
HAL Id: hal-03339286
https://hal.science/hal-03339286v1

Submitted on 9 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online Admission of Hard Aperiodic Tasks in Real-Time
Energy Harvesting Systems

Rola El Osta, Maryline Chetto

To cite this version:
Rola El Osta, Maryline Chetto. Online Admission of Hard Aperiodic Tasks in Real-Time Energy
Harvesting Systems. 6 th International Conference on Smart and Sustainable Technologies, Sep 2021,
Split, Croatia. �hal-03339286�

https://hal.science/hal-03339286v1
https://hal.archives-ouvertes.fr


Online Admission of Hard Aperiodic Tasks in
Real-Time Energy Harvesting Systems

Rola El Osta
LENS Laboratory

Lebanese University
Saida, Lebanon

rola.elosta@ul.edu.lb

Maryline Chetto
LS2N Laboratory - UMR CNRS 6004

University of Nantes
Nantes, France

maryline.chetto@univ-nantes.fr

Abstract—It is expected that energy harvesting technology will
increasingly be deployed to realize autonomous embedded real-
time systems such as wireless sensors. In this paper, we consider
the problem of jointly scheduling periodic tasks and dynamically
arriving hard deadline aperiodic tasks in a monoprocessor
system powered with regenerative energy. Our result is an
exact admission algorithm in that sense that it accepts every
schedulable task based on the amount of available energy and
computing capacity. It is assumed that all the accepted tasks
are preemptively scheduled according to the optimal algorithm,
ED-H which is an energy aware extension of Earliest Deadline
First. We also discuss issues concerning the implementation of
the admission test.

Index Terms—Real-time system, Energy harvesting, Schedu-
lability analysis, Online scheduling, Aperiodic task, Time laxity,
Energy laxity

I. INTRODUCTION

Nowadays, batteries are the dominant source of energy for

small electronic devices such as wireless sensor nodes. How-

ever, besides their impact on the environment, their limited

energy storage capacity and their finite lifetime make their use

restricted. For these reasons, alternative energy sources have

been sought. Energy harvesting (EH), or energy scavenging, is

a technology that captures unused ambient energy and convert

it into usable electrical energy that can be used immediately or

later thanks to a storage unit [1]. Generally, we use this termi-

nology for low power and small autonomous devices such as

wireless sensor networks and portable electronic equipments.

Hence, ambient energy scavenging has engendered a lot of

interest for researchers. It permits that autonomous embedded

systems be supplied perpetually.

In comparison with energy stored in classical storage unit

as batteries, the environment represents an infinite source

of available energy. Many environmental sources can be ex-

ploited, including solar energy, electromagnetic waves, thermal

energy, mechanical, etc. and must be selected based on the

application characteristics. An EH system consists of three

components (see Fig. 1): a single processing unit, an energy

harvester and a rechargeable energy storage. The energy

harvester scavenges energy from the environment and converts

it to usable electrical power. The rechargeable energy storage

(e.g battery or capacitor) stores energy. And after that, the

processor unit uses this energy to execute the programs.

Uniprocessor
Computing System

τ = {τi (Ci,Di,Ti,Ei), i=1..n}
Set of periodic tasks

J = {Ji (ai,ci,ei), i=1..m}
Flow of aperiodic tasks

Scheduled mixed
tasks

E
ne
rg
y

St
or
ag
e

Pp(t)

Fig. 1. A typical Real-Time Energy Harvesting System

In EH systems, we have to exploit perpetually the available

ambient energy which is strongly dependent on the environ-

ment. The consumed energy of the system should be adapted to

maximize the performance instead of minimizing it as in the

classical battery powered systems. So, the operating system

has to manage properly the activity of the processing unit

such that there is sufficient energy in the storage unit to

satisfy all the constraints at every time. Most environmental

energy sources like the electromagnetic waves, do not deliver

a constant power over time. The energy generated may arrive

in bursts and has to be stored so that the device can still

be operated at a later moment. The main challenge for an

EH system lies in the optimization of its performance while

respecting the time-varying amount of energy without wasting

or exhausting the energy stored in the battery or capacitor. We

then say that the system operates in an energy neutral mode

by consuming only as much energy as harvested [2].

Most of real-time applications consist of a set of hard

periodic tasks. Hard aperiodic tasks can arrive at a certain

time from alert conditions or from failures of hard periodic

tasks which fail to check and validate their results and must

be retried and completed before the original deadline [3].

Unlike the problem of scheduling periodic tasks only, the

joint scheduling problem is difficult because the scheduler



has to choose which tasks to accept for processing when not

all of the timing requirements can be met due to processing

overload or energy shortage. The operating system should

be provided with a procedure called acceptance test which

dynamically decides whether a newly arriving aperiodic task

could be accepted [4]. As aperiodic tasks are not known

before run-time, the acceptance test is performed online and

at unpredictable times so as to guarantee the deadlines of all

periodic tasks and any already accepted. If a hard aperiodic

task cannot be guaranteed, it is rejected.

The mechanism of the acceptance test was also presented in

[5] based on the the APS (Alternative Priority Algorithm).

In this paper, we specifically focus on hard deadline periodic

tasks with hard deadline aperiodic tasks that execute on

a uniprocessor platform which is powered by regenerative

energy. We present the theoretical basis of our approach to

solve the acceptance problem. This method is based on the

assumption that all periodic and aperiodic tasks are scheduled

according to the optimal algorithm ED-H [6] which is an

energy aware extension of Earliest Deadline First [7]. We will

answer to the acceptance question by calculating, for each

newly arriving aperiodic task, two key values called time laxity

and energy laxity. The time laxity is a measure of processing

time surplus. The energy laxity is a measure of energy surplus.

Both will be assessed and available after accepting the task.

Clearly, these two values should be non negative to admit the

newly arriving task.

The remainder of the paper is organized as follows. Section

II presents background materials about Earliest Deadline First

scheduling and online admission of aperiodic tasks with no

energy considerations. Section III introduces the model and

terminology relative to the scheduling issue in real time energy

harvesting systems.Section IV describes the ED-H scheduler.

Our admission test is presented in section V. In Section VI, we

give some suggestions for an efficient implementation of the

test. Section VII summarizes the paper and describes future

work.

II. BACKGROUND MATERIAL

Hereafter, we give necessary background about scheduling

real-time tasks considering that energy is unlimited. We only

focus on preemptive scheduling for deadline constrained and

independent tasks.

A. Scheduling periodic tasks with EDF

The most common dynamic priority scheduling algorithm

for real-time systems is the Earliest Deadline First (EDF)

which was introduced by Liu and Layland [7] in 1973. EDF

is clearly a dynamic priority driven scheduler since closer is

the deadline, higher is the priority. The EDF algorithm has

been proven by Dertouzos to be optimal among all scheduling

algorithms on a uniprocessor in the sense that if a task set

cannot be feasibly scheduled by EDF, then this task set cannot

be feasibly scheduled by any other algorithm [8]. The classical

implementation of EDF consists in executing the tasks under

the ASAP (As Soon As Possible) version. We then say that

EDF is greedy, consuming the available energy whenever at

least one task is pending for execution and ignoring the future

energy requirements. Let us notice that the ALAP (As Late As

Possible) version of EDF is no more appropriate to schedule

deadline constrained tasks in energy harvesting systems.

B. Admission test for aperiodic tasks and EDF

Most of real-time software consist of a set of hard periodic

tasks with aperiodic tasks that may be authorized for execution

as long as they do not cause any periodic task to violate its

deadline. A hard aperiodic task consists of one computation

that responds to an internal or external event. The admission

test considers the processing capacity required by future pe-

riodic invocations and aperiodic tasks. The optimal admission

test is based on the exact computation of the largest amount

of processor idle time available during the interval between

the arrival time and the deadline to complete the processing,

while still ensuring that all accepted tasks meet their deadline.

The fact that the utilization of the periodic tasks is less than

1 means that over the hyperperiod given by the least common

multiple of the periods they are a positive number of slack

time units remaining to be used by aperiodic tasks. However,

to guarantee the deadlines of the periodic tasks while executing

the aperiodic tasks as soon as possible before deadlines, this

slack should be distributed adequately. In that objective, we

have to exploit the central property of the earliest-deadline-

late (EDL) algorithm which schedules periodic tasks as late

as possible. Whenever a hard aperiodic task occurs, the idle

times of the EDL schedule are computed and compared to

the execution requirements of the aperiodic tasks not yet

completed, checking that the aperiodic tasks will not use more

idle time than available. The optimality of this test was stated

in [9]. Nonetheless, such a test considers that there is no

limitation on energy availability and should be revisited to

take into account, in one part the energy required by any task

in execution and in the other part both the profile of the energy

source and the size of the energy storage unit.

III. MODEL UNDER STUDY

The Energy Harvesting model (hereafter, referred to as

RTEH) consists of a computing element, a set of tasks, an

energy storage unit, an energy harvesting unit and an energy

source.

We consider a set of real-time tasks that are executed on

a uniprocessor system that supports only one operating

frequency and that consumes negligible energy in the idle

state when it does not execute any task. The system contains

a set of n independent periodic tasks. We refer to this set

by τ = {τi(Ci, Di, Ti, Ei); i = 1, ..., n}, where task τi has a

worst case execution time of Ci time units, a relative deadline

Di, a period Ti (with Di ≤ Ti) and a Worst Case Energy

Consumption of Ei energy units. We assume that Ei is not

necessarily proportional to Ci [10]. Each task gives rise to an

infinite sequence of invocation requests that starts at the time

origin, here equal to zero. Let H , the hyperperiod, be equal

to the least common multiple of the periods T1, T2,. . . ,Tn.



Let tc denote the current time.

We next introduce the aperiodic tasks. It is assumed that

there is no a priori knowledge about which set of aperiodic

task requests will be encountered. Furthermore, it is supposed

that any aperiodic task is ready to execute as soon as it

arrives and does not interact with periodic tasks in the sense

that it does not share resources. Let tc the current time

that coincides with the arrival of a new aperiodic task. Let

J = {Ji|1 ≤ i ≤ m} the stream of m hard aperiodic tasks

already admitted at tc. Every uncompleted aperiodic task at

tc is characterized by ci, ei and di that respectively denote

its remaining execution time, remaining energy consumption

and absolute deadline. In what follows, Jc(c, e, d) denotes

the arriving aperiodic task to be tested.

Let Pp(t) be the instantaneous charging rate produced by the

power source that incorporates all losses. The energy produced

on [t1, t2) is given as Ep(t1, t2) =
∫ t2
t1

Pp(t)dt. We assume

that the energy produced in any unit of time can overlap with

the energy consumed in one unit of time. We also assume

that a short term prediction of the energy harvesting rate is

possible. Our system uses an ideal energy storage unit with

a nominal capacity C of units of energy. The energy level at

time t is denoted E(t). The stored energy may be used at any

time later and does not leak any energy over time. Finally, we

also suppose that the available average power from the energy

source is sufficient to support the long term power demand of

the periodic task set τ .

IV. THE ENERGY AWARE ED-H SCHEDULING ALGORITHM

A. Principles

In [6], the author has introduced a novel energy-aware

scheduling algorithm, namely ED-H. ED-H is an energy

harvesting aware variant of EDF, proved to be optimal for

real time tasks scheduling under energy harvesting settings.

ED-H answers the question: when should the processing unit

use energy to execute a deadline constrained task, and when

should the processing unit idle and recharge the energy storage

unit. ED-H allows a task to execute only if its execution

cannot cause energy starvation for a future occurring task. In

that sense, ED-H is a clairvoyant algorithm since its decision

necessarily lies on the short term prediction of the incoming

energy and the pattern of future task arrivals.

B. Implementation

The implementation of ED-H needs the online computation

of the following values:

• The slack time of the task set τ at current time t,
denoted STτ (t) and defined as the maximum continuous

processor idle time that could be made available from

time t while still guaranteeing the feasibility of all the

tasks in the set τ . Whenever the energy storage unit is

completely deplenished, the system enters the idle state so

as to recharge the energy storage during at most STτ (t)
unit of time.

• The slack energy of the task set τ at current time t,
denoted SEτ (t) and defined as the maximum energy

that could be made available and consumed from time

t while still guaranteeing the feasibility of all the task set

τ . Clearly, no energy should be wasted so as to guarantee

that SEτ (t) be always non negative.

• The preemption slack energy of the task set τ at current
time t, denoted PSEτ (t) and defined as the maximum

energy that could be consumed from time t by the current

active task while still guaranteeing the feasibility of all

the future tasks with a higher priority i.e. the tasks that

may preempt the current active one.

C. Illustrative Example

Consider a periodic task set τ that is composed of

three periodic tasks. τ = {τi | 1 ≤ i ≤ 3 and τi =
(Ci, Di, Ti, Ei)}. Let τ1 = (1, 5, 6, 12), τ2 = (2, 8, 10, 15)
and τ3 = (4, 11, 15, 22). We assume that the energy storage

capacity is E = 40. For simplicity, the rechargeable power,

Pp , is constant along time and equals 5.

First of all, we have to schedule the periodic task set τ
according to ED-H. We verify that τ is schedulable since

all the tasks are executed before their deadline and without

depleting the energy reservoir (Fig. 2). At time t = 0, all

tasks are released. τ1 is the highest priority task and is

executed until t = 1 where E(1) = 33 energy units. At time

t = 1, τ2 is the highest priority task and is executed until

t = 3 where E(3) = 28 energy units. τ3 is now the highest

priority task and is executed until t = 7 where the energy

storage capacity becomes 26 energy units. At time t = 7, τ1
as the highest priority task, ready to be processed, runs and

finishes at t = 8. E(8) = 19 energy units.

From time t = 8 up to t = 10, the processor remains idle

because there are no pending tasks. During that time interval,

the energy storage will recharge and the energy level at

t = 10 is given by E(10) = 29 energy units.

At t = 10, τ2 the highest priority task, is ready to

be processed. Here, computation of the slack energy

is necessary because task τ1 with deadline less than

deadline of τ2 that will be released after time t = 10.

SEτ1(t = 10) = E(10) +
∫ 17

10
Ppdt− E1 − E2 = 37 > 0.

As E(10) = 29 and as the slack energy is greater than

zero, τ2 is authorized to execute immediately. At time t = 12,

E(12) = 24. Now, τ1 has the highest priority. It is executed

till t = 13, where E(13) = 17 energy units. Again, the

processor is idle from t = 13 up to t = 15 where the energy

reservoir will recharge leading to E(15) = 27 energy units.

At t = 15, τ3 is ready and has the highest

priority. Slack energy is requires to be computed:

SEτ3(t = 15) = E(15) +
∫ 23

15
Ppdt − E1 − E3 = 33 > 0.

Consequently, the slack energy is 33 energy units. τ3 is

executed till t = 18, where preemption occurs since τ1
has a higher priority. At t = 18, we can evaluate the

maximum energy that remains to be consumed by τ3 as

follows: we memorize the energy level of the storage



5 6 11 12 17 18

τ1

τ2

40

30

20

10

0

E(t)

τ3

23 24 29 30

8 10 18 20 28 30

11 15 26 30

1 3 7 10 12 15 18 20 26 28 308 13 19 29

Fig. 2. ED-H scheduling on a periodic task set

unit at every scheduling point i.e. whenever a preemption

occurs or a task begins execution. Thus, we deduce that:

Erem
3 = E3 − (E(15)− E(18)) = 15.

At t = 18, τ1 is the highest priority task ready to be

processed, runs and finishes at t = 19. E(19) = 13 energy

units. τ3 will now resume its execution until t = 20. At

t = 20, τ2 is the highest priority task ready to be processed

and E(20) = 3. But there is no sufficient energy in the energy

storage unit for execution. So, we have to insert an idle time

to let the processor inactive as long as the energy storage

has not filled completely and the latest start time of the next

periodic task has not been attained. The slack time is equal to

6. Hence, the processor is let idle till t = 26 permitting the

energy reservoir to recharge so as E(26) = 33 energy units.

τ2 can be executed until t = 28, where E(28) = 28 energy

units. At t = 28, τ1 is the highest priority task ready to be

processed. It executes and finishes at t = 29 with E(29) = 21
energy units. All invocations of periodic tasks are feasibly

scheduled until the end of the hyperperiod where the energy

reservoir contains 26 energy units.

V. ACCEPTANCE TEST

This section is concerned with the dynamic acceptance

test that answers the following decision question relative to

a given arriving aperiodic task Jc: ”Can Jc be accepted?”.

The approach is based on the assumption that all periodic and

aperiodic tasks are executed according to the optimal schedul-

ing algorithm ED-H. The main principle of the admission test

is to authorize aperiodic job executions as long as it does

not involve a deadline violation for all the jobs generated by

the periodic task set τ and the previously accepted aperiodic

tasks. Let us recall that a deadline violation occurs either

because of processing time starvation (lack of time to complete

a task before deadline) or energy starvation (lack of energy

to complete a task before deadline). The basic idea of our

acceptance test is to determine both processing time and

energy that could be stolen for the newly arriving task. In

order to provide an exact admission test, we will separate the

constraints in timing and energy domains.

A. Time schedulability analysis

Let Jc(c, e, d) be the arriving aperiodic task. The acceptance

test of Jc is executed once at the time of its arrival, tc. The

idea is to postpone the execution of periodic activities, making

any spare processing time available as soon as possible for

the aperiodic activities. Our approach is based on the exact

computation of the largest amount of processor idle time

available during the interval between the arrival time and the

deadline to complete the processing, while still ensuring that

all guaranteed tasks meet their deadline. Consequently, when

Jc occurs, the idle times of the EDL schedule are computed

and compared to the execution requirements of the aperiodic

tasks not yet completed [9].

Let us introduce δti(tc) called the dynamic time laxity of

task Ji at time tc. By definition, δti(tc) gives the highest

quantity of processing time that could be consumed between

tc and di by aperiodic tasks with priority higher than or equal

to Ji while guaranteeing the deadlines of all the tasks. Let

ΩEDF
τ(tc)

(tc, di) be the processing time which may be stolen

from the periodic task set between tc and di. As proved in [9]

it is derived from the EDL schedule produced at current time

tc. Consequently, we have δti(tc) = ΩEDF
τ (tc, di) − Σi

j=1cj .

We may draw the following necessary condition for the

admission test [11]:

Lemma 1: Aperiodic task Jc is accepted only if for every

aperiodic task Ji such that di ≥ d,

δti(tc) ≥ 0 (1)

Note that Σi
j=1cj gives the total remaining execution time

of all the aperiodic tasks with a priority higher than Ji.
The value of ΩEDF

τ (tc, di) is dynamically computed from

two arrays which respectively give the start times and the

durations of all idle time intervals in the EDL schedule starting

at current time tc and finishing at the end of the current

hyperperiod.

B. Energy schedulability analysis

Let us introduce δei (tc) the energy laxity of task Ji at time

tc. δei (tc) gives the maximal energy which may be stolen from

the periodic task set between tc and di and consumed by

aperiodic tasks with priority higher than or equal to Ji. Let

ΠEDF
τ(tc)

(tc, di) give the maximal energy which remain after

executing the periodic tasks between tc and di. Consequently,

δei (tc) = ΠEDF
τ (tc, di) − Σi

j=1ej . ΠEDF
τ(tc)

(tc, di) is computed

through the following equation:

ΠEDF
τ (tc, di) = E(tc) + Es(tc, di)− g(tc, di) (2)

where

• E(tc) is the residual capacity of the energy reservoir at

tc,



• Es(tc, di) is the total energy produced by the environ-

mental source between tc and di,
• g(tc, di) =

∑n
j=1�di−tc

Tj
�Ej +

∑n
k=1(dk>di)

Ek(t) and

refers to the energy demand issued from the periodic tasks

between tc and di. Here, Ek(t) denotes the remaining

amount of energy of the current invocation of the periodic

task τk at tc.

We may draw the following necessary condition for the

admission test [11]:

Lemma 2: Aperiodic task Jc is accepted only if for every

aperiodic task Ji such that di ≥ d,

δei (tc) ≥ 0 (3)

C. Exact admission test

From the previous lemmas, we prove the following exact

admission test [11]:

Theorem 1: Aperiodic task Jc is accepted if and only if for

every aperiodic task Ji such that di ≥ d,

δti(tc) ≥ 0 and δei (tc) ≥ 0 (4)

The purpose of this admission test is to accept or reject any

arriving task based on first, the amount of processing time and

energy required for its execution and second, the amount of

processing time and energy available. Theorem 1 tells us that

energy and time constraints can be decoupled if we have to

decide whether a newly arriving task is admitted or not.

D. Illustrative example

Consider the previous periodic task set τ and suppose

now that some aperiodic tasks arrive to be jointly executed

with τ . Let us consider J = {Jj | Jj = (ai, ci, dj , ej)}
the stream of 3 aperiodic tasks where J1 = (7, 4, 11, 17),
J2 = (18, 3, 26, 20) and J3 = (20, 2, 28, 10). Periodic task set

τ is scheduled according to ED-H till t = 7 where E(7) = 26
energy units (Fig. 3). At time 7, J1 is released. The admission

test requires to compute energy laxity and time laxity of J1 at

t = 7. δe1(7) = E(7)+
∫ 11

7
Ppdt−E1 −E2 − e1 = 7 > 0 and

δt1(7) = 3− 4 = −1 < 0. As the slack time is less than zero,

from lemma 1, J1 is rejected and not authorized for execution.

J2 arrives at t = 18 (Fig. 4). J2 is rejected since

δe2(18) = −2 < 0.

At t = 20, J3 arrives (Fig. 5). δe3(20) = 6 and δt3(20) = 4.

As both the time laxity and energy laxity of J3 are positive, the

test leads to admit J3 . As the absolute deadline of J3 is 28, J3
is the highest priority task in the ready list. At t = 20, we have

E(t) = 3 and PSE(t) = 18. J3 may execute immediately to

be finished at t = 22.

τ2 is the highest priority task ready for execution at t = 22.

Nonetheless, there is no sufficient energy in the energy storage

unit for execution since E(t) = 3. The energy storage unit

should be recharged. The slack time has to be computed in

5 6 11 12 17 18

τ1

τ2

40

30

20

10

0

E(t)

τ3

23 24 29 30

8 10 18 20 28 30

11 15 26 30

1 3 7 3011

J1
7 11

Fig. 3. Rejection of J1 due to time starvation; δt1(7) = −1 < 0

5 6 11 12 17 18

τ1

τ2

40

30

20

10

0

E(t)

τ3

23 24 29 30

8 10 18 20 28 30

11 15 26 30

1 3 7 10 12 15 188 13

J2
18 21 26

Starvation

21 22

Fig. 4. Rejection of J2 due to energy starvation; δe2(18) = −2 < 0

order to determine the maximal possible idle time. We have

ST (22) = 4. The processor is let idle as long as the energy

storage has not filled completely and for at most 4 time units.

The energy storage recharges up to t = 26 where E(26) = 23
energy units. Finally, τ is scheduled according to the ED-H

algorithm till the end of the hyperperiod where E(30) = 16
energy units.

VI. IMPLEMENTATION ASPECTS

Clearly, the performance of our admission test is strongly

dependent on the accuracy of the predicted power of the

harvesting unit. Every time a new aperiodic task occurs,



5 6 11 12 17 18

τ1

τ2

40

30

20

10

0

E(t)

τ3

23 24 29 30

8 10 18 20 28 30

11 15 26 30

1 3 7 10 12 15 18 20 26 28 308 13 19 29

7 11 18 2620 22 28

22

Ap
er
io
di
c

a1 d1 a2 a3 d2 d3

Fig. 5. Admission of J3; δe3(20) = 6 > 0 and δt3(20) = 4 > 0

computation of its energy laxity requires to estimate future

incoming energy. The better the approximation, the better the

acceptance algorithm performs in terms of exactness. During

short time intervals, the produced power can be considered

as constant. Let us consider an energy harvester composed

of a solar panel in order to draw energy from outdoor light.

A sudden change of the light intensity is improbable during

a time interval with a duration in the order of the second.

Let us reminder that a real time periodic task generally

consists in sampling so as to control a physical process. As

a consequence, we may consider that the incoming power is

constant over time. This simplifies online computations since

sophisticated prediction methods may not be necessary.

There are mainly two techniques to store energy in a small

device such as a wireless sensor node. The most common

one uses rechargeable batteries. The second technique uses

supercapacitors or ultra-capacitors which support higher power

flows than batteries. In addition, they offer very long lifetimes

with very high number of charge/recharge cycles without

performance degradation.

An important feature of energy harvesting systems is the

capability to estimate the remaining energy in the storage

unit. Unlike batteries, the energy of supercapacitors can be

measured in a straightforward way. So, we may assume that

at every time instant, the operating system may determine

precisely the energy level in the storage unit and the energy

harvested on a short term time interval in order to compute

the energy laxity with accuracy according to equation 3. It

follows that the implementation complexity of the acceptance

test is O(k.n + m) in the worst case where n is the number of

hard periodic tasks, m is the number of previously guaranteed

but yet uncompleted hard aperiodic tasks and k is an integer

which depends on periods and deadlines.

If the technique used to store energy considers a non-ideal

energy storage unit, consuming the stored energy as soon as

possible is recommended to avoid energy leakage and task

execution failure. However, when the leakage rate of the ultra-

capacitor is very high during charging and discharging, we

may calculate the amount of energy leakage of ultra-capacitor

for each periodic task and each arriving aperiodic task at

charging and discharging phases. We take into account energy

leakage by modifying the formula for the computation of the

energy laxity.

VII. CONCLUSION AND FUTURE WORKS

This paper has presented an exact admission test to prevent

processing overload and energy shortage in energy harvesting

systems such as sensor nodes in the IoT. Such systems consist

of a baseload of hard deadline periodic tasks where aperiodic

tasks may be accepted for execution as long as they do not

cause any periodic task to miss its deadline. We assume that

all the deadline constrained tasks are scheduled according to

the optimal scheduling algorithm ED-H [6]. Upon its arrival,

any aperiodic task is tested for admission calculating two

key values: the time laxity and the energy laxity. Provided

that precise information about the future energy generation

is available, the proposed online admission test is exact: it

enables us to continuously optimize the capacity of the system

in the two dimensions: processing time and energy.

Work is in progress to extend our analysis to more general

applicative software composed of deadline constrained tasks

that may share resources and exhibit precedence constraints.

REFERENCES

[1] T. tanaka, T. Suzuki and K.Kurihara, ”Energy Harvesting Technology
for Maintenance-free Sensors”, Fujitsu Sci. Tec.J.,Vol.50, No.1, January
2014.

[2] A. Kansal, J. Hsu, M. Srivastava, and V. Raghunathan, ”Harvesting aware
power management for sensor networks”, on DAC’06. pp. 651-656.

[3] S. R. Thuel, ”Enhancing Fault Tolerance of Real-Time Systems through
Time Redundancy”, PhD thesis, Carnegie Mellon University, May 1993.

[4] T.-S. Tia, J.W.-S. Liu, and J. Sun, R. Ha, ”A linear-time optimal
acceptance test for scheduling of hard real-time tasks”, Technical
report, Department of Computer Science, University of Illinois at
Urbana-Champaign, Urbana-Champaign, IL, 1994; available at the URL:
http://wwwrtsl.cs.uiuc.edu/papers/TiLS94c.ps.

[5] H.Kim, S. Lee and J.Lee, ”Scheduling of Hard-Aperiodic Requests in
Dynamic Priority Systems”, Proceedings of 3rd International Workshop
on Real-Time Computing Systems and Applications, 1996.

[6] M. Chetto, ”Optimal Scheduling for Real-Time Jobs in Energy Harvesting
Computing Systems”, IEEE Trans. on Emerging Topics in Computing,
DOI: 10.1109/TETC.2013.2296537, 2014.

[7] C.-L. Liu, J.-W. Layland, ”Scheduling algorithms for multiprogramming
in a hard real-time environment”, Journal of the Association for Comput-
ing Machinery, Vol. 20, no. 1, pp. 46-61, 1973.

[8] M.-L. Dertouzos, ”Control Robotics: The Procedural Control of Physi-
cal Processes”, Proceedings of International Federation for Information
Processing Congress, 1974.

[9] H. Chetto and M. Chetto, ”Scheduling Periodic and Sporadic Tasks in
a Real-Time System”, Elsevier Science Publishers B.V. (North-Holland),
1989.

[10] R. Jayaseelan, T. Mitra, and X. Li, ”Estimating the Worst-Case Energy
Consumption of Embedded Software”, 12th IEEE Real-Time and Em-
bedded Technology and Applications Symposium, pp. 81-90, 2006.

[11] R. El Osta and M. Chetto, ”An exact admission test for hard deadline
aperiodic tasks with energy harvesting considerations”, Technical Report,
LS2N Laboratory, University of Nantes, 2021.


