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Abstract
In order to create appealing animation, animators define the key poses of a character by manipulating its underlying skeletons’
joints. To look plausible, a human pose must respect many ill-defined constraints and the resulting realism greatly depends on
the author’s eye for details. Computer animation software propose tools to help in this matter, relying on various algorithms
to automatically enforce some of these constraints. The increasing availability of motion capture data has raised interest in
data-driven approaches to pose design, with the potential of shifting more of the task of assessing realism from the artist to the
computer. In this paper, we propose such a method, relying on neural networks to learn the constraints from the data and to
create an alternative representation of the pose space. We then demonstrate one application of this space by performing pose
edition through optimization of a pose’s latent representation.

1. Introduction

Producing and editing character animation manually is an essential
task for animators in computer-generated imagery (CGI) industries
such as movies, television and games. Animators traditionally edit
animation by posing the character’s skeleton on selected key frames
between which the computer interpolates. Most animation software
such as Blender or Maya provide interactive tools to help editing
poses, allowing users to manipulate specific skeleton joints and au-
tomatically updating the pose so as not to break any constraint. In-
ternally, Inverse Kinematics (IK) algorithms are used, considering
the skeleton as an ensemble of articulated kinematic chains, often
having the lengths of the limbs as constraints. Some of the algo-
rithms in this family are able to also tackle constraints on joints
orientation or interpenetration of body part, but this usually relies
on careful manual specification of each joint’s constraints. In prac-
tice, an animator still needs an important knowledge of the human
body only acquired through hours of practice.

On the other hand, progress in motion capture technologies has
made animation data more available than ever, offering a large
source of examples viable poses. Neural networks have recently
proven to be powerful tools in modelling such complex data; and
leveraging this source of information to help in pose design by
learning the many constraints of the human body represents an in-
teresting field of research.

In this paper, we train a set of neural networks on a large pose
dataset, creating an alternate (latent) representation of the pose
space. Exploring this compact space allows us to optimize using
straightforward methods without having to explicitly specify skele-
ton constraints.

2. Related Work

In most scenarios animators edit keyframes by moving individually
the skeleton’s joints, as if posing a puppet in space. In most anima-
tion software the main constraint considered is the constant dis-
tance between joints, which is guaranteed by full-body IK solvers.

Inverse Kinematics is a common process in robotics, engineer-
ing and computer graphics used to determine the joint param-
eters of a kinematic chain so as to have its end effector at a
desired position. Many IK solutions have been studied over the
years [ALCS18]. IK equations are usually solved through approx-
imated linearizations or heuristics, but can also be tackled by
data-driven approaches. Numerical methods require a set of it-
erations to achieve a satisfactory solution formulated by a cost
function to be minimized. The numerical family can generally
be divided into three sub-categories: Jacobian [SK16], Newtoni-
ans [CGBR96] and Heuristics. Most software implement heuristic
methods such as Cyclic Coordinate Descent (CCD) [SLGS01] or
Forward-Backward Reaching IK (FABRIK) [AL11] due to their
simplicity and extensibility. The main drawback of these solvers is
that they manipulate kinematic chains without taking into account
many morphological aspects that make a pose more or less com-
fortable.

Although data-driven pose edition is promising, it has not been
explored much in the literature. [WTR11] et al.propose a method
for natural character posing from a large motion database. It em-
ploys adaptive KD-clustering to select a representative frame from
a large motion database and employs sparse approximations to ac-
celerate training and posing. Huang et al.in [HWF∗17] present a
method based on the formulation of multi-variate Gaussian dis-
tribution models (MGDMs), which learn the joint constraints of a
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kinematic skeleton from motion capture data. Some work has also
been dedicated to more direct interfaces, translating doodles and
sketches to motion. Garcia et al.[GRC19] propose a method trans-
forming doodle of trajectories (position and orientation over time)
into sequences of actions and then into detailed character anima-
tions using a dataset of parameterized motion clips automatically
fitted to the trajectory.

Neural-networks based generative models of motion have also
received a lot of attention due to their low memory usage, scalabil-
ity in terms of data, and time efficiency at runtime. Deep learning
has been effectively applied to generate realistic motion in a num-
ber of difficult cases including navigation [HKS17] and interactions
with the environment [SZKS19].

Latent variable models are a family of machine learning mod-
els whose purpose is to simplify complex data by learning sim-
pler representations. Among latent variable models, auto-encoders
have been used for motion by Holden et al.[HSK], projecting mo-
tion onto the latent space and back to fix issues such as noise in
a motion capture clip. Generative Adversarial Networks (GANs)
[GPAM∗14] attempt to solve the purely generative aspect by train-
ing a generator network to translate random samples from a fixed
space to real data points. The quality of the generated point is pro-
vided by a critic network, and training both networks simultane-
ously gradually improves the realism of the outputs. GANs have
also been used in motion synthesis [LA18].

Data-driven IK and pose editing can relieve animators from
time-consuming, back-and-forth pose adjustments by providing a
smart space of edition. Recently, neural-network-based approaches
have demonstrated major advances in human motion modelling and
demonstrated their ability to construct interesting latent spaces. In
this paper, we propose a new latent space of human poses. The
space is built using multiple neural networks, is able to scale to
large amounts of data and is efficient at run-time. We demonstrate
that it is well adapted to many tasks such as editing and designing
poses for animation production.

3. Proposed method

Pose data is usually defined by each joint’s position or rotation rel-
ative to its parent in the skeleton hierarchy. However only a small
subset of this representation corresponds to valid poses and wrong
parameterizations result in unrealistic poses. We propose to build
a latent space only representing valid poses using a scaffolding of
GANs and autoencoders trained on a large dataset. We then show
how simple optimizations on a pose’s latent representation can help
in satisfying user-defined constraints such as reaching an end effec-
tor’s target.

We first present our model’s architecture ensuring the latent
space respects two important properties. First the bijectivity of the
mapping to and from the latent space, as we want to be able to
retrieve an encoded pose with a high fidelity. Second, to ensure a
smooth optimization process the latent space also needs to be con-
vex and fully defined.

We then illustrate the usefulness of such a space with a full-body
inverse kinematics solver which satisfies user-defined constraints.

By optimizing in this space we ensure that no unrealistic poses are
considered, and so remove the possibility of breaking the pose, as
illustrated in Fig. 1.

Figure 1: Optimizing in latent space garanties that any pose con-
sidered will be valid

3.1. Materials

We train the models using a dataset of human poses, obtained by
processing multiple available motion-capture datasets from the lit-
erature: Emilya [FP14] ; CMU [CMU] ; the MPI Emotional Body
Expressions Database for Narrative Scenarios [VdlRBM14] . Each
animation clip is retargeted to a standard skeleton following the
scheme proposed by [HSKJ15]. The global translation is removed,
and each joint’s position is calculated relative to the pelvis (root)
joint which is fixed in place. The unified skeleton is composed of 21
joints; using the joints’ positions in space, a posture is described by
3×21= 63 float values concatenated in a single vector. The dataset
is then formed by the individual poses in each clip among which we
sample randomly during training. We normalize each pose by sub-
tracting the mean and dividing by the standard deviation of each
feature.

3.2. Pose latent space

This section describes the proposed neural-network-based con-
struction of the latent space. The architecture is based on the nest-
ing of an autoencoder and a GAN, whose weights are optimized
while minimizing dedicated loss functions.

3.2.1. Architecture

Neither of the two major approach to data synthesis with neural
networks, auto-encoders and GANs, is suitable to fit the require-
ments highlighted in section 3. Auto-encoder’s latent spaces are
unconstrained while GANs do not provide a way of encoding a real
data point. Thus, we use the hybrid approach proposed by Lazarou
[Laz20] to create a latent space of images in which they illustrate
good interpolation properties. We adapt their architecture to human
poses to take advantage from both autoencoders and GANs. The
method uses four separate networks, illustrated in Fig. 2: an en-
coder E, a generator (also called decoder) G, a pose discriminator
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Dpose and a latent vector discriminator Dlat . The encoder and de-
coder are trained to map from pose to latent space and back, and use
feedback from the discriminators to shape the desired latent space.

Figure 2: High level overview of the different models and connec-
tions between them.

The skeleton is a hierarchical structure made of several kine-
matic chains, and each joint’s parameterization has an impact on
other joints down the chain. In order to explicitly model this spa-
cial structure, our networks use Structured Prediction Layers (SPL)
[AKH19] in place of fully-connected layers. SPL splits dense con-
nections in multiple smaller layers, connected themselves follow-
ing the kinematic chains of the skeleton.

The encoder network is composed of a single SPL layer of 252
neurons and ReLU activations, followed by a fully connected layer
with 32 neurons and a tanh activation. The decoder is the opposite
with a fully-connected layer with 252 neurons, ReLU activations,
and a SPL layer with 63 outputs units. The pose discriminator is
the same as the encoder except for the last activation which is a
Sigmoid function. The latent discriminator is a multi layers per-
ceptron with 4 fully connected layers of 256 neurons with Leaky
ReLU activations. The last activation is a Sigmoid function.

3.2.2. Loss functions

The encoder and decoder networks are trained to learn a bijective
function mapping respectively a latent point to a pose and vice
versa; i.e G(z) = x and E(x) = z; where x is a pose vector and z
is a randomly sampled vector from the latent distribution. The pose
discriminator Dpose outputs a single scalar representing the proba-
bility for a given pose to be "real" over being generated. It is trained
to minimize the loss function in Eq. 1.

LDpose = log(1−Dpose(x))+ log(Dpose(G(z))) (1)

In the same manner Dlat discriminates between random latent
samples and encoded poses. It is trained to minimize Eq. 2

LDlat = log(1−Dlat(E(x)))+ log(Dlat(z)) (2)

The convexity of the latent space is dictated by the interaction
between the discriminators and the autoencoder. As G tries to fool
Dpose it is encouraged to turn any point from the latent space in
a valid pose. At the same time the latent discriminator encourages
the encoder to encode poses into latent vectors indistinguishable
from random ones, and so to use the latent space to its full extent.

We therefore build a convex latent space in which the real pose are
evenly spread. E and G are thus trained conjointly both to recon-
struct a pose with fidelity and to fool the discriminators by mini-
mizing Eq. 3.

LAE = Lrecon +Lgan (3)

Lrecon = ‖(G(E(x))− x)2‖+‖(G(E(z))− z)2‖ (4)

Lgan =log(Dpose(x))+ log(1−Dpose(G(z)))

+log(Dlat(E(x)))+ log(1−Dlat(z))
(5)

3.2.3. Training

The networks are trained for 200 epochs with a batch size of 256
poses. We use the Adam optimizer [KB17] with a learning rate of
0.001 for the pose discriminator and 0.0002 for the encoder, de-
coder and latent discriminator. In order to regularize the perfor-
mance of each networks during the training process, the encoder-
decoder and latent discriminator are trained with respectively two
and three times as much samples as the pose discriminator.

3.3. Pose edition in the latent space

The latent space built in the previous sections can then be used as
an interface for interactive character posing. As the generator is
trained to fool the discriminator, its output should be guaranteed to
be a realistic pose: the skeleton constraints are implicitly learnt and
it is no longer necessary to manually parameterize each joint in the
skeleton.

This section describes the optimization process used in interac-
tive time to help in pose design. The optimization is used as a full-
body inverse kinematic solver in place of classical IK ones. The
initial configuration includes a starting pose and the desired posi-
tions of any number of targets; no configuration of the skeleton is
necessary and any joint can be associated with a target. The solver
only uses the trained encoder and decoder models: the initial pose
is encoded in the latent space, and the resulting vector is optimized
until the decoded pose’s end effectors are close enough to their tar-
gets.

For simplicity’s sake the optimization processed is performed
via gradient descent to minimize Eq. 6 where t0..n are the targets
positions, ji..n the associated joint’s position and distance(p1, p2)
the euclidean distance function.

L =
n

∑
i=0

distance(ti, ji) (6)

4. Results

We illustrate our full-body editor by comparing with a staple solu-
tion from the literature: Forward Backward Reaching Inverse Kine-
matics (FABRIK). We implement an adapted solution for our base
skeleton, without manually specifying joints constraints. Figure 3
shows a comparisons of the poses obtained by latent optimization
and FABRIK with the same targets set.

FABRIK working on kinematics chains with no prior on the hu-
man skeleton, it may end up with unrealistic poses, whereas our
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Figure 3: Examples of pose edition using latent optimization and FABRIK. Targets are shown in red.

optimization process exploring the latent space results in poses sat-
isfying the constraints without breaking the implicit skeleton rules:
the distance between limbs is constant, self-occlusion is avoided
and the poses appear natural. In (1) and (2) the skeleton leans on
one side in order to reach a target above its shoulder, giving way to
its arm. The legs also move slightly so as to appear in balance. In
(3), our method makes the skeleton twists it upper body to face the
two targets on its side. (4) illustrates the limits of FABRIK with-
out specifying many constraints: when trying to reach targets on
opposite sides, the shoulders move forward in an unnatural way.
With our methods, the torso structure is implicitly learned and the
algorithm finds a more suitable solution.

5. Conclusion and perspectives

We propose to build a latent space of poses by training two encod-
ing and decoding neural networks guided by two discriminators.
We enforce its convexity and use this property to our advantage to
optimize poses to respect some constraints. We illustrate the results
of this approach by using it in a full-body IK solver, optimizing a
latent pose representation to avoid unrealistic poses. Further work
will focus on adapting our method to a variety of morphologies and
skeletons.
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