and the lowest local clustering.
When passing from the RB network to the SBM model, the degree of each
node in this block is divided by m = 5, being scattered over the rows of the
adjacency matrix. Meanwhile, the triangles formed with other blocks (with dense
inner connection pattern) are now scattered over the m nodes of this central
block: their number is approximately divided by m. The numerator in the local

clustering C(k) =
#triangles
ki(ki−1)/2 of an SBM sample is divided by m, while the

denominator is divided by roughly m2. Wrapping it up, the degree is divided
by m, so is the local clustering, but the proportional relation is approximately
preserved.

Pursuing the goal to fit the GLG model to the RB network, PRB is finally
used as input to parametrize the dyadic term in a GLG model with nodes weights
verifying ∀i0, xi0 , as written below at level 1:

pi1,j1(δ) = 1− e−δpi0,j0 (3)

δ is found by a numerical root-finding algorithm and ensures the preservation of
the network density.

Samples can now be randomly generated from this probability, and the graph
C(k) = f(k) can be computed. Although it is slightly perturbed with respect to
the SBM step, notably in the low k zone, we find the same scaling in the GLG
case as evidenced by Fig. 1(e) which displays the local clustering as a function
of degree C(k) = f(k) for a random sample of the GLG fit of the RB graph.

As a result of this first comparison, we can thus conclude that the GLG
model at level l = 0 -that is before coarse graining takes place- can conserve
the hierarchical property as defined by a C(k) ∼ k−1 scaling, when the initial
network is RB, and the parameters of the GLG model are known and tailored
to the existing block-structure (taking for reference the smallest motif with size
m = 5).

If the parameters are partially known, the conservation is expected to de-
grade. This can happen for example if the set of input parameters {pi0,j0} that
encodes the underlying block structure in eq.(3) is incorrect. The correct block
structure used in Fig. 1(e) is randomly shuffled, and the resulting scatter plot
is shown in Fig. 1(f). As expected, the result is significantly degraded, espe-
cially in low k zone where connection pattern is sparse. A well defined cluster
persists in high k/low C(k) zone since the dominant row/column is preserved
under shuffling, it is preserved under block approximation, and random matrix
sampling.

Further testing when the input block structure parameter of the GLG model
is not aligned with ground truth, or when there is no block structure at all [?]
while the C(k) ∼ k−1 scaling exists will be considered in further work.



6 Aurélien Hazan

(a)

0 20 40 60 80 100 120
0

20

40

60

80

100

120

(b)

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(c)

102

k

10 2

10 1

100

C(
k)

RB
SBM

(d)

102

k

10 2

10 1

100

C(
k)

RB
GLG

(e)

102

k

10 3

10 2

10 1

100

C(
k)

RB
shuffled

(f)

Fig. 1. Properties of random models of the RB graph (a) RB graph n = 125. The
basic motif with 5 nodes is fully-connected; (b) adjacency matrix of RB graph; (c)
probability matrix pij of the SBM fit of the RB graph; (d) local clustering wrt to
degree C(k) = f(k) for a random sample of the SBM fit of the RB graph with n = 3125
nodes, the red dashed curved gives the reference curve C(k) = k−1; (e) local clustering
wrt to degree C(k) = f(k) for a random sample of the GLG fit of the RB graph with
n = 3125 nodes; (f) C(k) = f(k) for a random sample of the GLG fit of the RB graph
with randomly shuffled block structure and n = 3125 nodes
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4 Conclusion

In this article we addressed the general topic of understanding the relationship
between renormalizable network models and hierarchicalness, a notion that re-
ceived many definitions in the network science lieterature.

Our contribution here builds on a particular definition of renormalizability
-the GLG model- and on a specific definition of hierarchicalness based on the
scaling relation between local clustering and degree. The deterministic Ravasz-
Barabási network served as a benchmark network.

We report that the GLG model can in fact conserve hierarchicalness in this
specific setting. This was shown using only the dyadic term, while node-specific
terms xi were kept constant with equal value, which implied approximating the
RB network by an SBM network. The observations concern only level l = 0,
before any coarse-graining.

This observation paves the way for further studies, first investigating the
effect of coarse-graining, then defining fit quality for the GLG model, as well as
a systematic fitting procedure involving node-specific terms.

Other relevant definitions of hierarchicalness should be included in the com-
parison, such as [17]. For example, whether or not stochastic externally equitable
partitions are stable after fitting the GLG model could be tested.

Applications to various real hierarchical network will be examined, first se-
lecting real network that are hierarchical according to one or several definitions,
then examining which can be modelled satisfactorily by the GLG, and finally
which model conserves hierarchicalness.

Acknowledgements Thanks to Michael Schaub and Leto Peel for sharing the
code related to [17].
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8 Aurélien Hazan

5. Coscia, M.: Using arborescences to estimate hierarchicalness in directed complex
networks. PLOS ONE 13(1), e0190825 (Jan 2018), https://dx.plos.org/10.1371/
journal.pone.0190825

6. Gallos, L.K., Song, C., Makse, H.A.: A review of fractality and self-similarity
in complex networks. Physica A: Statistical Mechanics and its Applica-
tions 386(2), 686–691 (Dec 2007), https://linkinghub.elsevier.com/retrieve/pii/
S0378437107007741

7. Garlaschelli, D., Loffredo, M.I.: Fitness-Dependent Topological Properties of the
World Trade Web. Physical Review Letters 93(18) (Oct 2004), https://link.aps.
org/doi/10.1103/PhysRevLett.93.188701

8. Garuccio, E., Lalli, M., Garlaschelli, D.: Multiscale network renormalization: scale-
invariance without geometry. Tech. rep. (2020), eprint: 2009.11024

9. Karrer, B., Newman, M.E.J.: Stochastic blockmodels and community structure in
networks. Physical Review E 83(1), 016107 (Jan 2011), https://link.aps.org/doi/
10.1103/PhysRevE.83.016107

10. Kim, B.J.: Geographical Coarse Graining of Complex Networks. Physical Review
Letters 93(16), 168701 (Oct 2004), https://link.aps.org/doi/10.1103/PhysRevLett.
93.168701

11. Lardy, T.D.: A Renormalizable Random Graph Model. Tech. rep. (2018)
12. Mones, E., Vicsek, L., Vicsek, T.: Hierarchy Measure for Complex Networks. PLoS

ONE 7(3), e33799 (Mar 2012), https://dx.plos.org/10.1371/journal.pone.0033799
13. Peel, L., Clauset, A.: Detecting Change Points in the Large-Scale Structure of

Evolving Networks. In: Proc. of the 29th International Conference on Artificial
Intelligence (AAAI). pp. 2914–2920 (2015), https://arxiv.org/abs/1403.0989

14. Peixoto, T.P.: Hierarchical Block Structures and High-Resolution Model Selection
in Large Networks. Physical Review X 4(1), 011047 (Mar 2014), https://link.aps.
org/doi/10.1103/PhysRevX.4.011047

15. Ravasz, E., Barabási, A.L.: Hierarchical organization in complex networks. Physical
Review E 67(2), 026112 (Feb 2003), https://link.aps.org/doi/10.1103/PhysRevE.
67.026112

16. Rosvall, M., Bergstrom, C.T.: Multilevel Compression of Random Walks on Net-
works Reveals Hierarchical Organization in Large Integrated Systems. PLoS ONE
6(4), e18209 (Apr 2011), https://dx.plos.org/10.1371/journal.pone.0018209

17. Schaub, M.T., Peel, L.: Hierarchical community structure in networks (2020),
eprint: 2009.07196

18. Simon, H.A.: The Architecture of Complexity. In: Facets of Systems Science, pp.
457–476. Springer US, Boston, MA (1991)

A The renormalizable model by Garuccio et al.

In this section, a simplified version of the model by Garuccio et al. [8] is pre-
sented, keeping their notations: A(l) is the adjacency matrix of a binary undi-
rected graph, that results from the iterated coarse-graining of an original ma-
trix A(l), with dimension N0 ×N0. Non-overlapping partition functions Ωl de-
fine partitions of the node set at level l. The partitions defined at all levels
are considered as known a priori, for example in the form of a dendrogram.
The chosen coarse-graining rule is simple as illustrated by Fig.2: if there is at
least an edge between two nodes il, jl belonging respectively to super-nodes
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il+1 and jl+1, then the super-nodes are connected as well. This can be written:
ail+1,jl+1

= 1 −
∏
il∈il+1

∏
jl∈jl+1

(1 − ail,jl), where il ∈ il+1 means that node il
at level l belongs to super-node il+1 at level l+1. Random adjacency matrix are
then considered, and associated with the probability Pl(A

(l)). Hypothesizing in-

dependent links leads to the expression
∏Nl

il=1

∏il
jl=1

[
p
(l)
il,jl

]a(l)
il,jl

[
1−p(l)il,jl

]1−a(l)
il,jl .

Renormalizability of the model is expressed by the scale-invariance property, for
any l ≥ m ≥ 0:

Pl(A
(l)|Θl) =

∑
{A(m)}→A(l)

Pm(A(m)|Θm) (4)

where the sum is on the set {A(m)} of matrices that lead to A(l) under successive
application of the renormalization rule, and Θl is a parameter depending only
on Θm and the partitions.

It is shown by the authors that there is a unique solution to the problem
under scale-invariance when only node-dependent fitnesses are included:

pil,jl(δ) = 1− e−δxil
xjl (5)

xil+1
=

∑
il∈il+1

xil (6)

where xil are node-specific predefined parameters, the fitnesses. A dyadic term
can be inserted to express specific pairwise interactions. In this case the unique
solutions is:

pil,jl(δ) = 1− e−δxil
xjl

f(dil,jl ) (7)

where xil and f(dil,jl) are subject to renormalization rules, and f is a positive
function. The interested reader is referred to Garuccio et al. [8] for more detail.

A(0) A(1)

Fig. 2. Coarse-graining rule. The original graph on the left is coarse-grained, using the
partition Ω(l) represented by red squares.

This model is probabilistic, generative in the sense that one can sample from
the set of adjacency matrices {A(l)} at all levels, and has an anlytical expression
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(in contrast to MCMC-based methods) which functional form is preserved across
renormalization. Only one graph sample is required to fit the model. At any level
pil,jl(δ) can be compared to other fitness-based models such as the FiCM model
[7].


