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Introduction

Quantum error-correcting codes play an important role both in quantum communication and quantum computations. The construction of quantum error-correcting codes (or quantum codes in short) has been an active research field since the pioneering works in [START_REF] Ashikhmin | Nonbinary quantum stabilizer codes[END_REF], [START_REF] Calderbank | Quantum error correction via codes over GF(4)[END_REF], [START_REF] Shor | Scheme for reducing decoherence in quantum computer memory[END_REF], [START_REF] Steane | Simple quantum error correcting codes[END_REF]. One of the important developments in the area of quantum error-correction was the introduction of entanglement-assisted quantum error-correction [START_REF] Hsieh | General entanglement-assisted quantum error-correcting codes[END_REF]. The entanglement-assisted quantum codes have the advantages of both entanglement-assisted and operator quantum correction. In their theory it is assumed that in addition to the quantum channel, the sender and the receiver share a certain amount of pre-existing entangled qubits. We refer to [START_REF] Hsieh | General entanglement-assisted quantum error-correcting codes[END_REF] and [START_REF] Fujiwara | Entanglement-assisted quantum lowdensity parity-check codes[END_REF] for further details.

Recently there has been many results in the literature in constructing new entanglementassisted quantum error-correcting codes using some properties of (classical) linear codes Arabia; e-mails: adelnife2@yahoo.com, aalke-nani10@hotmail.com,rhijazi@kau.edu.sa,najat muthana@hotmail.com.
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Patrick Solé is with I2M, Aix Marseille Univ., Centrale Marseille, CNRS, Marseille, France , e-mail: sole@enst.fr. [START_REF] Guenda | Constructions of good entanglement-assisted quantum error correcting codes[END_REF], [START_REF] Guenda | Linear -intersection pairs of codes and their applications[END_REF], [START_REF] Liu | New EAQEC codes from cyclic codes over F q + uF q[END_REF], [START_REF] Liu | New entanglement-assisted quantum codes from k-Galois dual codes[END_REF], [START_REF] Luo | MDS codes with hulls of arbitrary dimensions and their quantum error correction[END_REF], [START_REF] Pereira | Application of complementary dual AG codes to entanglement-assisted quantum codes[END_REF], [START_REF] Pereira | Entanglement-assisted quantum codes from algebraic geometry codes[END_REF]. One of the common tools they use is the hull of a linear code. They also use some properties of generator matrices of certain codes and/or some properties of algebraic curves in algebraic geometry codes.

In this paper we present two constructions: Constructions 1 and 2. Construction 1 is very powerful and it works for any field F q with q ≥ 4. Constructions 2 uses the idea of isometry codes, which is related to concatenated construction of linear codes and it works for any field F q including q ∈ {2, 3}. Our constructions are quite simple and clear. Nevertheless we use some fundamental ideas in code constructions (like hull of a code) in a very effective way so that we obtain significant improvements in the parameters of entanglement-assisted quantum error-correcting codes. In particular our constructions use [START_REF] Carlet | Linear codes over are equivalent to LCD Codes for q > 3[END_REF] and [START_REF] Carlet | A new concatenated type construction for LCD codes and isometry codes[END_REF] in an effective way. We also generalize a Singleton type bound from binary entanglement-assisted quantum codes to arbitrary q-ary entanglement-assisted quantum codes in Appendix A (see also the paragraph before Notation 3.7 below).

The rest of this paper is organized as follows. The next section collects some basic notions and notations. We present Construction 1 in Section 3. Construction 1 uses an algorithm in one of its steps and we explain this algorithm explicitly in Appendix B. We give Construction 2 in Section 4. We also present some important material in Appendix A.

Background material

Now we introduce some fundamental notions that we use. Let q be a prime power and F q denote the finite field with q elements. For integers 1 ≤ k ≤ n, let G be a k × n matrix of rank k. Let C be the linear code over F q having G as a generator matrix. We consider the F q -linear space F n q as an inner product space as well under the Euclidean inner product (or the ordinary inner product) defined as

(a 1 , . . . , a n ) • (b 1 , . . . , b n ) := a 1 b 1 + • • • + a n b n (1) 
(see, [19, page 8]). Using the inner product in [START_REF] Ashikhmin | Nonbinary quantum stabilizer codes[END_REF], let C ⊥ := {(a 1 , . . . , a n ) ∈ F n q : (a 1 , . . . , a n ) • (c 1 , . . . , c n ) = 0 for all (c 1 , . . . , c n ) ∈ C} be the dual linear code of C. The Hull of C is defined as

Hull(C) = C ∩ C ⊥ .
Recall that C is a linear code of length n, dimension k and G is a generator matrix of C. One of the fundamental properties we have is

rank(GG T ) + dim Fq Hull(C) = k. (2) If C is an [[n, k, d]]
) q quantum code with c entangled qubits, we will write its parameters as an entanglement-assisted quantum error-correcting code as [[n, k, d; c]] q .

A generic construction for q ≥ 4

In this section we present a construction of entanglement-assisted quantum codes over F q for q ≥ 4. It gives a generic and simple algorithm to construct an [[n, k, d; n-k]] q entanglement-assisted quantum code using a generator matrix of a (classical) [n, k, d] q code.

We illustrate this algorithm with explicit examples. We study the performance of our construction in terms of the entanglement-assisted quantum Singleton bound (see Notation 3.7 below) of the parameters.

Our construction in this section improves many recent constructions significantly.

We are ready to present our construction in this section.

Construction 1: This construction has the following steps:

1.1) Let q ≥ 4 be a prime power. Let G be a k × n matrix over F q , whose row space is an [n, k, d] q code. 1.2) Using the algorithm in [6, Section 5A] modify G to a k × n matrix G 1 over F q such that the row space of G 1 is the code C 1 ⊆ F n q having the properties: Hull(C 1 ) = {0} and C 1 is an [n, k, d] q code. We refer to Appendix B for an explicit presentation of this step of the algorithm. ] q entanglementassisted quantum code following [START_REF] Galindo | Entanglement-assisted quantum errorcorrecting codes over arbitrary finite fields[END_REF]Theorem 4]. We refer to the proof of Theorem 3.2 below for details.

We will prove that this construction is correct. First we state a useful result due to [START_REF] Wilde | Optimal entanglement formulas for entanglement-assisted quantum coding[END_REF] in its first form. We prefer to state it for arbitrary finite fields and using generator matrices as in [START_REF] Galindo | Entanglement-assisted quantum errorcorrecting codes over arbitrary finite fields[END_REF] (see also [START_REF] Guenda | Constructions of good entanglement-assisted quantum error correcting codes[END_REF], [START_REF] Guenda | Linear -intersection pairs of codes and their applications[END_REF], [START_REF] Pereira | Application of complementary dual AG codes to entanglement-assisted quantum codes[END_REF] and [START_REF] Pereira | Entanglement-assisted quantum codes from algebraic geometry codes[END_REF]). Theorem 3.1. Let q be an arbitrary prime power. Let G 1 and G 2 be generator matrices of

[n, k 1 , d 1 ] q and [n, k 2 , d 2 ] q codes C 1 and C 2 over F q . Put c = rank(G 1 G T 2 ).
Then we have

c = dim Fq C 1 -dim Fq (C 1 ∩ C ⊥ 2 ) (3)
and there exists an effective construction of

[[n, n -k 1 -k 2 + c, d; c]] q entanglement- assisted code C over F q , where d = min d H (C ⊥ 1 \ (C 2 ∩ C ⊥ 1 ), d H (C ⊥ 2 \ (C 1 ∩ C ⊥ 2 ) . ( 4 
)
Here d H (•) is the minimum Hamming distance of the corresponding set. Now we are ready to prove that Construction 1 is correct. Theorem 3.2. Let q ≥ 4 be a prime power. If G is a generator matrix of a [n, k, d] q classical code, then Construction 1 gives an [[n, k, d; n -k]] q entanglement-assisted quantum code.

Proof. Let V be the F q -linear code having G as the generator matrix. Using Step 1.2 in Construction 1 and the algorithm in Appendix B we obtain a k × n matrix G 1 over F q such that the F q -linear code V 1 having G 1 as a generator matrix has the following properties:

V 1 is an [n, k, d] q code and Hull(V 1 ) = {0}.
Let C 1 and C 2 be the F q -linear codes of length n defined as

C 1 = C 2 = V ⊥ 1 .
Note that

C 1 ∩ C ⊥ 2 = V ⊥ 1 ∩ V 1 = {0} as Hull(V 1 ) = {0}. (5) Similarly we have C 2 ∩ C ⊥ 1 = V ⊥ 1 ∩ V 1 = {0} and hence d H (C ⊥ 1 \ (C 2 ∩ C ⊥ 1 )) = d H (V 1 \ {0}) = d and d H (C ⊥ 2 \ (C 1 ∩ C ⊥ 2 )) = d H (V 1 \ {0}) = d. (6) 
Applying Theorem 3.1 using C 1 and C 2 we obtain an

[[n, k(C), d(C); c]] q
entanglement-assisted quantum code C. Here using Theorem 3.1, (3) and ( 5) we get

c = dim Fq V ⊥ 1 = n -k. (7) 
Using Theorem 3.1 and (7) we get

k(C) = n -k 1 -k 2 -c = n -(n -k) -(n -k) + (n -k) = k. (8) 
Using Theorem 3.1, ( 4) and ( 6) we get

d(C) = min{d, d} = d. (9) 
Combining [START_REF] Carlet | A new concatenated type construction for LCD codes and isometry codes[END_REF], [START_REF] Fujiwara | Entanglement-assisted quantum lowdensity parity-check codes[END_REF] and [START_REF] Galindo | Entanglement-assisted quantum errorcorrecting codes over arbitrary finite fields[END_REF] we complete the proof.

The following example makes a connection to Appendix B and hence it also illustrates Step 1. [20, 7, 10; 13]] 4 codes.

Using Construction 1 and the codes in [START_REF] Grassl | Bounds on the minimum distance of linear codes and quantum codes[END_REF] or [START_REF]MinT: Database for optimal parameters of (t,m,s)-nets, (t,s)-sequences, orthogonal arrays, linear codes and OOAs[END_REF], we immediately obtain new entanglement-assisted quantum codes: Remark 3.3. We first compare our results with the very recent paper [START_REF] Liu | New EAQEC codes from cyclic codes over F q + uF q[END_REF]. Construction 1 improves many of the results in [START_REF] Liu | New EAQEC codes from cyclic codes over F q + uF q[END_REF] significantly. For example in [START_REF] Liu | New EAQEC codes from cyclic codes over F q + uF q[END_REF] they state that a code with parameters [ [34, 10, 9; 24]] 4 is a new entanglement-assisted quantum code in [START_REF] Liu | New EAQEC codes from cyclic codes over F q + uF q[END_REF]Table 2]. Using Construction 1 and the corresponding code from [START_REF] Grassl | Bounds on the minimum distance of linear codes and quantum codes[END_REF] we immediately obtain a code with parameters [ [34, 10, 16; 24]] 4 . The improvement in the minimum distance from 9 to 16 is significant.

As another example in [START_REF] Liu | New EAQEC codes from cyclic codes over F q + uF q[END_REF] they state that a code C with parameters [ [26, 14, 5; 12]] 4 is a new entanglement-assisted code in [START_REF] Liu | New EAQEC codes from cyclic codes over F q + uF q[END_REF]Table 5]. Using Construction 1 and [START_REF] Grassl | Bounds on the minimum distance of linear codes and quantum codes[END_REF] we immediately obtain a code C with parameters [ [26, 14, 9; 12]] 4 . The improvement in the minimum distance from 5 to 9 is significant.

We also have improvements compared to the very recent paper [START_REF] Liu | New entanglement-assisted quantum codes from k-Galois dual codes[END_REF]. For example in [START_REF] Liu | New entanglement-assisted quantum codes from k-Galois dual codes[END_REF] they state that a code with parameters [ [22, 16, 3; 6]] 9 is a new entanglementassisted code in [23, Table 1]. Using Construction 1 and the corresponding code from [START_REF] Grassl | Bounds on the minimum distance of linear codes and quantum codes[END_REF] we immediately obtain a code with parameters [ [22, 16, 5; 6]] 4 . The improvement in the minimum distance is from 3 to 5.

Next we study the performance of Construction 1 in terms of the entanglementassisted quantum Singleton bound. Here we need to introduce some notation. Notation 3.4. Let q be a prime power. For integers 1 ≤ k ≤ n, let D q (n, k) denote the largest integer d such that there exists a classical [n, k, d] q code. We call C is optimal if C is a classical [n, k, D q (n, k)] q code. We call C is best known if C is a classical [n, k, D] q code and there is no known code in the literature having parameters [n, k, D ] q with D > D. There is a database and a related command BDLC in Magma. Notation 3.5. Let q be a prime power. For integers 1 ≤ d ≤ n, let K q (n, d) denote the largest integer k such that there exists a classical [n, k, d] 

q code. We call C is optimal if C is a classical [n, K q (n, d), d] q code. We call C is best known if C is a classical [n, K, d] q
code and there is no known code in the literature having parameters [n, K , d] q with K > K. There is a database and a related command BKLC in Magma.

The notions of optimal codes in Notations 3.4, 3.5 are related but different. Notation 3.6. Let q be a prime power. Let C be a classical [n, k, d] q code. Then the Singleton defect S(C) of C is the nonnegative integer defined as

S(C) = n + 1 -k -d.
This is nonnegative due to the Singleton bound (see, for example, [START_REF] Huffman | Fundamentals of Error Correcting Codes[END_REF]). If S(C) = 0, then C is called a maximally distance separable (MDS) code.

The analog of the Singleton bound for the entanglement-assisted quantum codes is rather intricate. In [4, page 24], the authors stated that if there exists an [[n, k, d; c]] q entanglement-assisted quantum code, then 2d ≤ n -k + 2 + c. [START_REF] Garcia | On subfields of the Hermitian function field[END_REF] However this bound is invalid for a range. For example in [START_REF] Grassl | Entanglement-asisted quantum communication beating the quantum Singleton bound[END_REF], the author constructed an [ [9, 1, 6; 1]] 2 entanglement-assisted quantum code, which is a counterexample to the bound in [START_REF] Garcia | On subfields of the Hermitian function field[END_REF]. A correct analog of the Singleton bound for the binary entanglementassisted quantum codes is given in [START_REF] Lai | Linear programming bounds for entanglement-assisted quantum errorcorrecting codes by split weight enumerators[END_REF] as follows: If there exists an [[n, k, d; c]] 2 entanglement-assisted quantum code, then

d ≤ n + 2 2 ⇒ 2d ≤ n -k + 2 + c. ( 11 
)
We could not find a proof of the bound in [START_REF]Goppa: Codes on algebraic curves (in Russian)[END_REF] for q > 2 in the literature. Recently in [START_REF] Grassl | Entropic proofs of Singleton bounds for quantum error-correcting codes[END_REF], among other results, the authors provide entropic proofs of Singleton bounds for a range of codes. 1 In Appendix A, in Theorem A.5, we generalize the bound in [START_REF]Goppa: Codes on algebraic curves (in Russian)[END_REF] to arbitrary q-ary entanglement-assisted quantum codes (see also Remarks A.6, A.7 in Appendix A). We call the bound in [START_REF]Goppa: Codes on algebraic curves (in Russian)[END_REF] as the entanglement-assisted quantum Singleton bound, which is defined only if d ≤ n+2

2 . We note that, unfortunately, there are some incorrect formulations of the entanglement-assisted quantum Singleton bound even in the very recent literature (see, for example, [ Notation 3.7. Let q be a prime power. Let C be an [[n, k, d; c]] q entanglement-assisted quantum code. Then the entanglement-assisted quantum Singleton defect S q (C) of C is the integer defined as

S q (C) = n + 2 + c -k -2d. If d ≤ n+2
2 , then S q (C) is nonnegative due to the entanglement-assisted quantum Singleton bound in [START_REF]Goppa: Codes on algebraic curves (in Russian)[END_REF]. If d ≤ n+2

2 and S q (C) = 0, then we call that C is a maximally distance separable (MDS) entanglement-assisted quantum code.

We presents our results on the performance of Construction 1.

Corollary 3.1. Let q ≥ 4 be a prime power. Let 1 ≤ k ≤ n be integers. For any optimal [n, k, D q (n, k)] q classical code C with Singleton defect S(C), there exists an [[n, k, D q (n, k); n -k]] q entanglement-assisted quantum code Ĉ with entanglementassisted quantum Singleton defect

S q ( Ĉ) = 2S(C).
In particular if C is MDS and k ≥ n 2 , then Ĉ is entanglement-assisted quantum MDS. Also if S(C) = 1 (called near MDS), then S q ( Ĉ) = 2. 1 We note that we were not aware of the results in [START_REF] Grassl | Entropic proofs of Singleton bounds for quantum error-correcting codes[END_REF] when we submitted the original and the first revised versions of this paper, which were written before the first version of [START_REF] Grassl | Entropic proofs of Singleton bounds for quantum error-correcting codes[END_REF] were made available.

Proof. Using Theorem 3.2 we construct Ĉ having the parameters [[n, k, D q (n, k); nk]] q . By definition of S q ( Ĉ) we get

S q ( Ĉ) = n + 2 + (n -k) -(k -2D q (n, k)) = 2(n + 1 -k -D q (n, k)) = 2S(C). Note that if C is MDS and k ≥ n 2 , then D q (n, k) = n + 1 -k ≤ n+2
2 and S q ( Ĉ) = 0. This implies that Ĉ is entanglement-assisted quantum MDS by definition.

The following is an analogue of Corollary 3.1 Corollary 3.2. Let q ≥ 4 be a prime power. Let 1 ≤ d ≤ n be integers. For any optimal [n, K q (n, d), d] q classical code C with Singleton defect S(C), there exists an

[[n, K q (n, d), d; n-K q (n, d)]] q entanglement-assisted quantum code Ĉ with entanglement- assisted quantum Singleton defect S q ( Ĉ) = 2S(C).
The following results improves Theorems 17 and 18 of [START_REF] Luo | MDS codes with hulls of arbitrary dimensions and their quantum error correction[END_REF] significantly. Namely we do not have extra conditions on q, n and/or k as in [START_REF] Luo | MDS codes with hulls of arbitrary dimensions and their quantum error correction[END_REF]Theorems 17 and 18]. Theorem 3.8. Let q ≥ 4 be a prime power. If 1 ≤ k ≤ n ≤ q+1, then using generalized Reed Solomon codes and Construction 1 we immediately obtain

[[n, k, n + 1 -k; n -k]] q entanglement-assisted quantum code.
Proof. Using generalized Reed Solomon codes we easily construct a k × n generator matrix G over F q such that the linear code C having G as a generator matrix is an [n, k, n + 1 -k] q code (see, for example [35, Propositions 2.3.2 and 2.3.3]). Then we obtain a [[n, k, d; n-k]] q entanglement-assisted quantum code using Construction 1. Remark 3.9. Construction 1 also extends some of the results in [START_REF] Pereira | Application of complementary dual AG codes to entanglement-assisted quantum codes[END_REF] and [START_REF] Pereira | Entanglement-assisted quantum codes from algebraic geometry codes[END_REF]. First we need to recall some notation and facts related to algebraic functions fields and algebraic geometry codes, for which we refer, for example, to [START_REF] Stichtenoth | Algebraic Function Fields and Codes[END_REF]. For q ≥ 4, and g ≥ 0, let N q (g) denote the largest integer N such that there exists an absolutely irreducible curve χ (or equivalently an algebraic function field) over F q of genus g having N rational points. Using algebraic geometry codes [START_REF]Goppa: Codes on algebraic curves (in Russian)[END_REF] (see also [START_REF] Stichtenoth | Algebraic Function Fields and Codes[END_REF]

) if n ≤ N q (g) and 1 ≤ k ≤ n, then there exists [n, k, d] q code over F q with k + d ≥ n + 1 -g.
It is well known that, due to Hasse-Weil bound we have N q (g) ≤ q + 1 + 2gq 1/2 [START_REF] Stichtenoth | Algebraic Function Fields and Codes[END_REF]. A curve is called a maximal curve if it attains the Hasse-Weil bound.

For any q, the projective line is a maximal curve of genus 0. If g ≥ 1, then there exists a maximal curve over F q only if i) q is a square, hence put q = q 2 1 , and (ii) g ≤ q 1 (q 1 -1)

2

.

Note that the Hermitian curve over F q 2 1 has genus q 1 (q 1 -1)

2

. We refer to [START_REF] Rück | A characterization of Hermitian function fields over finite fields[END_REF] and [START_REF] Stichtenoth | Algebraic Function Fields and Codes[END_REF] for the details of these facts.

In [START_REF] Pereira | Application of complementary dual AG codes to entanglement-assisted quantum codes[END_REF] and [START_REF] Pereira | Entanglement-assisted quantum codes from algebraic geometry codes[END_REF] the authors consider only maximal curves of genus 0 if q is arbitrary, and of genera 1 and q 1 (q 1 -1)

2 if q = q 2 1 .
In their construction they need to control the duality and hence they need explicit and arithmetic conditions on a chosen algebraic curve. However in Construction 1, if q ≥ 4, we do not need to control such arithmetical conditions because of Step 1.2 of the algorithm, which is explained in Appendix B in detail. Hence we can use any suitable algebraic curve over finite fields. There are algebraic curves with N q (g) many rational points, which are not maximal. For example consider g ≥ 1 and q is a not a square, or consider g > q 1 (q 1 -1)

2 if q = q 2
1 . Moreover even if q = q 2 1 and 1 < g < q 1 (q 1 -1)

2

, then there are many different values of g such that we have a maximal curve over F q , which is not birationally isomorphic to a projective line, elliptic curve or Hermitian curve. Using algebraic geometry codes together with such algebraic curves and Construction 1 we also extend the related results of [START_REF] Pereira | Application of complementary dual AG codes to entanglement-assisted quantum codes[END_REF] and [START_REF] Pereira | Entanglement-assisted quantum codes from algebraic geometry codes[END_REF]. Note that Construction 1 complies also with generalized algebraic geometry codes (see, for example, [START_REF] Özbudak | Stichtenoth: Constructing codes from algebraic curves[END_REF]).

As concrete examples, we have the following extensions. In [START_REF] Pereira | Application of complementary dual AG codes to entanglement-assisted quantum codes[END_REF], after [29, Theorem 4] they state to construct a [[39, 25, 14; 14]] 32 entanglement-assisted quantum code. In fact [START_REF] Pereira | Application of complementary dual AG codes to entanglement-assisted quantum codes[END_REF]Theorem 4] allows to construct an [[n, k, n -k; n -k]] 32 entanglement-assisted quantum code for all integers 1 ≤ k < n ≤ 42, where the upper bound 42 is due to the arithmetical condition n + 2 ≤ N 32 (1) = 44 in [29, Theorem 4]. Here N 32 (1) is the largest integer N such that there exists an absolutely irreducible curve of genus 1 (elliptic curve) having N rational points (see [START_REF] Van Der Geer | Tables of Curves with Many Points[END_REF]). Using Construction 1 we relax this condition. Indeed there exist an [n, k, n -k] 32 code for all integers 1 ≤ k < n and 2 ≤ n ≤ 44, in particular for n ∈ {43, 44} (see [START_REF]MinT: Database for optimal parameters of (t,m,s)-nets, (t,s)-sequences, orthogonal arrays, linear codes and OOAs[END_REF]). Hence using Construction 1 we obtain an [[n, k, n -k; n -k]] 32 entanglement-assisted quantum code not only for 1 ≤ k < n ≤ 42 but also for 1 ≤ k < n ≤ 44.

Similarly in [30, Table 2] they present a [ [15, 10, 6; 5]] 16 entanglement-assisted quantum code. In fact [START_REF] Pereira | Entanglement-assisted quantum codes from algebraic geometry codes[END_REF]Theorem 5] [START_REF] Grassl | Entropic proofs of Singleton bounds for quantum error-correcting codes[END_REF] entanglement-assisted quantum code not only for 1 ≤ k < n ≤ 15 but also for 1 ≤ k < n ≤ 17. We further obtain an [ [18, 15, 4; 3]] 16 entanglement-assisted quantum code using Construction 1 and the MDS code [START_REF] Hsieh | General entanglement-assisted quantum error-correcting codes[END_REF][START_REF] Grassl | Bounds on the minimum distance of linear codes and quantum codes[END_REF][START_REF] Brun | Catalytic quantum error correction[END_REF] 16 , which does not follow from [START_REF] Pereira | Application of complementary dual AG codes to entanglement-assisted quantum codes[END_REF] or [START_REF] Pereira | Entanglement-assisted quantum codes from algebraic geometry codes[END_REF].

allows to construct an [[n, k, n -k + 1; n -k]]
[n, k, n -k + 1] 16 MDS codes with 1 ≤ k < n ≤ 17, we obtain an [[n, k, n -k + 1; n -k]]
In [START_REF] Liu | New EAQEC codes from cyclic codes over F q + uF q[END_REF] they also use the notion of net rate of an [[n, k, d; c]] q code as the ratio k-c n . Let nR(C) = k-c n denote the net rate of an [[n, k, d; c]] q code C. In [START_REF] Pereira | Entanglement-assisted quantum codes from algebraic geometry codes[END_REF]Table 4] they present a [ [26, 15, 6; 5]] 9 entanglement-assisted quantum code C 1 . Using Construction 1 and [START_REF]MinT: Database for optimal parameters of (t,m,s)-nets, (t,s)-sequences, orthogonal arrays, linear codes and OOAs[END_REF] we obtain an [ [26, 19, 6; 7]] 9 entanglement-assisted quantum code Ĉ1 . The net rate of Ĉ1 is much better than the net rate of C 1 , which satisfy nR( Ĉ1 ) = 12 26 > nR(C 1 ) = 10 26 .

Note that the length and the minimum distance of C 1 and Ĉ1 are the same. Similarly in [30, 29 32 . Note that the length and the minimum distance of C 2 and Ĉ2 are the same.

Remark 3.10. In [START_REF] Guenda | Constructions of good entanglement-assisted quantum error correcting codes[END_REF], the authors construct entanglement-assisted quantum codes over F q with parameters [[n, k, d; c]] only for n ≤ q + 1 and with some arithmetical restrictions. Using Construction 1, we cover all of these parameters and we extend their results considerably as we do not have such arithmetical conditions and n can be larger than q +1. In [START_REF] Guenda | Linear -intersection pairs of codes and their applications[END_REF], the authors construct further entanglement-assisted quantum codes over F q with parameters [[n, k, d; c]] only for n ≤ q + 1 and with less arithmetical restrictions. Using Construction 1 we also extend these results as we do not have any arithmetical condition and n can be larger than q+1. In our results it is not necessary to use -intersection pairs of codes as in [START_REF] Guenda | Linear -intersection pairs of codes and their applications[END_REF] to get MDS entanglement-assisted quantum codes with the same parameters as in [START_REF] Guenda | Linear -intersection pairs of codes and their applications[END_REF].

A concatenated type construction for all q

In this section we present a concatenated type construction of entanglement-assisted quantum codes over F q for all q. This construction is especially interesting when q = 2 or q = 3. Nevertheless we prefer to present it for arbitrary q. This construction also improves several recent results significantly (see Remark 4.5 below).

An important ingredient of our construction in this section is isometry codes, which were introduced in [START_REF] Carlet | A new concatenated type construction for LCD codes and isometry codes[END_REF]. We first recall its definition. Let q be an arbitrary prime power and k be an integer with k ≥ 2. The trace of α ∈ F q k over F q is defined as

tr F q k /Fq (α) = k-1 i=0 α q i = α + α q + • • • + α q k-1 .
We also denote tr F q k /Fq (α) by tr(α) in short for simplicity. Let {e 1 , . . . , e k } ⊆ F q k . Assume that (e 1 , . . . , e k ) is an ordered basis of F q k over F q . Recall that (e 1 , . . . , e k ) is the dual basis if tr(e i e j ) = δ i,j :=

1 if i = j 0 if i = j for 1 ≤ i, j ≤ k.
There exists a uniquely determined dual basis for any basis of F q k over F q .

Definition 4.1. Let 2 ≤ k ≤ n be integers. Under notation as above let (e 1 , . . . , e k ) be an ordered basis of F q k . An F q -linear map π :

F q k → F n q is called an isometry if π(e i ) • π(e j ) = δ i,j
for 1 ≤ i, j ≤ k, where the inner product is the Euclidean inner product on F n q . Here (e 1 , . . . , e k ) is the dual basis of (e 1 , . . . , e k ). The image π(F q k ) is called the isometry code corresponding to π.

We are ready to present our construction of this section. Construction 2: This construction has the following steps: 2.1) Let q be any prime power. Let 2 ≤ k ≤ n be integers such that there exists an isometry map π : F q k → F n q . Let the parameters of the isometry code π(F q k ) be [n, k, d]. It is useful to choose π so that d is as large as possible.

2.2) Let G be a K × N matrix over F q k , whose row space is an [N, K, D] q k code.

2.3) Note that q k ≥ 4 as k ≥ 2. Using the algorithm in [6, Section 5A] modify G to a K × N matrix G 1 over F q k such that the row space of G 1 is the code C 1 having the properties: Hull(C 1 ) = {0} and C 1 is an [N, K, D] q k code.

2.4) Using C 1 , the isometry map π and [7, Theorem 3.1] we obtain an F q -linear code C 2 ⊆ F nN q having the properties: Hull(C 2 ) = {0} and C 2 is an [nN, kK, ≥ dD] q code. 2.5) Using C 2 and C ⊥ 2 obtain an [[nN, kK, ≥ dD; nN -kK]] q entanglement-assisted quantum code following [9, Theorem 4].

Using the arguments above we conclude the following. Theorem 4.2. Let q be an arbitrary prime power. For integers 2 ≤ k ≤ n assume that there exists an isometry map π : F q k → F n q such that the isometry code π(F q k ) has parameters [n, k, d]. If G is a generator matrix of an [N, K, D] q k classical code, then Construction 2 gives an [[nN, kK, ≥ dG; nN -kK]] q entanglement-assisted quantum code.

Using [7, Example 2.3] we obtain an isometry π 2 : F 4 → F 4 2 so that the parameters of the isometry code π 2 (F 4 ) is [4, 2, 2] 2 . Note that this isometry code is optimal. Using this isometry and Construction 2 we obtain the following. Corollary 4.1. Let 1 ≤ K ≤ N be integers. Using Construction 2, the isometry π 2 given above and an F 4 -linear code with parameters [N, K, D 4 (N, K)] 4 , we obtain a binary entanglement-assisted quantum code with parameters

[[4N, 2K, ≥ 2D 4 (N, K); 4N -2K]] 2 .
Similarly let 1 ≤ D ≤ N be integers. Using Construction 2, the isometry π 2 given above and an F 4 -linear code with parameters [N, K 4 (N, D), D] 4 , we obtain a binary entanglement-assisted quantum code with parameters

[[4N, 2K 4 (N, D), ≥ 2D; 4N -2K 4 (N, D)]] 2 .
Remark 4.3. Using another isometry map π : F 2 k → F n 2 , it is immediate to get an analogue of Corollary 4.1. For example there exists an isometry map π : F 2 3 → F 2 5 so that the isometry code π(F 2 3 ) has parameters [START_REF] Calderbank | Quantum error correction via codes over GF(4)[END_REF][START_REF] Bosma | The Magma algebra system I: The user language[END_REF][START_REF] Ashikhmin | Upper bounds on the size of quantum codes[END_REF] 2 . This allows to construct binary entanglement-assisted quantum codes with parameters

[[5N, 3K, ≥ 2D 8 (N, K); 5N -3K]] 2 and [[5N, 3K 8 (N, D), ≥ 2D; 5N -3K 8 (N, D)]] 2 .
For ternary codes, it is not difficult to find an isometry π 3 : F 9 → F 5 3 so that the parameters of the isometry code π 3 (F 9 ) is [START_REF] Calderbank | Quantum error correction via codes over GF(4)[END_REF][START_REF] Ashikhmin | Upper bounds on the size of quantum codes[END_REF][START_REF] Bosma | The Magma algebra system I: The user language[END_REF] 3 . Note that this isometry code is optimal. Using this isometry and Construction 2 we obtain the following. Corollary 4.2. Let 1 ≤ K ≤ N be integers. Using Construction 2, the isometry π 3 given above and an F 9 -linear code with parameters [N, K, D 9 (N, K)] 9 , we obtain a ternary entanglement-assisted quantum code with parameters

[[5N, 2K, ≥ 3D 4 (N, K); 5N -2K]] 3 .
Similarly let 1 ≤ D ≤ N be integers. Using Construction 2, the isometry π 3 given above and an F 9 -linear code with parameters [N, K 9 (N, D), D] 9 , we obtain a ternary entanglement-assisted quantum code with parameters

[[5N, 2K 9 (N, D), ≥ 3D; 5N -2K 9 (N, D)]] 3 .
Remark 4.4. As in Remark 4.3, it is immediate to get an analogue of Corollary 4.2 provided we know a good isometry map. For example there exists an isometry map π : F 3 3 → F 4 3 so that the isometry code π(F 3 3 ) has parameters [START_REF] Brun | Catalytic quantum error correction[END_REF][START_REF] Bosma | The Magma algebra system I: The user language[END_REF][START_REF] Ashikhmin | Upper bounds on the size of quantum codes[END_REF] 3 . This allows to construct ternary entanglement-assisted quantum codes with parameters

[[4N, 3K, ≥ 2D 27 (N, K); 4N -3K]] 3 and [[4N, 3K 27 (N, D), ≥ 2D; 4N -3K 27 (N, D)]] 3 .
Remark 4.5. Construction 2 also improves several recent results significantly. For example in [START_REF] Liu | New EAQEC codes from cyclic codes over F q + uF q[END_REF] 1]. Using Corollary 4.1 with a [START_REF] Shor | Scheme for reducing decoherence in quantum computer memory[END_REF][START_REF] Carlet | Linear codes over are equivalent to LCD Codes for q > 3[END_REF][START_REF] Hu | Weight enumerators for nonbinary asymmetric quantum codes and their applications[END_REF] 4 code (see [START_REF] Grassl | Bounds on the minimum distance of linear codes and quantum codes[END_REF]), we obtain a [[132, 12, 40; 120]] 2 entanglement-assisted quantum code C 2 . All the parameters of C 1 and C 2 are the same except the minimum distance. The improvement of the minimum distance in C 2 from 30 to 40 is significant.

Appendix A. Appendix A: Singleton Type Bound for Entanglement-Assisted Quantum Codes

In Appendix A we prove a Singleton type bound for entanglement-assisted quantum codes using methods from [START_REF] Ashikhmin | Nonbinary quantum stabilizer codes[END_REF][START_REF] Ashikhmin | Upper bounds on the size of quantum codes[END_REF][START_REF] Hu | Weight enumerators for nonbinary asymmetric quantum codes and their applications[END_REF][START_REF] Lai | Linear programming bounds for entanglement-assisted quantum errorcorrecting codes by split weight enumerators[END_REF].

Recall that F q is the finite field with q elements. Let char(F q ) = p so that F p ⊆ F q . Let C denote the complex field. We regard C q as a Hilbert space and let |x be the (column) vectors of an orthonormal basis of C q , where the labels x are elements of F q . Let ζ p = exp(2π √ -1/p) be a p-th root of unity in C. Let tr : F q → F p be the trace map from F q onto F p .

For a, b ∈ F q , let X (a) and Z(b) be the unitary operations on C q defined by X Let C q n = (C q ) ⊗n be the n-th tensor of C q . The coordinate basis is given by

|x = |x 1 ⊗ |x 2 ⊗ • • • ⊗ |x n . Consider a = (a 1 , . . . , a n ), b = (b 1 , . . . , b n ) ∈ F n q .
Let X (a) and Z(b) be the unitary operations on C q n defined by

X (a)|x = |x + a and Z(b)|x = ζ tr(b•x) p |x , where b • x = n i=1 b i x i ∈ F q . The set E n = {ζ u p X (a)Z(b) : a, b ∈ F n q , u ∈ F p } is a finite group of order pq 2n
. Let E n ⊆ E n be the subset defined as

E n = {X (a)Z(b) : a, b ∈ F n q }. For a = (a 1 , . . . , a n ), b = (b 1 , . . . , b n ) ∈ F n
q and e = X (a)Z(b) ∈ E n , let the (quantum) weight w Q (e) of e be the integer

w Q (e) = #{1 ≤ i ≤ n : a i = 0 or b i = 0}. For 0 ≤ i ≤ n, let E n [i] ⊆ E n be the subset defined as E n [i] = {e ∈ E n : w Q (e) = i}. Definition A.1. A q-ary quantum code of length n is a subspace Q of C q n such that dim C Q = K ≥ 1. The minimum distance of Q is the largest integer d such that for any error e ∈ E n [i] with i < d we have |v , |w ∈ Q are orthogonal vectors ⇒ v|e|w = 0. Such a code Q is called an ((n, K, d)) q code.
Next we formally define q-ary entanglement-assisted quantum error correcting codes. Let c be a positive integer. For |a ∈ C q n , |b ∈ C q c , and |ψ = |a ⊗ |b ∈ C q n+c note that |a a| is a q n × q n matrix, |b b| is a q c × q c matrix, and |ψ ψ| is a q n+c × q n+c matrix. Recall that Tr is the trace operation on square matrices and hence Tr(|a a|) is a complex number. Let Tr A (|ψ ψ|) denote the q c × q c over C defined as

Tr A (|ψ ψ|) = Tr(|a a|)|b b|.
We extend this definition to C q n+c = C q n ⊗ C q c as follows: Let |ψ ∈ C q n+c be an arbitrary vector. There exist an integers s ≥ 1, vectors |a 1 , . . . , |a s ∈ C q n , vectors |b 1 , . . . , |b s ∈ C q c and complex numbers λ 1 , . . . ,

λ s ∈ C such that |ψ = λ 1 |a 1 ⊗ |b 1 + • • • + λ s |a s ⊗ |b s . Put |ψ i = a i ⊗ b i for 1 ≤ i ≤ s.
We further assume without loss of generality that {|a i : 1 ≤ i ≤ s} ⊆ C q n is an orthonormal set or {|b i : 1 ≤ i ≤ s} ⊆ C q c is an orthonormal set. Note that Tr a (|ψ i ψ i |) is a q c × q c matrix defined above. Now we define Tr A (|ψ ψ|) for the arbitrarily chosen vector |ψ ∈ C q n+c as the q c × q c matrix given by An ((n,K,d;c)) q entanglement-assisted q-ary quantum error correcting code is a subspace Q of C q n+c such that dim C Q = K ≥ 1 satisfying the following two properties:

Tr A (|ψ ψ|) =| λ 1 | 2 Tr A (|ψ 1 ψ 1 |) + • • • + | λ s | 2 Tr A (|ψ s ψ s |). Definition A.2.
1.) |ψ ∈ Q ⇒ Tr A (|ψ ψ|) = 1 q c I q c
, where I q c is the identity operation on C q c . 2.) For integer 0 ≤ i < d and each error e ∈ E n [i] we have:

|v , |w ∈ Q are orthogonal vectors ⇒ v |e |w = 0,
where e is the error in E n+c defined as e = e ⊗ I q c . Let {|ψ i : 1 ≤ i ≤ K} be an orthogonal basis of Q. Let

P = K i=1 |ψ i ψ i |
be the orthogonal projection of C q n+c onto Q. For 1 ≤ i ≤ n and 1 ≤ j ≤ c be the split weight enumerators of Q defined by

B i,j = 1 K 2 e∈En[i] e ∈Ec[j]
(Tr ((e ⊗ e )P )) 2 , and

B ⊥ i,j = 1 K e∈En[i] e ∈Ec[j]
Tr ((e ⊗ e )P (e ⊗ e )P ) .

We need to recall some notions and properties of Krawtchouk polynomials before the next theorem. We refer to [27, Section 5.7] for details. Let m be a positive integer. For 0 ≤ i ≤ m, the i-th q 2 -ary Krawtchouk polynomial with respect to m is

P i (x; m) = i j=0 (-1) j q 2 -1 i-j x j n -x i -j . (12) 
In this paper we consider q 2 -ary Krawtchouk polynomials. Note that P i (x; m) is a polynomial of degree i in x with the leading coefficient (-q 2 ) i /i! and the constant term n i (q -1) i . In particular P 0 (x; m) = 1 and P 1 (x; m) = -q 2 x + 1. [START_REF] Guenda | Linear -intersection pairs of codes and their applications[END_REF] Let 0 ≤ r, s ≤ m be integers. Recall that the Kronecker symbol δ r,s is given by

δ r,s = 1 if r = s, 0 if r = s.
We have the orthogonality relations (see [27, Section 5.7, Corollary 18]) that

m i=0 P r (i; m) = P i (s; m) = q 2m δ r,s . (14) 
Moreover we also have (see [START_REF] Macwilliams | The Theory of Error-Correcting Codes[END_REF]Section 5.7

, Exercise 41]) that m i=0 n -r n -s P r (x; m) = q 2s n -x s . (15) 
Let n, c be positive integers. Let f (x, y) ∈ R[x, y] be a polynomial of degree at most n in x and at most c in y. The properties above imply that there exist uniquely determined coefficients

f u,v ∈ R for 0 ≤ u ≤ n and 0 ≤ v ≤ c such that f (x, y) = n u=0 c v=0 f u,v P u (x; n)P v (y; c). ( 16 
)
The expansion in ( 16) is called the Krawtchouk expansion of f (x, y). Using ( 14) we determine the coefficients in the Krawtchouk expansion as

f i,j = 1 q 2(n+c) n u=0 c v=0 f (u, v)P u (i; n)P v (j; c) (17) 
for 0 ≤ i ≤ n and 0 ≤ j ≤ c. Now we are ready for the next theorem. The proof of the following theorem uses the same arguments as in [21, Theorem 2] and hence we skip its proof.

Theorem A.3. Assume that Q is an ((n, K, d; c)) q entanglement-assisted q-ary quantum error correcting code with projector P and split weight enumerators B i,j and B ⊥ i,j for 0 ≤ i ≤ n, 0 ≤ j ≤ c, respectively. Then the following properties hold:

1.) B 0,0 = B ⊥ 0,0 = 1. 2.) B ⊥ i,j ≥ B i,j ≥ 0.
3.) B 0,j = 0 for j = 1, . . . , c.

4.) B

i,0 = B ⊥ i,0 for i = 1, . . . , d -1. 5.) B d,0 < B ⊥ d,0 . 6. 
)

B ⊥ i,j = K q n+c n u=0 c v=0 B u,v P i (u; n)P j (v; c) and B i,j = 1 q n+c K n u=0 c v=0 B ⊥ u,v P i (u; n)P j (v; c).
The following theorem is similar to [2, Theorem 4] and [START_REF] Lai | Linear programming bounds for entanglement-assisted quantum errorcorrecting codes by split weight enumerators[END_REF]Theorem 5].

Theorem A.4. Let Q be an ((n, K, d; c)) q entanglement-assisted quantum error correcting code. For 0 ≤ i ≤ n and 0 ≤ j ≤ c let f i,j ∈ R such that f i,j ≥ 0 for all i, j in this range, [START_REF] Hsieh | General entanglement-assisted quantum error-correcting codes[END_REF] and

f i,0 > 0 for 0 ≤ i ≤ d -1. ( 19 
)
Let f (x, y) ∈ R[x, y] be the polynomial defined using the coefficients f i , j above and the Krawtchouk polynomials in x and y variables given by

f (x, y) = n i=0 c j,0 f i,j P i (x; n)P j (y; c) (20) Assume further that f (α, β) ≤ 0 for all integers d ≤ α ≤ n and 1 ≤ β ≤ c. ( 21 
)
Then we have

K ≤ 1 q n+c max 0≤ ≤d-1 f ( , 0) f ,0 .
Proof. Let B i,j and B ⊥ i,j be the split weight enumerators of Q. Using ( 18) we obtain

LHS := q n+c K d-1 i=0 f i,0 B i,0 ≤ q n+c K d-1 i=0 c j=0 f i,j B i,j . (22) 
It follows from Theorem A.3, item 6) that

B i,j = 1 q n+c K n u=0 c v=0 B ⊥ u,v P i (u; n)P j (v; c) (23) 
for 0 ≤ i ≤ d -1 and 0 ≤ j ≤ c. Combining ( 22) and ( 23) we obtain that

LHS ≤ d-1 i=0 c j=0 f i,j n u=0 c v=0 B ⊥ u,v P i (u; n)P j (v; c) = n u=0 c v=0 B ⊥ u,v f (u, v), (24) 
where we use the definition in [START_REF] Hu | Weight enumerators for nonbinary asymmetric quantum codes and their applications[END_REF]. Using [START_REF] Luo | MDS codes with hulls of arbitrary dimensions and their quantum error correction[END_REF] and [START_REF] Lai | Linear programming bounds for entanglement-assisted quantum errorcorrecting codes by split weight enumerators[END_REF] we get that

LHS ≤ d-1 i=0 B ⊥ i,0 f (i, 0). ( 25 
)
Combining [START_REF] Luo | Non-binary entanglement-assisted quantum stabilizer codes[END_REF] and Theorem A.3, item 4 we conclude that

q n+c K d-1 i=0 f i,0 B i,0 ≤ d-1 i=0 f (i, 0)B i,0 . (26) 
It follows from (26) that we have

K ≤ 1 q n+c d-1 i=0 f (i, 0)B i,0 d-1 i=0 f i,0 B i,0 ≤ 1 q n+c max 0≤i≤d-1 f (i, 0) f i,0 .
The main result of this appendix is the following Singleton type bound for entanglementassisted quantum error correcting codes.

Theorem A.5. Let Q be an ((n, K, d; c)) q entanglement-assisted quantum error correcting code. If d ≤ n+2 2 , then K ≤ q n+c-2(d-1) .

Proof. Let f (x, y) ∈ R[x, y] be the polynomial

f (x, y) = q 2(n+c-d+1) (-1) c c! n i=d 1 - x i c j=1 (y -j) . (27) 
For integers 0 ≤ α ≤ n and 0 ≤ β ≤ c we have

• f (α, β) = 0 if 1 ≤ β ≤ c, and • f (α, 0) = q 2(b+c-d+1) ( n-α n-d+1 ) ( n d-1
) by definition in [START_REF] Macwilliams | The Theory of Error-Correcting Codes[END_REF]. Consider the Krawtchouk expansion of f (x, y)

f (x, y) = n u=0 c v=0 f u,v P u (x; n)P v (y; c),
with the coefficients f u,v ∈ R. It follows from ( 17) that we have

f u,v = 1 q 2(n+c) n α=0 c β=0 f (α, β)P α (i; n)P β (j; c).
As f (α, β) = 0 for 0 ≤ α ≤ c and 1 ≤ β ≤ c for the function f (x, y) in [START_REF] Macwilliams | The Theory of Error-Correcting Codes[END_REF] and P 0 (y, c) = 1 (see [START_REF] Guenda | Linear -intersection pairs of codes and their applications[END_REF]) we obtain that

f u,v = 1 q 2(n+c) n α=0 f (α, 0)P α (u; n) = 1 q 2(n+c) n α=0 q 2(n+c-d+1) n-α n-d+1 n d-1 P α (u; n) = q 2(-d+1) n α=0 n-α n-d+1 n d-1 P α (u; n). (28) 
It follows from ( 16) that we have

n α=0 n -α n -d + 1 P α (u; n) = q 2(d-1) n -u d -1 . (29) 
Combining ( 28) and ( 29) we get

f u,v = n-u d-1 n d-1
for 0 ≤ u ≤ n and 0 ≤ v ≤ c. [START_REF] Pereira | Entanglement-assisted quantum codes from algebraic geometry codes[END_REF] In particular f u,v is independent from v.

For 0 ≤ u 1 ≤ u 2 ≤ d -1 we claim that f (u 1 , 0) f u 1 ,0 ≥ f (u 2 , 0) f u 2 ,0 . (31) 
Indeed using [START_REF] Pereira | Entanglement-assisted quantum codes from algebraic geometry codes[END_REF] we get

f (u 1 , 0) f u 1 ,0 = n-u 1 n-d+1 n-u 1 d-1 ≥ f (u 2 , 0) f u 2 ,0 = n-u 2 n-d+1 n-u 2 d-1 ⇐⇒ (n-u 1 )! (n-d+1)!(n-u 1 -n+d-1)! (n-u 1 )! (d-1)!(n-u 1 -d+1)! ≥ (n-u 2 )! (n-d+1)!(n-u 2 -n+d-1)! (n-u 2 )! (d-1)!(n-u 2 -d+1)! ⇐⇒ (n -u 1 -d + 1)! (d -u 1 -1)! ≥ (n -u 2 -d + 1)! (d -u 2 -1)! ⇐⇒ (n-u 1 -d+1)! (n-u 2 -d+1)! ≥ (d-u 1 -1)! (d-u 2 -1)! ⇐⇒ (n -u 1 -d + 1) • • • (n -u 2 -d + 2) ≥ (d -u 1 -1) • • • (d -u 2 ) ( * ) ⇐⇒ n -u 1 -d + 1 ≥ d -u 1 -1 ⇐⇒ d ≤ n + 2 2 ,
where in the step (*) above we use the observation that both sides are the products of u 2 -u 1 consecutive integers such that the left hand side ends at n -u 1 -d + 1 and the right hand side ends at d -u 1 -1. As d ≤ n+2 2 by assumption, this completes the proof of the claim in [START_REF] Qian | Entanglement-assisted quantum codes from arbitrary binary linear codes[END_REF].

We apply Theorem A.4 using f (x, y) in [START_REF] Macwilliams | The Theory of Error-Correcting Codes[END_REF]. Note that the assumptions of Theorem A.4 hold. Using Theorem A.4 and the claim in [START_REF] Qian | Entanglement-assisted quantum codes from arbitrary binary linear codes[END_REF] we conclude that 1) .

K ≤ 1 q n+c f (0, 0) f 0,0 = 1 q n+c f (0, 0) = 1 q n+c q 2(n+c-d+1) (-1) c c! (-1) c c! = q n+c-2(d-
Let C 1 be the F q -linear code having G 1 as a generator matrix. Note that C 1 is permutation equivalent to C and hence C 1 is again an [n, k, d] q code.

Here we need to introduce a notation. For a symmetric k × k matrix M and a subset I ⊆ {1, 2, . . . , k} with #I = t, let M I denote the (k -t) × (k -t) symmetric submatrix of M obtained by removing the i-th column and i-th row of M for each i ∈ I. Note that M I = M if I = ∅. We denote M I = 0 if I = {1, 2, . . . , k} by convention (see Remark B.1).

Note that G 1 G T 1 = (GP )(P T G T ) = GG T as P P T = I n . Let 0 ≤ tlek be the integer such that rank(GG T ) = k -t. It follows from (2) that let dim Fq Hull(C) = t. Hence there exists a subset I ⊆ {1, . . . , k} such that GG T I is invertible (see also [?]). In fact there is a deterministic way to choose such I as follows: Let J be the subset of {1, 2, . . . , k} such that j ∈ J if and only if the j-th column is a pivot in the reduced row echelon form of GG T . Put I = {1, 2, . . . , k} \ J.

For 1 ≤ i ≤ k, let α i ∈ F q be chosen as follows:

α i ∈ F q \ {0, 1, -1} if i ∈ I, {1} if i ∈ I. (32) 
Let D be the n × n diagonal matrix having entries α 1 , α 2 , . . . , α k , 1, . . . , 1 in order, namely D = Diag(α 1 , α 2 , . . . , α k , 1, . . . , 1). Let G 2 be the k × n matrix obtained from G 1 as

G 2 = G 1 D.
Let C 2 be the F q -linear code having G 2 as a generator matrix. Recall that a square matrix M is called a monomial matrix if there exists exactly one nonzero entry in each row and column of M (see, [19, page 24]). Moreover if G is a k × n generator matrix of a code C and M is an n × n monomial matrix, then the code having GM as a generator matrix is called monomially equivalent to C (see, [19, page 469]). Here D is a monomial matrix and C 2 is monomially equivalent to C 1 . In particular C 2 is an [n, k, d] q code, having the same parameters as C 1 .

Let D 1 be the k × k diagonal matrix given by D 1 = Diag(α 1 , α 2 , . . . , α k ). Note that

G 2 = [I k A] D 1 0 0 I n-k = [D 1 A]
and hence

G 2 G T 2 = D 2 1 + AA T = I k + AA T + Diag(α 2 1 -1, . . . , α 2 k -1) = G 1 G T 1 + Diag(α 2 1 -1, . . . , α 2 k -1). ( 33 
)
Recall that rank(G 1 G T 1 ) = k -t and α 1 , . . . , α k ∈ F q are chosen as in [START_REF] Rück | A characterization of Hermitian function fields over finite fields[END_REF]. Hence using [START_REF] Shor | Scheme for reducing decoherence in quantum computer memory[END_REF] and [START_REF] Carlet | Linear codes over are equivalent to LCD Codes for q > 3[END_REF]Lemma 9] we conclude that

det(G 2 G T 2 ) = i∈I (α 2 i -1) det(GG T ) I = 0, (34) 
where det(GG T ) I = 1 if I = {1, 2, . . . , k} by convention (see Remark B.1). Therefore Hull(C 2 ) = {0}.

Remark B.1. If G is self-orthogonal, then GG T = 0 and hence t = k. In this degenerate case it is necessary to choose I = {1, 2, . . . , k}. We have the conventions that (GG T ) I = 0 and det(GG T ) I = 1 when I = {1, 2, . . . , k}. Indeed in this degenerate case [START_REF] Shor | Scheme for reducing decoherence in quantum computer memory[END_REF] becomes

G 2 G T 2 = 0 + Diag(α 2 1 -1, . . . , α 2 k -1)
and hence we use the convention (GG T ) I = 0. Again in this degenerate case [START_REF] Steane | Simple quantum error correcting codes[END_REF] becomes

det(G 2 G T 2 ) = i∈I (α 2 i -1)
and hence we use the convention det(GG T ) I = 1. We need to use the convention that det(GG T ) I = 1 if I = {1, 2, . . . , k}. The convention (GG T ) I = 0 is not essential as it appears only in the background.

In summary we obtain the following algorithm: Input: For integers 1 ≤ k ≤ n, let G is a k × n matrix of rank k over F q . Let C be the F q linear code having G as a generator matrix. Let C be an [n, k, d] q code. Output: G is a k × n matrix of rank k over F q . Let C be the F q linear code having G as a generator matrix. We obtain that C is an [n, k, d] q code with Hull(C ) = {0}. i) Find an n × n permutation matrix P such that GP is in the systematic form so that GP = [I k A]. ii) Let rank(GG T ) = k -t, Find a subset I ⊆ {1, . . . , k} such that #I = t and (GG T ) I is invertible. iii) For 1 ≤ i ≤ k, let α i ∈ F q be chosen as follows:

α i ∈ F q \ {0, 1, -1} if i ∈ I, {1} if i ∈ I. (35) 
iv) Put G = GP Diag(α 1 , . . . , α k , 1, . . . , 1). Remark B.2. In many cases for a starting code [n, k, d] q code C we know a generator matrix G in systematic form. In such a case we take P = I n and we skip step i) in the algorithm.

In the following examples we illustrate this algorithm. In these algorithms the generators matrices in the input are in systematic form and hence we take P = I n as explained in Remark B.2.

Example B.1. Let q = 4 and w ∈ F 4 be an element satisfying w 2 + w + 1 = 0. Note that w is a primitive element of F 4 . Let G be the 7 × 23 matrix over F 4 given by

G =             
1 0 0 0 0 0 0 0 w 2 0 w 2 w 1 w 1 w 2 w 2 0 0 w 1 0 w 0 1 0 0 0 0 0 0 w 0 1 w 0 0 w 2 w 2 1 w 1 w w 2 0 w 2 0 0 1 0 0 0 0 0 w 2 w 2 w w 2 1 w w 0 0 w 2 0 w 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1 w w 1 w 2 1 w 2 0 1 1 w 2 w 2 0 0 0 0 1 0 0 0 w 2 0 w 2 w w 0 0 w 0 w 2 1 w 2 w 2 w 2 w 0 0 0 0 0 1 0 0 w 0 1 w 0 w 2 1 w 0 1 w w 2 w w 0 0 0 0 0 0 0 1 0 0 w 0 1 w 0 w 2 1 w 0 1 w w 2 w w

             .
Let C be the F 4 -linear code having G as a generator matrix. In fact C is a code in the database of Magma [START_REF] Bosma | The Magma algebra system I: The user language[END_REF]. Using the Magma command BKLC(F 4 , 23, 7) (or BDLC(F 4 , 23, 12)) we immediately obtain C and the matrix G above. Then C is an [START_REF] Liu | New entanglement-assisted quantum codes from k-Galois dual codes[END_REF][START_REF] Carlet | A new concatenated type construction for LCD codes and isometry codes[END_REF][START_REF] Guenda | Constructions of good entanglement-assisted quantum error correcting codes[END_REF] 4 code. Moreover C is an optimal code in both of the senses in Notation 3.4 and Notation 3.5 below. We refer to the online table [START_REF] Grassl | Bounds on the minimum distance of linear codes and quantum codes[END_REF] for the optimality.

We observe that rank(GG T ) = 6 and hence dim ) and G 1 = GD 1 . Moreover let C 1 be the F 4 -linear code having G 1 as a generator matrix. We obtain that C 1 is an [START_REF] Liu | New entanglement-assisted quantum codes from k-Galois dual codes[END_REF][START_REF] Carlet | A new concatenated type construction for LCD codes and isometry codes[END_REF][START_REF] Guenda | Constructions of good entanglement-assisted quantum error correcting codes[END_REF] 4 code and Hull(C 1 ) = {0}.

Example B.2. Let q = 4 and ∈ F 4 be an element satisfying w 2 + w + 1 = 0. Let G be the 9 × 19 matrix over F 4 given by

G =                  
1 0 0 0 0 0 0 0 0 1 w 2 w w 0 1 0 w 2 w 2 w 0 1 0 0 0 0 0 0 0 w 0 0 1 w w 1 1 w 0 0 0 1 0 0 0 0 0 0 0 w 0 0 1 w w 1 1 w 0 0 0 1 0 0 0 0 0 w 1 1 w 2 0 w 2 w w 2 0 w 0 0 0 0 1 0 0 0 0 w w 2 w w w 2 w w 2 w 2 w w 2 0 0 0 0 0 1 0 0 0 w 2 0 w w 2 w 0 w 1 1 w 2 0 0 0 0 0 0 1 0 0 w 2 1 1 w 2 w 2 1 0 0 w 2 0 0 0 0 0 0 0 0 1 0 0 w 2 1 1 w 2 w 2 1 0 0 w 2 0 0 0 0 0 0 0 0 1 w 2 w w 0 1 0 w 2 w 2 w 1

                  .
Let C be the F 4 -linear code having G as a generator matrix. Using the Magma command BDLC(F 4 , 19, 8) we immediately obtain C and the matrix G above. Then C is an [START_REF] Huffman | Fundamentals of Error Correcting Codes[END_REF][START_REF] Galindo | Entanglement-assisted quantum errorcorrecting codes over arbitrary finite fields[END_REF][START_REF] Fujiwara | Entanglement-assisted quantum lowdensity parity-check codes[END_REF] 4 code. Note that C is a best known code in the sense of Notation 4.5 (see [START_REF] Grassl | Bounds on the minimum distance of linear codes and quantum codes[END_REF]).

We observe that rank(GG T ) = 0 and hence dim ) and G 1 = GD 1 . Moreover let C 1 be the F 4 -linear code having G 1 as a generator matrix. We obtain that C 1 is an [START_REF] Huffman | Fundamentals of Error Correcting Codes[END_REF][START_REF] Galindo | Entanglement-assisted quantum errorcorrecting codes over arbitrary finite fields[END_REF][START_REF] Fujiwara | Entanglement-assisted quantum lowdensity parity-check codes[END_REF] Let C be the F 4 -linear code having G as a generator matrix. Using the Magma command BKLC(F 4 , 20, 7) we immediately obtain C and the matrix G above. Then C is an [START_REF] Hu | Weight enumerators for nonbinary asymmetric quantum codes and their applications[END_REF][START_REF] Carlet | A new concatenated type construction for LCD codes and isometry codes[END_REF][START_REF] Garcia | On subfields of the Hermitian function field[END_REF] 4 code. Note that C is a best known code in the sense of Notation 3.4 (see [START_REF] Grassl | Bounds on the minimum distance of linear codes and quantum codes[END_REF]).

We observe that rank(GG T ) = 6 and hence dim F 4 Hull(C) = 1. Using the algorithm explained in this appendix, let I = {7} ⊆ {1, 2, . . . , 7}, 

)

and G 1 = GD 1 . Moreover let C 1 be the F 4 -linear code having G 1 as a generator matrix. We obtain that C 1 is an [START_REF] Hu | Weight enumerators for nonbinary asymmetric quantum codes and their applications[END_REF][START_REF] Carlet | A new concatenated type construction for LCD codes and isometry codes[END_REF][START_REF] Garcia | On subfields of the Hermitian function field[END_REF] 4 code and Hull(C 1 ) = {0}.

1. 3 )

 3 Using C 1 and C ⊥ 1 (actually only C ⊥ 1 ) obtain an [[n, k, d; n -k]

12 ,

 12 Proposition 2.3], [13, Proposition 4.3], [22, Theorem 2.3], [23, Theorem 2.6], [24, Lemma 12], [29, in the last paragraph in Section 2] and [30, Equation (7) in page 8]).

  [START_REF] Grassl | Entropic proofs of Singleton bounds for quantum error-correcting codes[END_REF] entanglement-assisted quantum code for all integers 1 ≤ k < n ≤ 15, where the upper bound 15 is due to the arithmetical condition n ≤ q -1 = 16 -1 in[START_REF] Pereira | Entanglement-assisted quantum codes from algebraic geometry codes[END_REF]. Using Corollary 1 and the existence of

  a)|x = |x + a and Z(b)|x = ζ tr(bx) p |x .

F 4

 4 Hull(C) = 1. Using the algorithm explained in this appendix, let I = {7} ⊆ {1, 2, . . . , 7}, D 1 = Diag(1, . . . , 1 6 times , w, 1, . . . , 1 16 times

F 4

 4 Hull(C) = 9. Using the algorithm explained in this appendix, let I = {1, 2, . . . , 9} ⊆ {1, 2, . . . , 9}, D 1 = Diag(w, . . . , w 9 times , 1, . . . , 1 10 times

  4 code and Hull(C 1 ) = {0}. Example B.3. Let q = 4 and ∈ F 4 be an element satisfying w 2 + w + 1 = 0. Let G be the 7 × 20 matrix over F 4 given by

D 1 =

 1 Diag(1, . . . , 1 6 times , w, 1, . . . , 1 13 times

  2 of Construction 1.

	Example 3.1. Using Construction 1 and Examples B.1, B.2 and B.3 we immediately
	obtain [[23, 7, 12; 16]] 4 , [[19, 9, 8; 10]] 4 and [

Table 4 ]

 4 they present a[[64, 39, 11; 10]] 16 entanglement-assisted quantum code C 2 . Using Construction 1 and[START_REF]MinT: Database for optimal parameters of (t,m,s)-nets, (t,s)-sequences, orthogonal arrays, linear codes and OOAs[END_REF] we obtain an[[64, 48, 11; 16]] 16 entanglement-assisted quantum code Ĉ2 . The net rate of Ĉ2 is much better than the net rate of C 2 , which satisfy nR( Ĉ2 ) =32 64 > nR(C 2 ) =

  they state that a code C 1 with parameters[[90, 28, 10; 62]] 2 is a new entanglement-assisted quantum code in[START_REF] Liu | New EAQEC codes from cyclic codes over F q + uF q[END_REF] Table 1]. Using Construction 2, in particular Corollary 4.1 with a[START_REF] Liu | New EAQEC codes from cyclic codes over F q + uF q[END_REF][START_REF] Grassl | Entanglement-asisted quantum communication beating the quantum Singleton bound[END_REF][START_REF] Carlet | Linear codes over are equivalent to LCD Codes for q > 3[END_REF] 4 code (see[START_REF] Grassl | Bounds on the minimum distance of linear codes and quantum codes[END_REF]), we obtain a[[88, 28, 12; 60]] 2 entanglement-assisted quantum code C 2 . The dimensions of C 1 and C 2 are the same. The other parameters in going from C 1 to C 2 behave as follows: n decreases, d increases and c decreases. These are all in favor of C 2 . Hence C 2 is a better code compared to C 1 in terms of the parameters. Again the dimensions of C 1 and C 2 are the same and all the other parameters are in favor of C 2 . Hence C 2 is a better code compared to C 1 in terms of the parameters.In[START_REF] Qian | Entanglement-assisted quantum codes from arbitrary binary linear codes[END_REF] they state a code C 1 with parameters[[132, 12, 30; 120]] 2 is a new entanglementassisted quantum code in[START_REF] Qian | Entanglement-assisted quantum codes from arbitrary binary linear codes[END_REF] Table 

Similarly in

[22, 

Table 1

] they state a code C 1 with parameters [

[30, 6, 5; 24]

] 2 as a new entanglement-assisted quantum code. Using Corollary 4.1 with a

[START_REF] Carlet | A new concatenated type construction for LCD codes and isometry codes[END_REF][START_REF] Bosma | The Magma algebra system I: The user language[END_REF][START_REF] Brun | Catalytic quantum error correction[END_REF] 

4 code (see

[START_REF] Grassl | Bounds on the minimum distance of linear codes and quantum codes[END_REF]

), we obtain a [

[28, 6, 8; 22]

] 2 entanglement-assisted quantum code C 2 .
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Remark A.6. If q = 2, then Theorem A.5 corresponds to [START_REF] Lai | Linear programming bounds for entanglement-assisted quantum errorcorrecting codes by split weight enumerators[END_REF]Theorem 6]. It is clear from the proof of Theorem A.5 that the factor 1 (-1) c c! is necessary in the definition of f (x, y) in [START_REF] Macwilliams | The Theory of Error-Correcting Codes[END_REF] in the proof of Theorem A.5. However this factor is forgotten in the proof of [START_REF] Lai | Linear programming bounds for entanglement-assisted quantum errorcorrecting codes by split weight enumerators[END_REF]Theorem 6] in [START_REF] Lai | Linear programming bounds for entanglement-assisted quantum errorcorrecting codes by split weight enumerators[END_REF]. Hence we also present this small correction in our detailed proof.

Remark A.7. Let S be an abelian subgroup of E n . If S satisfies some commutation relations given in [START_REF] Luo | Non-binary entanglement-assisted quantum stabilizer codes[END_REF] (see also [START_REF] Galindo | Entanglement-assisted quantum errorcorrecting codes over arbitrary finite fields[END_REF] and [START_REF] Lai | Linear programming bounds for entanglement-assisted quantum errorcorrecting codes by split weight enumerators[END_REF]), then

is called an entanglement-assisted q-ary quantum error correcting stabilizer code. We refer to [START_REF] Luo | Non-binary entanglement-assisted quantum stabilizer codes[END_REF], [START_REF] Galindo | Entanglement-assisted quantum errorcorrecting codes over arbitrary finite fields[END_REF] and [START_REF] Lai | Linear programming bounds for entanglement-assisted quantum errorcorrecting codes by split weight enumerators[END_REF] for further details on entanglement-assisted quantum stabilizer codes. In particular C is a subspace of C q n+c and C is an entanglement-assisted q-ary quantum error correcting code in the sense of Definition A.2. If the parameters of C are shown as ((n, K, d; c)) q , then we call C as an [[n, K, d; c]] q throughout this paper in order to emphasize that C is a stabilizer code. Note that [9, Theorem 4] is a construction of stabilizer codes. As our constructions are based on [9, Theorem 4], the quantum codes in all sections except the appendices are quantum stabilizer codes and denoted using [[•]] q . It is clear that Theorem A.5 holds for quantum stabilizer codes as well.

Appendix B. Appendix B: The algorithm of Carlet et. al. [START_REF] Carlet | Linear codes over are equivalent to LCD Codes for q > 3[END_REF] In Appendix B, we explain an important step in detail of our Construction 1. Recall that we present Construction 1 in Section 3.

Let q ≥ 4 be a prime power. Let G be a k × n matrix over F q , which is a generator matrix of an [n, k, d] q code C. We observe that [START_REF] Carlet | Linear codes over are equivalent to LCD Codes for q > 3[END_REF] gives an algorithm in order to modify G to a k × n matrix G over F q such that the linear code C having G as a generator matrix has the following properties: C is an [n, k, d] q over F q (same parameters as C) and Hull(C ) = {0} (while Hull(C) is not necessarily {0}).

In this appendix we explain this algorithm in detail.

First we find a n × n permutation matrix P over F q such that G 1 = GP is in the systematic form. Namely

where I k is the k × k identity matrix and A is a k × (n -k) matrix over F q . For example using Gaussian elimination we can find the row reduced echelon form of G. This indicates the pivot columns in the row reduced echelon form of G. Changing the pivot columns to the first k columns gives a method to find such a permutation matrix P .