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Abstract
In this note1 we identify several mistakes appearing in the existing literature on non-stationary

parametric bandits. More precisely, we study Generalized Linear Bandits (GLBs) in drifting
environments, where the level of non-stationarity is characterized by a general metric known as the
variation-budget. Existing methods to solve such problems typically involve forgetting mechanisms,
which allow for a fine balance between the learning and tracking requirements of the problem. We
uncover two significant mistakes in their theoretical analysis. The first arises when bounding the
tracking error suffered by forgetting mechanisms. The second emerges when considering non-linear
reward models, which requires extra care to balance the learning and tracking guarantees. We
introduce a geometrical assumption on the arm set, sufficient to overcome the aforementioned
technical gaps and recover minimax-optimality. We also share preliminary attempts at fixing those
gaps under general configurations. Unfortunately, our solution yields degraded rates (w.r.t to the
horizon), which raises new open questions regarding the optimality of forgetting mechanisms in
non-stationary parametric bandits.
Keywords: Stochastic Bandits, Generalized Linear Model, Non-Stationarity.

1. Motivation and Setting

1.1. Motivation

Linear Bandits and non-stationarity. The Linear Bandit (LB) framework has proven to be an
important paradigm for sequential decision making under uncertainty. It notably extends the Multi-
Arm Bandit (MAB) framework to address the exploration-exploitation dilemma when the arm-set is
large (potentially infinite) or changing over time. While the LB has now been extensively studied
(Dani et al., 2008; Rusmevichientong and Tsitsiklis, 2010; Abbasi-Yadkori et al., 2011; Abeille
and Lazaric, 2017) in its original formulation, a recent strand of research studies its adaptation to
non-stationary environments. Notable are the contributions of Cheung et al. (2019b); Russac et al.
(2019); Zhao et al. (2020) which prove that under appropriate algorithmic changes, existing LB
concepts can be leveraged to handle a drift of the reward model. Aside their theoretical interests,
these results further anchor the spectrum of potential applications of the LB framework to real-world
problems, where non-stationarity is commonplace.

* Equal contribution.
1. This technical note was not peer-reviewed by ALT’s Program Committee. An extended version can be found in the

companion arXiv paper (Faury et al., 2021)
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Extensions to Generalized Linear Bandits. Perhaps the main limitation of LB resides in its
inability to model specific (e.g binary, discrete) rewards. One axis of research to operate beyond
linearity was initiated with the introduction of Generalized Linear Bandit (GLBs) by Filippi et al.
(2010). This framework allows to handle rewards which (in expectation) can be expressed as a
generalized linear model. Notable members of this family are the logistic and Poisson models. Given
the remarkable importance and widespread use of such models in practice, ensuring their resilience
to non-stationarity stands as a crucial milestone in the parametric bandit literature.

1.2. Setting

We consider the stochastic contextual bandit setting under parameter-drift. The environment starts by
picking a sequence of parameters {θt?}∞t=1. A repeated game then begins between the environment
and an learning agent. At each round t, the environment presents the agent with a set of actions Xt
(potentially contextual, large or even infinite). The agent selects an action xt ∈ Xt and receives a
(stochastic) reward rt+1. In this note, we work under the fundamental assumption that there exists a
structural relationship between actions and their associated reward in the form of:

E [rt+1 | Ft, xt] = µ
(
〈xt, θt?〉

)
. (1)

The filtration Ft := σ({xs, rs+1}t−1
s=1) represents the information acquired up to round t, and µ is

a strictly increasing, continuously differentiable real-valued function most often referred to as the
inverse link function. Note that this general framework includes both the LB (µ(z) = z) as well as
non-linear parametric models such as the Logistic Bandit (µ(z) = 1/(1 + e−z)). The goal of the
agent is to minimize the cumulative pseudo-regret:

RT :=
T∑
t=1

µ(〈xt?, θt?〉)− µ(〈xt, θt?〉) where xt? = arg max
x∈Xt

µ(〈x, θt?〉) .

We recall the following assumptions, commonly adopted in the study of parametric bandits:

Assumption 1 (Bounded decision set) For all t ≥ 1,
∥∥θt?∥∥2

≤ S. Further, the actions have
bounded norms: ‖x‖2 ≤ L for all x ∈ Xt.

Assumption 2 (Bounded reward) There exists σ > 0 s.t 0 ≤ rt ≤ 2σ holds almost surely.

We will denote Θ = {θ : ‖θ‖2 ≤ S} the set of admissible parameters and X = {x : ‖x‖2 ≤ L}. We
assume that the quantities L, S and σ are known to the agent. For a given inverse link function µ, we
will follow the notation from Filippi et al. (2010) and denote:

kµ = sup
x∈X ,θ∈Θ

µ̇ (〈x, θ〉) , cµ = inf
x∈X ,θ∈Θ

µ̇ (〈x, θ〉) .

Note that in the linear case, we obtain kµ = cµ = 1. The true parameters {θt?}∞t=1 are unknown, and
their drift is quantified by the variation variation-budget, which characterizes the magnitude of the
non-stationarity in the environment:

BT,? :=

T−1∑
t=1

∥∥θt+1
? − θt?

∥∥
2
.

Naturally BT,? is unknown, but we will assume that the agent has knowledge of an upper-bound
BT ≥ BT,?. Such assumption is common in non-stationary bandits (Besbes et al., 2014; Cheung
et al., 2019a; Zhao et al., 2020).
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1.3. Existing Approaches

Principle. All existing works that tackle non-stationary GLBs (including the linear case) rely on
the same conceptual approach, i.e addressing the reward’s drift by progressively forgetting past
data (Cheung et al., 2019b; Russac et al., 2019; Zhao et al., 2020). This is achieved by maintaining
estimations based on a truncated history of the data, judging that old observations no longer carry
valuable signal about the current ground truth θt?. Formally, the learning is canonically performed
through the quasi-maximum likelihood principle, albeit equipped with a forgetting mechanism. Let b
be a primitive of µ, λ > 0, {ws,t} the sequence of forgetting weights, and define:

θ̂t = arg min
θ∈Rd

t−1∑
s=1

ws,t [b(〈xs, θ〉)− rs+1〈xs, θ〉] +
λcµ
2
‖θ‖22 , (2)

This formulation covers the sliding-window approach of Cheung et al. (2019b) with ws,t = 1(t−s ≤
D) (D being the length of the sliding window) and the exponential-weights of Russac et al. (2019)
with ωs,t = γt−1−s and γ ∈ (0, 1). The exploration is conducted according to the optimism-in-face-
of-uncertainty principle; confidence regions for the ground-truth parameters are build around θ̂t and
leveraged to ensure that the learner plays optimistic arms.

Linear Bandit. In the linear case, all approaches discussed hereinbefore follow this general path
and announce regret rates of the form:

RT = Õ
(
B

1/3
T T 2/3

)
.

Anticipating Section 2.1, it turns out that this rate can only hold with a relatively strong assumption
on the geometry of the arm sets {Xt}t (at least with the existing analysis). In the general case, a
correct analysis yields a degraded rate, (c.f Touati and Vincent, 2021), which does not match the
lower-bound of Cheung et al. (2019b).

Generalized Linear Bandits. (Cheung et al., 2019b; Zhao et al., 2020) extended their LB analysis
to GLBs. With the exception of an inflation of the exploration bonus to account for non-linearity,
their algorithm remains the same. They claim the following regret upper-bound:

RT = Õ
(
kµc
−1
µ B

1/3
T T 2/3

)
,

which stands as a natural extension of the existing stationary bounds from Filippi et al. (2010). Not
only does the previous remark regarding the validity of the rates (w.r.t T and BT ) passes on to this
setting, their approach also disregards the fundamental non-linear aspect of GLBs. This is the topic
of Section 2.2, and is extensively discussed in the extended version of this note (Faury et al., 2021).

2. Identification and First Solutions to Existing Mistakes

2.1. LBs: Technical Gaps and Degraded Rates

Some preliminary intuition. A strong conceptual advantage (at least from an analysis point of
view) of forgetting strategies is that it allows for a natural decoupling of the learning and tracking
aspects of non-stationary bandit problems. At each round t, the learning aspect is rooted in the noisy
nature of the environment, which blurs the sequence of {θ?s}t−1

s=1 that generated observed rewards.
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The learning guarantees of forgetting policies can be extended from existing stationary analyses (e.g,
Abbasi-Yadkori et al., 2011). This fundamentally requires an on-policy approach: deviations can
only be measured in the directions that were played. Practically speaking, this means that the right
metric to derive confidence intervals is ‖·‖Vt where Vt =

∑t−1
s=1ws,txsx

>
s + λId. On the other

hand, the tracking aspect is inherited from the drift of θt−1
? to θt? which induces an incompressible

estimation error. It is therefore fundamentally tied to the variation-budget BT , which is an off-policy
metric (i.e independent of the trajectory that was played) characterized by the `2 norm. Both aspects
are conflicting sources of regret; reaching optimality requires finding the correct balance between the
two of them.

A flaw in the control of the tracking error. Naturally, the tracking error can only be observed
(at least at analysis time) in the directions that were actually played by the algorithm and for which
rewards were collected. Henceforth, the main challenge when controlling the tracking error lies in
converting its on-policy version to its off-policy counterpart (which is BT ). This is where current
approaches make a mistake by claiming that this can be done at no cost on the regret. If specializing
to the sliding-window mechanism, the error can be traced back to the following statement:

∀t ≤ T,

∥∥∥∥∥V−1
t

t−1∑
s=t−D

xsx
>
s (θs? − θt?)

∥∥∥∥∥
2

≤
t−1∑

s=t−D
‖θs? − θs+1

? ‖ , (3)

which links the deviation between θt? and θs? in each direction xs (on-policy) to the variation-budget
over the length of the sliding window (off-policy). Such a statement appears several times in the
literature, for instance in (Cheung et al., 2019b, Appendix B), (Russac et al., 2019, Appendix B.3)
and (Zhao et al., 2020, Appendix A). Unfortunately, this is in general false. The approach followed
by previous works ties the left-hand side of Equation (3) to λmax, the highest eigenvalue of the matrix
V−1
t

∑t−1
s=t−D xsx

>
s . They then proceed to show that the latter is smaller than a universal constant

(one which does not depend on the dimension d or the sliding-window’s length D). The first step
of this reasoning is false; indeed, V−1

t

∑t−1
s=t−D xsx

>
s being not a symmetric matrix, its operator

norm cannot be bounded by its larger eigenvalue; actually, one can easily design counter-examples
where the two are arbitrarily different. This indicates that the impact of this mistake on the validity
of the regret bound is significant; the matrix V−1

t

∑t−1
s=t−D xsx

>
s being dependent of the algorithm’s

behavior, we cannot, in all generality, discard a-priori the events that such counter-examples arise.

Preserving the rates. We can however look at sufficient conditions for the current analysis to hold.
In particular, it is sufficient that V−1

t

∑t−1
s=t−D xsx

>
s is a symmetric matrix. Equivalently, we can

require for the two positive semidefinite matrices V−1
t and

∑t−1
s=t−D xsx

>
s to share the same basis of

eigenvectors. This is a strong requirement; not only should it hold for all t ≤ T , but furthermore
such matrices are generated by the algorithm itself. This co-diagonalizability requirement must
therefore hold for virtually any sequence of arms {xs}! The only reasonable situation where this can
be verified arises when it is de-facto imposed by the geometry of the action set X ; for instance, when
X lies along an orthogonal basis.

Proposition 1 Let {ei}di=1 be an orthonormal basis of Rd and X be such that for all x ∈ X , there
exists α ∈ R, i ∈ [1, d] such that x = αei. Then on the non-stationary LB problem, forgetting
strategies achieve a regret upper-bound of the form RT = Õ(B

1/3
T T 2/3).
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A TECHNICAL NOTE ON NON-STATIONARY PARAMETRIC BANDITS

Fixing the analysis. A correct treatment of the tracking error was recently proposed by (Touati and
Vincent, 2021, Section 5). They showed that a correct bounding of the left-hand side of Equation (3)
leads to the following control of the tracking error:

∀t ≤ T,

∥∥∥∥∥V−1
t

t−1∑
s=t−D

xsx
>
s (θs? − θt?)

∥∥∥∥∥
2

≤
√
dD

t−1∑
s=t−D

‖θs? − θs+1
? ‖ .

The apparition of the sliding-window’s length D in this bound eventually shifts its optimal value (in
terms of learning v.s tracking regret balance) and yields degraded rates.

Proposition 2 (Touati and Vincent (2021)) Under general arm-set geometry, forgetting strategies
achieve a regret upper-bound of the form RT = Õ

(
B

1/4
T T 3/4

)
on the non-stationary LB problem.

Note that this upper-bound lags behind the lower-bound of (Cheung et al., 2019a). We discuss
potential reasons for this gap in Section 3.

2.2. GLBs: Troublesome Non-Linearity

We now turn to non-stationary GLBs, and ask the following question: putting aside the aforemen-
tioned technical gaps, can we directly extend the algorithms designed for the linear case?

Failure of direct LB extensions. Most of the existing works on non-stationary LB propose rela-
tively straight-forward extensions of their algorithms to handle GLBs (Cheung et al., 2019a; Zhao
et al., 2020). Unfortunately, existing analyses suffer from important caveats because they overlook a
crucial feature of GLBs inherited from the non-linearity of the link function µ. Following Filippi
et al. (2010), they rely on a linearization of the reward function around θ̂t. Naturally, the linear
approximation must accurately describe the effective behavior of the reward signal (characterized by
the ground-truth θt?). From Assumption 2, this translates in the structural constraint θ̂t ∈ Θ, which is
implicitly assumed to hold in previous attempts. Unfortunately, there exists no proof guaranteeing
that θ̂t ∈ Θ could hold. Actually, existing deviation bounds (Abbasi-Yadkori et al., 2011, Theorem
1) rather suggest that in some directions, even in the stationary case, θ̂t can grow to be

√
d log(t) far

from Θ. The situation is worse under non-stationarity since θ̂t can be Bt far from Θ. This flaw in the
analysis is critical and cannot be easily fixed without severely degrading the regret guarantee. When
θ̂t /∈ Θ, this impacts the ratio kµc−1

µ which captures the degree of non-linearity of the inverse link
function. For the highly non-linear logistic function, easy computations show that c−1

µ ≥ eSL. If
we were to inflate the radius of the admissible set Θ from S to S + δS (so that it contains θ̂t), the
estimated non-linearity of the reward function would be even stronger and Rµ would be multiplied
by a factor eLδS ! Because the regret bound scales linearly with this quantity, this exponential growth
would lead to prohibitively deficient performance guarantees.

Challenges. Filippi et al. (2010) countered the aforementioned difficulty by introducing a projection
step, mapping θ̂t back to an admissible parameter θ̃t ∈ Θ. The latter is then used to predict
the performance of the available actions. Their projection step essentially incorporates the prior
knowledge θ? ∈ Θ (Assumption 2) without degrading the learning guarantees of the maximum
likelihood estimator. The situation is different here as under parameter drift one needs to preserve both
the learning and tracking guarantees of θ̂t. However, and as previously discussed, both mechanisms
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Θ Eδt (θ̂t)Eδt (θ̂t)Eδt (θ̂t)

Eδt (θpt )Eδt (θpt )Eδt (θpt )

θ̂t

θ̄t
θt?

θpt
θ̃t

∝Bt∝Bt∝Bt

∝Bt∝Bt∝Bt

Figure 1: Illustration of the generalized projection step. The confidence set Eδt (θ̂t) is obtained by
leveraging the learning guarantees of the estimator θ̂t. It concentrates around θ̄t, which
tracks the sequence {θs?}t−1

s=1 and contrary to the stationary case can lie outside Θ. Our
solution involves finding a translation θpt of θ̂t such that the confidence set centered at this
new reference point effectively intersects Θ, say at θ̃t. This translation occurs in a metric
that preserves the tracking guarantees of θ̄t. The deviations (θpt ↔ θ̂t) and (θ̄t ↔ θt?) are
linked to the parameter-driftBt. On the other hand, the deviations (θ̂t ↔ θ̄t) and (θ̃t ↔ θpt )
are characterized by the stochastic nature of the problem.

have different dynamics and are characterized by different metrics. This leads to a tension in the
design of the projection as this requires to incorporate the knowledge {θt?} ∈ Θ, without degrading
neither the learning nor the tracking guarantees. This situation therefore calls for a generalization of
the projection step of Filippi et al. (2010), in order to adapt to both sources of deviation.

A compatible projection. We provide such a generalization in a companion paper to this technical
note (Faury et al., 2021). The main idea is to compute the optimal translation under the tracking
metric of the confidence set characterized by the learning metric. We illustrate this idea in Figure 1,
and refer the interested reader to the companion paper for detailed derivations. As in the linear case,
we can recover the minimax rates with sufficient assumptions on the arm-set geometry.

Proposition 3 Let {ei}di=1 be an orthonormal basis of Rd and X be such that for all x ∈ X , there
exists α ∈ R, i ∈ [1, d] such that x = αei. Then forgetting strategies achieve a regret upper-bound
of the form RT = Õ(B

1/3
T T 2/3) on the non-stationary GLB problem.

For general arm-set geometry, sub-linear rates can still be recovered however with a sensibly more
serious degradation than in the linear case. The culprit for this deterioration remains conceptually the
same: the transfer from the on-policy to the off-policy tracking error comes at an additional cost due
to the non-linearity of the reward function.

Proposition 4 Under general arm-set geometry, forgetting strategies achieve a regret upper-bound
of the form RT = Õ

(
B

1/5
T T 4/5

)
on the non-stationary GLB problem.
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Reward Model Assumption Regret Upper Bound

Linear
Orthogonal action sets Õ

(
B

1/3
T T 2/3

)
7 Õ

(
B

1/4
T T 3/4

)
Generalized Linear

Orthogonal action sets Õ
(
B

1/3
T T 2/3

)
7 Õ

(
B

1/5
T T 4/5

)
Table 1: Non-stationary parametric bandits: regret upper-bounds.

3. Summary and Open Questions

Summary. We summarize in Table 1 the different upper-bounds available for forgetting policies
for both the LB and GLB setting. In the linear case, we can only show that known rates hold up
to a strong assumption on the problem’s geometry. In general, the rate is degraded to T 3/4. In the
GLB setting, one must be particularly careful regarding the treatment of non-linearity and existing
algorithms must resort to adequate projection steps. Again, we retrieve T 2/3 rates under specific
geometry but in all generality, the regret bound suffers from an even stronger degradation to T 4/5.

Open questions. This note raises several open questions. The first one concerns the nature of
the difference between the LB and GLB regret upper-bounds. We postulate that this is an artefact
of the proof and that an improved analysis should yield the same rates. The second question
regards the optimality of forgetting strategies. Indeed, the only existing lower-bound for non-
stationary parametric bandits was obtained by Cheung et al. (2019b) in the linear case, and scales
as Ω(B

1/3
T T 2/3). The observed gap with the upper-bounds obtained by a correct analysis could

potentially be explained by a fundamental sub-optimality of the forgetting principle. We see several
ways of answering this question: (1) by providing an improved analysis of forgetting strategies
in the general case, matching the lower bound or (2) proving lower-bounds for forgetting policies
which establish their sub-optimality. Finally, this note raises the question of the true minimax rates
behind the non-stationary parametric bandit problem. Indeed, we are not aware of existing methods
matching the lower-bound of Cheung et al. (2019b)2 in the general case (i.e without any geometric
assumption). This might be explained by the nature of this lower-bound, which is obtained on a
very specific problem instance (i.e piece-wise stationary) and might be too specific to cover harder
non-stationary problems.3 We believe that establishing new lower-bounds under generic dynamic
scenarios (e.g where the ground truth evolves at every round) therefore stands as a crucial missing
piece in the non-stationary parametric bandit literature.

2. (Chen et al., 2019) do obtain the desired rates, however for a different adversary of the regret. It is not straight-forward
to adapt their guarantees to the more challenging setting discussed here.

3. Actually, if the environment is known to be piece-wise stationary the proof strategy can be adapted to avoid the
difficulties presented in this note - (c.f Russac et al., 2021).
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