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PLASTIC AND DISSIPATED WORK AND STORED ENERGY
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This paper depicts one theoretical and experimental method to take into account the energy phenomena, associated with the
elasto—plastic deformation process, during the elaboration of behaviour laws. The energy balance definition is examined in
order to relate the stored energy of cold work to the hardening state variables. Two experimental approaches are used to study
the evolution of the energy balance. The first one uses microcalorimetric technique and the second infrared technique. Several
industrial metallic materials are studied by both approaches. Energy data are used to control the validity domain of the
classical behaviour laws and to elaborate new more appropriate ones. Therefore, the hardening parameters cannot be
identified with the thermodynamical forces. The use of energy considerations allows the definition of new thermodynamical
forces and state variables, in the case of isotropic or kinematical hardening.

1. Introduction

This paper describes in a more detailed way, the
experimental and theoretical results recently presented
in Chrysochoos et al. [1].

When a solid material is strained, its temperature
field nearly always changes. The thermal effects, accom-
panying the deformation process, have been being
observed for a long time by the experimentalists (Kelvin
[2], Taylor and Quinney [3]), and still remain the subject
of a large number of publications (Bui [4], Mandel [5],
Krempl [6], etc).

In the case of quasi-static solicitations, the thermal
effects are hard to study experimentally because the
temperature variations are limited. And this limitation
will be so much more important as the strain rate is
small and the heat capacity and the heat conduction are
large, which is nearly always the case for metallic
materials. For instance, with one duralumin strained at
10~* 57!, the temperature variations do not exeed
10°K.

This could be the reason why thermomechanical
couplings are rarely taken into account in the
determination of behaviour laws, even if thermody-
namics is omnipresent in the construction of models.
Generally, the restriction imposed upon the behaviour
law is that it verifies the second principle of thermody-

namics (using, for instance, the generalized standard
materials theory [7]).

It is of great practical interest, and of fundamental
importance, to examine this whether the usual laws (the
ones integrated in computation codes) are able to de-
scribe the energy phenomena associated with deforma-
tion processes or not; in the particular case of elasto-
plastic materials, the theory concerning dissipated en-
ergy, or internal energy stored during the hardening,
could be in agreement with the experimental observa-
tions.

This article depicts, with more technical details than
in Chrysochoos et al. [1], the thermomechanical be-
haviour of metallic elasoplastic materials at finite strain.
Three materials, which are commonplace, have been
chosen: duralumin (supercooling), carbon steel (age-
hardening), and stainless steel (age-hardening). An ex-
perimental and theoretical methodology is introduced,
which first examines the thermomechanical validity of
the behaviour laws, and then suggests modifications to
produce new and more appropriate laws.

In the first stage, we will restate the definition of the
energy balance in the case of elastoplastic materials,
during a tensile test at finite strain. Then, two experi-
mental set-ups are described. They make it possible to
study the evolution of the energy balance for tensile
tests. The first one is based on micro-calorimetric tech-



niques and allows a global study of the energy phenom-
ena; the second one, using infrared techniques, allows
more localized observations.

The results that are obtained are used to control the
validity of two classical, nevertheless commonplace
models: Prandtl-Reuss’s model, based on isotropical
hardening, and Prager’s model, based on linear kine-
matical hardening.

Deep disagreement, from an energy point of view,
between theoretical and experimental results leads us to
define two new laws, which can predict the observed
evolution of the energy balance, and be integrated into
the Generalized Standard Materials theory. In each
case, the energy data are used to define the internal
state variable associated with strain hardening and its
evolution equation, which is similar to the one of non-
linear kinematical hardening models.

2. Energy balance

In the interpretation of the heat quantity measure-
ments used in the energy balance, the experimentalist
must be mindful of the several options available in the
thermodynamics domain as in the continuous media
mechanics domain.

Here, one adopts the classical theory of Irreversible
Process Thermodynamics [8,9].

From a mechanical point of view, the dissipation
form has been studied for several choices of elastic
plastic decomposition in the general case, and then in
the case of tensile test [10,25]. Some of them are based
on propositions made by Green and Naghdi [11], Lee
[12] and Nemat-Nasser [13]. We will not consider this in
detail here, but it has led us to verify that in the case of
tensile test, the dissipation and energy balance forms
can be made independent of the most classical kine-
matical approaches, if the elastic strain remains small.

The curve shown in fig. 1 is characteristic of a
‘load—unload cycle’ for elastoplastic material and de-
termines the thermodynamical process (O, 4, B). The
mechanical energy, provided during loading to deform
the sample, W,,,, can be decomposed into an elastic
part, W,, and a complementary part, W,, that we will
call ‘anelastic’ energy

u/exl=m+u/n' (1)

This assertion is carefully discussed in [10]. In the
tensile test, and whatever the kinematical approach
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Fig. 1. Energy balance for a load—unload cycle.

used, elastic and plastic strain rate tensors can be de-
fined and respectively noted €, and € :

dmid,+ 4, (2)

where € is the Eulerian strain rate tensor, and where:

Wm=j(;lj;z(7)a: édxdr, (3)
We=f0'fm”u: ¢ dx dr, (4)
W, =j;l/;l(”o: é,dxdr, (5)

o being the Cauchy’s stress tensor, £2(¢) being the
geometrical domain occupied by the sample, and : sym-
bolizing the double product of the tensor, (o: € = 0, ¢, ).

The anelastic energy can also be decomposed into
the dissipated energy W,, and a complementary part,
W,, stored during the strain hardening,

Wo=Wy+ W,. (6)

The use of classical results descended from the Ther-
modynamics of Irreversible Processes, allows to define
the intrinsic dissipation:

Iy
D= —p,—p5r—q; 7
1 Pi paaj a_,v ( )
where p, = —o: ¢, represents the internal power per

unit volume, and p[(dy/d«;)q,], the power associated



to the set of internal state variables (a;), j=1,2,...,n
as a function of the specific free energy ¥(7, a;);
(T = a, being the absolute temperature, and p the mass
density).

The dissipation is related to the dissipated energy by

W, =f0’fm7).@, dx dr. ®)

It appears as heat source in the second member of the
heat conduction equation:

32
Y i
pC,T + div ¢= 92, +r+pTa o7 a;, 9)
where C, is the heat capacity when (a;) j=1,...,n

remain constant, g is the heat influx, and r the external
heat supply.

If we assume that in the vicinity of the thermal
equilibrium, the variations of the hardening parameters
(i.e. the thermodynamical forces related to the harden-
ing) p 9Y/0a;, j=2,...,n, with the temperature are
negligible, then:

2
pCH— kA0 =2, + pT——— L €, = Wy, (10)
90 de,
if @=T~T,, (T,: equilibrium temperature), r is con-
stant, ¢ = —k grad 8 (Fourier’s law), and where a; =¢,
is an elastic strain tensor.

In the second expression in eq. (10), near the dissipa-
tion, the isentropic term, coming from the thermoelastic
effects, can be recognized. It can be related to the
isentropic energy, which appears in fig. 1, during the
load and the elastic unload, by the relationship:

' R
_u/is_‘[()j;l('r) de. aT - té, dxdr
=-—f7’ AT, tr(6) dx dr (11)
0Y2(7)

where A is the coefficient of linear thermal dilatation,
tr(0) symbolizing the tensor trace.

The complete balance between states O and B (see
fig. 1) shows that the variations of internal energy A E
of the sample corresponds to the stored energy varia-
tions

B _ _ _3_4’_ P
AE|O—Wb—f r)(T)pao‘ox dx dr, J= 2w siis

(12)

3. Experimental set-up

The large diversity of experimental approaches met
in the literature, which measure the internal energy
stored during the hardening, shows the difficulties of
that kind of measurement. This method can be divided
into two categories: the quantities of stored energy can
be determined either directly, during the hardening, or
indirectly, after deformation, during an appropriate
cooling:

— direct approaches: between two hardening states, the
stored energy is the difference between the anelastic
energy and the dissipated work [6,14,15];

- indirect approaches: the stored energy is determined
by comparing the thermal behaviour of a hardened
sample with a cooled one, during a cooling process
[16).

The wide range of results, obtained on copper (see
fig. 2), for instance, leads us to suggesting the following
experimental set-ups. The first one, is a microcalorime-
ter, adapted to tensile testing; the second one uses the
infrared techniques developed in the Laboratoire de
Mécanique et d’Acoustique de Marseille, France. It
must be noted that both direct approaches are indepen-
dent and complementary.

3.1. Microcalorimetry of tensile test
The originality of such a device is that the micro-

calorimeter is directly placed on the crosshead of the
testing machine, and the sample passing through the

W e (D

Fig. 2. Stored energy dispersion in case of copper. Experimen-

tal results synthesis extracted from [16]. (1.2) L.M. Clarebrough,

(3) S. Sato, (4) V.I. Khotkevich, (5) S.D. Hertsariken, (6) G.I.

Taylor, H. Quinney, (7) T. Suzuki, (8) M.M. Degtiarev, (9)
R.O. Williams.
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Fig. 3. Microcalorimeter: (1) sample, (2) internal cell cylinder,
(3) Aluminium block, (4) thermocouples, (5) external cell cylin-
der, (6) anti radiation screen, (7),...,(13) thermal resistances.

cell, (fig. 3). The main advantage is that the thermocou-
ples are not in contact with one another.

In general, with such a device, the measurements are
realized between two thermal equilibrium states. Here,
one of the objectives was to realize a microcalorimeter
able to evaluate continuously the heat evolved during
the test. In comparison with Calvet’s classical calorime-
ter, our device possesses only one cell with 1200 thermo-
couples, instead of two differential cells with 100 to 400
thermocouples (the sensitivity of the classical micro-
calorimeter can reach 5 X 107°C between both cells).
Here, the heat losses due to the sample imply a maximal
sensitivity of 10 3°C.

To obtain a good signal-to—noise ratio, the calibra-
tion of the thermoregulation must be carefully carried
out. The test room must be completely closed. The air is
mixed by six electric fans and climatized by two heat
sources. The efficiency of the thermoregulation comes
afterwards from the series of thermal resistances placed
between the test room air and the cell. This one is made
by two coaxial copper cylinders between which the
thermocouples are regularly placed.

To relate the signal given by the thermopile to the
heat evolved in the cell, several hypotheses are made.

It is supposed that in the vicinity of thermal equi-
librium, the heat transfers, between the sample and the
internal cell cylinder, between the internal and external
cylinders, between the sample or the cell and the sur-
roundings, by radiation, convection or conduction, are
well modelled by linear laws in temperature. Therefore,

if T;, T,, are respectively the mean temperature of the
internal and the external cylinders, the signals delivered
by the thermocouples is proportional to the thermal
disequilibrium

s=G(T,—T,), where G is a constant. (13)

Integrating the heat conduction equation into the de-
formed volume of the sample, into the internal and
external cell cylinder yields the following differential
system:

T+ H (T~ T) + Hy (T, — T,) = Q
p T+ Hy(T, = T,) — Hy(T,, - T;) =0, (14)
“37-;:-.'”4(7;- Ta)—Ha(Ti“ 7;) =0,

where T, is the characteristic temperature of the sam-
ple and where the test room temperature is supposed to
be constant; u,, u,, p; are respectively the heat capaci-
ties of the sample, the internal and external cell cylin-
ders; H,, H,, H,, H, characterize the heat transfers
between the sample and the cell inside, the sample and
the surroundings, the internal cylinder and the external
one, the external cylinder and the surroundings; and
Q = W, — W, represents the mechanical heat source.

The relationship between the evolved heat Q and the
signal s can be deduced from egs. (13) and (14):

o 433
XCXP("L:;—T‘)]S(T) dr=KQ(1), (15)

t ime

HMecal . signal
w‘s= Je: calculated
L -10
:48Y: measured

L -15

isentropic energy

HMecal . .signal

L -20 ¢J)

Fig. 4. Calibration control of the microcalorimetric device.



where ¢,, t,,, 7, 7, and K are constants which can be
experimentally evaluated [17]. A validity control, and a
calibration of the device is made using several thermo-
elastic effects: monotonic and cyclic elastic solicitations
are used. Then, the measurement of the isentropic en-
ergy is compared with its theoretically calculated value
(linear and isotropic behaviour law), (cf. fig. 4).

3.2, Infrared thermography

The second approach uses infrared techniques. The
numerization system developed in the Laboratoire de
Mécanique et d’Acoustique de Marseille by Nayroles et
al. is adapted to the energy balances study [18-21].

To illustrate the performances of such an apparatus,
we can mention some data. The observation zone, of the
camera, is in our experiments, a rectangle of 15 mm X 25
mm. Each thermal picture represents a matrix of 128 X
180 points. The recording time, on computer, is around
0.6 s and the information recorded during a test repre-
sents a data array of 27 mega bytes. The resolution is
around 0.13 mm for a maximal sensitivity of 2.7 X
10™°%C,

The temperature maps are used to determine, by the
interposition of the heat conduction equation, the heat
locally evolved.

The main difficulty in estimating the differential
operator applied to the temperature, comes from the
thermal noise, which is essentially due to the parasite
reflexions.

To estimate the first expression in eq. (10), the
chosen method is the following:

k go=-L(2,-w,), (16

a0
——+ugrad0—pca oC.

at

where u is the velocity vector.

In our experiments, the convection term is negligible
(good thermal diffusivity of the studied materials, and
very short strain rate). The local equation is integrated
onto a little surface S of the observation zone, in order
to eliminate, the Laplacian term, which is a big noise
amplifier

0k 20 1
5 " 3G hsan 93¢

the bar symbolizing the average on S.

Then, we assume, once more, that in the vicinity of
thermal equilibrium, the heat flux by radiation and
conduction (no convection, experiments are made under

(él_;is)’ (]7)

strain - temperature

60 80 100 t(=)
A

R — PN Ut

time

Fig. 5. Calibration control of the infrared device.

a primary vacuum), can be modelled by a linear law in
temperature:

38 8 1 = =

3}‘4-'{}:—;)?‘(9‘—“’“) (18)

the time constant 7, characterizes the local heat losses.

To illustrate the incidence of the thermal noise upon
the heat source determination, we point out the fact
that without efficient numerical filtering, the heat source
fluctuations due to the Laplacian term, are around
250°C/s when the order of magnitude of the dissipa-
tion is around 1072-10"'°C/s.

The validity of the hypothesis of the linearity of
losses is carefully controlled, by heating the sample
(Joule’s effects), by studying the cooling or reheating of
the sample caused by the thermoelastic couplings, and
by calculating, in the center of the sample, the analyti-
cal solution of one thermal problem associated with
boundary conditions which are close to the experimen-
tal ones, (cf. fig. 5).

4. Experimental results

Tests are made on duralumin (AU4G), carbon steel
(XC38) and stainless steel (A316L). We suppose homo-
geneous tensile tests; therefore, the deformation is
limited to 10% in order to neglect any local striction or
damage. Young’s modulus remains constant during the
different deformation processes. The load and deforma-
tion signals allow us to determine the strain and stress
states. They are used to evaluate the plastic work W,
and the isentropic energy Wi,.

Both approaches lead to results in good agreement.
They are very similar at the beginning of the hardening,
the dispersion increasing with the processes (figs. 6 and
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Fig. 6. Dispersion of evolved heat measured by microcalori-
metric (pc) and infrared (IR) experimental approaches. Super-
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7). The relative errors, concerning the heat quantity
measurements begin at 3 or 4% and do not exceed 15%.

The experiments made on the three materials men-
tioned above have shown that:

e
e PLADOT7 (e,

—_—
|
|
—

>

©
|
L

Fig. 7. Dispersion of evolved heat by (uc) and (IR) ap-
proaches. Age-hardening carbon steel. Equivalent volume: 8.4
x10~%m’,
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Fig. 8. Energy balance in case of carbon steel (equivalent
volume 8.4 X 1076 m*).

— the stored energy evolution is limited, during a
monotonic strain hardening, (figs. 8 and 9). That
implies a decrease of the stored energy ratio (W /W,)
which reaches 50-60% at the beginning of the
hardening;

— in the first approximation, the stored energy is a
linear function of the applied stress, as soon as
plastic deformation appears (fig. 10).

If the decrease of the stored energy ratio is now a
classical result [4], the percentages obtained here are
more important than the ones often met in the litera-
ture; generally W, /W, do not exceed 15%, what ex-
plains the classical attitude in behaviour law modelling
of neglecting the stored energy of cold work, [22]:

ﬂ-d ;K0 €

£ PO 8 19
P J n (19)

p*

4

stored energy ratio

plastic strain

Fig. 9. Decrease of the stored energy ratio (supercooling
duralumin).
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In our case, this approximation cannot be more
justified, especially at the beginning of strain hardening
where:

—alp- o= D, =%0:¢

P
da;

g, W (20)

P’

The evolution of the stored energy is also an original
result. On pure metals, like copper or aluminium, the
evolutions of the stored energy as a function of stress,
are often modelled by quadratic curves [23] or cubic
curves [14).

5. Validity control of thermomechanical behaviour laws
and new models propositions

Even if some behaviour laws are able to qualitatively
predict some of the observed energy phenomena, we
would still hold it preferable to begin the examination
of thermomechanical models using the laws previously
mentioned. We could have taken, for instance, the non-
linear kinematical hardening model which assures
qualitatively the decrease of the stored energy ratio [24].
The chosen models are sufficient to describe monotonic
hardening phenomena and are the basis of all models
founded on isotropic or kinematical hardening. The
validity of both laws is determined by comparing their
predictions, from an energy point of view, with experi-
mental observations during tensile tests.

In case of an isotropic and /or kinematical model the
intrinsic dissipation can be written:

D,=0:é,—X:a—Rp (21)

where o is Cauchy’s stress tensor, €, the plastic strain
rate, (X, a) and (R, p) the couples (thermodynamical

force, state variable) respectively associated with the
kinematical and isotropical hardening,

When the elastic domain is defined by Von Mises’s
criterion (cf. fig. 11), and if the generalized normality
hypothesis is presumed (7], the dissipation can be re-
written:

2, = R 1> (22)

where ¢=¢,, p=¢,, Oy symbolizing the second
invariant of the tensor.
In the case of monotonic, homogeneous tensile tests

D, =0g,, (23)
where o, is the yield stress and ¢, is the tensile strain
rate, and where index 3 symbolizes the tensile direction.

The stored energy by volume rate is by definition,
the difference between the anelastic energy rate and the

dissipated power:
w;’heo___a:e'p_91=(a"—Ro)(.p"20- (24)

In the case of monotonic tensile tests:

+ theo

Wy = (0‘ - ae)ép,’ (25)

where o, is the tensile stress. We stress the fact that,
during such tests, if the plastic strain rate ¢, remains
approximately constant, (¢, =0), eq. (25) implies the
indefinite increasing of the stored energy:

W0 = Gg > 0. (26)

This result is not similar to experimental observations.
If the stored energy increases at the beginning of the
hardening, the material asymptotically tends to a
saturation state

WE < 0. (27)

R,+R 3

S
9, o,

Fig. 11. Von Mises’s criterion: f(o, R, X)=(s~=X)y—~R—
R



Fig. 12. Stored and dissipated energy evolutions predicted by
Prandtl-Reuss’s and Prager's behaviour laws.

The confrontation between theory and experiment is
more significant if we consider the stored energy ratio
F:

! .
. j;j;uﬂwb dx dr _ o | -

, W,
o:é dxdr
0‘/;7(1) E

Experimentally, the decreasing of the stored energy
ratio as a function of the cumulated plastic strain e, is
shown, (e, = [gé,; d7), when the models predict an
increasing evolution, (fig. 12).

In order to modify such models, we abandon the
hypothesis that the hardening parameters can be di-
rectly identified with the thermodynamic forces, and we
will suppose that the first ones are dependent on the
second ones.

o

5.1. Proposition of isotropic model

In the case of isotropic hardening, with classical
notations, the Helmholtz’s free energy per unit volume
can be written

Py (0, €., p) =3 A(8) e ie.+yu(6, p). (29)

We will suppose that the (small) temperature varia-
tions due to deformation do not modify the hardening
state of material:

Ad
a0

The thermodynamical forces associated to the state
variables ¢, and p are respectively 6 and —z defined
by:

=0 and wy=y,. (30)

9
0=paf, (31)

e

0y _ dyy

z= ps—;; = —d7 . (32)

Note that we have kept p as the symbol for the state
variable associated with the isotropic hardening, but
now p is a priori different from the cumulated plastic
strain ep:

Von Mises’s criterion is a function of thermody-
namic forces:

f(a,z)=(s)”—R(z)—R0, (33)

where (), is the second invariant of the stresses devia-
tor. The generalized normality hypothesis leads to:

ép=A3L - o (34)
A= (e'p)", (35)
p= —Ag—f=%(ep)". (36)
The intrinsic dissipation can be written:

Dy=0:é,—zp=0:¢,— . (37)

Then, the one-to-one map between the hardening
parameter R and the thermodynamic force —z and the
evolution equation of the state variable p can be de-
duced from the experimental results.

First, one approximates the tensile hardening curve
by an exponential branch:

ot(ep)=oc+os[1—exp(—aep)], (38)

where o, is the yield stress, o, and a are constants.

Secondly, we have seen that the stored energy evolu-
tion as a function of stress could be well approached by
linear law:

1
\"h(ep) = ZR(ep)v (39)
where b is a constant and R(e,) = (3)""*(o,(¢,) — o,).

Then, with eqs. (32), (36), (38), (39), we get an
evolution equation for p:

p=(a+b)(p—p) )y (40)

where p, is a constant.
The z(R) map is:

; (41)

where Ry =(3)""%, and R, = (3)""?0,, and where f, is
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Fig. 13. Calculated and measured stored energy evolutions.
Equivalent volume: 8.4 X 10~ m®. Supercooling duralumin.

a constant. And finally, the stored energy evolution
becomes: (figs. 13, 14, 15)

¥a(e,) =¥, [1 - exp(—ae,)], (42)

where

vo= (1) 24,

The p, constant is an arbitrary constant which sym-
bolizes the asymptotic value reached by the hardening
state variable * when the saturated material behaviour
tends to perfect plastic behaviour (46, = 0). The f, con-
stant is the initial fraction of the stored energy ratio:

(
lim = 1m (%) _ -
e, —0 e,—0 w(ep)

(43)

The couple (—~z, p) associated with the hardening
state can be completely defined with the mechanical
parameters and with f;:

()" -2 @

p=p,-{1—exp[—(a+b)ep]}. (45)
5.2. A suggested kinematical model
In the case of kinematical hardening, the same ap-

proach is followed. The Helmholtz free energy is writ-
ten:

P¥ (0, €, a) =3A(0): e.: e+ Yy (a), (46)

* For instance, the dislocation density.
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Fig. 14. Stored energy evolutions. Age-hardening carbon steel.

where
Yy
o=p 3c.’ (47)
_ oy _dw,
paa - da (48)

Von Mises’s criterion is once more chosen:
f(o, Z)=(5_X(Z)n)_Ro- (49)

The one-to-one map between X and Z is supposed;
and the generalized normality hypothesis leads to:

af s—=X
€ =A- =A———, 50
& do (s=X)u (50)
A=(é) (51)
e of _dXx |
a= )\az—dz.cp. (52)
lw CJ) w:"’
z 110
: i Yn
c
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- theo
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0
Y 30
: K
X s 7 9 e (%)

pPlastic strain

Fig. 15. Stored energy evolutions. Age-hardening stainless steel.



The form of the experimental results leads to the
choice of an evolution equation for a analogous to the
one for p:

o'r=c(¢!(,)”(]—-—(-m—v‘)—"®n):ép (53)
where

. s=X
n= ——(s =¥ (54)

The (a,)y, constant is exactly like p; in the isotropic
case; an arbitrary constant which could be related to
the microscopic parameters like dislocation density, dis-
location cell size, etc.

The thermodynamical force X is supposed to be a
deviatory tensor, and to have the representative matrix:

—~X/2 0 0
X= 0 -X/2 0], (55)
0 0 X
relatively to an orthonormal frame of reference
(x,, X5, x;) where Ox, is the loading direction.

The modelling of the tensile hardening curve by an
exponential branch leads to:

X= Xs[l — exp — (ae,,)]

where
=X, n 0 0
X, = 0 X2 0 X;, being constant.
0 0 X,

5

The linear evolution of the stored energy with stress
becomes:

i) = 5 (Xuley). (57)

The integration of eq. (53), in case of a=0 for a
virgin sample, leads to:

a= as{l — exp( ﬂcep)] "
where
—ay 0 0

c=a+b and a,= 0 —a,,, 0 | (58)

The stored energy evolution can be rewritten as:

Yn(ep) =¥, [1 - exp(—ae,)]. (59)
where

2\172 o,
‘J’s = ( 5) ;va

(see figs. 13, 14, and 15).

6. Conclusions

The experimental study of the energy balance is an
important supplementary asset in determining the state
variables and thermodynamical forces associated with
the hardening modelling.

We have shown that the effect of knowledge of the
energy phenomena on the determination of behaviour
laws seem to be fundamental even if the associated
thermal effects are negligible. For instance, we have
observed, at the beginning of strain hardening, that the
stored energy quantities can be as important as the
dissipated ones, and cannot be neglected.

From a theoretical point of view, we have shown
that our observations cannot be predicted by Prandtl-
Reuss or Prager’s behavioural laws. Both models are
transformed, assuming that the introduction of harden-
ing parameters into Von Mises’s criterion depend upon
the thermodynamical forces. Taking into account the
stored energy evolution enables one to obtain evolution
equations which are similar to the ones introduced in
the non-linear kinematical model, (well adapted to de-
scribe cyclic hardening effects).
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