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NEW CONSTRUCTIONS OF ENTANGLEMENT-ASSISTED
QUANTUM CODES
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Abstract. We present two new constructions of entanglement-assisted quantum

error-correcting codes using some fundamental properties of (classical) linear codes in

an effective way. The main ideas include linear complementary dual codes and related

concatenation constructions. Numerical examples in modest lengths show that our

constructions perform better than known constructions in the literature. We also give

a proof on a generalization of binary Singleton type bound on entanglement-assisted

quantum error-correcting codes to arbitrary q-ary entanglement-assisted quantum

error-correcting codes.
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1. Introduction

Quantum error-correcting codes play an important role both in quantum commu-

nication and quantum computations. The construction of quantum error-correcting

codes (or quantum codes in short) has been an active research field since the pio-

neering works in [1], [5], [33], [34]. One of the important developments in the area

of quantum error-correction was the introduction of entanglement-assisted quantum

error-correction [18]. The entanglement-assisted quantum codes have the advantages

of both entanglement-assisted and operator quantum correction. In their theory it is

assumed that in addition to the quantum channel, the sender and the receiver share

a certain amount of pre-existing entangled qubits. We refer to [18] and [8] for further

details.

Recently there has been many results in the literature in constructing new entanglement-

assisted quantum error-correcting codes using some properties of (classical) linear codes
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[12], [13], [22], [23], [24], [29], [30]. One of the common tools they use is the hull of

a linear code. They also use some properties of generator matrices of certain codes

and/or some properties of algebraic curves in algebraic geometry codes.

In this paper we present two constructions: Constructions 1 and 2. Construction 1

is very powerful and it works for any field Fq with q ≥ 4. Constructions 2 uses the idea

of isometry codes, which is related to concatenated construction of linear codes and it

works for any field Fq including q ∈ {2, 3}. Our constructions are quite simple and clear.

Nevertheless we use some fundamental ideas in code constructions (like hull of a code)

in a very effective way so that we obtain significant improvements in the parameters of

entanglement-assisted quantum error-correcting codes. In particular our constructions

use [6] and [7] in an effective way. We also generalize a Singleton type bound from

binary entanglement-assisted quantum codes to arbitrary q-ary entanglement-assisted

quantum codes in Appendix A (see also the paragraph before Notation 3.7 below).

The rest of this paper is organized as follows. The next section collects some basic

notions and notations. We present Construction 1 in Section 3. Construction 1 uses

an algorithm in one of its steps and we explain this algorithm explicitly in Appendix

B. We give Construction 2 in Section 4. We also present some important material in

Appendix A.

2. Background material

Now we introduce some fundamental notions that we use. Let q be a prime power

and Fq denote the finite field with q elements. For integers 1 ≤ k ≤ n, let G be a k×n
matrix of rank k. Let C be the linear code over Fq having G as a generator matrix. We

consider the Fq-linear space Fnq as an inner product space as well under the Euclidean

inner product (or the ordinary inner product) defined as

(a1, . . . , an) · (b1, . . . , bn) := a1b1 + · · ·+ anbn(1)

(see, [19, page 8]). Using the inner product in (1), let

C⊥ := {(a1, . . . , an) ∈ Fnq : (a1, . . . , an) · (c1, . . . , cn) = 0 for all (c1, . . . , cn) ∈ C}

be the dual linear code of C. The Hull of C is defined as

Hull(C) = C ∩ C⊥.

Recall that C is a linear code of length n, dimension k and G is a generator matrix of

C. One of the fundamental properties we have is

rank(GGT ) + dimFq Hull(C) = k.(2)

If C is an [[n, k, d]])q quantum code with c entangled qubits, we will write its param-

eters as an entanglement-assisted quantum error-correcting code as [[n, k, d; c]]q.
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3. A generic construction for q ≥ 4

In this section we present a construction of entanglement-assisted quantum codes

over Fq for q ≥ 4. It gives a generic and simple algorithm to construct an [[n, k, d;n−k]]q
entanglement-assisted quantum code using a generator matrix of a (classical) [n, k, d]q
code.

We illustrate this algorithm with explicit examples. We study the performance of

our construction in terms of the entanglement-assisted quantum Singleton bound (see

Notation 3.7 below) of the parameters.

Our construction in this section improves many recent constructions significantly.

We are ready to present our construction in this section.

Construction 1: This construction has the following steps:

1.1) Let q ≥ 4 be a prime power. Let G be a k×n matrix over Fq, whose row space

is an [n, k, d]q code.

1.2) Using the algorithm in [6, Section 5A] modify G to a k × n matrix G1 over

Fq such that the row space of G1 is the code C1 ⊆ Fnq having the properties:

Hull(C1) = {0} and C1 is an [n, k, d]q code. We refer to Appendix B for an

explicit presentation of this step of the algorithm.

1.3) Using C1 and C⊥1 (actually only C⊥1 ) obtain an [[n, k, d;n− k]]q entanglement-

assisted quantum code following [9, Theorem 4]. We refer to the proof of

Theorem 3.2 below for details.

We will prove that this construction is correct. First we state a useful result due to

[37] in its first form. We prefer to state it for arbitrary finite fields and using generator

matrices as in [9] (see also [12], [13], [29] and [30]).

Theorem 3.1. Let q be an arbitrary prime power. Let G1 and G2 be generator matrices

of [n, k1, d1]q and [n, k2, d2]q codes C1 and C2 over Fq. Put

c = rank(G1G
T
2 ).

Then we have

c = dimFq C1 − dimFq(C1 ∩ C⊥2 )(3)

and there exists an effective construction of [[n, n − k1 − k2 + c, d; c]]q entanglement-

assisted code C over Fq, where

d = min
{
dH(C⊥1 \ (C2 ∩ C⊥1 ), dH(C⊥2 \ (C1 ∩ C⊥2 )

}
.(4)

Here dH(·) is the minimum Hamming distance of the corresponding set.

Now we are ready to prove that Construction 1 is correct.
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Theorem 3.2. Let q ≥ 4 be a prime power. If G is a generator matrix of a [n, k, d]q
classical code, then Construction 1 gives an [[n, k, d;n − k]]q entanglement-assisted

quantum code.

Proof. Let V be the Fq-linear code having G as the generator matrix. Using Step 1.2

in Construction 1 and the algorithm in Appendix B we obtain a k× n matrix G1 over

Fq such that the Fq-linear code V1 having G1 as a generator matrix has the following

properties: V1 is an [n, k, d]q code and Hull(V1) = {0}.
Let C1 and C2 be the Fq-linear codes of length n defined as

C1 = C2 = V ⊥1 .

Note that

C1 ∩ C⊥2 = V ⊥1 ∩ V1 = {0} as Hull(V1) = {0}.(5)

Similarly we have C2 ∩ C⊥1 = V ⊥1 ∩ V1 = {0} and hence

dH(C⊥1 \ (C2 ∩ C⊥1 )) = dH(V1 \ {0}) = d and

dH(C⊥2 \ (C1 ∩ C⊥2 )) = dH(V1 \ {0}) = d.
(6)

Applying Theorem 3.1 using C1 and C2 we obtain an

[[n, k(C), d(C); c]]q

entanglement-assisted quantum code C. Here using Theorem 3.1, (3) and (5) we get

c = dimFq V
⊥
1 = n− k.(7)

Using Theorem 3.1 and (7) we get

k(C) = n− k1 − k2 − c = n− (n− k)− (n− k) + (n− k) = k.(8)

Using Theorem 3.1, (4) and (6) we get

d(C) = min{d, d} = d.(9)

Combining (7), (8) and (9) we complete the proof. �

The following example makes a connection to Appendix B and hence it also illustrates

Step 1.2 of Construction 1.

Example 3.1. Using Construction 1 and Examples B.1, B.2 and B.3 we immediately

obtain [[23, 7, 12; 16]]4, [[19, 9, 8; 10]]4 and [[20, 7, 10; 13]]4 codes.

Using Construction 1 and the codes in [15] or [28], we immediately obtain new

entanglement-assisted quantum codes:
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Remark 3.3. We first compare our results with the very recent paper [22]. Construc-

tion 1 improves many of the results in [22] significantly. For example in [22] they state

that a code with parameters [[34, 10, 9; 24]]4 is a new entanglement-assisted quantum

code in [22, Table 2]. Using Construction 1 and the corresponding code from [15] we

immediately obtain a code with parameters [[34, 10, 16; 24]]4. The improvement in the

minimum distance from 9 to 16 is significant.

As another example in [22] they state that a code C with parameters [[26, 14, 5; 12]]4
is a new entanglement-assisted code in [22, Table 5]. Using Construction 1 and [15]

we immediately obtain a code C with parameters [[26, 14, 9; 12]]4. The improvement in

the minimum distance from 5 to 9 is significant.

We also have improvements compared to the very recent paper [23]. For example

in [23] they state that a code with parameters [[22, 16, 3; 6]]9 is a new entanglement-

assisted code in [23, Table 1]. Using Construction 1 and the corresponding code from

[15] we immediately obtain a code with parameters [[22, 16, 5; 6]]4. The improvement

in the minimum distance is from 3 to 5.

Next we study the performance of Construction 1 in terms of the entanglement-

assisted quantum Singleton bound. Here we need to introduce some notation.

Notation 3.4. Let q be a prime power. For integers 1 ≤ k ≤ n, let Dq(n, k) denote the

largest integer d such that there exists a classical [n, k, d]q code. We call C is optimal if

C is a classical [n, k,Dq(n, k)]q code. We call C is best known if C is a classical [n, k,D]q
code and there is no known code in the literature having parameters [n, k,D′]q with

D′ > D. There is a database and a related command BDLC in Magma.

Notation 3.5. Let q be a prime power. For integers 1 ≤ d ≤ n, let Kq(n, d) denote the

largest integer k such that there exists a classical [n, k, d]q code. We call C is optimal if

C is a classical [n,Kq(n, d), d]q code. We call C is best known if C is a classical [n,K, d]q
code and there is no known code in the literature having parameters [n,K ′, d]q with

K ′ > K. There is a database and a related command BKLC in Magma.

The notions of optimal codes in Notations 3.4, 3.5 are related but different.

Notation 3.6. Let q be a prime power. Let C be a classical [n, k, d]q code. Then the

Singleton defect S(C) of C is the nonnegative integer defined as

S(C) = n+ 1− k − d.

This is nonnegative due to the Singleton bound (see, for example, [19]). If S(C) = 0,

then C is called a maximally distance separable (MDS) code.

The analog of the Singleton bound for the entanglement-assisted quantum codes is

rather intricate. In [4, page 24], the authors stated that if there exists an [[n, k, d; c]]q



6 A. ALLAHMADI, A. ALKENANI, R. HIJAZI, N. MUTHANA, F. ÖZBUDAK, P. SOLÉ

entanglement-assisted quantum code, then

2d ≤ n− k + 2 + c.(10)

However this bound is invalid for a range. For example in [14], the author constructed

an [[9, 1, 6; 1]]2 entanglement-assisted quantum code, which is a counterexample to the

bound in (10). A correct analog of the Singleton bound for the binary entanglement-

assisted quantum codes is given in [21] as follows: If there exists an [[n, k, d; c]]2
entanglement-assisted quantum code, then

d ≤ n+ 2

2
⇒ 2d ≤ n− k + 2 + c.(11)

We could not find a proof of the bound in (11) for q > 2 in the literature. Recently in

[16], among other results, the authors provide entropic proofs of Singleton bounds for

a range of codes.1 In Appendix A, in Theorem A.5, we generalize the bound in (11)

to arbitrary q-ary entanglement-assisted quantum codes (see also Remarks A.6, A.7 in

Appendix A). We call the bound in (11) as the entanglement-assisted quantum Singleton

bound, which is defined only if d ≤ n+2
2

. We note that, unfortunately, there are some

incorrect formulations of the entanglement-assisted quantum Singleton bound even in

the very recent literature (see, for example, [12, Proposition 2.3], [13, Proposition 4.3],

[22, Theorem 2.3], [23, Theorem 2.6], [24, Lemma 12], [29, in the last paragraph in

Section 2] and [30, Equation (7) in page 8]).

Notation 3.7. Let q be a prime power. Let C be an [[n, k, d; c]]q entanglement-assisted

quantum code. Then the entanglement-assisted quantum Singleton defect Sq(C) of C

is the integer defined as

Sq(C) = n+ 2 + c− k − 2d.

If d ≤ n+2
2

, then Sq(C) is nonnegative due to the entanglement-assisted quantum

Singleton bound in (11). If d ≤ n+2
2

and Sq(C) = 0, then we call that C is a maximally

distance separable (MDS) entanglement-assisted quantum code.

We presents our results on the performance of Construction 1.

Corollary 3.1. Let q ≥ 4 be a prime power. Let 1 ≤ k ≤ n be integers. For

any optimal [n, k,Dq(n, k)]q classical code C with Singleton defect S(C), there exists

an [[n, k,Dq(n, k);n − k]]q entanglement-assisted quantum code Ĉ with entanglement-

assisted quantum Singleton defect

Sq(Ĉ) = 2S(C).

In particular if C is MDS and k ≥ n
2
, then Ĉ is entanglement-assisted quantum MDS.

Also if S(C) = 1 (called near MDS), then Sq(Ĉ) = 2.

1We note that we were not aware of the results in [16] when we submitted the original and the first

revised versions of this paper, which were written before the first version of [16] were made available.
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Proof. Using Theorem 3.2 we construct Ĉ having the parameters [[n, k,Dq(n, k);n −
k]]q. By definition of Sq(Ĉ) we get

Sq(Ĉ) = n+ 2 + (n− k)− (k − 2Dq(n, k)) = 2(n+ 1− k −Dq(n, k)) = 2S(C).

Note that if C is MDS and k ≥ n
2
, then Dq(n, k) = n + 1 − k ≤ n+2

2
and Sq(Ĉ) = 0.

This implies that Ĉ is entanglement-assisted quantum MDS by definition. �

The following is an analogue of Corollary 3.1

Corollary 3.2. Let q ≥ 4 be a prime power. Let 1 ≤ d ≤ n be integers. For any

optimal [n,Kq(n, d), d]q classical code C with Singleton defect S(C), there exists an

[[n,Kq(n, d), d;n−Kq(n, d)]]q entanglement-assisted quantum code Ĉ with entanglement-

assisted quantum Singleton defect

Sq(Ĉ) = 2S(C).

The following results improves Theorems 17 and 18 of [24] significantly. Namely we

do not have extra conditions on q, n and/or k as in [24, Theorems 17 and 18].

Theorem 3.8. Let q ≥ 4 be a prime power. If 1 ≤ k ≤ n ≤ q+1, then using generalized

Reed Solomon codes and Construction 1 we immediately obtain [[n, k, n+1−k;n−k]]q
entanglement-assisted quantum code.

Proof. Using generalized Reed Solomon codes we easily construct a k × n generator

matrix G over Fq such that the linear code C having G as a generator matrix is an

[n, k, n + 1 − k]q code (see, for example [35, Propositions 2.3.2 and 2.3.3]). Then we

obtain a [[n, k, d;n−k]]q entanglement-assisted quantum code using Construction 1. �

Remark 3.9. Construction 1 also extends some of the results in [29] and [30]. First we

need to recall some notation and facts related to algebraic functions fields and algebraic

geometry codes, for which we refer, for example, to [35]. For q ≥ 4, and g ≥ 0, let Nq(g)

denote the largest integer N such that there exists an absolutely irreducible curve χ (or

equivalently an algebraic function field) over Fq of genus g having N rational points.

Using algebraic geometry codes [11] (see also [35]) if n ≤ Nq(g) and 1 ≤ k ≤ n, then

there exists [n, k, d]q code over Fq with k + d ≥ n+ 1− g.

It is well known that, due to Hasse-Weil bound we have Nq(g) ≤ q+ 1 + 2gq1/2 [35].

A curve is called a maximal curve if it attains the Hasse-Weil bound.

For any q, the projective line is a maximal curve of genus 0. If g ≥ 1, then there

exists a maximal curve over Fq only if

i) q is a square, hence put q = q21, and

(ii) g ≤ q1(q1−1)
2

.

Note that the Hermitian curve over Fq21 has genus q1(q1−1)
2

. We refer to [32] and [35] for

the details of these facts.
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In [29] and [30] the authors consider only maximal curves of genus 0 if q is arbitrary,

and of genera 1 and q1(q1−1)
2

if q = q21. In their construction they need to control the

duality and hence they need explicit and arithmetic conditions on a chosen algebraic

curve. However in Construction 1, if q ≥ 4, we do not need to control such arithmetical

conditions because of Step 1.2 of the algorithm, which is explained in Appendix B

in detail. Hence we can use any suitable algebraic curve over finite fields. There are

algebraic curves with Nq(g) many rational points, which are not maximal. For example

consider g ≥ 1 and q is a not a square, or consider g > q1(q1−1)
2

if q = q21. Moreover

even if q = q21 and 1 < g < q1(q1−1)
2

, then there are many different values of g such that

we have a maximal curve over Fq, which is not birationally isomorphic to a projective

line, elliptic curve or Hermitian curve. Using algebraic geometry codes together with

such algebraic curves and Construction 1 we also extend the related results of [29] and

[30]. Note that Construction 1 complies also with generalized algebraic geometry codes

(see, for example, [26]).

As concrete examples, we have the following extensions. In [29], after [29, Theorem

4] they state to construct a [[39, 25, 14; 14]]32 entanglement-assisted quantum code. In

fact [29, Theorem 4] allows to construct an [[n, k, n−k;n−k]]32 entanglement-assisted

quantum code for all integers 1 ≤ k < n ≤ 42, where the upper bound 42 is due to

the arithmetical condition n + 2 ≤ N32(1) = 44 in [29, Theorem 4]. Here N32(1) is

the largest integer N such that there exists an absolutely irreducible curve of genus

1 (elliptic curve) having N rational points (see [36]). Using Construction 1 we relax

this condition. Indeed there exist an [n, k, n − k]32 code for all integers 1 ≤ k < n

and 2 ≤ n ≤ 44, in particular for n ∈ {43, 44} (see [28]). Hence using Construction 1

we obtain an [[n, k, n − k;n − k]]32 entanglement-assisted quantum code not only for

1 ≤ k < n ≤ 42 but also for 1 ≤ k < n ≤ 44.

Similarly in [30, Table 2] they present a [[15, 10, 6; 5]]16 entanglement-assisted quan-

tum code. In fact [30, Theorem 5] allows to construct an [[n, k, n − k + 1;n − k]]16
entanglement-assisted quantum code for all integers 1 ≤ k < n ≤ 15, where the upper

bound 15 is due to the arithmetical condition n ≤ q − 1 = 16 − 1 in [30, Theo-

rem 5]. Using Corollary 1 and the existence of [n, k, n − k + 1]16 MDS codes with

1 ≤ k < n ≤ 17, we obtain an [[n, k, n−k+ 1;n−k]]16 entanglement-assisted quantum

code not only for 1 ≤ k < n ≤ 15 but also for 1 ≤ k < n ≤ 17. We further obtain

an [[18, 15, 4; 3]]16 entanglement-assisted quantum code using Construction 1 and the

MDS code [18, 15, 4]16, which does not follow from [29] or [30].

In [22] they also use the notion of net rate of an [[n, k, d; c]]q code as the ratio k−c
n

. Let

nR(C) = k−c
n

denote the net rate of an [[n, k, d; c]]q code C. In [30, Table 4] they present

a [[26, 15, 6; 5]]9 entanglement-assisted quantum code C1. Using Construction 1 and [28]

we obtain an [[26, 19, 6; 7]]9 entanglement-assisted quantum code Ĉ1. The net rate of

Ĉ1 is much better than the net rate of C1, which satisfy nR(Ĉ1) = 12
26
> nR(C1) = 10

26
.
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Note that the length and the minimum distance of C1 and Ĉ1 are the same. Similarly in

[30, Table 4] they present a [[64, 39, 11; 10]]16 entanglement-assisted quantum code C2.

Using Construction 1 and [28] we obtain an [[64, 48, 11; 16]]16 entanglement-assisted

quantum code Ĉ2. The net rate of Ĉ2 is much better than the net rate of C2, which

satisfy nR(Ĉ2) = 32
64
> nR(C2) = 29

32
. Note that the length and the minimum distance

of C2 and Ĉ2 are the same.

Remark 3.10. In [12], the authors construct entanglement-assisted quantum codes

over Fq with parameters [[n, k, d; c]] only for n ≤ q + 1 and with some arithmetical

restrictions. Using Construction 1, we cover all of these parameters and we extend

their results considerably as we do not have such arithmetical conditions and n can be

larger than q+1. In [13], the authors construct further entanglement-assisted quantum

codes over Fq with parameters [[n, k, d; c]] only for n ≤ q+ 1 and with less arithmetical

restrictions. Using Construction 1 we also extend these results as we do not have any

arithmetical condition and n can be larger than q+1. In our results it is not necessary to

use `-intersection pairs of codes as in [13] to get MDS entanglement-assisted quantum

codes with the same parameters as in [13].

4. A concatenated type construction for all q

In this section we present a concatenated type construction of entanglement-assisted

quantum codes over Fq for all q. This construction is especially interesting when q = 2

or q = 3. Nevertheless we prefer to present it for arbitrary q. This construction also

improves several recent results significantly (see Remark 4.5 below).

An important ingredient of our construction in this section is isometry codes, which

were introduced in [7]. We first recall its definition. Let q be an arbitrary prime power

and k be an integer with k ≥ 2. The trace of α ∈ Fqk over Fq is defined as

trF
qk
/Fq(α) =

k−1∑
i=0

αq
i

= α + αq + · · ·+ αq
k−1

.

We also denote trF
qk
/Fq(α) by tr(α) in short for simplicity. Let {e1, . . . , ek} ⊆ Fqk .

Assume that (e1, . . . , ek) is an ordered basis of Fqk over Fq. Recall that (e′1, . . . , e
′
k) is

the dual basis if

tr(eie
′
j) = δi,j :=

{
1 if i = j

0 if i 6= j

for 1 ≤ i, j ≤ k. There exists a uniquely determined dual basis for any basis of Fqk
over Fq.

Definition 4.1. Let 2 ≤ k ≤ n be integers. Under notation as above let (e1, . . . , ek)

be an ordered basis of Fqk . An Fq-linear map π : Fqk → Fnq is called an isometry if

π(ei) · π(e′j) = δi,j



10 A. ALLAHMADI, A. ALKENANI, R. HIJAZI, N. MUTHANA, F. ÖZBUDAK, P. SOLÉ

for 1 ≤ i, j ≤ k, where the inner product is the Euclidean inner product on Fnq . Here

(e′1, . . . , e
′
k) is the dual basis of (e1, . . . , ek). The image π(Fqk) is called the isometry

code corresponding to π.

We are ready to present our construction of this section.

Construction 2: This construction has the following steps:

2.1) Let q be any prime power. Let 2 ≤ k ≤ n be integers such that there exists an

isometry map π : Fqk → Fnq . Let the parameters of the isometry code π(Fqk) be

[n, k, d]. It is useful to choose π so that d is as large as possible.

2.2) Let G be a K ×N matrix over Fqk , whose row space is an [N,K,D]qk code.

2.3) Note that qk ≥ 4 as k ≥ 2. Using the algorithm in [6, Section 5A] modify G

to a K × N matrix G1 over Fqk such that the row space of G1 is the code C1

having the properties: Hull(C1) = {0} and C1 is an [N,K,D]qk code.

2.4) Using C1, the isometry map π and [7, Theorem 3.1] we obtain an Fq-linear code

C2 ⊆ FnNq having the properties: Hull(C2) = {0} and C2 is an [nN, kK,≥ dD]q
code.

2.5) Using C2 and C⊥2 obtain an [[nN, kK,≥ dD;nN − kK]]q entanglement-assisted

quantum code following [9, Theorem 4].

Using the arguments above we conclude the following.

Theorem 4.2. Let q be an arbitrary prime power. For integers 2 ≤ k ≤ n assume

that there exists an isometry map π : Fqk → Fnq such that the isometry code π(Fqk) has

parameters [n, k, d]. If G is a generator matrix of an [N,K,D]qk classical code, then

Construction 2 gives an [[nN, kK,≥ dG;nN − kK]]q entanglement-assisted quantum

code.

Using [7, Example 2.3] we obtain an isometry π2 : F4 → F4
2 so that the parameters

of the isometry code π2(F4) is [4, 2, 2]2. Note that this isometry code is optimal. Using

this isometry and Construction 2 we obtain the following.

Corollary 4.1. Let 1 ≤ K ≤ N be integers. Using Construction 2, the isometry

π2 given above and an F4-linear code with parameters [N,K,D4(N,K)]4, we obtain a

binary entanglement-assisted quantum code with parameters

[[4N, 2K,≥ 2D4(N,K); 4N − 2K]]2.

Similarly let 1 ≤ D ≤ N be integers. Using Construction 2, the isometry π2 given

above and an F4-linear code with parameters [N,K4(N,D), D]4, we obtain a binary
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entanglement-assisted quantum code with parameters

[[4N, 2K4(N,D),≥ 2D; 4N − 2K4(N,D)]]2.

Remark 4.3. Using another isometry map π : F2k → Fn2 , it is immediate to get an

analogue of Corollary 4.1. For example there exists an isometry map π : F23 → F25 so

that the isometry code π(F23) has parameters [5, 3, 2]2. This allows to construct binary

entanglement-assisted quantum codes with parameters

[[5N, 3K,≥ 2D8(N,K); 5N − 3K]]2 and [[5N, 3K8(N,D),≥ 2D; 5N − 3K8(N,D)]]2.

For ternary codes, it is not difficult to find an isometry π3 : F9 → F5
3 so that the

parameters of the isometry code π3(F9) is [5, 2, 3]3. Note that this isometry code is

optimal. Using this isometry and Construction 2 we obtain the following.

Corollary 4.2. Let 1 ≤ K ≤ N be integers. Using Construction 2, the isometry

π3 given above and an F9-linear code with parameters [N,K,D9(N,K)]9, we obtain a

ternary entanglement-assisted quantum code with parameters

[[5N, 2K,≥ 3D4(N,K); 5N − 2K]]3.

Similarly let 1 ≤ D ≤ N be integers. Using Construction 2, the isometry π3 given

above and an F9-linear code with parameters [N,K9(N,D), D]9, we obtain a ternary

entanglement-assisted quantum code with parameters

[[5N, 2K9(N,D),≥ 3D; 5N − 2K9(N,D)]]3.

Remark 4.4. As in Remark 4.3, it is immediate to get an analogue of Corollary 4.2

provided we know a good isometry map. For example there exists an isometry map

π : F33 → F4
3 so that the isometry code π(F33) has parameters [4, 3, 2]3. This allows to

construct ternary entanglement-assisted quantum codes with parameters

[[4N, 3K,≥ 2D27(N,K); 4N − 3K]]3 and [[4N, 3K27(N,D),≥ 2D; 4N − 3K27(N,D)]]3.

Remark 4.5. Construction 2 also improves several recent results significantly. For

example in [22] they state that a code C1 with parameters [[90, 28, 10; 62]]2 is a new

entanglement-assisted quantum code in [22, Table 1]. Using Construction 2, in par-

ticular Corollary 4.1 with a [22, 14, 6]4 code (see [15]), we obtain a [[88, 28, 12; 60]]2
entanglement-assisted quantum code C2. The dimensions of C1 and C2 are the same.

The other parameters in going from C1 to C2 behave as follows: n decreases, d increases

and c decreases. These are all in favor of C2. Hence C2 is a better code compared to

C1 in terms of the parameters.

Similarly in [22, Table 1] they state a code C1 with parameters [[30, 6, 5; 24]]2 as a

new entanglement-assisted quantum code. Using Corollary 4.1 with a [7, 3, 4]4 code

(see [15]), we obtain a [[28, 6, 8; 22]]2 entanglement-assisted quantum code C2. Again
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the dimensions of C1 and C2 are the same and all the other parameters are in favor of

C2. Hence C2 is a better code compared to C1 in terms of the parameters.

In [31] they state a code C1 with parameters [[132, 12, 30; 120]]2 is a new entanglement-

assisted quantum code in [31, Table 1]. Using Corollary 4.1 with a [33, 6, 20]4 code (see

[15]), we obtain a [[132, 12, 40; 120]]2 entanglement-assisted quantum code C2. All the

parameters of C1 and C2 are the same except the minimum distance. The improvement

of the minimum distance in C2 from 30 to 40 is significant.

Appendix A. Appendix A: Singleton Type Bound for

Entanglement-Assisted Quantum Codes

In Appendix A we prove a Singleton type bound for entanglement-assisted quantum

codes using methods from [1, 2, 20, 21].

Recall that Fq is the finite field with q elements. Let char(Fq) = p so that Fp ⊆ Fq.
Let C denote the complex field. We regard Cq as a Hilbert space and let |x〉 be the

(column) vectors of an orthonormal basis of Cq, where the labels x are elements of Fq.
Let ζp = exp(2π

√
−1/p) be a p-th root of unity in C. Let tr : Fq → Fp be the trace

map from Fq onto Fp.
For a, b ∈ Fq, let X (a) and Z(b) be the unitary operations on Cq defined by

X (a)|x〉 = |x+ a〉 and Z(b)|x〉 = ζtr(bx)p |x〉.

Let Cqn = (Cq)⊗n be the n-th tensor of Cq. The coordinate basis is given by

|x〉 = |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉.

Consider a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Fnq . Let X (a) and Z(b) be the unitary

operations on Cqn defined by

X (a)|x〉 = |x + a〉 and Z(b)|x〉 = ζtr(b·x)p |x〉,

where b · x =
∑n

i=1 bixi ∈ Fq.
The set En = {ζupX (a)Z(b) : a,b ∈ Fnq , u ∈ Fp} is a finite group of order pq2n. Let

En ⊆ En be the subset defined as

En = {X (a)Z(b) : a,b ∈ Fnq }.

For a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Fnq and e = X (a)Z(b) ∈ En, let the (quantum)

weight wQ(e) of e be the integer

wQ(e) = #{1 ≤ i ≤ n : ai 6= 0 or bi 6= 0}.

For 0 ≤ i ≤ n, let En[i] ⊆ En be the subset defined as

En[i] = {e ∈ En : wQ(e) = i}.
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Definition A.1. A q-ary quantum code of length n is a subspace Q of Cqn such that

dimCQ = K ≥ 1. The minimum distance of Q is the largest integer d such that for

any error e ∈ En[i] with i < d we have

|v〉, |w〉 ∈ Q are orthogonal vectors⇒ 〈v|e|w〉 = 0.

Such a code Q is called an ((n,K, d))q code.

Next we formally define q-ary entanglement-assisted quantum error correcting codes.

Let c be a positive integer. For |a〉 ∈ Cqn , |b〉 ∈ Cqc , and |ψ〉 = |a〉 ⊗ |b〉 ∈ Cqn+c note

that |a〉〈a| is a qn × qn matrix, |b〉〈b| is a qc × qc matrix, and |ψ〉〈ψ| is a qn+c × qn+c

matrix. Recall that Tr is the trace operation on square matrices and hence Tr(|a〉〈a|)
is a complex number. Let TrA(|ψ〉〈ψ|) denote the qc × qc over C defined as

TrA(|ψ〉〈ψ|) = Tr(|a〉〈a|)|b〉〈b|.

We extend this definition to Cqn+c = Cqn ⊗ Cqc as follows: Let |ψ〉 ∈ Cqn+c be an

arbitrary vector. There exist an integers s ≥ 1, vectors |a1〉, . . . , |as〉 ∈ Cqn , vectors

|b1〉, . . . , |bs〉 ∈ Cqc and complex numbers λ1, . . . , λs ∈ C such that |ψ〉 = λ1|a1〉 ⊗
|b1〉 + · · · + λs|as〉 ⊗ |bs〉. Put |ψi〉 = ai ⊗ bi for 1 ≤ i ≤ s. We further assume

without loss of generality that {|ai〉 : 1 ≤ i ≤ s} ⊆ Cqn is an orthonormal set or

{|bi〉 : 1 ≤ i ≤ s} ⊆ Cqc is an orthonormal set. Note that Tra(|ψi〉〈ψi|) is a qc × qc

matrix defined above. Now we define TrA(|ψ〉〈ψ|) for the arbitrarily chosen vector

|ψ〉 ∈ Cqn+c as the qc × qc matrix given by

TrA(|ψ〉〈ψ|) =| λ1 |2 TrA(|ψ1〉〈ψ1|) + · · ·+ | λs |2 TrA(|ψs〉〈ψs|).

Definition A.2. An ((n,K, d; c))q entanglement-assisted q-ary quantum error correct-

ing code is a subspace Q of Cqn+c such that dimCQ = K ≥ 1 satisfying the following

two properties:

1.) |ψ〉 ∈ Q⇒ TrA(|ψ〉〈ψ|) =
1

qc
Iqc , where Iqc is the identity operation on Cqc .

2.) For integer 0 ≤ i < d and each error e ∈ En[i] we have:

|v′〉, |w′〉 ∈ Q are orthogonal vectors⇒ 〈v′|e′|w′〉 = 0,

where e′ is the error in En+c defined as e′ = e⊗ Iqc .

Let {|ψi〉 : 1 ≤ i ≤ K} be an orthogonal basis of Q. Let

P =
K∑
i=1

|ψi〉〈ψi|
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be the orthogonal projection of Cqn+c onto Q. For 1 ≤ i ≤ n and 1 ≤ j ≤ c be the

split weight enumerators of Q defined by

Bi,j =
1

K2

∑
e∈En[i]
e′∈Ec[j]

(Tr ((e⊗ e′)P ))
2
,

and

B⊥i,j =
1

K

∑
e∈En[i]
e′∈Ec[j]

Tr ((e⊗ e′)P (e⊗ e′)P ) .

We need to recall some notions and properties of Krawtchouk polynomials before

the next theorem. We refer to [27, Section 5.7] for details. Let m be a positive integer.

For 0 ≤ i ≤ m, the i-th q2-ary Krawtchouk polynomial with respect to m is

Pi(x;m) =
i∑

j=0

(−1)j
(
q2 − 1

)i−j (x
j

)(
n− x
i− j

)
.(12)

In this paper we consider q2-ary Krawtchouk polynomials. Note that Pi(x;m) is a

polynomial of degree i in x with the leading coefficient (−q2)i/i! and the constant term(
n
i

)
(q − 1)i. In particular

P0(x;m) = 1 and P1(x;m) = −q2x+ 1.(13)

Let 0 ≤ r, s ≤ m be integers. Recall that the Kronecker symbol δr,s is given by

δr,s =

{
1 if r = s,

0 if r 6= s.

We have the orthogonality relations (see [27, Section 5.7, Corollary 18]) that

m∑
i=0

Pr(i;m) = Pi(s;m) = q2mδr,s.(14)

Moreover we also have (see [27, Section 5.7, Exercise 41]) that

m∑
i=0

(
n− r
n− s

)
Pr(x;m) = q2s

(
n− x
s

)
.(15)

Let n, c be positive integers. Let f(x, y) ∈ R[x, y] be a polynomial of degree at most

n in x and at most c in y. The properties above imply that there exist uniquely

determined coefficients fu,v ∈ R for 0 ≤ u ≤ n and 0 ≤ v ≤ c such that

f(x, y) =
n∑
u=0

c∑
v=0

fu,vPu(x;n)Pv(y; c).(16)
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The expansion in (16) is called the Krawtchouk expansion of f(x, y). Using (14) we

determine the coefficients in the Krawtchouk expansion as

fi,j =
1

q2(n+c)

n∑
u=0

c∑
v=0

f(u, v)Pu(i;n)Pv(j; c)(17)

for 0 ≤ i ≤ n and 0 ≤ j ≤ c.

Now we are ready for the next theorem. The proof of the following theorem uses the

same arguments as in [21, Theorem 2] and hence we skip its proof.

Theorem A.3. Assume that Q is an ((n,K, d; c))q entanglement-assisted q-ary quan-

tum error correcting code with projector P and split weight enumerators Bi,j and B⊥i,j
for 0 ≤ i ≤ n, 0 ≤ j ≤ c, respectively. Then the following properties hold:

1.) B0,0 = B⊥0,0 = 1.

2.) B⊥i,j ≥ Bi,j ≥ 0.

3.) B0,j = 0 for j = 1, . . . , c.

4.) Bi,0 = B⊥i,0 for i = 1, . . . , d− 1.

5.) Bd,0 < B⊥d,0.

6.)

B⊥i,j =
K

qn+c

n∑
u=0

c∑
v=0

Bu,vPi(u;n)Pj(v; c)

and

Bi,j =
1

qn+cK

n∑
u=0

c∑
v=0

B⊥u,vPi(u;n)Pj(v; c).

The following theorem is similar to [2, Theorem 4] and [21, Theorem 5].

Theorem A.4. Let Q be an ((n,K, d; c))q entanglement-assisted quantum error cor-

recting code. For 0 ≤ i ≤ n and 0 ≤ j ≤ c let fi,j ∈ R such that

fi,j ≥ 0 for all i, j in this range,(18)

and

fi,0 > 0 for 0 ≤ i ≤ d− 1.(19)
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Let f(x, y) ∈ R[x, y] be the polynomial defined using the coefficients fi, j above and the

Krawtchouk polynomials in x and y variables given by

f(x, y) =
n∑
i=0

c∑
j,0

fi,jPi(x;n)Pj(y; c)(20)

Assume further that

f(α, β) ≤ 0 for all integers d ≤ α ≤ n and 1 ≤ β ≤ c.(21)

Then we have

K ≤ 1

qn+c
max

0≤`≤d−1

f(`, 0)

f`,0
.

Proof. Let Bi,j and B⊥i,j be the split weight enumerators of Q. Using (18) we obtain

LHS := qn+cK
d−1∑
i=0

fi,0Bi,0 ≤ qn+cK
d−1∑
i=0

c∑
j=0

fi,jBi,j.(22)

It follows from Theorem A.3, item 6) that

Bi,j =
1

qn+cK

n∑
u=0

c∑
v=0

B⊥u,vPi(u;n)Pj(v; c)(23)

for 0 ≤ i ≤ d− 1 and 0 ≤ j ≤ c. Combining (22) and (23) we obtain that

LHS ≤
∑d−1

i=0

∑c
j=0 fi,j

∑n
u=0

∑c
v=0B

⊥
u,vPi(u;n)Pj(v; c)

=
∑n

u=0

∑c
v=0B

⊥
u,vf(u, v),

(24)

where we use the definition in (20). Using (24) and (21) we get that

LHS ≤
d−1∑
i=0

B⊥i,0f(i, 0).(25)

Combining (25) and Theorem A.3, item 4 we conclude that

qn+cK
d−1∑
i=0

fi,0Bi,0 ≤
d−1∑
i=0

f(i, 0)Bi,0.(26)

It follows from (26) that we have

K ≤ 1

qn+c

∑d−1
i=0 f(i, 0)Bi,0∑d−1
i=0 fi,0Bi,0

≤ 1

qn+c
max

0≤i≤d−1

f(i, 0)

fi,0
.

�

The main result of this appendix is the following Singleton type bound for entanglement-

assisted quantum error correcting codes.
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Theorem A.5. Let Q be an ((n,K, d; c))q entanglement-assisted quantum error cor-

recting code. If d ≤ n+2
2

, then

K ≤ qn+c−2(d−1).

Proof. Let f(x, y) ∈ R[x, y] be the polynomial

f(x, y) =
q2(n+c−d+1)

(−1)cc!

n∏
i=d

(
1− x

i

) c∏
j=1

(y − j) .(27)

For integers 0 ≤ α ≤ n and 0 ≤ β ≤ c we have

• f(α, β) = 0 if 1 ≤ β ≤ c, and

• f(α, 0) = q2(b+c−d+1) (
n−α
n−d+1)
( n
d−1)

by definition in (27). Consider the Krawtchouk expansion of f(x, y)

f(x, y) =
n∑
u=0

c∑
v=0

fu,vPu(x;n)Pv(y; c),

with the coefficients fu,v ∈ R. It follows from (17) that we have

fu,v =
1

q2(n+c)

n∑
α=0

c∑
β=0

f(α, β)Pα(i;n)Pβ(j; c).

As f(α, β) = 0 for 0 ≤ α ≤ c and 1 ≤ β ≤ c for the function f(x, y) in (27) and

P0(y, c) = 1 (see (13)) we obtain that

fu,v =
1

q2(n+c)

n∑
α=0

f(α, 0)Pα(u;n)

=
1

q2(n+c)

n∑
α=0

q2(n+c−d+1)

(
n−α
n−d+1

)(
n
d−1

) Pα(u;n)

= q2(−d+1)

n∑
α=0

(
n−α
n−d+1

)(
n
d−1

) Pα(u;n).

(28)

It follows from (16) that we have

n∑
α=0

(
n− α

n− d+ 1

)
Pα(u;n) = q2(d−1)

(
n− u
d− 1

)
.(29)

Combining (28) and (29) we get

fu,v =

(
n−u
d−1

)(
n
d−1

) for 0 ≤ u ≤ n and 0 ≤ v ≤ c.(30)

In particular fu,v is independent from v.
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For 0 ≤ u1 ≤ u2 ≤ d− 1 we claim that

f(u1, 0)

fu1,0
≥ f(u2, 0)

fu2,0
.(31)

Indeed using (30) we get

f(u1, 0)

fu1,0
=

(
n−u1
n−d+1

)(
n−u1
d−1

) ≥ f(u2, 0)

fu2,0
=

(
n−u2
n−d+1

)(
n−u2
d−1

) ⇐⇒

(n−u1)!
(n−d+1)!(n−u1−n+d−1)!

(n−u1)!
(d−1)!(n−u1−d+1)!

≥
(n−u2)!

(n−d+1)!(n−u2−n+d−1)!
(n−u2)!

(d−1)!(n−u2−d+1)!

⇐⇒

(n− u1 − d+ 1)!

(d− u1 − 1)!
≥ (n− u2 − d+ 1)!

(d− u2 − 1)!
⇐⇒

(n−u1−d+1)!
(n−u2−d+1)!

≥ (d−u1−1)!
(d−u2−1)! ⇐⇒

(n− u1 − d+ 1) · · · (n− u2 − d+ 2) ≥ (d− u1 − 1) · · · (d− u2)
(∗)⇐⇒

n− u1 − d+ 1 ≥ d− u1 − 1 ⇐⇒

d ≤ n+ 2

2
,

where in the step (*) above we use the observation that both sides are the products of

u2 − u1 consecutive integers such that the left hand side ends at n − u1 − d + 1 and

the right hand side ends at d− u1 − 1. As d ≤ n+2
2

by assumption, this completes the

proof of the claim in (31).

We apply Theorem A.4 using f(x, y) in (27). Note that the assumptions of Theorem

A.4 hold. Using Theorem A.4 and the claim in(31) we conclude that

K ≤ 1

qn+c
f(0, 0)

f0,0

=
1

qn+c
f(0, 0)

=
1

qn+c
q2(n+c−d+1)

(−1)cc!
(−1)cc!

= qn+c−2(d−1).

�
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Remark A.6. If q = 2, then Theorem A.5 corresponds to [21, Theorem 6]. It is clear

from the proof of Theorem A.5 that the factor 1
(−1)cc! is necessary in the definition of

f(x, y) in (27) in the proof of Theorem A.5. However this factor is forgotten in the

proof of [21, Theorem 6] in [21]. Hence we also present this small correction in our

detailed proof.

Remark A.7. Let S be an abelian subgroup of En. If S satisfies some commutation

relations given in [25] (see also [9] and [21]), then

C = {|ψ〉 ∈ Cqn+c : g|ψ〉 = |ψ〉 for all g ∈ S}.

is called an entanglement-assisted q-ary quantum error correcting stabilizer code. We

refer to [25], [9] and [21] for further details on entanglement-assisted quantum stabilizer

codes. In particular C is a subspace of Cqn+c and C is an entanglement-assisted q-ary

quantum error correcting code in the sense of Definition A.2. If the parameters of C

are shown as ((n,K, d; c))q, then we call C as an [[n,K, d; c]]q throughout this paper

in order to emphasize that C is a stabilizer code. Note that [9, Theorem 4] is a

construction of stabilizer codes. As our constructions are based on [9, Theorem 4], the

quantum codes in all sections except the appendices are quantum stabilizer codes and

denoted using [[·]]q. It is clear that Theorem A.5 holds for quantum stabilizer codes as

well.

Appendix B. Appendix B: The algorithm of Carlet et. al. [6]

In Appendix B, we explain an important step in detail of our Construction 1. Recall

that we present Construction 1 in Section 3.

Let q ≥ 4 be a prime power. Let G be a k × n matrix over Fq, which is a generator

matrix of an [n, k, d]q code C. We observe that [6] gives an algorithm in order to modify

G to a k × n matrix G′ over Fq such that the linear code C ′ having G′ as a generator

matrix has the following properties: C ′ is an [n, k, d]q over Fq (same parameters as C)

and Hull(C ′) = {0} (while Hull(C) is not necessarily {0}).
In this appendix we explain this algorithm in detail.

First we find a n × n permutation matrix P over Fq such that G1 = GP is in the

systematic form. Namely

G1 = [Ik A],

where Ik is the k × k identity matrix and A is a k × (n − k) matrix over Fq. For

example using Gaussian elimination we can find the row reduced echelon form of G.

This indicates the pivot columns in the row reduced echelon form of G. Changing the

pivot columns to the first k columns gives a method to find such a permutation matrix

P .
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Let C1 be the Fq-linear code having G1 as a generator matrix. Note that C1 is

permutation equivalent to C and hence C1 is again an [n, k, d]q code.

Here we need to introduce a notation. For a symmetric k×k matrix M and a subset

I ⊆ {1, 2, . . . , k} with #I = t, let MI denote the (k− t)× (k− t) symmetric submatrix

of M obtained by removing the i-th column and i-th row of M for each i ∈ I. Note

that MI = M if I = ∅. We denote MI = 0 if I = {1, 2, . . . , k} by convention (see

Remark B.1).

Note that G1G
T
1 = (GP )(P TGT ) = GGT as PP T = In. Let 0 ≤ tlek be the integer

such that rank(GGT ) = k − t. It follows from (2) that let dimFq Hull(C) = t. Hence

there exists a subset I ⊆ {1, . . . , k} such that
(
GGT

)
I

is invertible (see also [?]). In

fact there is a deterministic way to choose such I as follows: Let J be the subset of

{1, 2, . . . , k} such that j ∈ J if and only if the j-th column is a pivot in the reduced

row echelon form of GGT . Put I = {1, 2, . . . , k} \ J .

For 1 ≤ i ≤ k, let αi ∈ Fq be chosen as follows:

αi ∈

{
Fq \ {0, 1,−1} if i ∈ I,

{1} if i 6∈ I.
(32)

Let D be the n × n diagonal matrix having entries α1, α2, . . . , αk, 1, . . . , 1 in order,

namely D = Diag(α1, α2, . . . , αk, 1, . . . , 1). Let G2 be the k × n matrix obtained from

G1 as

G2 = G1D.

Let C2 be the Fq-linear code having G2 as a generator matrix. Recall that a square

matrix M is called a monomial matrix if there exists exactly one nonzero entry in each

row and column of M (see, [19, page 24]). Moreover if G is a k × n generator matrix

of a code C and M is an n × n monomial matrix, then the code having GM as a

generator matrix is called monomially equivalent to C (see, [19, page 469]). Here D

is a monomial matrix and C2 is monomially equivalent to C1. In particular C2 is an

[n, k, d]q code, having the same parameters as C1.

Let D1 be the k × k diagonal matrix given by D1 = Diag(α1, α2, . . . , αk). Note that

G2 = [Ik A]

[
D1 0

0 In−k

]
= [D1 A]

and hence

G2G
T
2 = D2

1 + AAT = Ik + AAT + Diag(α2
1 − 1, . . . , α2

k − 1)

= G1G
T
1 + Diag(α2

1 − 1, . . . , α2
k − 1).

(33)
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Recall that rank(G1G
T
1 ) = k− t and α1, . . . , αk ∈ Fq are chosen as in (32). Hence using

(33) and [6, Lemma 9] we conclude that

det(G2G
T
2 ) =

(∏
i∈I

(α2
i − 1)

)
det(GGT )I 6= 0,(34)

where det(GGT )I = 1 if I = {1, 2, . . . , k} by convention (see Remark B.1). Therefore

Hull(C2) = {0}.

Remark B.1. If G is self-orthogonal, then GGT = 0 and hence t = k. In this

degenerate case it is necessary to choose I = {1, 2, . . . , k}. We have the conventions

that (GGT )I = 0 and det(GGT )I = 1 when I = {1, 2, . . . , k}. Indeed in this degenerate

case (33) becomes

G2G
T
2 = 0 + Diag(α2

1 − 1, . . . , α2
k − 1)

and hence we use the convention (GGT )I = 0. Again in this degenerate case (34)

becomes

det(G2G
T
2 ) =

(∏
i∈I

(α2
i − 1)

)
and hence we use the convention det(GGT )I = 1. We need to use the convention that

det(GGT )I = 1 if I = {1, 2, . . . , k}. The convention (GGT )I = 0 is not essential as it

appears only in the background.

In summary we obtain the following algorithm:

Input: For integers 1 ≤ k ≤ n, let G is a k × n matrix of rank k over Fq. Let C be

the Fq linear code having G as a generator matrix. Let C be an [n, k, d]q code.

Output: G′ is a k×n matrix of rank k over Fq. Let C ′ be the Fq linear code having

G′ as a generator matrix. We obtain that C ′ is an [n, k, d]q code with Hull(C ′) = {0}.
i) Find an n × n permutation matrix P such that GP is in the systematic form

so that GP = [Ik A].

ii) Let rank(GGT ) = k − t, Find a subset I ⊆ {1, . . . , k} such that #I = t and

(GGT )I is invertible.

iii) For 1 ≤ i ≤ k, let αi ∈ Fq be chosen as follows:

αi ∈

{
Fq \ {0, 1,−1} if i ∈ I,

{1} if i 6∈ I.
(35)

iv) Put G′ = GPDiag(α1, . . . , αk, 1, . . . , 1).

Remark B.2. In many cases for a starting code [n, k, d]q code C we know a generator

matrix G in systematic form. In such a case we take P = In and we skip step i) in the

algorithm.
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In the following examples we illustrate this algorithm. In these algorithms the gen-

erators matrices in the input are in systematic form and hence we take P = In as

explained in Remark B.2.

Example B.1. Let q = 4 and w ∈ F4 be an element satisfying w2 + w + 1 = 0. Note

that w is a primitive element of F4. Let G be the 7× 23 matrix over F4 given by

G =



1 0 0 0 0 0 0 0 w2 0 w2 w 1 w 1 w2 w2 0 0 w 1 0 w

0 1 0 0 0 0 0 0 w 0 1 w 0 0 w2 w2 1 w 1 w w2 0 w2

0 0 1 0 0 0 0 0 w2 w2 w w2 1 w w 0 0 w2 0 w 0 1 1

0 0 0 1 0 0 0 0 1 1 0 1 w w 1 w2 1 w2 0 1 1 w2 w2

0 0 0 0 1 0 0 0 w2 0 w2 w w 0 0 w 0 w2 1 w2 w2 w2 w

0 0 0 0 0 1 0 0 w 0 1 w 0 w2 1 w 0 1 w w2 w w 0

0 0 0 0 0 0 1 0 0 w 0 1 w 0 w2 1 w 0 1 w w2 w w


.

Let C be the F4-linear code having G as a generator matrix. In fact C is a code in the

database of Magma [3]. Using the Magma command BKLC(F4, 23, 7) (or BDLC(F4, 23, 12))

we immediately obtain C and the matrix G above. Then C is an [23, 7, 12]4 code. More-

over C is an optimal code in both of the senses in Notation 3.4 and Notation 3.5 below.

We refer to the online table [15] for the optimality.

We observe that rank(GGT ) = 6 and hence dimF4 Hull(C) = 1. Using the algorithm

explained in this appendix, let I = {7} ⊆ {1, 2, . . . , 7},

D1 = Diag(1, . . . , 1︸ ︷︷ ︸
6 times

, w, 1, . . . , 1︸ ︷︷ ︸
16 times

)

and G1 = GD1. Moreover let C1 be the F4-linear code having G1 as a generator matrix.

We obtain that C1 is an [23, 7, 12]4 code and Hull(C1) = {0}.

Example B.2. Let q = 4 and ∈ F4 be an element satisfying w2 +w+ 1 = 0. Let G be

the 9× 19 matrix over F4 given by

G =



1 0 0 0 0 0 0 0 0 1 w2 w w 0 1 0 w2 w2 w

0 1 0 0 0 0 0 0 0 w 0 0 1 w w 1 1 w 0

0 0 1 0 0 0 0 0 0 0 w 0 0 1 w w 1 1 w

0 0 0 1 0 0 0 0 0 w 1 1 w2 0 w2 w w2 0 w

0 0 0 0 1 0 0 0 0 w w2 w w w2 w w2 w2 w w2

0 0 0 0 0 1 0 0 0 w2 0 w w2 w 0 w 1 1 w2

0 0 0 0 0 0 1 0 0 w2 1 1 w2 w2 1 0 0 w2 0

0 0 0 0 0 0 0 1 0 0 w2 1 1 w2 w2 1 0 0 w2

0 0 0 0 0 0 0 0 1 w2 w w 0 1 0 w2 w2 w 1


.
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Let C be the F4-linear code having G as a generator matrix. Using the Magma

command BDLC(F4, 19, 8) we immediately obtain C and the matrix G above. Then C

is an [19, 9, 8]4 code. Note that C is a best known code in the sense of Notation 4.5

(see [15]).

We observe that rank(GGT ) = 0 and hence dimF4 Hull(C) = 9. Using the algorithm

explained in this appendix, let I = {1, 2, . . . , 9} ⊆ {1, 2, . . . , 9},

D1 = Diag(w, . . . , w︸ ︷︷ ︸
9 times

, 1, . . . , 1︸ ︷︷ ︸
10 times

)

and G1 = GD1. Moreover let C1 be the F4-linear code having G1 as a generator matrix.

We obtain that C1 is an [19, 9, 8]4 code and Hull(C1) = {0}.

Example B.3. Let q = 4 and ∈ F4 be an element satisfying w2 +w+ 1 = 0. Let G be

the 7× 20 matrix over F4 given by

G =



1 0 0 0 0 0 0 w2 0 0 1 w w2 1 w 0 w 1 1 1

0 1 0 0 0 0 0 0 w w2 1 0 w2 w2 0 w 1 w2 0 w

0 0 1 0 0 0 0 w2 w w2 0 1 1 w w2 0 w w 0 0

0 0 0 1 0 0 0 w2 w2 w w w w 0 0 w2 w w2 w2 1

0 0 0 0 1 0 0 0 w 0 w2 w2 w2 w 1 0 w w2 w 0

0 0 0 0 0 1 0 1 0 w w 0 w 1 1 1 w2 0 1 0

0 0 0 0 0 0 1 w 1 0 1 w2 w 1 0 1 0 0 w2 w


.

Let C be the F4-linear code having G as a generator matrix. Using the Magma

command BKLC(F4, 20, 7) we immediately obtain C and the matrix G above. Then C

is an [20, 7, 10]4 code. Note that C is a best known code in the sense of Notation 3.4

(see [15]).

We observe that rank(GGT ) = 6 and hence dimF4 Hull(C) = 1. Using the algorithm

explained in this appendix, let I = {7} ⊆ {1, 2, . . . , 7},

D1 = Diag(1, . . . , 1︸ ︷︷ ︸
6 times

, w, 1, . . . , 1︸ ︷︷ ︸
13 times

)

and G1 = GD1. Moreover let C1 be the F4-linear code having G1 as a generator matrix.

We obtain that C1 is an [20, 7, 10]4 code and Hull(C1) = {0}.
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