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Abstract—Blockchain-based smart contracts provide transpar-
ent automation in a broad range of services, including finance,
the Internet of Things, and autonomous systems. However, the
implementation of such services may easily involve security risks
and functional errors, especially for complex services composed
of different blockchains. To help developers focus on their
business model instead of diving into the blockchain architecture
heterogeneity, we propose a framework to enable analysis and
comparison of composed services before deployment. This is
achieved through the intensive use of model-based engineering
allowing reasoning on the model before generating concrete
deployment artifacts, especially for the safe orchestration of
contract calling transactions.

Index Terms—multichain, smart contract, model-driven engi-
neering, formal verification

I. INTRODUCTION

As a piece of executable code residing at a specific address
on a distributed ledger [1], the blockchain-based smart contract
permits irreversible executions of transparent transactions
among entities with distrust. Taking the IoT scenario as
an example, smart contracts can be used to automate data
sharing, device ownership transfer, user registration, certificate
deployment and revocation, etc. Smart contracts also enable
the implementation of cryptocurrency as an incentive, which
helps create a digital market to trade resources across multiple
systems, such as smart grids, transport systems, and logistic
networks.

The whole ecosystem includes stakeholders with different
behavior guarantees. For the sake of the trade-off between
the fault-tolerance capacity and the transaction speed, devel-
opers are encouraged to use different blockchains to address
corresponding stakeholders. However, the outcome of their
interactions is not as clearly defined as the transactions on
one single chain. To provide additional guarantee to the
composed service, Model Driven Engineering (MDE) is used.
MDE provides explicit models, commonly called ’first-class
artifacts’, that are further translated to lower level models
with more details. This approach is adopted to large-scale
software engineering problems thanks to its rapid prototyping,
simulation, validation and verification capabilities. Such models
are expressed through different Domain-Specific Modeling
Languages (DSMLs) [2].

MDE enables reasoning on the model before generating
concrete artefacts for deployment, including the orchestration
of services and the specification of blockchain technologies. By
having appropriate DSMLs we can contribute to the creation of

a service-level semantics of contracts running on given multi-
chain back-ends, based on which some security and temporal
properties could be formally verified by enabling simulation
at appropriate levels of abstraction.

II. RELATED WORK

In single-chain scenarios, business model translation and
smart contract verification have been explored separately.
Taking financial application as an example, the Digital Asset
Modeling Language (DAML)1 is used in asset management
logic description by offering a solution at a higher level of
abstraction. However, this approach lacks the integration of ver-
ification features. On the verification side, Tezos blockchain [3]
has already considered formal verification problems during the
protocol design phase and code implementation. Properties
are extracted from virtual machine code and fed to a theorem
prover like Coq [4]. For other blockchain projects without
such a feature, additional formalization frameworks like the K-
framework [5] and state machine abstractions give the formal
semantics.

There are research efforts devoted to generating Ethereum-
based smart contracts using MDE [6], even by generating code
from natural language models [7]. FSolidM is such a solution
that provides formal definitions to address vulnerabilities like
reentrancy and transaction ordering, as well as to support
design patterns like time constraints and authorizations [8]. It,
therefore, gives the developers a new way to formulate their
smart contracts by providing support for verification, but the
business model is still tight to Solidity implementation.

On multi-chain scenarios, several frameworks of cross-
blockchain applications have been proposed, but their com-
munication cost is not explicit [9]. BlockSY 2 proposes
a technology-agnostic web services to ease changing the
underlying blockchain. While it deals with the syntactic
adaptation, it does not explicitly define the expected semantics
of transactions and tightly relies on the one of underlying
blockchains.

III. DEVELOPMENT OF MULTI-CHAIN SMART CONTRACT

We assume that the entire business logic is based on a
working flow. Each step of this working flow has a set
of implementations in different blockchains in the form of
libraries. The current cross-blockchain interaction model is
simple message passing without state synchronization.

1https://daml.com/ (Accessed: 12.04.2021)
2https://blocksy-wiki.symag.com/ (Accessed: 12.04.2021)978-1-5386-4235-1/18/$31.00 ©2018 IEEE



The objective of our approach is to wisely reuse existing
libraries implemented in different blockchains and explicitly
specify and analyze the behavior of the generated composed
smart contracts. We need to orchestrate steps on different
blockchains while ensuring that generated smart contracts
satisfy expected properties. When several valid orchestrations
are possible, we choose the one that optimizes a non-functional
property, like the execution time or the gas consumption.

Fig. 1. MDD approach for generating multi-chain smart contracts

Our approach is expressed by a three-layer framework with
a synthesis phase. The top layer is about the service design,
including three elements: the working flow of the business
model, the specification of each step, and the specification of
the business model. The bottom layer is a set of candidate
blockchain platforms that host the libraries to implement
each step of the working flow above. The middle layer is a
configuration that maps each step to a corresponding function
in a chosen library on one blockchain platform. We use three
DSMLs to separately describe the abstract behavior (working
flow), the properties (specification of the business model) and
the configuration (step-function mapping). The whole service
is based on a smart contract hosted by a chosen blockchain
which invokes functions residing in libraries deployed on other
blockchains. This smart contract is expected to be generated
from the abstract behavior, the configuration and an accepted
cross-blockchain context parsing rule.

Assuming that the chosen functions in the configuration
are justified by the single chain verification methods, once
the control logic of the working flow is formally justified,
the generated artefacts of the whole service will satisfy the
business model specification.

Our approach relies on the GeMoC studio [10], an Eclipse-
based language and modeling workbench. The framework
provides a generic interface to bring together multiple DSMLs
and describe the semantics of their coordination. It allows
plugging-in different execution engines for each of their specific
metalanguages. We have developed several concrete syntaxes
to specify model instances for smart contracts, libraries, and
deployed configurations.

To analyze the synthesized service behavior, we can use the
GeMoC tools for simulation, model checking, debugging, and
run-time verification. GeMoC also has a support to generate
a full semantic model from a set of patterns applied to each
DSML. This semantic model is described using the Clock

Constraint Specification Language (CCSL) that provides a
formal support for conducting exhaustive verification[11].

Our approach opens the possibility to introduce new func-
tionalities on top of the smart contracts, which can be defined
by third parties. One possible application is the addition of the
specific language for defining the legal clauses which can be
used to provide governance over the smart contract while in run-
time. We can, for instance, introduce concepts like termination
of contract or adding addendum to the existing clauses of
contracts. On the other hand, having the contract behavior
explicitly defined, it is then possible to provide a simulation
environment for monitoring the contracts at run-time.

IV. CONCLUSION

This work provides a framework to address the reliability
problem of multi-chain smart contract design. Although the
code generation part is not finished, we build some automatic
supports to describe the behavior of contracts and orchestrate
the execution of transactions. The main contribution is the
creation of the semantics of the service composition of a
multi-chain interaction model using the model-driven approach,
which could be transferred into existing verification tools.
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