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GEOMETRIC METHODS IN HOLOMORPHIC DYNAMICS

ROMAIN DUJARDIN

Abstract. In this note we review a selection of contemporary research themes in
holomorphic dynamics. The main topics that will be discussed are: geometric (lami-
nar and woven) currents and their applications, bifurcation theory in one and several
variables, and the problem of wandering Fatou components.

Holomorphic dynamics was once part of classical complex analysis, but since its re-
birth in the 1980’s it keeps enlarging its scope, integrating new ideas and developing
new interactions. Some main tendencies of contemporary holomorphic dynamics are the
convergence between its one and higher dimensional aspects and its ever deeper intercon-
nection with algebraic and arithmetic dynamics. As a consequence, there is an endless
diversification of the available mathematical techniques. Besides the classical methods
from dynamics and complex analysis, its modern toolbox now comprises sophisticated
tools and ideas imported from: complex geometry, pluripotential theory (and its latest
advances for currents of higher bidegree), algebraic geometry and commutative algebra,
non-Archimedean analysis and geometry, arithmetic geometry (in particular arithmetic
equidistribution theory), Teichmüller theory, geometric group theory, etc. Conversely,
each of these domains benefits from its interaction with holomorphic dynamics, by gain-
ing new problems and examples. Many (though not all!) of these connections were
reported in recent ICM’s [21, 71, 77, 25, 35, 40]. Our purpose here is to present a few
contemporary research themes whose common thread –if one were to find one– is an
emphasis on “soft” geometric techniques, such as the basic geometry of analytic subsets
in Cn. These represent only a tiny piece of the domain, reflecting of course the author’s
own taste and research interests. The main topics that will be discussed are: geomet-
ric currents, bifurcation theory, and the problem of wandering Fatou components. The
reader will soon notice that these three subjects are largely interrelated. Many open
problems have also been included, as a motivation for future investigations.

Let us describe in more detail the contents of this paper. Section 1 is a short survey
on positive closed currents with “geometric structure”. The use of geometric currents in
holomorphic dynamics was pioneered by Bedford, Lyubich and Smillie in their seminal
work [9] on complex Hénon maps. Since then they have turned into a very versatile tool,
with many applications. Here we intend to give the flavor of a few specific results and
how they are used in dynamical problems, so this part of the paper will be a bit more
technical than the remaining sections.

Holomorphic dynamics is equally about the dynamics of a holomorphic map f and
about the evolution of this dynamical behavior when f depends on certain parame-
ters. The basic stability/bifurcation theory of rational maps in one variable was de-
signed by Mañé, Sad, Sullivan and Lyubich [73, 69, 70] in the 1980’s, who showed
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that one-dimensional rational maps are generically structurally stable, using surpris-
ingly elementary arguments. For the quadratic family z2 + c, c ∈ C, the bifurcation
locus is the celebrated Mandelbrot set, whose intricate structure was thoroughly studied
since then, using a variety of combinatorial and geometric methods. This research area
was profoundly renewed in the 2000’s by the systematic investigation of higher dimen-
sional phenomena, and in particular with the introduction of bifurcation currents by
DeMarco [33]. The bifurcation theory of holomorphic dynamical systems is nowadays a
very active research domain, and a meeting point between the communities of one and
several variable dynamicists. We relate this continuing story in Section 2.

Finally, one recent breakthrough is the construction of wandering Fatou components in
higher dimensional polynomial dynamics, which at the same time solves an old problem
and raises many questions. We review these recent developments in Section 3.

Let us conclude this introduction with a little notice: some important theorems will be
mentioned only in passing, while other are isolated within numbered environments: this
is meant to keep the reading flow, not to reflect a hierarchy of importance. Likewise, the
list of references is already quite long, but not exhaustive, and we apologize in advance
for any serious omission.

Acknowledgments. It is a great pleasure to thank my collaborators Eric Bedford,
Pierre Berger, Serge Cantat, Bertrand Deroin, Jeff Diller, Charles Favre, Vincent Guedj,
and Misha Lyubich for so many discussions about the mathematical themes presented
here, and more generally my colleagues from the holomorphic dynamics community for
maintaining such a friendly atmosphere over the years. Special thanks to Charles Favre
and Thomas Gauthier for their helpful comments on this paper.

1. Geometric currents

1.1. Definitions. This part assumes some familiarity with positive currents and pluripo-
tential theory (see e.g. Demailly [32] for basics). All the definitions here are local so
we work in some bounded open set Ω ⊂ Ck. Let T be a positive closed current of bidi-
mension (p, p) in Ω. Following Bedford, Lyubich and Smillie [9], we say that T is locally
uniformly laminar if there exists a lamination by complex submanifolds of dimension p
embedded in Ω such that the restriction of T to any flow box B of the lamination is of
the form

(1.1) T |B =

∫
τ
[∆t]dν(t).

Here τ is a global transversal in the flow box B, the ∆t are the plaques of the lamination
in the flow box, and ν is a positive measure on τ . The word “uniform” here refers to
the local uniformity of the geometry of the plaques ∆t We say that T is laminar if there
exists a sequence of open subsets Ωk, together with a sequence of currents Tk, locally
uniformly laminar in Ωk, such that Tk increases to T . The Ωk should be thought of as
a union of many small polydisks, whose complement has a small mass. The key word in
the definition is “increases”: intuitively, this definition should be understood as follows:
Tk represents all the disks contained in T of some given size (say 2−k); then, to Tk
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we add Tk+1 − Tk which is made of disks of size 2−(k+1) (which may have non-empty
boundary in Ωk, but form a lamination in Ωk+1 ⊂ Ωk), and so on. The sequence Tk is
not canonical, and has to be understood as the choice of a “representation” of T as a
laminar current. From this we can deduce another representation of T as an integral
over an abstract family of compatible holomorphic disks:

(1.2) T =

∫
A

[Dα]dµ(α).

Here compatible means that two disks can only intersect along some relatively open sub-
set, but there is no further restriction on the geometry of the Dα. Even if this definition
is rather restrictive, it can lead to pathological examples, and for dynamical applications
we will have to constrain it further (see the notion of “strongly approximable” current
below).

It was observed by Dinh [39] that in many situations it is more natural to let the disks
admit non-trivial intersections. One then defines uniformly woven currents by replacing
“lamination” by “web” in (1.1), where a web is locally given by a family of disks of
dimension p with uniformly bounded volume, or more generally a family of holomorphic
chains of dimension p with uniformly bounded volume (any such family is pre-compact
for the Hausdorff topology, so it makes sense to define a measure on a set of such disks).
Then, woven currents are defined from uniformly woven ones as in the laminar case. A
difference between laminar and woven currents is that in the woven case the measures
in (1.1) and (1.2) are not determined by T (e.g. the standard Kähler form in C2 admits
several representations as a uniformly woven current), so a woven current has to be
thought of as “marked” by such a measure µ. It is not completely obvious to show that
not every positive closed current is woven: we leave this as an exercise to the reader!

There is no unified reference for the basic properties of laminar and woven currents.
Besides [9] and [39], the information in this paragraph was extracted from various papers,
notably by De Thélin and the author [43, 44, 46, 37, 28, 30]. In the following we use the
word geometric as a synonym of “laminar or woven”.

1.2. Construction and approximation. Positive closed currents often appear as lim-
its of sequences of normalized currents of integration. Furthermore, by a classical the-
orem of Lelong, any positive closed current of bidegree (1,1) is locally of this form. In
this section we explain how under appropriate hypotheses, a geometric structure can be
extracted from such an approximation.

Still working locally in some open set Ω ⊂ Ck, endowed with its standard Hermitian
structure, we say that a submanifold V of dimension p in Ω has size r at x ∈ V , if
it contains a graph over a ball of radius r of its tangent space TxV , relative to the
orthogonal projection to TxV , with slope (i.e. the norm of the derivative of the graphing
map) bounded by 1. In particular V has no boundary in B(x, cr) for some constant c
depending only on p and k. This notion of size makes sense in any compact complex
manifold, up to uniform constants, by choosing a finite covering by coordinate charts
and a Hermitian metric. Note that we may relax this definition by allowing V to be an
analytic set: then V can have several irreducible components at x, some of which being
of size r.
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If V is any submanifold (or subvariety) of Ω, possibly with boundary, and r > 0,
we denote by V r the set of x ∈ V such that V has size r at x. In this way we get a
tautological decomposition: V = V r ∪ (V \ V r), which is reminiscent of the thin-thick
decomposition of hyperbolic manifolds .

Assume now that Vn is a sequence of p-dimensional subvarieties of volume vn, such
that v−1

n [Vn] converges to a positive closed current T . If Vol(V r
n ) ≥ vn(1 − ε(r)) where

ε is a function independent of n and such that ε(r) → 0 as r → 0, then one may
extract a subsequence so that v−1

n [V r
n ] converges to a geometric current T r ≤ T with

the mass estimate M(T − T r) ≤ ε(r). This endows T with a geometric structure: if
p ≤ k − 2 we obtain a woven current and if p = k − 1 this current is laminar. Indeed if
p = k−1, by the persistence of proper intersections, the limiting graphs cannot intersect
non-trivially. (Note that when p ≤ k − 2, intersections can appear at the limit even
if the Vn are submanifolds. Conversely, if in codimension 1 we allow the Vn to admit
self-intersections, we obtain woven currents also in this case.)

A technically convenient option is to further assume that the disks constituting V r
n

are submanifolds (without boundary) in a subdivision of Ω by cubes of size cr (for some
constant c > 0). This is consistent with the manner in which the V r

n are constructed
in practice, and the resulting definition is equivalent (see [46]). In this way the limiting
currents T r are uniformly geometric in the cubes of this subdivision.

There are several easily checkable geometric and/or topological criteria ensuring this
condition, which sometimes give an explicit bound on ε(r):

• If ψ : C→ X is an entire curve in a projective manifold, then by Ahlfors’ theory
of covering surfaces, for well chosen sequences Rn → ∞, Vn := ψ(D(0, Rn))
satisfies v−1

n [∂Vn] → 0 and Vol(V r
n ) ≥ vn(1 − ε(r)) for ε(r) = O(r2). Thus the

cluster values of v−1
n [Vn] are closed woven currents; if in addition ψ is injective and

dim(X) = 2, then they are laminar (Bedford-Lyubich-Smillie [9], Cantat [24].
• If Vn is a sequence of algebraic curves in a projective surface whose geometric

genus is O(vn), then Vol(V r
n ) ≥ vn(1 − ε(r)) for ε(r) = O(r2), therefore the

limiting currents of v−1
n [Vn] are woven; under a mild additional condition on the

singularities of Vn, they are laminar (Dujardin [43]).
• If ιn : Pp → X is a sequence of holomorphic mappings of generic degree 1 to a

projective manifold X of dimension k > p, and Vn = ιn(Pp) then the limiting
currents of v−1

n [Vn] are woven (Dinh [39]). In addition ε(r) = O(r2) [46].
• If Vn is a sequence of smooth curves in the unit ball in C2, whose genus is O(vn),

then the limiting currents of v−1
n [Vn] are laminar (De Thélin [28]). A version of

this result in arbitrary dimension is given by De Thélin in [30].

In all these papers, the geometric structure is obtained by projecting Vn in several
directions and keeping only from Vn the graphs over these directions with bounded
diameter or volume. The bound ε(r) = O(r2) plays an important role in applications as
we shall see below.

1.3. Geometric intersection. The main interest of geometric currents is the possibil-
ity of a geometric interpretation of their wedge products. This technique was introduced
in [9], and it was systematized and generalized in several subsequent works. Such results
are so far essentially available in dimension 2; again since the problem is local we work
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in some open set Ω ⊂ C2, say a ball. If T1 and T2 are closed positive (1,1) currents in
Ω, we say that the wedge product T1 ∧ T2 is well defined if u1 ∈ L1

loc(T2), where ui is a
local potential of Ti, in which case we set T1 ∧ T2 = ddc(u1T2). This condition and the
resulting wedge product is actually symmetric in T1 and T2. We also say that such a
current is diffuse if it gives no mass to curves.

For uniformly laminar and woven currents, geometric intersection is easy and basically
follows from Fubini’s theorem. Indeed, assume that T1 and T2 are uniformly geometric
(1,1)-currents in Ω, which locally in Ω admit the representation Ti =

∫
[∆i

t]dνi(t). Then,
if the wedge product T1 ∧ T2 is well defined, then locally we have that

(1.3) T1 ∧ T2 =

∫
[∆1

t ∩∆2
s]dν1(t)dν2(s),

where [∆1
t ∩ ∆2

s] is the sum of point masses at isolated intersection points, counting
multiplicities (see [44, 38]). In addition, if T1 and T2 are laminar and diffuse, non-
transverse intersections do not contribute to the integral so we can restrict to transverse
intersections. Note the intermediate “semi-geometric intersection” result

(1.4) T1 ∧ T2 =

∫
([∆1

t ] ∧ T2)dν1(t),

which makes sense for an arbitrary positive closed current T2.
Now assume that T is a geometric positive closed current in Ω ⊂ C2 and S is an

arbitrary positive closed current in Ω, such that the wedge product S∧T is well-defined.
We say that T ∧ S is semi-geometric if there is a representation T = limr→0 T

r as an
increasing limit of uniformly geometric currents, such that T r∧S increases to T∧S as r →
0. Thanks to (1.4), T r∧S admits a geometric interpretation. If now S itself is a geometric
current, we say that the wedge product T ∧ S is geometric if there are representations
T r ↗ T and Sr ↗ S such that T r ∧ Sr (which has a geometric interpretation by (1.3))
increases to T ∧ S.

We say that a geometric current is strongly approximable if there is a representation
T r ↗ T where T r is uniformly geometric in a subdivision Ωr of Ω into cubes of size r,
and ε(r) = M(T − T r) = O(r2). As we have seen in §1.2, this estimate is commonly
satisfied in practice. (Technically, some freedom on the choice of Ωr is also necessary,
but we do not dwell on this point.) The sharpest version of the geometric intersection
theorem for geometric currents in dimension 2 is the following:

Theorem 1.1 (Dujardin [44, 45, 38]). Let S and T be closed positive (1,1) currents in
Ω ⊂ C2, such that the wedge product T ∧ S is well-defined. Assume that T is a strongly
approximable geometric current. Then, if S has locally bounded potentials, or if T ∧ S
gives no mass to pluripolar sets, then T ∧ S is semi-geometric.

A consequence of this theorem, which is often as useful as the result itself, is that if
T was obtained as the limit of v−1

n [Vn] as in §1.2, then v−1
n [V r

n ] ∧ S is close to T ∧ S for
small r and large n.

Applying Theorem 1.1 to T ∧ S and S ∧ T , we get:

Corollary 1.2. If in Theorem 1.1 both S and T are strongly approximable geometric
currents and T ∧ S gives no mass to pluripolar sets, then T ∧ S is geometric.
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The main open problem at this stage is the extension of these results to higher di-
mensions.

Question 1.3. Is there a version of Theorem 1.1 for geometric currents of arbitrary
codimension?

While the case of uniformly geometric currents and the case where T is of bidimension
(1,1) follow without serious difficulties (see [46] and [47] for details), the general case
remains a challenge so far. The crucial mass estimate M(T − T r) = O(r2) is known
to hold in some significant cases (see [46]), but it does not appear to be sufficient to
conclude for currents of arbitrary bidimension.

1.4. Dynamical applications. The first application of laminar currents by Bedford,
Lyubich and Smillie [9] was to prove that certain intersections are non-empty. A typical
example is the following: assume that we are given an entire curve ψ : C → X in
some projective manifold, and let T be a closed current obtained from ψ by Ahlfors’
construction. Let S be a current of bidegree (1,1) with bounded potentials. If we
know that

∫
T ∧ S > 0 (for instance, for cohomological reasons), then by Theorem 1.1,

this intersection is semi-geometric, therefore S|ψ(D(0,Rn)) is non-zero for large n. (A
version of this result which does not appeal to laminarity was proved by Dinh and
Sibony [42].) This fact (as well as some variants) plays an important role in the dynamics
of automorphisms and birational maps on complex surfaces, where it is used as a tool
to create intersections between stable and unstable manifolds. This is used in [9] to
establish that any saddle point belongs to the support of the maximal entropy measure;
this technique also appears in the work of Cantat, Favre, Lyubich, and the author [24,
53, 52, 26], among others. Note also that the failure of Theorem 1.1 for unbounded
potentials can be viewed as the main reason why the uniqueness of the measure of
maximal entropy for general birational maps of surfaces remains an unsolved problem.

Another use of geometric intersection, which was initiated in [45], concerns the dy-
namical analysis of wedge products of dynamically defined currents. Indeed, suppose
that f is a self-map of some complex manifold X, and fn(L) is a sequence of iterated
curves such that d−nfn(L) converges to a geometric current T , with a control of the
asymptotic geometry of fn(L) as in §1.2. Assume also that S is some invariant current
of bidegree (1,1): f∗S = dS and that T ∧ S is a semi-geometric intersection. Then for
large n, the action of fk on the bounded geometry part of d−n[fn(L)] ∧ S is a good ap-
proximation of the action of fk on T ∧ S, and its expansion properties “in the direction
of T” can be analyzed geometrically by “soft” methods, such as counting disjoint disks
of size r and length-area estimates (see below Theorem 2.4 for a worked out example).
This idea was used in various contexts by De Thélin and others [45, 29, 46, 37, 31].

1.5. Foliations. Foliated Ahlfors currents play an important role in the work of Brunella
and McQuillan on singular holomorphic foliations (see e.g. [20]). Geometric intersection
has been applied in foliation theory to prove the vanishing of certain self-intersections.
For a positive current directed by a holomorphic foliation on a compact Kähler surface,
this vanishing can in turn be used to infer dynamical properties of the foliation such as
the non-existence of invariant transverse measures (for closed currents) or the unique-
ness of harmonic measures (for ddc-closed currents), according to a Hodge-theoretic
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formalism for ddc-closed currents devised by Fornæss and Sibony [58]. Proving that
the self-intersection of harmonic currents directed by holomorphic foliations vanishes is
a very difficult problem in the presence of singularities. On P2 this can be treated by
regularizing with global automorphisms, the general case makes use of the theory of den-
sities of Dinh and Sibony (see [41]). Here we want to mention a more elementary-looking
problem:

Question 1.4. Does there exist a diffuse (closed) uniformly laminar current on P2?

The expected answer to the question is “no”, since it is generally expected that there
does not exist a Riemann surface lamination embedded in P2. The above question is
supposed to be the “easy case” of this deep conjecture (since it deals with laminations
with transverse measures), and it admits a straightforward approach: if T is such a
current, then T ∧ T = 0 because of the laminar structure, which is impossible on P2.
This approach works well as soon as T ∧ T is well-defined in the sense of pluripotential
theory (but it doesn’t for a curve!), or when the holonomy of the induced lamination
is Lipschitz [58]. But in general the holonomy of a Riemann surface lamination in C2

(that is, a holomorphic motion) is less regular and, surprisingly enough, the problem is
still open so far. (See Kaufmann [66] for a discussion of the higher dimensional case.)

2. Bifurcation theory in one and several dimensions

Let (fλ)λ∈Λ be a family of rational maps of degree d, holomorphically parameterized
by some complex manifold Λ. Then the well-known Fatou-Julia decomposition of the
phase space is mirrored by a stability-bifurcation dichotomy of the parameter space.
The proper definition of stability in this context was found simultaneously by Mañé-
Sad-Sullivan and Lyubich [73, 69, 70]: the family (fλ)λ∈Λ is J-stable over some domain
Ω ⊂ Λ if one of the following equivalent conditions holds over Ω:

(i) the periodic points of (fλ) do not collide, or equivalently the nature (attracting,
repelling, indifferent) of each periodic point remains the same in the family;

(ii) the Julia set λ 7→ Jλ moves continuously for the Hausdorff topology;
(iii) for any two parameters λ, λ′ in Ω, fλ|Jλ is topologically conjugate to fλ′ |Jλ′ ;
(iv) the orbits of the critical points fλ do not bifurcate.

The equivalence between these properties relies on the notion of holomorphic motion
(also known as holomorphic families of injections) of a subset of the Riemann sphere,
and the the simple yet powerful idea of automatic extension of a holomorphic motion
to its closure (the λ-lemma). Condition (iv), together with the finiteness of the critical
set, easily implies that in any such parameterized family (fλ), the stability locus is open
and dense in Λ. In other words, one-dimensional polynomial and rational maps are
generically stable.

For the emblematic family fλ(z) = z2 + λ of quadratic polynomials, the bifurcation
locus is the boundary of the Mandelbrot set M (connectivity locus). Even if its interior is
empty, ∂M is still quite large, as shown by the following famous result of Shishikura [80]:
∂M has Hausdorff dimension 2. This property was extended to arbitrary families of
rational maps by Tan Lei and McMullen [67, 75]. The basic technical tool underlying
Shishikura’s theorem is the phenomenon of parabolic implosion, which will also play
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an important role below. Note that is still unknown whether ∂M has zero or positive
Lebesgue measure.

This research area was renewed in the last 20 years as the result of several tendencies:
(1) the use of positive closed currents, and (2) the move towards higher dimensions
(both in dynamical and parameter spaces). In the next few pages we review some
of these developments; in particular we will see how these influential one-dimensional
results translate to new settings. Lack of space prevents us from giving a complete
treatment, and some important results will barely be mentioned. Also, we do not discuss
the profound connection with arithmetic dynamics, for which the reader is referred e.g.
to [35], nor bifurcations of Kleinian groups (see [36, 48]).

2.1. Bifurcation currents in one-dimensional dynamics.
Let as above (fλ)λ∈Λ be a holomorphic family of rational maps of degree d. The follow-

ing addition to the list of equivalent conditions to stability was found by DeMarco [34]:

(v) the Lyapunov exponent of the unique measure of maximal entropy χ(µfλ) is a
pluriharmonic function of λ.

The bifurcation current is then defined by Tbif := ddcλχ(µfλ). For the family of quadratic
polynomials, Tbif (= µbif , see below) is the harmonic measure of the Mandelbrot set.

The original definition of the bifurcation current in [33] can be interpreted geometri-
cally as follows (see [51]). Consider the fibered dynamical system in Λ × P1 defined by

f̂ : (λ, z) 7→ (λ, fλ(z)). It admits a natural invariant current T̂ of bidegree (1,1), satisfy-

ing f̂∗T̂ = dT̂ , whose restriction to a generic vertical line {λ}×P1 is the maximal entropy
measure µfλ . Now, take a holomorphically moving (or “marked”) point λ 7→ a(λ) in
P1, and denote by Γa its graph in Λ × P1. If π : Λ × P1 → Λ is the natural projection,
we obtain a current in Λ associated to a by slicing T̂ by Γa and projecting down to
Λ: Ta := π∗(T̂ ∧ [Γa]). If in a holomorphic family (fλ), the critical points are marked
by holomorphic functions λ 7→ ci(λ) (this is always possible up to replacing Λ by some
branched cover), we thus obtain the corresponding bifurcation currents Tci . It turns out
that Tbif =

∑
Tci : this follows from a variant of the Manning-Przytycki formula for the

Lyapunov exponent χ(µfλ), which in the case of polynomials writes

χ(µf ) = log d+
∑
i

Gf (ci),

where Gf is the dynamical Green function (which satisfies ddcGf = µf ).
Bifurcation currents have turned into a fundamental tool for exploring higher dimen-

sional issues in parameter spaces. Here is a sample problem: consider a critically marked
family (fλ, ci(λ)) and suppose that for some parameter λ0 ∈ Λ, the critical point c1(λ)
bifurcates at λ = λ0. Then a simple application of Montel’s theorem shows that there is
a sequence of parameters λn → λ0 such that, for λ = λn, c1 is preperiodic. Now assume
that several (say all) critical points bifurcate at λ0: is it then possible to approximate
λ0 by parameters such that the corresponding critical points are preperiodic? Of course
in this question one has to discard a few “trivial” obstructions , e.g. when dim(Λ) is
too small, so that there are not enough degrees of freedom to hope for an independent
behavior of the critical points. Still after excluding these counterexamples, the answer
to this problem is “no” (see [51, Example 6.13]), the fundamental reason for this being
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the failure of Montel’s theorem in higher dimension. Using currents is a known way of
circumventing this problem in higher dimensional dynamics, and, as a matter of fact,
the following theorem holds:

Theorem 2.1 (Bassanelli-Berteloot [8], Dujardin-Favre [51]). Let (fλ)λ∈Λ be a holo-
morphic family of rational maps of degree d ≥ 2. Then for every k ≤ dim(Λ),

(2.1) Supp(T kbif) ⊂ {λ, fλ admits k periodic critical points}.

(This result was actually not stated explicitly in [8, 51], see [48] for this formulation.
The converse inclusion is studied below.)

When Λ is the moduli space Pd of polynomials of degree d with marked critical
points (which is a finite quotient of Cd−1) or the moduli space Md of rational maps
of degree d with marked critical points (which is of dimension 2d − 2), we define the

bifurcation measure µbif to be the maximal exterior power of Tbif , that is µbif = T d−1
bif or

µbif = T 2d−2
bif , respectively. The following neat dynamical characterization of Supp(µbif)

can be obtained:

Theorem 2.2 (Dujardin-Favre [51], Buff-Epstein[22]). For Λ = Pd or Md, the support
of µbif is the closure of (non-Lattès) strictly post-critically finite parameters, that is,
parameters for which all critical points are preperiodic to a repelling cycle.

A version of this result for intermediate powers of Tbif was obtained in [47], which
explains to what extent the converse inclusion in (2.1) holds.

Sketch of proof. The most delicate point is to show that any non-Lattès post-critically
finite parameter λ0 belongs to Supp(µbif). To fix the ideas, assume that Λ = Md.
Observe that λ0 is an intersection point of a family of (2d−2) hypersurfaces of the form{

λ ∈Md, f
n
λ (ci(λ)) = fn+k

λ (ci(λ))
}

(one for each critical point). The proof in [22] is based on two important ideas. The
first one consists in proving that these hypersurfaces are smooth and transverse at λ0:
this is based on Teichmüller-theoretic ideas. Then, using this transversality, a version of
Tan Lei’s transfer principle between dynamical and parameter space allows to compare
the mass of µbif in a carefully scaled small polydisk about λ0 with the mass of µfλ0 near

the fn(ci), and conclude that this mass is positive. �

In the space of polynomials of degree d, Theorem 2.2, together with other characteri-
zations of Supp(µbif), e.g. in terms of landing of parameter rays, makes Supp(µbif) the
natural analogue of the boundary of the Mandelbrot set for polynomials of higher degree.
This motivates an investigation of its topological and geometric properties. First, it is
a compact set, which, for d ≥ 3, is strictly contained in the boundary of the locus Cd
of polynomials with connected Julia set. A topological consequence of Theorem 2.1 is
that Supp(µbif) is contained in the closure of Int(Cd); on the other hand it is unknown
whether Cd is the closure of its interior. Gauthier [59] extended Shishikura’s theorem
to show that Supp(µbif) has maximal Hausdorff dimension at each of its points. Let us
also note that by using advanced non-uniform hyperbolicity techniques, it was shown
by Astorg, Gauthier, Mihalache and Vigny [6] that in the spaceMd of rational maps of
degree d, Supp(µbif) has positive volume.
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The technical core of Theorems 2.1 and 2.2 is the fact that Tbif and its exterior powers
describe the asymptotic distribution of families of dynamically defined hypersurfaces in
parameter space, like parameters with a preperiodic critical point, or parameters with
a periodic point of a given multiplier. Initiated in [7, 8, 51], this research theme has
gradually evolved in scope and sophistication, notably through its connections with
arithmetic equidistribution (see [54]).

A striking and unexpected consequence of this technology is an asymptotic estimate
for the number of hyperbolic components inMd, which is so far not accessible by other
means. Recall that a hyperbolic component is a connected component of the stability
locus in which the dynamics is uniformly expanding on the Julia set. We say that
a hyperbolic component Ω is of disjoint type (n1, . . . , n2d−2) if the critical points are
attracted by distinct attracting cycles of respective exact period ni.

Theorem 2.3 (Gauthier, Okuyama and Vigny [60]). The number N(n) of hyperbolic
components of disjoint type (n, . . . , n) in Md satisfies

N(n) ∼
n→∞

d(2d−2)n

(2d− 2)!

∫
Md

µbif .

(An analogous formula holds for arbitrary disjoint type (n1, . . . , n2d−2).) Note that the
corresponding result in Pd is much easier and follows essentially from Bézout’s theorem
(together with a transversality argument). The value of

∫
Md

µbif is known only for d = 2

[60].
Once the bifurcation measure is constructed on Pd or Md, it is natural to inquire

about the dynamics of a µbif -typical parameter. InMd this question is completely open
so far. For the family of quadratic (and more generally unicritical) polynomials, it was
shown by Graczyk-Swiatek [62] and Smirnov [81] in the late 90’s that a µbif -typical
parameter satisfies the Collet-Eckmann condition; in particular the local geometry of
its Julia set is well understood. These results are based on combinatorial techniques
and the landing of external and parameter rays, and the method carries over for degree
d polynomials (see [51, Thm. 10]). Interestingly, a completely new approach to these
results of [62, 81] was recently found, which applies to arbitrary families of rational maps.

Theorem 2.4 (De Thélin, Gauthier and Vigny [31]). Let (fλ)λ∈Λ be an algebraic family
of rational maps of degree d with a marked critical point c(λ). Let Tc be the bifurcation
current associated to c and ‖Tc‖ be the associated total variation measure. Then for
‖Tc‖-a.e. λ,

(2.2) lim inf
n→∞

|Dfnλ (c(λ))| ≥ 1

2
log d > 0.

For the unicritical family zd + λ, this statement is precisely the typicality of the
Collet-Eckmann expansion property.

Sketch of proof. This is an application of the techniques of §1.4. We may assume that
Λ is of dimension 1, so that Tc is just a positive measure on Λ. Consider the sequence
of iterated graphs Γfn(c), parameterized by γn : λ 7→ (λ, fnλ (c(λ))). Then, as explained

above, Tc = π∗(T̂ ∧ [Γc]), where π : Λ × P1 → Λ is the first projection and T̂ is the
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natural f̂ -invariant current in Λ× P1. Using the f̂ -invariance of T̂ , we infer that

Tc = π∗

(
d−n[Γfn(c)] ∧ T̂

)
, and conversely (γn)∗(Tc) = d−n[Γfn(c)] ∧ T̂ .

Since the Γfn(c) are algebraic curves of uniformly bounded genus, by the results of §1.2,

the part
(
d−n[Γfn(c)]

)r
of these curves made of disks of size r has mass 1 − O(r2), and

since T̂ has continuous potential, by Theorem 1.1 the intersection d−n[Γfn(c)] ∧ T̂ is

carried by
(
d−n[Γfn(c)]

)r
, up to a small error η(r). But to fill up a set of measure

1 − η(r) of d−n[Γfn(c)] ∧ T̂ , at least c(r)dn disjoint such disks are required, and pulling
them back by γn we get a set of c(r)dn disjoint disks in Λ, covering a set of measure
1− η(r) for Tc, each of which mapped under γn to a disk of size r. Being disjoint, most
of the pulled-back disks in Λ have area at most Cd−n, so the derivative of γn there must
typically be larger than Cdn/2. Analyzing how the derivative of γn is expressed in terms
of the Dfkλ (c(λ)), for 0 ≤ k ≤ n, finally leads to (2.2). �

As already mentioned, the theory of bifurcation currents has deep connections with
arithmetic dynamics, and related rigidity problems in moduli spaces. A typical problem
in this context is the classification of families with a marked point (fλ, a(λ)) for which
the bifurcation current Ta is “abnormally regular”. The reader is referred to the recent
monograph [55] by Favre and Gauthier for more on this topic.

2.2. Stability/bifurcation theory in higher dimension. Moving to higher dimen-
sion, it is tempting to imitate the definition of J-stability by coining a definition of
stability from the non-collision of periodic points. An obvious difficulty is that in this
context the automatic extension of holomorphic motions fails and the relevance of this
definition needs to be justified, for instance by proving its equivalence with other natural
ones. Due to the variety of possible situations, in higher dimension the details depend
on the category of maps under study. So far, this program has been fulfilled in two cases:
polynomial automorphisms of C2 (by Lyubich and the author), and holomorphic maps
on Pk (by Berteloot, Bianchi and Dupont).

2.2.1. Polynomial automorphisms of C2. For a polynomial automorphism f of C2 we can
define Julia sets J+ and J− respectively associated to forward and backward iteration,
as well as the “small Julia set” J = J+ ∩ J−, and J∗ ⊂ J the closure of the set of
saddle periodic points, which is also the support of the maximal entropy measure [9].
Following [53], we say that a holomorphic family (fλ)λ∈Λ of polynomial automorphisms of
fixed dynamical degree d is weakly J∗-stable if (i) its saddle points do not bifurcate, hence
(under mild assumptions) so do all periodic points. (Here the numbering of properties
corresponds to that of the 1-dimensional case on page 7.) Then the holomorphic motion
of saddle points extends to a branched holomorphic motion of J∗ and the condition
is equivalent to (ii) λ 7→ J∗(fλ) is continuous. Furthermore the branched holomorphic
motion extends to the “big Julia set” J+∪J−. It remains an open question whether weak
J∗-stability yields a conjugacy on J∗ or J (that is, whether an analogue of (iii) holds). It
is proved in [13] that weak J∗-stability implies a probabilistic form of structural stability,
that is, a conjugacy can be defined on a full measure subset for any hyperbolic measure.
Also, weak J∗-stability preserves uniform hyperbolicity [13, 50], so the familiar concept
of hyperbolic component makes sense in this setting.
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Even if strictly speaking polynomial automorphisms have no critical points, the main
issue in [53] is about condition (iv) (stability of critical points). Indeed, it a popular ana-
logue of a prerepelling critical point for a 2-dimensional diffeomorphism is a heteroclinic
tangency, so we are looking for a characterization of stability in terms of (absence of)
tangencies. It is well-known that in dissipative dynamics, homoclinic tangencies yield
bifurcations from saddles to sources, and the main point of [53] is to find a mechanism
for the converse implication. The key is the phenomenon of semi-parabolic implosion.

Before moving on to this topic, let us point out that so far there is no theory of
bifurcation currents for automorphisms of C2.

Question 2.5. For polynomial automorphisms of C2, is stability characterized by the
harmonicity of the Lyapunov exponents of the maximal entropy measure? In other words,
does an analogue of condition (v) above hold?

2.2.2. Semi-parabolic implosion and tangencies. Parabolic implosion refers to a set of
phenomena, discovered by Douady and Lavaurs, occurring when unfolding a periodic
point with a rational indifferent multiplier. To be specific, consider a family of the form

fλ(z) = (1 + λ)z + z2 + h.o.t.

in a neighborhood of the origin, for small λ. For λ = 0, the fixed point 0 admits a basin of
attraction B. Now If λ approaches the origin tangentially to the imaginary axis, we can
track precisely how the parabolic basin B “implodes” by “passing through the eggbeater”
created between two slightly repelling fixed points pλ = 0 and qλ ≈ −λ. More precisely,
for well-chosen λn, fnλn converges locally uniformly in B to a non-constant Lavaurs map
ψ : B → C, depending on (λn). Of course for λn ≡ 0, ψ = 0: in this sense the limiting
dynamics of fλ as λ→ 0 is richer than that of f0. This gives rise to a wealth of dynamical
phenomena at a such a parabolic bifurcation, like the discontinuity of the Julia set or
the birth of hyperbolic set of large Hausdorff dimension, which are instrumental in
Shishikura’s theorem that the boundary of the Mandelbrot set has dimension 2.

Bedford, Smillie and Ueda [11] extended this analysis to the unfolding of a semi-
parabolic fixed point of multiplicity 2 in C2, that is, of the form

(2.3) fλ(z, w) = ((1 + λ)z + z2 + h.o.t., bλw + h.o.t.), with |b0| < 1.

In this dissipative situation, as before the Lavaurs map is a limit of iterates of the form
fnλn , its domain is the attracting basin B of the origin, but its values are contained a
curve: the repelling petal of the semi-parabolic point. For polynomial automorphisms,
this leads to a precise description of the discontinuity of the Julia sets J and J+ at
λ = 0. (See also Bianchi [15] for some results about the implosion of general parabolic
germs.)

If (fλ) is an arbitrary family of dissipative polynomial automorphisms, semi-parabolic
bifurcations (of possibly arbitrary multiplicity) occur densely in the bifurcation locus by
definition. A mechanism producing homoclinic tangencies from semi-parabolic implosion
was designed in [53]. Besides the analysis of Lavaurs maps (which is not as precise as
in the multiplicity 2 case (2.3)), this involves a construction of “critical points” in semi-
parabolic basins, which by definition are tangencies between unstable manifolds (associ-
ated to some given saddle point) and the foliation of the basin by strong stable manifolds.
Surprisingly, this construction is based on Wiman’s classical theorem on entire functions
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of slow growth, and requires a stronger dissipativity condition: |Jac(fλ)| < d−2 (substan-
tially dissipative regime). Altogether we obtain the following theorem, which confirms a
classical conjecture of Palis in this setting:

Theorem 2.6 (Dujardin and Lyubich [53]). In a substantially dissipative family of
polynomial automorphisms of C2, parameters with homoclinic tangencies are dense in
the bifurcation locus.

It is expected that this result holds without the substantial dissipativity assumption.
Also, it is an open question whether quadratic tangencies are always created in this
process. A positive answer would yield an interesting link with the quadratic family,
and add further evidence to the universality of the Mandelbrot set.

2.2.3. Holomorphic maps on Pk. The case of families of holomorphic maps on Pk was
studied by Berteloot, Bianchi and Dupont in [14]. Here, as in the one-dimensional
case, one starts with the stability of repelling periodic points. More precisely, one has to
restrict to repelling points contained in the “small Julia set” J∗ (which by definition is the
support of the maximal entropy mesure µ), since there can be a number of “spurious”
repelling points outside J∗. Then Berteloot, Bianchi and Dupont obtain an almost
complete generalization of the results of Mañé-Sad-Sullivan, Lyubich and DeMarco (that
is, conditions (i) to (v) of pp. 7-8). As before, a remaining issue is whether this notion
of weak J∗-stability implies structural stability on J∗. A main difference with the 1-
dimensional case is that the characterization of bifurcation in terms of currents is now
essential to establish the equivalence between the remaining conditions. More precisely
the link between the instability of critical orbits and that of periodic points is provided
by a formula à la Manning-Przytycki for the Lyapunov exponent of the maximal entropy
measure.

We saw in Theorems 2.1 and 2.2 that the higher bifurcation currents T kbif describe
accurately certain higher codimensional phenomena in parameter space. It seems that
the distinction between Tbif and its powers is not as clear in higher dimensional dynamics:
in a recent work, Astorg and Bianchi [3] showed that in a large portion of the family
of polynomial skew products of C2, the supports of all currents T kbif coincide with the
bifurcation locus. So the significance of these higher bifurcation currents in this context
is yet to be explored.

2.3. Robust bifurcations. As said before, due to the finiteness of the critical locus,
one-dimensional polynomial and rational maps are generically stable. Intuition from
real dynamics suggests that this is not anymore the case in higher dimension. As in the
previous paragraph, we discuss separately the cases of polynomial automorphisms and
of holomorphic maps on Pk.

2.3.1. Polynomial automorphisms. Given the characterization of weak J∗-stability in [53],
a straightforward adaptation of the one-dimensional argument for the density of stabil-
ity shows that in any holomorphic family (fλ) of polynomial automorphisms of C2, the
union of (weakly J∗-)stable parameters together with parameters with infinitely many
sinks is dense. Prior to [53], it was actually already known that stability is not a dense
phenomenon in this context, due to the following remarkable result:
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Theorem 2.7 (Buzzard [23]). There exists d > 1 and an open subset Ω ⊂ Autd(C2)
contained in the bifurcation locus. In particular maps with infinitely many sinks are
dense in Ω.

Here Autd(C2) is the space of polynomial automorphisms of C2 of degree d. This
deep theorem is nothing but the adaptation to the complex setting of Newhouse’s the-
orem (see [76]) on the existence of surface diffeomorphisms with persistent homoclinic
tangencies. It is obtained by first constructing transcendental examples and then ap-
proximating them by polynomial ones, hence the degree d is unknown and presumably
very large. The existence of this complex Newhouse phenomenon in arbitrary degree is
a major open problem.

Question 2.8. Is the bifurcation locus of non-empty interior in Autd(C2) for any d ≥ 2?

As in the real case (cf. [76]), one may even expect that robust bifurcations (that is,
interior points of the bifurcation locus) are dense in the bifurcation locus, at least in
the dissipative regime. For this, it is tempting to imitate the approach of Shishikura’s
theorem on the Hausdorff dimension of ∂M and use semi-parabolic implosion to con-
struct large bifurcation sets from a single parabolic bifurcation: in this sense the density
of robust bifurcations would be the optimal generalization of Shishikura’s theorem to
automorphisms of C2. An interesting first step would be to show that the bifurcation
locus has maximal Hausdorff dimension at every point. More advanced techniques will
certainly be needed to get open subsets: an ambitious research program on the intersec-
tion of complex Cantor sets was initiated by Araujo, Moreira and Zamudio towards this
perspective (see [1, 2]).

Biebler observed in [18] that the existence of robust bifurcations is actually more
tractable in higher dimensions and showed that: for every d ≥ 2 the bifurcation locus
has non-empty interior in Autd(C3). This is based on a distinct mechanism for robust
bifurcation: the blenders of Bonatti and Diaz [19]. These are dynamically defined Cantor
set which are so fat in a certain “direction” that they intersect an open set of curves.
The point of [18] is to use this feature as a building block for persistent tangencies.

Finally, let us point out a recent beautiful result by Yampolsky and Yang [85]: the
one-dimensional family of degree 2 Hénon maps with a golden mean Siegel disk

fa(x, y) = (x2+ca−ay, x), with ca = (1+a)

(
µ

2
+

a

2µ

)
−
(
µ

2
+

a

2µ

)2

and µ = eπ(1+
√

5)i,

is structurally unstable at every parameter with small enough Jacobian |a|. This relies on
a completely different approach to persistent tangencies, based on Siegel renormalization.

2.3.2. Holomorphic maps on Pk. From the work of Berteloot, Bianchi and Dupont, we
know that the basic phenomenon responsible for bifurcations for holomorphic maps on
Pk is when the post-critical set intersects the small Julia set J∗. Thus, to obtain robust
bifurcations, it is enough to find a mechanism ensuring a robust intersection between the
post-critical set and J∗. A convenient tool for this is the Bonatti-Diaz blender, which
leads to:

Theorem 2.9 (Dujardin [49]). For every k ≥ 2 and d ≥ 2, the bifurcation locus has
non-empty interior in Hold(Pk).



GEOMETRIC METHODS IN HOLOMORPHIC DYNAMICS 15

Here, Hold(Pk) is the space of holomorphic maps on Pk of degree d. A specific one-
dimensional family of holomorphic maps of P2 with a full bifurcation locus was found
independently by Bianchi and Taflin [16]. After this result, a natural question is that
of the abundance of robust bifurcations in Hold(Pk). Taflin [83] showed that robust
bifurcations are abundant near product polynomial maps of C2, and Biebler [17] showed
that Lattès maps of sufficiently large degree are accumulated by robust bifurcations.
Blenders are involved directly or indirectly in both cases, and seem to appear quite
naturally when a repelling periodic point bifurcates to a saddle. Still, the general picture
remains elusive.

Question 2.10. Is the bifurcation locus in Hold(Pk) the closure of its interior?

Lastly, a celebrated theorem of McMullen asserts that any stable algebraic families
of rational maps on P1 is either isotrivial or a family of flexible Lattès examples [74].
Extending this result to higher dimensions is a promising research problem; one main
obstacle is that part of the argument relies on Thurston’s topological characterization
of rational functions. Related preliminary results have been obtained by Gauthier and
Vigny [61].

3. (Non-)Wandering Fatou components

The classification of Fatou components is a basic chapter of holomorphic dynamics.
For rational maps in dimension 1, periodic Fatou components can be classified into at-
tracting basins, parabolic basins, and rotation domains (Siegel disks and Herman rings).
The crowning achievement of this classification is the celebrated non-wandering domain
theorem of Sullivan [82]: for a one-dimensional rational map, any Fatou component is
preperiodic.

In higher dimensions, techniques from geometric function theory may be applied to
classify periodic Fatou components. It is convenient to distinguish between recurrent
and non-recurrent periodic components: a fixed Fatou component Ω is recurrent if for
some x ∈ Ω, the ω-limit set ω(x) is not completely contained in ∂Ω. Recurrent Fatou
components were classified in various classes of rational maps in [10, 57, 84, 56]. The
upshot is that in such a component either there is an transversely attracting subman-
ifold (possibly a point) or the dynamics is of rotation type. The situation is far less
understood in the non-recurrent case. A notable exception is that of substantially dis-
sipative automorphisms of C2, for which it was shown by Lyubich and Peters [72] that
any non-recurrent Fatou component is the basin of a semi-parabolic periodic point.

On the other hand it is immediately clear that the quasiconformal techniques used in
Sullivan’s proof are not generalizable to higher dimension. As it turns out, wandering
components do exist in 2-dimensional polynomial dynamics:

Theorem 3.1 (Astorg, Buff, Dujardin, Peters and Raissy [5]). If 0 < a < 1 is sufficiently
close to 1, the polynomial mapping of C2 defined by:

f : (z, w) 7−→ (p(z, w), q(w)) =

(
z + z2 + az3 +

π2

4
w,w − w2

)
admits a wandering Fatou component.
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The proof is based on an original idea of M. Lyubich, and relies on a skew product
version of parabolic implosion. It was further implemented in other situations in [4, 63].

Sketch of proof. Write p(z, w) = p0(z)+ε(z, w), with p0(z) = z+z2 and ε(z, w) is thought
of as a perturbative term. Start with an initial point (z0, w0) such that z0 belongs to the
parabolic basin of attraction of 0 for p0 and w0 a small positive number, and let as usual
(zn, wn) = fn(z0, w0). Then wn = qn(w) converges to 0 along the positive real axis, and
pn0 (z0) converges to 0 along the negative real axis. Therefore zn = pn0 (z0) + εn is pushed
a little faster towards the origin by the term εn. The terms in ε(z, w) are crafted so
that if z0 is chosen carefully in some open set of initial conditions, the iterates zn indeed
pass the origin by going “through the eggbeater” and come back close to their initial
position. So we can repeat this process and conclude that (z0, w0) belongs to some Fatou
component. But since the returning time increases with the number of iterations, this
Fatou component is not periodic, and we are done. �

At this stage the following natural questions arise:

Question 3.2.

(1) Are there other dynamical mechanisms leading to wandering Fatou components?
(2) Find substantial families of higher dimensional rational mappings without wan-

dering domains.

Regarding the first question, a mechanism for constructing wandering domains in 2-
dimensional smooth dynamics, based on the Newhouse phenomenon, was devised by
Colli and Vargas [27]. Berger and Biebler recently proved that this mechanism can be
implemented in certain 5-dimensional families of Hénon maps, leading to the following
stunning theorem:

Theorem 3.3 (Berger and Biebler [12]). There exists a polynomial automorphism of C2

of degree 6 with a wandering Fatou component.

For the second question, it is a classical fact that hyperbolic dynamics prevents the
existence of wandering domains. Besides this observation, not much is known. In view of
Theorem 3.1, it is natural to investigate the case of skew products with a fixed attracting
fiber, that is, of the form

(3.1) f(z, w) = (p(z), q(z, w)), with p(0) = 0 and
∣∣p′(0)

∣∣ < 1.

In this case it could be expected that Sullivan’s theorem, together with the attracting
nature of the invariant fiber should be enough to prevent the existence of wandering
domains. Embarrassingly enough, even in such a simple situation, there is no definitive
answer so far, and furthermore it was shown by Peters and Vivas [79] that the above
naive intuition does not lead to a proof. Here is the current status of the problem:

Theorem 3.4 (Lilov, Peters-Smit, Ji). If f is an attracting skew product as in (3.1),
then there are no wandering components near the attracting fiber, whenever:

• p′(0) = 0 [68] or more generally if |p′(0)| is small enough (with respect to p and
q) [65];
• |p′(0)| < 1 and q(0, ·) satisfies some non-uniform hyperbolicity properties [78, 64].



GEOMETRIC METHODS IN HOLOMORPHIC DYNAMICS 17

There is currently no hope for a general understanding of the problem of wandering
Fatou components in several dimensions, and even going beyond skew products seems
to be a serious challenge. An interesting first case to be considered is that of Fatou
components in the neighborhood of an invariant super-attracting line, which would cover
for instance the case of regular polynomial mappings of C2 near the line at infinity.
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Ann. Sci. Éc. Norm. Supér. (4), 50 (2017), pp. 449–477.
[14] F. Berteloot, F. Bianchi, and C. Dupont, Dynamical stability and Lyapunov exponents for
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[30] , Un critère de laminarité locale en dimension quelconque, Amer. J. Math., 130 (2008), pp. 187–

205.
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