
HAL Id: hal-03338879
https://hal.science/hal-03338879v1

Preprint submitted on 9 Sep 2021 (v1), last revised 15 Sep 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unsupervised domain adaptation with non-stochastic
missing data

Matthieu Kirchmeyer, Patrick Gallinari, Alain Rakotomamonjy, Amin
Mantrach

To cite this version:
Matthieu Kirchmeyer, Patrick Gallinari, Alain Rakotomamonjy, Amin Mantrach. Unsupervised do-
main adaptation with non-stochastic missing data. 2021. �hal-03338879v1�

https://hal.science/hal-03338879v1
https://hal.archives-ouvertes.fr


Unsupervised domain adaptation with non-stochastic
missing data

Matthieu Kirchmeyer1,2, Patrick Gallinari1,2, Alain Rakotomamonjy2,3, and Amin
Mantrach4

1 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
2 Criteo AI Lab, Paris, France
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Abstract. We consider unsupervised domain adaptation (UDA) for classification
problems in the presence of missing data in the unlabelled target domain. More
precisely, motivated by practical applications, we analyze situations where distri-
bution shift exists between domains and where some components are systemati-
cally absent on the target domain without available supervision for imputing the
missing target components. We propose a generative approach for imputation.
Imputation is performed in a domain-invariant latent space and leverages indirect
supervision from a complete source domain. We introduce a single model per-
forming joint adaptation, imputation and classification which, under our assump-
tions, minimizes an upper bound of its target generalization error and performs
well under various representative divergence families (H -divergence, Optimal
Transport). Moreover, we compare the target error of our Adaptation-imputation
framework and the “ideal” target error of a UDA classifier without missing tar-
get components. Our model is further improved with self-training, to bring the
learned source and target class posterior distributions closer. We perform experi-
ments on three families of datasets of different modalities: a classical digit classi-
fication benchmark, the Amazon product reviews dataset both commonly used in
UDA and real-world digital advertising datasets. We show the benefits of jointly
performing adaptation, classification and imputation on these datasets.

1 Introduction

Motivated by real applications, we consider a classification problem where: (1) a source
and target domain are available with observed source labels and missing target labels,
(2) a distribution shift exists between source and target on joint distributions in the input
and label space, (3) source input data are fully available while target data have miss-
ing input components, which cannot be measured on this domain and (4) there is no
possible supervision in the target domain for imputation, thus requiring indirect super-
vision from the source domain. Furthermore, unobserved features contain complemen-
tary information not present in the observed ones so that the former cannot be inferred
directly from the latter. (1) and (2) correspond to the classical setting of unsupervised
domain adaptation, (3) corresponds to a missing data imputation problem on the target
with the difficulty (4). [27, 36] distinguish three categories of missing data problems
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based on a missingness mechanism denoted φ . Let m define a pattern of missing data,
φ defines the conditional distribution pφ (m|x) where x represents a sample. Missing
Completely at Random (MCAR) problems verify ∀x, pφ (m|x) = pφ (m), Missing At
Random, ∀x, pφ (m|x) = pφ

(
m|xobs

)
with xobs the observed feature and Missing Not

At Random covers all the other cases. The key idea behind Rubin’s theory is that m
is a random variable with a probability distribution and specific imputation approaches
were developed for each missingness setting. We consider the setting where target data
have systematically missing input components. This corresponds to MCAR with the ad-
ditional difficulty that m is deterministic, not stochastic. This problem is more difficult
than classical MCAR as neither classical maximum likelihood solutions nor stochastic-
ity in missing features can be used to reconstruct the missing information. While general
adaptation and imputation problems were considered independently, there are several
instances where they occur simultaneously. This has seldom been analyzed and only for
specific cases. We propose a principled solution to this problem under non-stochastic
missingness and present practical situations where this occurs.

There are many problems where specific features in collected data may be system-
atically absent on a domain. In the literature, this setting is mostly considered when
dealing with data with multiple modalities. For example, in disease diagnosis in med-
ical imaging [8], for some collected dataset, several modalities are present while they
are absent on other datasets for which the corresponding equipment was unavailable.
In multi-lingual text classification [16] some collections may be available only for a
limited set of languages. Similar considerations hold for recommendation in advertis-
ing [42] and object recognition with multi-sensor data [39]. The situation which initially
motivated our investigation, is the prospecting setting in computational advertising. The
classical framework for ads on the internet is retargeting: users have already interacted
with a set of merchant sites and they are targeted when they come back on one of these
sites. Retargeting makes use of global user statistics collected on the whole set of mer-
chant sites and of statistics from the specific site the user is browsing. Prospecting aims
at targeting a user that visits a site for the first time [1]; while for such a user, features
from his general behavior are available, there is no user information for the targeted site
and the corresponding features are absent. The second issue considered is the distribu-
tion shift between domains. For instance, data may be collected on different devices as
in medical imaging [9] or background noise may affect each domain differently. This
issue has given rise to the literature of Domain Adaptation when aiming at transferring
knowledge from one domain to the other [33]. The ads case described above is subject
to both missing data for prospecting users and distribution shift between retargeting and
prospecting users as detailed in Section 6.3.

We propose a model addressing the Adaptation-imputation problem defined by (1)
to (4), which learns to perform imputation for the target domain with a conditional gen-
erative model. Imputation makes use of indirect supervision from the complete source
domain. This allows us to handle non-stochastic missing data, while satisfying the con-
straints related to adaptation in a latent space and to classification. The imputation pro-
cess plays an important role, providing us with information about the missing target
data while contributing to the alignment and the reconstruction losses. Extensive empir-
ical evidence on handwritten digits, Amazon product reviews and Click-Through-Rate
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(CTR) prediction domain adaptation problems illustrate the benefit of our model. The
original contributions are the following:

– We propose a new end-to-end model for handling non-stochastic missing data with
domain adaptation. It generates relevant missing information in the latent space
conditionally on available information while aligning latent source and target marginals
and classifying labelled instances. The joint missing-data and adaptation problem
has been seldom considered and never in our context.

– We derive an adaptation and an imputation upper bounds. The first one upper
bounds our model’s target generalization error and is minimized explicitly by our
training objective. The second one upper bounds an ideal target error corresponding
to an UDA problem without missing features in the target domain.

– We improve this model by bringing the source and target class posteriors closer
to one another with self-training; this is a useful heuristic when class posteriors
mismatch.

– We evaluate the model on academic benchmarks and on challenging real-world
advertising data and illustrate on these datasets that conditional generative models
improve regression-based approaches seen in the literature.

2 Related work

Our problem is related to generic ML topics usually addressed separately e.g. domain
adaptation and imputation and in an extend other secondary topics. We provide a brief
overview of related contributions in the main topics below and in other minor topics in
Appendix A.

Unsupervised Domain Adaptation A number of learning methods approach UDA by
weighting individual observations during training [11, 26]. Recent deep learning meth-
ods align the source and target distributions by embedding them in a joint latent space.
There are two main directions for learning joint embeddings. One is based on adver-
sarial training, making use of GAN extensions; the seminal work of [18] learns to map
source and target domains onto a common latent space by optimizing jointly 1) an
approximation of the H -divergence between the source and target embeddings via ad-
versarial training, 2) a classification term on source data embeddings. This work has
been extended in several papers [28, 40]. The other direction directly exploits explicit
distance measures between source and target representations using Integral Probability
Metrics such Maximum Mean Discrepancy [29] or Wasserstein distance [14,38]. These
work consider full input data on both domains.

Imputation Data imputation is addressed by several methods [27,41]. Most approaches
consider a supervised setting where (1) paired or unpaired complete and incomplete
data are available, (2) missingness corresponds to a stochastic process (e.g. a mask dis-
tribution for tabular data) and (3) imputation is performed in the original feature space.
This is different from our setting when one considers (1) reconstruction in a latent
space, (2) imputation for a classification task, (3) no direct supervision and (4) fixed
missingness which prevents us from exploiting the statistics from different incomplete
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samples leading to a much more complex problem. Recently, generative models were
adapted for data imputation, e.g. [46] and [30] for GANs and VAEs respectively. The
general approach with generative models is to learn a distribution over imputed data
which is similar to the one of plain data. This comes in many different instances and
usually, generative training alone is not sufficient; additional loss terms are often used.
In paired problems where each missing datum is associated to a plain version, a re-
construction term imposed by a MSE contraint is added [21]; in unpaired problems a
cycle-consistency loss is imposed [50]. [25,32] are among the very few approaches ad-
dressing unsupervised imputation in which full instances are never directly used. Both
extend AmbientGAN [7] and consider stochastic missingness. Our imputation problem
is closer to the one addressed in some forms of inpainting [34], missing view impu-
tation [16] or multi-modality missing data [8]. These approaches are fully supervised.
The latter considers, as we do, imputation when one modality is systematically absent,
but on one domain only, i.e. without adaptation. [15, 44, 45] are the only papers we are
aware of that consider imputation as we do. [15] considers low-rank constraints and
dictionary learning to guide transfer and was not used here as a baseline due to a high
complexity that prevents large-scale experiments. [44, 45] are close to our work but as-
sume that missing data can be reconstructed from the observed one through regression.
In our setting, this is not possible: given the observed features, there are multiple pos-
sible imputations for the missing features; regression is thus meaningless and one has
to learn their distribution or at least some modes. This motivates learning a generative
model. Moreover, in [44,45] classification occurs as a downstream task whereas our ap-
proach is end-to-end for classification, adaptation and imputation. Finally, our method
is theoretically justified and addresses a challenging large size application motivated by
a concrete real-world problem never handled before.

Cold-start Cold-start occurs when making predictions or recommendations when data
from the item or user of interest is not available or was not observed in the training
set. The standard hypothesis is i.i.d. data coming from the same domain. In recom-
mender systems, several papers address cold-start and leverage auxiliary information
about users or items e.g. user attributes, profile, social context or cross-domain infor-
mation [4, 37]. Cold-start is related to zero-shot learning with unobserved data where
usual solutions learn a representation space using auxiliary knowledge e.g. grounded
word embeddings with visual context [48]. As for our problem, cold-start deals with
non-stochastic missing data, but usually considers only one domain while we deal with
distribution shift as well through adaptation.

3 Problem definition

Notations X ,Y denote the input and label space. We use X ,Y to denote random vari-
ables with values in X ,Y . A domain D is defined by a distribution pD(X) on X
and a deterministic labeling function fD : X → {1, ...,K} where K is the number of
classes. D will refer to either the source S or target T domain. Data from domain D is
(xD,yD) ∈ Rn×{1, ...,K} where n is the dimension of the input space, sampled from
the domain’s joint distribution pD(X ,Y ). In the UDA setting, target labels are unknown.
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We consider that xD has two components, xD = (xD1 ,xD2); X1,X2 refer to each com-
ponent with values in X1,X2. Given input x ∈ Rn, m ∈ {0,1}n is a binary mask in-
dicating which entries of x are missing (1 for missing and 0 for observed). We define
Z = Z1×Z2 as the representation space built with a feature extractor. Assuming both
components (xD1 ,xD2) are observed, we define g as

g : X1×X2→Z1×Z2

(xD1 ,xD2) 7→ (g1(xD1),g2(xD2))
(1)

where zD1 = g1(xD1), zD2 = g2(xD2) with Z1,Z2, the corresponding random variables.
This is illustrated in Figure 1 (b) using examples from the digits dataset. While X2 is
available on the source domain, it is absent on the target domain. As detailed in Section
4.2, we will learn to perform imputation in the latent Z space via a generative network
r operating on Z . For this we will introduce a mapping ĝ as follows:

ĝ : X1→Z1×Z2

xD1 7→ (g1(xD1),r ◦g1(xD1))
(2)

where g1 : X1 → Z1, r : Z1 → Z2 and ẑD2 = r ◦ g1(xD1). Ẑ2 is the corresponding
random variable built from X1 with r ◦ g1 with values in Z2 and Ẑ = (Z1, Ẑ2). This is
illustrated in Figure 1 (a). For reasons detailed later, this mapping r ◦g1(·) will be used
on both S and T .

Fig. 1: Encoding of an input source digit xS = (xS1 ,xS2) with ĝ (a) and g (b). g1 encodes the first
part of the input xS1 into zS1 . The second latent component is either built by encoding xS2 with
g2 as zS2 (b) or with reconstruction via r ◦ g1 as ẑS2 (a). These latent components ẑS (a), zS (b)
are fed directly into a classifier f .
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Assumptions Let us now introduce formally the different assumptions underlying our
context and model. We address UDA with non-stochastic missing target features and
aim at finding a single hypothesis hĝ : X →{0, ...,K} of the form f ◦ ĝ, with ĝ the fea-
ture extractor defined in (2) and f the classifier with low target risk. Since the problem
is under-specified, one has to make assumptions to define it properly:

Assumption 1. Labelled source data xS are fully observed while unlabelled target data
are partially observed with xT2 missing. The missingness mechanism corresponds to
Missing Completely At Random [27] on the target with fixed missingness pattern. Thus
the distribution statistics of the missing data cannot be leveraged for imputation and we
can only resort to indirect supervision with adaptation as in Section 4.2: we consider
only statistics from the source to infer the imputation mechanism as later explained.

Assumption 2. The distribution of X2|X1 projected in the latent space with g from
(1), pD(Z2|Z1), is multi-modal and Z1 and Z2 are not statistically independent. This
allows to impute zD2 given zD1 . However, regression on zD1 cannot recover all modes
as MSE produces blurry reconstructions by averaging modes. For example, assuming
the feature variables Z1,Z2 encode the contour of the top, respectively bottom of a digit,
given the bottom contours of a digit, we can reconstruct several candidates of the top
contours (the bottom half of 7 can either be reconstructed into 1 or 7; regression will
lead to a blurry digit averaging these two modes). As mentioned, this uncertainty is
present for all our datasets.

Assumption 3. The distribution of X2|X1 projected in the latent space with g in (1) is
the same across domains i.e. pS(Z2|Z1) = pT (Z2|Z1). This allows us to make use of the
source domain information (with available supervision) to infer the target conditional
distribution and recover the missing latent component useful for classification. For ex-
ample, assuming the feature variables Z1,Z2 encode the contour of the top, respectively
bottom of a digit, p(Z2|Z1) is the distribution of the contours of the bottom of the digit
given those of the top; it is reasonable to assume that this distribution is the same across
domains.

Assumption 4. Covariate shift is valid in the latent space obtained with ĝ in (2) i.e.
pS(Y |Ẑ) = pT (Y |Ẑ) while pS(Ẑ) 6= pT (Ẑ). Thus, we can find a classifier f ◦ ĝ with low
source and target error; this is a common assumption for standard UDA methods.

4 Adaptation-Imputation model

As several generative approaches to UDA, we project source and target data onto a
common latent space in which data distributions from the two domains should match
and learn a classifier using source labels. Our novelty is to offer a solution to deal
with datasets with systematically missing data in the target domain. Our model, de-
noted Adaptation-Imputation, is trained to perform three operations jointly: imputation
of missing information, alignment of the distributions of both domains and classifica-
tion of source instances. The three operations are performed in a joint embedding space
and all components are trained together with shared parameters. The term imputation
is used here in a specific sense: our goal is to recover information from xT2 that will
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be useful for adaptation and for the target data classification objective and not to re-
construct the whole missing xT2 . This is achieved via a generative model, which for a
given datum in T and conditionally on the available information xT1 , attempts to gener-
ate the missing information. Because xT2 is systematically missing for T (Assumption
1), there is no possible supervision with target samples; instead we use indirect super-
vision from source samples while transferring to the target. We consider two variants
of the same model based on different divergence measures between distributions: the
H -divergence approximated through adversarial training (ADV) and the Wasserstein
distance (OT) computed through the primal by finding a joint coupling matrix γ with
linear programming [35]. Our two models can be seen respectively as extensions of
DANN [18] and DeepJDOT [14] to the missing data problem. We only describe the
ADV version in the main text, the extension to OT is detailed in Appendix B. Results for
both models are in Section 6.

4.1 Inference

The latent space representations are denoted ẑD = (zD1 , ẑD2). zD1 = g1(xD1) is the map-
ping of the observed component xD1 onto the latent space and ẑD2 = r ◦ g1(xD1) is the
second component’s latent representation generated conditionally on xD1 through gen-
erator r, as later described. At inference, given xT1 , we generate ẑT = (zT1 , ẑT2) where
ẑT2 encodes part of the missing information xT2 in xT (Figure 2 (b)). Finally ẑT is fed
to the classifier f .

4.2 Training

For simplicity, we describe each component in turn but please note that they all interact
and that their parameters are all optimized according to the three objectives mentioned
above. The interaction is discussed after the description of each individual module. The
model’s components are illustrated in Figure 2 (a).

Adaptation Adaptation aligns the distributions of ẑS and ẑT in the latent space. For ADV,
alignment is performed via an adversarial loss operating on the latent representations

L1 = ExS∼pS(X) logD1(ẑS)+ExT∼pT (X) log(1−D1(ẑT)) (3)

where D1(ẑ) represents the probability that ẑ comes from S rather than T .

Imputation Imputation generates an encoding ẑT2 for the missing information, condi-
tioned on the available xT1 thanks to a generative model r. Since we never have ac-
cess to xT2 , we develop a distant learning strategy: we learn imputation on S through
ẑS2 = r ◦ g1(xS1) (Figure 2) and then transfer to the target domain (̂zT2 on the figure)
via adaptation. For that we perform two operations in parallel. First, we align the dis-
tributions of ẑS2 and zS2 = g2(xS2) which is the encoding of xS2 , using an adversarial
loss and discriminator D2 (LADV on Figure 2). As alignment acts globally on distribu-
tions we have no guarantee that ẑS2 will be associated to the corresponding zS1 . We then
enforce a one-to-one relationship by associating a ẑS2 to its specific zS1 . For that, we
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use a reconstruction term, the MSE distance between zS2 and ẑS2 (LMSE on Figure 2).
This guarantees that the imputed ẑS2 truly represents information in zS2 . The learned
mappings are used to perform imputation on the target data ẑT2 = r ◦g1(xT1). The im-
putation loss L2 has thus two terms: an adversarial term LADV for aligning zS2 and ẑS2 ;
and a reconstruction term LMSE :

L2 = LADV +λMSE ×LMSE (4)
LADV = ExS2∼pS(X2) logD2(ẑS2)+ExS1∼pS(X1) log(1−D2(zS2)) (5)

LMSE = ExS∼pS(X)

∥∥zS2 − ẑS2

∥∥2
2 (6)

where λMSE weights the regression term over the generative term. Imputation and adap-
tation influence each other and both are also influenced by classification described be-
low. The latter forces the generated ẑS2 to contain information about xS2 relevant for
the classification task. This information is transferred via adaptation to the target when
generating ẑT2 .

Classification The last component is a classifier f , trained on source mappings ẑS as
done in classic UDA. The corresponding loss, with LDisc a cross-entropy loss, is

L3 = E(xS,yS)∼pS(X ,Y )LDisc( f (ẑS),yS) (7)

Overall loss L is the weighted sum of the adaptation, imputation and classification
losses

L = λ1×L1 +λ2×L2 +λ3×L3 (8)

with λ1,λ2,λ3 some hyperparameters and we solve

min
g1,g2,r, f

max
D1,D2

L (9)

Interaction between the model’s components Mappings g1,g2,r appear in the three
terms of L, meaning that they should learn to perform the three tasks simultaneously. g1
maps xS1 and xT1 onto the latent space, the embeddings being denoted respectively zS1
and zT1 . r learns to generate missing information ẑD2 from zD1 . ẑD is generated to fulfill
the classification objective. g2 should fulfill the imputation objective while preserving
part of the information present in xS2 . Our model uses a unique mapping g1 for both
S and T ; compared to using separate mappings, this reduces the number of parameters
and was found to perform as well.

Implementation For adversarial training, discriminators D1 (adaptation) and D2 (impu-
tation) are implemented by binary classifiers. D1 is trained to distinguish ẑS from ẑT
mappings while D2 is trained to separate imputed ẑS2 , generated from xS1 , and zS2 , a
direct embedding of xS2 . We use gradient reversal layers [18] for implementing the min-
max condition on D1 and D2. To stabilize adversarial training, we update progressively
λ1,λ2, respectively the hyperparameter for the adaptation loss L1 and the imputation
loss L2, from 0 to 1 when updating the feature extractors g1,g2. Both λ1 and λ2 are set
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Fig. 2: Adaptation-Imputation model. The first column represents examples of raw data with
missing and non-missing parts. Trapezoidal boxes represent mapping functions. Triangles in the
last column represent loss functions used only for training. At training, the top-row depicts how
xS2 is mapped into the latent space with g2. The second and third rows show how ẑS and ẑT
are obtained. All these imputed and mapped source and target samples are then used in training
losses. At inference, we only need the learned g1 and r for mapping the target example with
missing data into the latent space and f for predicting its class.

to 1 when updating the discriminators D1,D2 per [18]. Moreover, we decay all learning
rates. We fix λ3 = 1 to avoid additional tuning and only tune λMSE as shown in the
ablation study in Table 4 and Figure 5. All components are trained jointly after first ini-
tializing the classifier f and feature extractors g1,g2 to minimize L3 replacing ẑS2 with
zS2 such that discriminitative components are learned before joint adaptation and impu-
tation. Appendix E provides details of all architectures and parameters and our code is
available5.

5 https://github.com/mkirchmeyer/adaptation-imputation

https://github.com/mkirchmeyer/adaptation-imputation
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Algorithm 1 Adversarial Adaptation-Imputation training procedure
N: number of epochs, k: batch size

1: Initialize f ,g1,g2 by minimizing L3 replacing ẑS2 with zS2

2: for nepoch < N do
3: Sample {x(i)S ,y(i)S }1≤i≤k from pS(X ,Y )

4: Sample {x(j)T }1≤ j≤k from pT (X)
5: Decay learning rate and update gradient scale at each batch
6: Compute L = λ1L1 +λ2L2 +λ3L3 performing joint adaptation, imputation, classification
7: Update D1, D2 by ascending L through Gradient Reversal Layer
8: Update f ,g1,g2,h by descending L

5 Theoretical insights

5.1 Target generalization error

Given the model in Section 4.2, we show in this section that, despite having only unla-
belled target samples, we minimize the model’s target classification error using source
labels with an adaptation upper bound (Theorem 1), under our assumptions. We then
show an imputation upper bound of the ”ideal” target error obtained with all com-
ponents observed (classical UDA setting) by our model’s target error times a factor
(Proposition 1). The analytical expression of this factor highlights the role of two com-
ponents: imputation on the source and transfer of this imputation from the source to
the target. In the optimal case, when the model perfectly recovers these two operations,
we show that our model retrieves the ideal target error. These two bounds thus provide
an approach with adaptation and imputation to minimize our model’s target error and
reach the ideal target error, using only missing target data and source supervision for
both labels and imputation.

Definitions First, we recall some definitions. ĝ in (2) maps the first component of a
sample to its imputed latent representation. ĝ can be applied to both source and target
samples. On the other hand, g in (1) maps both input components on the latent space and
is thus only applicable to source samples. In practise, ĝ and g share the same encoder
for the first component g1; the second encoder is respectively r ◦g1 for ĝ and g2 for g.
The random variables associated to these projections are denoted respectively Z2, for
the latent missing component built from X2 with g2 and Ẑ2, for the reconstruction of Z2
from X1 with r◦g1. X2 is missing on T but observed on S. Based on these mappings, we
define the risk of a hypothesis h on domain D∈{S,T}, either hg ∈Hg = { f ◦g : f ∈F}
or hĝ ∈Hĝ = { f ◦ ĝ : f ∈F}, as its error under the true labeling function fD and D, i.e.

εD(h), εD(h, fD), Ex∼pD(X)[|h(x)− fD(x)|]

In our case, as h and fD are binary classification functions, this definition reduces to the
probability that h disagrees with fD under pD(X)

εD(h)=Ex∼pD(X)[|h(x)− fD(x)|] =Ex∼pD(X)[I(h(x) 6= fD(x))]=Prx∼pD(X)(h(x) 6= fD(x))

In the following, we describe the adaptation and imputation bounds.
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Adaptation bound As target samples are unlabelled, we cannot directly minimize our
model’s target error, εT ( f ◦ ĝ). In practise, we upper bound εT ( f ◦ ĝ) in Theorem 1 with
adaptation. Adaptation is performed on both components despite target missingness
thanks to imputation which reconstructs the missing latent component conditionally on
the observed one.

Theorem 1 (Proof in Appendix C). Given f ∈F , ĝ in (2) and pS(Ẑ), pT (Ẑ) the latent
marginal distributions obtained with ĝ.

εT ( f ◦ ĝ)≤
[
εS( f ◦ ĝ)+dF∆F (pS(Ẑ), pT (Ẑ))+λHĝ

]
︸ ︷︷ ︸

Domain Adaptation (DA)

(10)

with εS(·),εT (·) the expected error under the labelling function fS, fT on S, T respec-
tively; F∆F the symmetric difference hypothesis space6; dH the H -divergence for
H = F∆F and λHĝ = min f ′∈F [εS( f ′ ◦ ĝ)+ εT ( f ′ ◦ ĝ)], the joint risk of the optimal
hypothesis.

The upper bound in (10) consists of εS( f ◦ ĝ) assessing the discriminative informa-
tion of source latent components and dF∆F (pS(Ẑ), pT (Ẑ))+λHĝ , assessing the transfer
to the target. Our model minimizes this upper bound (DA); L3 in (7) corresponds to the
first term while L1 in (3) to the second. Assumption 4 allows us to consider the third
term as small. Adaptation affects both components (Z1, Ẑ2) as the missing component
is imputed with r ◦g1, yet, imputation here is not supervised with fully observed com-
ponents.

Imputation bound Given f ∈ F , we compare under our assumptions εT ( f ◦ ĝ) and
the ideal target error with full data, εT ( f ◦ g), with g = (g1,g2) and ĝ = (g1,r ◦ g1).
This allows us to measure the loss in performance due to missingness when using f ◦ ĝ
instead of f ◦g. g1 is shared in g and ĝ while r ◦g1 reconstructs the missing component
on both domains. We first derive Lemma 1 used in our upper bound in Proposition 1.

Lemma 1 (Proof in Appendix C). For any continuous density distributions p, q de-
fined on an input space X , such that ∀x∈X ,q(x)> 0, the inequality supx∈X [p(x)/q(x)]≥
1 holds. Moreover, the minimum is reached when p = q.

We derive Proposition 1. Under Assumption 3, given a classifier f ∈ F and en-
coders g, ĝ, this proposition upper bounds εT ( f ◦g) with εT ( f ◦ ĝ) multiplied by a factor
(IT ) in (11). Our model minimizes both the Adaptation upper bound and the term (IT ).

Proposition 1 (Proof in Appendix C). Under Assumption 3, let f ∈ F , ĝ (2) and g
(1),

εT ( f ◦g)≤ sup
z∼p(Z)

[
pS(Z2 = z2|z1)

pS(Ẑ2 = z2|z1)
]︸ ︷︷ ︸

Imputation error on S (IS)

× sup
z∼p(Z)

[
pS(Ẑ2 = z2|z1)

pT (Ẑ2 = z2|z1)
]︸ ︷︷ ︸

Transfer error of Imputation (TI )︸ ︷︷ ︸
Imputation error on T (IT )

×εT ( f ◦ ĝ) (11)

6 h ∈F∆F ⇐⇒ h(x) = f1(x)⊕ f2(x) for some f1, f2 ∈F where ⊕ is the XOR function.
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Under Lemma 1, (IT )=1 is the minimal value reached when pS(Z2|Z1) = pS(Ẑ2|Z1) and
pS(Ẑ2|Z1) = pT (Ẑ2|Z1). In this case, εT ( f ◦g) = εT ( f ◦ ĝ).

The upper bound in (11) shows that for any f , ĝ,g, εT ( f ◦ g) is upper bounded by
εT ( f ◦ ĝ) times the multiplicative factor (IT ). The optimal situation, equality, is obtained
when (IT ) equals 1. (IT ) measures how imputation recovers the missing target compo-
nent and is decomposed into two terms. (IS) quantifies how imputation learns pS(Z2|Z1)
with pS(Ẑ2|Z1) i.e. reconstructs the component Z2 = g2(X2) with Ẑ2 = r(Z1) and Z1 =
g1(X1) on the source. (TI) measures the divergence of Ẑ2|Z1 across domains; the lower,
the better indirect imputation supervision from S transfers to T . The equality case oc-
curs when (IT ) is minimal, i.e when pS(Z2|Z1) = pS(Ẑ2|Z1) and pS(Ẑ2|Z1) = pT (Ẑ2|Z1).
Our model minimizes (IT ) after first initializing f ,g with argmin f ,g εS( f ◦g) replacing ĝ
with g in L3, (7) to extract discriminative components (zS1 ,zS2). It minimizes (IS) with
L2 in (4) while (TI) is minimized with the adaptation loss L1 in (3). Note that (IT ) is
minimal when L1 = L2 = 0 yielding to the equality of εT ( f ◦g) and εT ( f ◦ ĝ).

5.2 Self-training refinement R

We now introduce a heuristic based on pseudo-labels useful for settings where Assump-
tion 4 is not verified because pS(Y |Ẑ) 6= pT (Y |Ẑ). Assumption 4 allows to consider λHĝ
in (10) as small. Indeed, several authors e.g. [22, 49] recently demonstrated that mini-
mizing the first two terms in (DA) (10) is not sufficient for successful UDA. They show
that (1) even when covariate shift is true in the data space, it usually does not hold
in the latent space; (2) even when the first two terms in (DA) in (10) are minimized,
the third, λHĝ , might increase so that the bound is not minimized. [49] shows that in
addition to the above conditions, one should enforce the posterior class distributions
pD(Y |X) to be close on the two domains. Since T is unlabeled there is no direct way to
do that. We instead propose a simple heuristic using pseudo-labels and show how they
can be incorporated with a simple adaptation of (10). Pseudo-labels are tentative labels
assigned to target unlabelled samples by a classifier, denoted hĝ below. As λHĝ cannot
be measured without target labels, we will approximately evaluate and minimize it with
pseudo-labels.

Proposition 2 (Proof in Appendix C). Assume a joint distribution pT̃ (X ,Y ) where
pT̃ (X) = pT (X) and Y = hĝ(X) where hĝ = f ◦ ĝ∈Hĝ is a candidate hypothesis. Then,

λHĝ ≤ min
hĝ∈Hĝ

[
εS(hĝ)+ εT̃ (hĝ)+ εT ( fT̃ )

]
(12)

with εT ( fT̃ ) = Prx∼pT (X)( fT̃ (x) 6= fT (x)) the T error of the pseudo-labelling function
fT̃ .

The first two terms on the right hand side of (12) may be controlled as we know
source labels and target pseudo-labels; the third term is the error of the pseudo-labeling
function, minimal if pseudo-labels are equal to true target labels. We cannot measure the
last term but propose self-training as a way to heuristically improve the pseudo-labeling
function.
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We detail one way to do so in Algorithm 2. We start from an initial set of pseudo-
labels, e.g. the pseudo-labels provided by the model in Section 4.2 and then refine them.
Many self-training methods have been proposed. We use a combination of two such
methods, initially proposed for semi-supervised learning: an adaptation of the semi-
supervised discriminant Classification Expectation Maximization (CEM) in [2] and
semi-supervised learning by entropy minimization [19]. We found that combining these
two approaches performed better than each method used alone.

In the following we assume to have a set S ,T respectively of labelled S and un-
labelled T samples. [2] introduce an iterative method which starts from pseudo-labels
provided by an initial classifier and retrains the classifier with these labels. We start
with f (ẑ) trained as in Section 4.2 and keep, at each iteration, all samples in T whose
classification score is above a threshold, this set of pseudo-labelled instances is denoted
T pl . We then minimize a cross-entropy loss on S ∪T pl , between the labels for S or
pseudo-labels for T pl and the predicted scores. [19] optimizes an entropy loss on the
distribution of the predicted class posteriors output from f for all unlabelled samples;
we apply this loss to T \T pl . This entropy loss can be considered as a soft version of
the discriminant CEM loss.

In conclusion, we first train the model without pseudo-labels minimizing L (Section
4.2). We then use the learned classifier to provide initial pseudo-labels and minimize
jointly discriminant CEM and entropy loss to refine them. Given hĝ = f ◦ ĝ ∈Hĝ a
hypothesis with ∀k ∈ [1,K],hĝk(x) the probability of predicting instance x to class k,
LDisc a cross-entropy loss and λ a weight for entropy, the objective function of our
refinement method is:

LR = ∑
(x,y)∈S∪T pl

LDisc(hĝ(x),y)︸ ︷︷ ︸
Discriminant CEM (CEM)

+λ ∑
x∈T \T pl

K

∑
k=1

hĝk(x) loghĝk(x)︸ ︷︷ ︸
Entropy (E)

(13)

The first term in (13), (CEM), controls εS(hĝ) + εT̃ (hĝ) while the second term, (E),
heuristically controls εT ( fT̃ ) by encouraging separation between classes. We found that
this heuristically brings pseudo-labels closer to the target labels on our datasets. In
practise, we minimize LR with respect to f , ĝ.

Algorithm 2 Self-training procedure for Adaptation-Imputation

Input S = {(x(i)S ,y(i)S )}NS
i=1, T = {(x(i)T }

NT
i=1, Adaptation-Imputation method A in Section 4.2

Output Classifier f ; Feature extractor ĝ defined in (2)
1: f , ĝ = A (S ,T ) . Initialize f , ĝ with Adaptation-Imputation (8)
2: f , ĝ = argmin f ,ĝ LR . Semi-supervised refinement of f , ĝ by optimizing (13)
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6 Experiments

6.1 Datasets and experimental setting

Datasets Experiments are performed on three types of datasets. The first one, digits,
is a classical multi-class classification benchmark used in many UDA studies and adapted
to fit our missing data setting. The second one, which initially motivated our framework,
consists of advertising datasets where we aim at transferring knowledge from retarget-
ing users with full browsing information to prospecting users with missing information.
The task is binary classification as measured by Click-Through-Rate (CTR) or Conver-
sion Rate (CR)7 given user browsing traces. We use two such datasets: ads-kaggle
is a public kaggle dataset8, while ads-real was gathered internally. Both correspond
to real advertising traffic. Finally, we performed tests on a text dataset, Amazon re-
views, denoted amazon. The initial problem is transformed into binary classification
and to a non-stochastic missing data problem. For both digits and amazon, a subset
of the components are set to 0 to mimic missing data while on ads, data is missing
structurally (more details in Appendix D).

Baselines We report results for the following models:
(a) Source-Full trained without adaptation on xS and tested on full xT; adaptation

is added in Adaptation-Full. Note that this model is only applicable for our academic
benchmark where we have access to full data.

(b) Source-ZeroImputation and Adaptation-ZeroImputation do the same but consid-
ering full xS while xT is incomplete. Missing data xT2 is set to 0, xT = (xT1 ,0).

(c) Source-IgnoreComponent and Adaptation-IgnoreComponent are a variant of the
above where only xD1 is considered while xD2 is ignored for both S and T .

(d) Adaptation-Imputation, our model, considers full xS and xT = (xT1 ,0) adding
imputation with a conditional generative model.

(e) We add self-training to Adaptation-Imputation and when applicable to Adaptation-
Full.

Note that Adaptation-Full is an upper bound of our imputation model since it uses
full information while xT2 is not available in practice. Adaptation-ZeroImputation and
Adaptation-IgnoreComponent are lower bounds for our model since they only perform
adaptation and do not impute non-zero values.

Hyperparameters Parameters are chosen using the DEV estimator [47]. For digits,
NN architectures are adapted from [18]; we use Adam optimizer with lr = 10−2 de-
cayed; batch size of 128 and 100 epochs. For ads and amazon, three-layered NN with
128 neurons per layer are used as feature extractors; the classifier and discriminators
are single-layered with 128 neurons; lr = 10−6 and is decayed; batch size is 500 with
50 epochs. Reported results are mean value and standard deviation over five runs and
best results are indicated in bold. Further details are given in the Appendix E.2.

7 CTR is the number of clicks made on ads divided by the number of shown ads. CR replaces clicks with purchases.
8 http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
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6.2 Digits

Description We consider UDA problems between several datasets: MNIST [23], USPS
[20], SVHN [31] and MNIST-M [18] as illustrated in Figure 3 (a). MNIST→ SVHN
is not considered as it is difficult for traditional UDA [18]. All tasks are 10-class classi-
fication problems. From complete digits datasets, we build datasets with missing input
values by setting corresponding pixel values to zero for horizontal patches of different
sizes as illustrated on Figure 3 (b) for MNIST-M digits. It is clear that there is domain
shift on these datasets as the pixel values have different mean and variance across do-
mains.

Fig. 3: (a) MNIST→MNIST-M adaptation; (b) Digits with missing horizontal patches of increas-
ing size

Results with half of the digit missing We first removed half of each target digit, the
horizontal bottom part. We report target accuracy in Table 1 for both ADV and OT
models. Removing half of the digit leads to a strong performance decrease for Source-
IgnoreComponent and Source-ZeroImputation compared to the upper-bounds of Source-
Full; the performance is partially recovered with adaptation. Adaptation-Imputation
clearly improves on Adaptation-IgnoreComponent and Adaptation-ZeroImputation in
all cases which validates the importance of imputation. However, it does not reach the
upper bound performance of Adaptation-Full. Both ADV and OT versions exhibit the
same behavior. In the results in Table 1, ADV performance is higher than OT. This is
because performance is highly dependent on the NN architectures and we tuned our
NNs for ADV. OT models may reach performance similar to ADV but require an order
of magnitude more parameters. To keep the comparison fair, we use the same NN mod-
els for both ADV and OT. Imputation models achieve their highest performance when
adaptation between domains is complex (MNIST→MNIST-M, SVHN→MNIST) il-
lustrating the importance of imputation when transfer is difficult. We show in Appendix
F the learned latent representations ẑS, ẑT for various digits adaptation problems.

Varying missing patch size We analyze the impact of the size of the missing patch by
removing a percentage p ∈ {30%,40%,50%,60%,70%} of MNIST digits when adapt-
ing SVHN → MNIST, with the same hyperparameters. Mean values over five runs
are reported in Figure 4 for ADV models. We notice that our model constantly beats the
other baselines regardless of the missing patch size. The figure exhibits borderline cases
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when the size of the missing patch becomes very small (< 30%) or very large (> 65%).
When the missing patch is small there is enough information for predicting the label
thus simple models perform well; when it becomes big, there is not enough information
for efficient reconstructions.

Fig. 4: ADV target accuracy (↑) on SVHN→MNIST with missing patch size

6.3 Ads

Description The ads datasets are used for solving the binary classification problem
of predicting if a user exposed to an ad from a partner (e.g. Booking.com) clicks
given his browsing history. A row in this dataset is a vector x = (xD1 ,xD2) specific to a
(user-partner) pair where xD1 gathers mean statistics for this user on all visited partners
summarizing the user’s display and click statistics and xD2 corresponds to the user-
partner specific traces. The label is the response to an ad for this (user, partner) pair,
a click for ads-kaggle or a purchase for ads-real. We transfer knowledge from
the labelled source domain composed of all user-partner pairs for which the user has
already interacted with the partner (retargeting users) to the unlabelled target domain
composed of all the user-partner pairs for which the user has never interacted with this
partner (prospecting users). xS2 is known but xT2 is unknown. There are several part-
ners and users per domain. These datasets are large scale as seen in Table 6 (1M and
24M source displays respectively for ads-kaggle, ads-real) with some specifici-
ties: there is class imbalance and five times less data on the target than on the source.
For both datasets besides missingness, there is also an adaptation problem: prospecting
users tend to be less active and their statistics are usually different from those of re-
targeting users, with a higher overall activity (e.g. in terms of frequency of a partner’s
website visits); this translates into distribution shifts on xD1 across domains. We visu-
alize in the Appendix in Table 7 and Figure 6 the domain shift in ads-kaggle which
comprises 13 features. Table 7 reports mean and standard deviation on each feature’s
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value over a domain and Figure 6 plots the histogram of the distribution of each feature
where the y-axis is unnormalized and corresponds to real counts. Feature 5 is naturally
missing on T and distributions are different in shape, mean and variance across do-
mains. To show the benefit of modelling additional missing features, we artificially set
features 1, 6, 7, 11 and 12 to zero on T such that in total 6 features are missing while
7 are present. On ads-real, 12 features are missing while 17 are present and we ob-
serve the same domain shift trend; however missing features are naturally missing and
we do not have access to their value.

Results We report results in Table 1 only for ADV models as we observed that the
trend is similar for both ADV and OT. Missing features are structurally missing in the
datasets, so we cannot report results for models using full inputs. The classes being
imbalanced, accuracy is not relevant here so we report the log cross-entropy (CE) be-
tween the predicted values and the true labels. CE is considered to be the most reli-
able metric to estimate revenue for the ads problem and for large user bases small CE
improvements can lead to a large revenue increase. For ads-kaggle, an improve-
ment of 0.001 in CE is considered as significant [43]. A first observation is that the
imputation model is substantially better than the baselines on both datasets. For ads-
kaggle it improves by 2.3% the best adaptation model i.e. the adaptation model with
zero imputation while for ads-real the improvement reaches 6.3% over the second-
best Source-IgnoreComponent. A second observation is that for any model, adaptation
consistently improves over the model without adaptation. The only exception is the set-
ting ignoring the missing component in ads-real. A third observation is that there
is a benefit of imputing the missing component for classification: source CE (not re-
ported) shows that Source-ZeroImputation which exploits xD2 is consistently higher
than Source-IgnoreComponent which does not, leading to relative gains of 5.6% on
ads-kaggle and 8.2% on ads-real. The imputation model is able to generate and
exploit this information.

Dataset MNIST→ USPS USPS→MNIST SVHN→MNIST MNIST→MNIST-M ads-kaggle ads-real

Model w/o R ADV OT ADV OT ADV OT ADV OT ADV ADV

Source-Full 71.5±2.7 74.2±2.7 58.1±1.1 28.3±1.4 NA
Adaptation-Full 85.8±3.2 92.6±1.7 94.6±2.1 93.9±0.6 78.0±3.4 76.1±1.4 60.8±3.8 46.9±3.9 NA

Source-ZeroImputation 25.7±3.7 39.2±2.6 31.5±2. 14.4±1.1 0.545±0.019 0.663±0.011
Adaptation-ZeroImputation 48.4±4.8 60.9±6.3 67.5±2.2 65.3±5.2 47.1±5.7 37.5±6.2 34.7±2.5 20.2±2.5 0.397±0.0057 0.660±0.025
Source-IgnoreComponent 52.9±9.7 54.3±1.6 44.6±1.9 19.1±2.6 0.406±0.00046 0.622±0.0048

Adaptation-IgnoreComponent 71.5±3.2 64.0±5.0 80.0±1.4 72.0±1.8 45.5±1.9 47.9±1.8 29.4±1.6 26.8±4.4 0.403±0.0030 0.634±0.0082
Adaptation-Imputation 74.2±2.3 66.8±1.3 81.4±0.8 72.5±2.7 53.8±1.4 49.2±1.5 57.9±2.3 29.2±1.4 0.389±0.014 0.583±0.013

Table 1: Best target accuracy (↑) on digits and CE (↓) on ads without R

6.4 Amazon reviews

Description Besides dealing with images and interaction features in the digits and
ads datasets, we also performed experiments on an additional modality, text. amazon
is the Amazon product review dataset [6] with four domains (Books, DVDs, Electronics,
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and Kitchen) transformed to binary classification with positives referring to reviews
with rating above 3 stars and negatives to reviews with rating below 3 stars. Additional
details on data processing can be found in Appendix D. We consider four adaptation
problems and simulate missing features by setting the first half of the features to zero.

Results Results are reported in Table 2 and confirm our prior findings i.e. that jointly
performing adaptation and imputation improves our baselines. We also notice that our
model achieves similar performance to models using full data showing that imputation
successfully recovered the missing component.

Dataset DVD→ Electronics Books→ Kitchen Kitchen→ Electronics DVD→ Books
Source-Full 69.57 73.04 77.88 71.95

Adaptation-Full 73.62 74.09 79.63 72.65
Source-ZeroImputation 58.51 60.52 66.27 61.15

Adaptation-ZeroImputation 64.51 61.08 68.02 62.80
Source-IgnoreComponent 60.21 62.03 67.62 64.35

Adaptation-IgnoreComponent 61.02 64.08 68.47 66.00
Adaptation-Imputation 72.57 72.69 78.18 72.61

Table 2: Best target accuracy (↑) on amazon without R

6.5 Refinement R

Results with pseudo-labels are reported in Table 3 on digits and ads-kaggle for
Adaptation-Full and Adaptation-Imputation. We set the threshold score selection for
the discriminative CEM component to 95% i.e. the pseudo labels of all target instances
xT s.t. maxk hĝk(xT) ≥ 0.95 are considered to be true and set the entropy weight to
λ = 0.1 on digits and λ = 1 on ads-kaggle. Learning rates used for solving (9)
are divided by 10 and 10 epochs of successive refinement steps are applied. We observe
a clear global improvement on both datasets showing that our refinement model is a
good heuristic on real-world datasets for which we usually have pS(Y |Ẑ) 6= pT (Y |Ẑ).
For standard UDA methods such as Adaptation-Full, performance is significantly im-
proved everywhere with small change on MNIST→MNIST-M; Adaptation-Full is not
measurable for ads-kaggle. Our imputation with refinement model follows the same
trend with a considerable relative gain of +18.5% on ads-kaggle.

ADV Model MNIST→ USPS USPS→MNIST SVHN→MNIST MNIST→MNIST-M ads-kaggle

Adaptation-Full w/ R 95.9±0.6 (+12%) 96.8±0.6 (+2.3%) 83.3±3.9 (+6.8%) 60.9±3.7 (+0.2%) NA
Adaptation-Imputation w/ R 78.5±1.6 (+5.8%) 82.5±0.5 (+1.4%) 58.6±1.8 (+8.9%) 58.2±2.3 (+0.5%) 0.317±0.0023 (+18.5%)
Table 3: R with relative gain over Table 1; target accuracy (↑) on digits and CE (↓) on ads
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6.6 Ablation analysis

We analyze the importance of each component of our model on the public datasets
(digits, amazon and ads-kaggle) and report results in Table 4 (bottom) and
Figure 5.

Adaptation We measure the effect of adaptation term L1 (3) in L in Table 4 (first row).
When removing adaptation, inference is performed as before by feeding ẑT to f . This
means that we only rely on the imputation and classification losses to learn the param-
eters of the model. For all datasets, adding L1 considerably increases performance.

Imputation Imputation ẑS2 = h◦g1(xS1), combines adversarial training (ADV) and con-
ditioning on the input datum via MSE (MSE) in L2 (4). ADV aligns the distributions of
zS2 and ẑS2 while MSE can be thought as performing regression. For a given xS1 , there
are possibly several potential xS2 and thus zS2 . ADV allows us to focus on a specific
mode of zS2 , while MSE will favour a mean value of the distribution. Results in Table
4 (second row), show that for our datasets, combining MSE and ADV leads to improved
results compared to using separately each loss. MSE alone already provides good per-
formance, while using only ADV is clearly uncompetitive. Note that reconstruction is
an ill-posed problem since the task is inherently ambiguous (different digits may be re-
constructed from a half image). We performed tests with a stochastic input component
to recover different modes, but the performance was broadly similar. We investigate in
Figure 5 several weighted combinations of MSE and ADV: for digits and amazon,
equal weights were found to be a good choice, while for ads-kaggle performance
is improved with other weightings. On Figure 5, ADV induces a high variance in the
results (left part of x-axis) while MSE stabilizes the performance (right part of x-axis).
ADV allows for better performance at the expense of high variance; a small contribution
from MSE, λMSE = 0.005, stabilizes the results.

Ablation study ADV Model MNIST→ USPS USPS→MNIST SVHN→MNIST MNIST→MNIST-M ads-kaggle

L2 +L3 vs. L1 +L2 +L3 L = λ2L2 +λ3L3 64.2±1.8 (-13%) 51.3±2.5 (-37%) 44.5±1.4 (-17%) 24.1±2.6 (-58%) 0.410±0.0020 (-5.4%)

ADV-MSE weighting in L2

L2 = LMSE 71.9±3.7 (-3.1%) 81.4±1.2 (0%) 52.5±3.7 (-2.4%) 56.5±2.8 (-2.4%) 0.400±0.0014 (-2.8%)
L2 = LADV 28.6±3.2 (-61%) 39.4±5.2 (-52%) 28.8±3.8 (-46%) 30.0±3.7 (-48%) 0.469±0.13 (-21%)

L2 = LADV +0.005×LMSE 47.8±3.7 (-36%) 49.6±5.8 (-39%) 46.0±2.6 (-15%) 50.6±2.2 (-13%) 0.389±0.014 (0%)
L2 = LADV +LMSE 74.2±2.3 (0%) 81.4±0.8 (0%) 53.8±1.4 (0%) 57.9±2.3 (0%) 0.401±0.0014 (-3.1%)

Ablation study ADV Model DVD→ Electronics Books→ Kitchen Kitchen→ Electronics DVD→ Books

ADV-MSE weighting in L2
L2 = LMSE 71.47 (-1.5%) 71.39 (-1.8%) 77.58 (-0.77%) 72.02 (-0.81%)

L2 = LADV +LMSE 72.57 (0%) 72.69 (0%) 78.18 (0%) 72.61 (0%)

Table 4: Ablation with relative gain over Table 1; accuracy (↑) on digits, amazon and CE (↓)
on ads

6.7 Discussion

Relationship between theoretical and experimental results We comment on our exper-
imental results in light of our adaptation (10) and imputation (11) upper-bounds. Let us
first consider (10). The first term in (10), εS( f ◦ ĝ), is the classification loss L3 in (7).
The second term in (10) dF∆F (pS(Ẑ), pT (Ẑ)) is approximated by a proxy L1 (3) and
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Fig. 5: Adaptation-Imputation target CE (↓) with standard deviations on ads-kaggle w.r.t.
λMSE

accounts for alignment. L1 leads to substantial gains in Table 4 (first row) when added
to the loss. The third term λHĝ in (10) is the optimal joint error heuristically controlled
with self-training as justified by upper-bound (12), with gains shown in Table 3. Sec-
ond, we consider (11). It is the product of two terms, the target imputation error (IT )
and the error on the target εT ( f ◦ ĝ) which is exactly the left hand side term in bound
(10). (IT ) = (IS)× (TI), (IS) is the source imputation error and is optimized when term
L2 (4) is zero. (TI) is the transfer error, optimized when L1 (3) is zero. Adding L1 to
the loss improves the performance (Table 4). L2 (4) explains the gains of Adaptation-
Imputation over Adaptation-ZeroImputation in Table 1 as Adaptation-ZeroImputation
does not attempt to impute missing components. To summarize, minimizing our global
error function L in (8) minimizes, according to the approximations just described, the
two upper bounds in (10) and (11).

Limitations Our results are obtained under some assumptions which we are the first
to introduce to our knowledge for our problem. First, if the missing and the observed
components are statistically independent, Assumption 2 is not valid, and then there is
no way to impute this missing data. Second, if pS(Z2|Z1) 6= pT (Z2|Z1) i.e. Assumption
3 is not valid, then we cannot transfer imputation from source to target. Yet, these as-
sumptions are most often met in applications and allow to build a well-defined model
with good empirical results.

7 Conclusion

We proposed a new model for UDA with non-stochastic target missingness with indirect
supervision from a complete source. This method uses only labelled source instances
imputing the missing target values in a latent space. Under our assumptions, it mini-
mizes an adaptation upper-bound of its target error and an imputation upper-bound of
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the ideal target error with full data and leads to important gains for two representative
families of divergences (OT, ADV) on our benchmarks (digits, amazon) and on real-
world advertising datasets, which are a complex task with missing features. We show
that approaches using a pure regressive generator underperform compared to our ap-
proach on our real-world applications for which distributions are multi-modal. Finally,
we introduced a heuristic refinement method based on self-training to deal with settings
where posterior distributions mismatch. As follow-up, we plan to further investigate
how to generate diverse outputs in our imputation network.
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A Additional related work

We present in this section some other secondary topics related to our problem in com-
plement to Section 2.

Concept drift in data streams Adapting to non i.i.d. data is also considered in evolving
data streams where concept drift may occur [17]. The hypotheses are different from the
ones in our setting where adaptation is performed between static domains.

Batch effect and multiple environments Data may come from different environments
with different distributions. Classical learning frameworks like ERM consider shuffled
data without making the distinction between environments which may lead to erroneous
conclusions. In biology, this is known as the batch effect [24]. In ML, recent papers
learn domain invariant representations from different environments [3]. This is different
from the situation considered here where one explicitly adapts from a source to a target
environment.

B OT Adaptation-Imputation formulation

We present here in more details our model using Optimal Transport as a divergence
metric. The formulation is slightly different compared to ADV models. We replace the
H -divergence approximation given by the discriminators D1 and D2 by the Wasser-
stein distance between source and target instances (D1) and true and imputed feature
representations (D2), following the original ideas in [14, 38]. In practice, we compute
the Wasserstein distance using its primal form by finding a joint coupling matrix γ , us-
ing a linear programming approach [35]. In [12, 14], the optimal transport problem is
formulated on the joint p(X ,Y ) distributions. Similarly to [38], in our case, we focus on
a plan that acts only on the feature space without taking care of the labels. This leads to
the following optimization problem:

(14)L1 = min
f ,γ1,g

∑
i j

(
||z(i)S1

− z(j)T1
||2 + ||̂z(i)S2

− ẑ( j)
T2
||2
)
γ1i j

where γ1i j is the alignment value between source instance i and target instance j.
For the imputation part, we keep the reconstruction MSE component in Equation 6

and derive the distribution matching loss as:

(15)LOT = min
f ,γ2,g

∑
i j
||z(i)S2

− ẑ( j)
S2
||2γ2i j

where γ2i j is the alignment value between source instance i and j. The final imputation
loss is:

L2 = λOT ×LOT +λMSE ×LMSE (16)

The classification term in Equation 7 is unchanged.

The optimization problem in Equation 9 is solved in two stages following an alter-
nate optimization strategy:
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– We fix all parameters but γ1 and γ2 and find the joint coupling matrices γ1 and γ2

using EMD
– We fix γ1 and γ2 and solve ming1,g2,h, f L

In practice, we first minimize L3 for a couple of epochs (taken to be 10 for dig-
its) then minimize λ1L1 + λ2L2 + λ3L3 in the remaining epochs. Learning rate and
parameters are detailed further in Section E.

C Proofs

Theorem (1). Given f ∈F , ĝ in (2) and pS(Ẑ), pT (Ẑ) the latent marginal distributions
obtained with g.

εT ( f ◦ ĝ)≤
[
εS( f ◦ ĝ)+dF∆F (pS(Ẑ), pT (Ẑ))+λHĝ

]
︸ ︷︷ ︸

Domain Adaptation (DA)

with εS(·),εT (·) the expected error w.r.t to the labelling function fS, fT on S, T respec-
tively; F∆F the symmetric difference hypothesis space; dH the H -divergence for
H = F∆F and
λHĝ = min f ′∈F [εS( f ′ ◦ ĝ)+ εT ( f ′ ◦ ĝ)], the joint risk of the optimal hypothesis.

Proof. We apply [5] to form the bound in Z using ĝ.

Lemma (1). For any continuous density distribution p, q defined on an input space X ,
such that ∀x ∈X ,q(x) > 0, the inequality supx∈X [p(x)/q(x)] ≥ 1 holds. Moreover,
the minimum is reached when p = q.

Proof. Suppose that 6∃ x ∈X s.t.supx p(x)/q(x)≥ 1. This means that ∀x, p(x)< q(x).
By integrating those positive and continuous functions on their domains, we are lead
to the contradiction that the integral of one of them is not equal to 1. Thus, ∃x ∈
X s.t.p(x)/q(x) ≥ 1. Thus, supx∈X [p(x)/q(x)] ≥ 1, with equality trivially when p =
q.

Proposition (1). Under Assumption 3, given f ∈F , ĝ in (2) and g in (1),

εT ( f ◦g)≤ sup
z∼p(Z)

[
pS(Z2 = z2|z1)

pS(Ẑ2 = z2|z1)
]︸ ︷︷ ︸

Imputation error on S (IS)

× sup
z∼p(Z)

[
pS(Ẑ2 = z2|z1)

pT (Ẑ2 = z2|z1)
]︸ ︷︷ ︸

Transfer error of Imputation (TI )︸ ︷︷ ︸
Imputation error on T (IT )

×εT ( f ◦ ĝ) (11)

Under Lemma 1, (IT )=1 is the minimal value reached when pS(Z2|Z1) = pS(Ẑ2|Z1) and
pS(Ẑ2|Z1) = pT (Ẑ2|Z1). In this case, εT ( f ◦g) = εT ( f ◦ ĝ).
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Proof. We denote f z
T , the latent target labeling function. Moreover, for simplicity, we

write hĝ = f ◦ ĝ, hg = f ◦g and ∀z∼ p(Z),SD(z) =
pD(Z2 = z2|z1)

pD(Ẑ2 = z2|z1)

εT (hg) = ExT∼pT (X)[I(hg(xT ) 6= fT (xT ))]

= EzT1∼pT (Z1),zT2∼pT (Z2|Z1)[I( f (zT1 ,zT2) 6= f z
T (zT1 ,zT2))]

= EzT1∼pT (Z1),̂zT2∼pT (Ẑ2|Z1)
[
pT (Z2 = ẑT2 |zT1)

pT (Ẑ2 = ẑT2 |zT1)
I( f (zT1 , ẑT2) 6= f z

T (zT1 , ẑT2))]

≤ sup
z∼p(Z)

[ST (z)]ExT∼pT (X)[I(hĝ(xT ) 6= fT (xT ))]

= sup
z∼p(Z)

[ST (z)]εT (hĝ)

However, ∀z∈Z ,ST (z) cannot be computed as there is not supervision possible on
T . We will instead apply Assumption 3 and use source data for which we can compute
SS(z).

∀z ∈Z ST (z) =
pT (Z2 = z2|z1)

pT (Ẑ2 = z2|z1)

=
pS(Z2 = z2|z1)

pT (Ẑ2 = z2|z1)
Assumption 3

=
pS(Z2 = z2|z1)

pS(Ẑ2 = z2|z1)
× pS(Ẑ2 = z2|z1)

pT (Ẑ2 = z2|z1)

= SS(z)×
pS(Ẑ2 = z2|z1)

pT (Ẑ2 = z2|z1)

Thus by applying sup,

sup
z∼p(Z)

[ST (z)] = sup
z∼p(Z)

[SS(z)]× sup
z∼p(Z)

[
pS(Ẑ2 = z2|z1)

pT (Ẑ2 = z2|z1)
]

This yields (11).
If (IT )=1 when pS(Z2|Z1) = pS(Ẑ2|Z1) and pS(Ẑ2|Z1) = pT (Ẑ2|Z1) per Lemma 1,

then ST (z) = 1 and εT ( f ◦g) = εT ( f ◦ ĝ).

Proposition (2). Assume a joint distribution pT̃ (X ,Y ) where pT̃ (X) = pT (X) and Y =
hĝ(X) where hĝ = f ◦ ĝ ∈Hĝ is a candidate hypothesis. Then,

λHĝ ≤ min
hĝ∈Hĝ

[
εS(hĝ)+ εT̃ (hĝ)+ εT ( fT̃ )

]
with εT ( fT̃ ) = Prx∼pT (X)( fT̃ (x) 6= fT (x)) the error of the pseudo-labelling function fT̃
on T .
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Proof. We know that pT̃ (X) = pT (X) as instances are not changed by applying the
pseudo-labelling function. Thus, given hĝ ∈Hĝ

εT (hĝ) = εT (hĝ, fT ) = εT̃ (hĝ, fT )

Applying the triangle inequality for classification error [13],

εT̃ (hĝ, fT )≤ εT̃ (hĝ, fT̃ )+ εT̃ ( fT̃ , fT )

Finally, we can rewrite εT̃ (hĝ, fT̃ ) = εT̃ (hĝ) and εT̃ ( fT̃ , fT ) = εT ( fT̃ , fT ) = εT ( fT̃ ).

D Dataset description

D.1 Digits

We scale all images to 32×32 and normalize the input in [−1,1]. When adaptation in-
volves a domain with three channels (SVHN or MNIST-M) and a domain with a single
channel, we simply triplicate the channel of the latter domain. As in [14] we use bal-
anced source batches which proves to increase performance especially when the source
dataset is imbalanced (e.g. SVHN and USPS datasets) while the target dataset (usually
MNIST derived) is balanced. Scaling the input images enables us to use the same archi-
tecture across datasets. In practise the embedding size is 2048 after preprocessing. For
missing versions, we set pixel values to zero in a given patch as shown in Figure 3. The
digits datasets are provided with a predefined train / test split. We report accuracy
results on the target test set and use the source test set as validation set (Section E.2).
The number of instances in each dataset is reported in Table 5. We run each model five
times.

USPS MNIST SVHN MNIST-M

Train 7438 60k 73257 60k
Test 1860 10k 26032 10k
Size 28 × 28 28 × 28 32 × 32 28 × 28

Channels 1 1 3 3

Table 5: Statistics on digits datasets

D.2 Amazon

Each domain has around 2000 samples and we use features freely available at https://
github.com/jindongwang/transferlearning/tree/master/data#amazon-review which follows

https://github.com/jindongwang/transferlearning/tree/master/data#amazon-review
https://github.com/jindongwang/transferlearning/tree/master/data#amazon-review
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the data processing pipeline in [10]. Each review is preprocessed as a feature vector of
unigrams and bigrams keeping only the 5000 most frequent features. In practise, we
consider the dense version of these features after projection onto a low-dimensional
sub-space of dimension 400 with PCA as in [10]. Datasets with missing features are
built by setting the first half of the features to 0.

D.3 Ads

Table 6 lists statistics on the traffic for the two ads datasets; we now describe how they
are preprocessed. On both datasets the train and test sets are fixed. We run each model
five times.

Dataset ads-kaggle ads-real

Domain Source Target Source Target
Split Train Test Train Test Train Test Train Test

Positive 246.872 61.841 92.333 22.943 X X X X
Negative 699.621 174.783 854.160 213.681 X X X X

Total 946.493 236.624 946.493 236.624 24.465.756 3.760.233 819.073 147.358
p(Y = 1) 0,2608 0,2613 0,0976 0,0970 X X X X

Table 6: Statistics on ads datasets

ads-kaggle The Criteo Kaggle dataset is a reference dataset for CTR prediction
and groups one week of log data. The objective is to model the probability that a user
will click on a given ad given his browsing behaviour. Positives refer to clicked ads
and negatives to non-clicked ads. For each datum, there are 13 continuous and 26 cat-
egorical features. We divide the traffic into two domains using feature number 30 cor-
responding to an engagement feature; for a given value for this categorical feature, all
instances have a single missing numeric feature (feature number 5). We then construct
an artificial dataset simulating transfer between known and new users. We process the
original Criteo Kaggle dataset to have an equal number of source and target data. We
then perform train / test split on this dataset keeping 20% of data for testing. We used in
our experiments only continuous features; to show the benefit of modelling additional
missing features, we extend the missing features list to features 1, 5, 6, 7, 11 and 12 by
setting them to zero on the target domain. After these operations, 6 features are missing
and 7 are non-missing. Preprocessing consists in normalizing continuous features using
a log transform.

ads-real This private dataset is similar to ads-kaggle. We filter out non-clicks
and the final task is to model the sale probability for a clicked ad given an user’s brows-
ing history. Positives refer to clicked ads which lead to a sale; negatives to clicked ads
which did not lead to a sale. We use one week of sampled logs as a training set and
use the following day data as the test set. This train / test definition is used so to better
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correlate with the performance of a production model. Features are aggregated across
user timelines and describe the clicking and purchase behavior of a user. In comparison
to ads-kaggle more continuous features are used. The count features can be User-
centric i.e. describe the global activity of the user (number of clicks, displays, sales done
globally across partners) or User-partner features i.e. describing the history of the user
on the given partner (number of clicks, sales... on the partner). The latter are missing
for prospecting users. Counts are aggregated across varying windows of time and cat-
egories of partner catalog. We bucketize these count features using log transforms and
project the features into an embedding space of size 596 with 29 features. 12 features
are missing and 17 are non-missing.
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Domain Source Target
feature 1 0.80±2.21 4.4 ×10−4±0.041
feature 2 9.16±13.04 9.01±13.42
feature 3 4.40±6.32 3.44±6.19
feature 4 2.58±3.27 0.94±2.31
feature 5 61.09±37.67 0.0±0.0
feature 6 11.26±12.24 0.090±1.69
feature 7 4.10±6.23 0.0034±0.13
feature 8 5.12±4.50 1.91±4.26
feature 9 14.32±11.57 3.273±5.36

feature 10 0.046±0.22 1.35 ×10−5±0.0037
feature 11 1.08±2.11 4.25 ×10−4±0.029
feature 12 0.083±0.78 6.68 ×10−5±0.018
feature 13 2.74±3.59 1.21±3.36

Table 7: Feature mean and standard deviation on ads-kaggle. We set features 1, 6, 7, 11, 12
to zero on T .

Fig. 6: Source (blue) and Target (red) distributions on ads-kaggle for each feature (1 to 13)
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E Implementation details

E.1 Neural Net architecture

digits We use the ADV and OT versions of our imputation model. For ADV models, we
use the DANN model description in [18]; for OT we use the DeepJDOT model descrip-
tion in [14]. Both models can be considered as simplified instances of our corresponding
ADV and OT imputation models when no imputation is performed. Performance of the
adaptation models is highly dependent on the NN architectures used for adaptation and
classification. In order to perform fair comparisons and since our goal is to evaluate
the potential of joint Adaptation-imputation-classification, we selected these architec-
tures through preliminary tests and use them for both the ADV and OT models. The two
models are described below and illustrated in Figure 7.

– Feature extractors g1 and g2 consists of three convolutional layers with 5×5 kernel
and 64 filters interleaved with max pooling layers with a stride of 2 and 2× 2 ker-
nel. The final layer has 128 filters. We use batch norm on convolutional layers and
ReLU as an activation after max pooling. As in [14] we find that adding a sigmoid
activation layer as final activation is helpful.

– Classifier f consists of two fully connected layers with 100 neurons with batch
norm and ReLU activation followed by the final softmax layer. We add Dropout as
an activation for the first layer of the classifier.

– Discriminator D1 and D2 is a single layer NN with 100 neurons, batch norm and
ReLU followed by the final softmax layer. On USPS → MNIST and MNIST →
USPS dataset we use a stronger discriminator network which consists of two fully
connected layers with 512 neurons.

– Generator r consists of two fully connected layers with 512 neurons, batch norm and
ReLU activation. This architecture is used for ADV and OT imputation models. In
practice using wider and deeper networks increases classification performance with
the more complicated classification tasks (SVHN → MNIST, MNIST → MNIST-
M); in these cases we add an additional fully connected network with 512 neurons.
The final activation function is a sigmoid.

We use the same architecture described above for all our models to guarantee fair com-
parison. As a side note, the input to the imputation model’s classifier is twice bigger as
in the standard adaptation models.

Fig. 7: Base architecture for the ADV DANN model
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ads-kaggle and amazon We experiment with ADV models only. As input data is
numeric and low dimensional, architectures are simpler than in digits. Our feature
extractor is a three layered NN with 128 neurons and with a final sigmoid activation.
The classifier is taken to be a single layered NN with 128 neurons and a final softmax
layer. Activations are taken to be ReLUs. The domain discriminator is taken to be a
two layered NN with 128 neurons and a final softmax layer. Finally the reconstructor is
taken to be a two-layered NN with 256 neurons and final sigmoid activation.

ads-real We experiment with ADV models only. Input features after processing are
fed directly into the feature extractors g1, g2 consisting of two fully connected layers
with 128 neurons. The classifier and discriminator is taken to be single-layered NN
with 25 neurons. The reconstructor is taken to be a two-layered NN with 128 neurons.
Inner activations are taken to be ReLUs and the final activation of the feature extractor
is taken to be a sigmoid.

E.2 Network parameters

Hyperparameter tuning Tuning hyperparameters for UDA is tricky as we do not have
access to target labels and thus cannot choose parameters minimizing the target risk on a
validation set. Several papers set hyperparameters through reverse cross-validation [18].
Other approaches developed for model selection are based on risk surrogates obtained
by estimating an approximation of the risk value on the source based on the similarity
of source and target distributions (without the labels). In the experiments, we used a
recent estimator, Deep Embedded Validation (DEV) [47] for tuning the initial learn-
ing rate and for the OT imputation model, tuning λ1 and λOT . For other parameters,
we used heuristics and typical hyperparameter values from UDA papers (such as batch
size) without further tuning. We use a cross entropy link function on the source vali-
dation set; this value provides a proxy for the target test risk. Using parameters from
the original paper, this estimator helps select parameter ranges which perform reason-
ably well. We keep the estimator unchanged for our baseline models. In the imputation
case, the discriminator used for computing importance sampling weights discriminates
between ẑS and ẑT i.e. D1 (Figure 2).

Digits We find that the results are highly dependent on the NN architecture and the
training parameter setting. In order to evaluate the gain obtained with Adaptation-
Imputation, we use the same NN architecture for all models (ADV and OT) but fine
tune the learning rates for each model using the DEV estimator (other parameters do
not have a significant impact on the classification performance).

ADV We use an adaptive approach as in [18] for decaying the learning rate lr and up-
dating the gradient’s scale s between 0 and 1 for the domain discriminators. We choose

the decay values used in [18] ie. s =
2

1+ exp(−10× p)
− 1 and lr =

lri

(1+10× p)0,75

where p is ratio of current batches processed over the total number of batches to be pro-
cessed without further tuning. We tune the initial learning rate lri, chosen in the range
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{10−2,10−2.5,10−3,10−3.5,10−4} following Section E.2. In practise we take lri = 10−2

for ADV Adaptation-Imputation, Adaptation-Full, Adaptation-IgnoreComponent and
lri = 10−2.5 for ADV Adaptation-ZeroImputation. We use Adam as the optimizer with
momentum parameters β1 = 0.8 and β2 = 0.999 and use the same decay strategy and
initial learning rate for all components (feature extractor, classifier, reconstructor). Batch
size is chosen to be 128; we see in practise that initializing the adaptation models with
a source model with smaller batch size (such as 32) can be beneficial.

OT We choose parameter λOT = 0.1 in Equation 16 after tuning in the range {10−1,10−2,
10−3} using DEV. We weight L1 in Equation 8 by λ1 = 0.1. Following [14], batch size
is taken to be 500 and we use EMD a.k.a. Wasserstein-2 distance. We initialize adap-
tation models with a source model in the first 10 epochs and divide the initial learning
rate by two as adaptation starts for non-imputation models. For Adaptation-Imputation
we follow a decaying strategy on the learning rate and on the adaptation weight as ex-
plained in the next item. We choose lri in the range {10−2,10−2.5,10−3,10−3.5,10−4}.
In practise we fix lri = 10−2 for all models.

Imputation parameters Ablation studies are conducted in Section 6.6 on weights in
Equation 4; in digits experiments we choose L2 = LMSE +LADV for ADV and OT to
reduce the burden of additional feature tuning. For ADV model, we fix λ1 = λ2 = λ3 = 1
in Equation 8. In the OT model, we vary λ1 between 0 and 0.1 and λ2 between 0 and
1 following the same schedule as the gradient scale update for ADV models to reduce
variance.

Ads We use an adaptive strategy for updating the gradient scale and the learning rate
with the same parameters as in the digits dataset. Optimizer is taken to be Adam.
Batch size is taken to be big so that target batches include sufficient positive instances.

ads-kaggle The initial learning rate is chosen in the range {10−4,10−5,10−6,10−7}
using DEV and fixed to be 10−6 for all models. Batch size is taken to be 500 and we
initialize models with a simple classification loss for five epochs. We run models for
50 epochs after which we notice that models reach a plateau. We find that adding a
weighted MSE term allows to achieve higher stability (as measured by variance) as
further studied in Section 6.6. In a similar fashion to [34], we tune this weight in the
range {1,10−1,10−2,7.5× 10−3,5× 10−3,10−3}. We find that 0.005 offers the best
compromise between mean loss and variance. Moreover on this dataset we use a faster
decaying strategy for the discriminator’s D2 and the reconstructor’s r learning rate,

lr =
lri

(1+30× p)0,75 to achieve higher stability in the training curves while the feature

extractor g1, g2 and D1’s learning rate are unchanged.

ads-real The initial learning rate is chosen in the range {10−4,10−5,10−6} and
fixed to be 10−6 for all models. The learning rate is decayed with the same parameters
as digits for all models. We run models for ten epochs which provides a good trade-
off between learning time and classification performance. Batch size is taken to be 500.
We choose L2 = LMSE +LADV without further tuning; this achieves already good results.
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E.3 Amazon

We use the same hyperparameters as ads-kaggle. λMSE is set to 1 without further
tuning.

F Latent space visualization on digits

In this section we visualize the embeddings ẑ = ĝ(z) learned by the various models on
digits by projecting the embeddings in a 2D space using ĝ with t-SNE (the origi-
nal embedding size being 2048). Figure 8 represents the embeddings learned for ADV
models on MNIST → MNIST-M. Figures 9 and 10 represent these embeddings for
OT models respectively on MNIST→ MNIST-M and MNIST→ USPS. On these fig-
ures, we see that Adaptation-Imputation generates feature representations that over-
lap better between source and target examples per class than the adaptation counter-
parts (although Adaptation-IgnoreComponent does a good job at overlapping feature
representations). This correlates with the accuracy performance on the target test set.
Moreover we notice, as expected, that Adaptation-IgnoreComponent and Adaptation-
ZeroImputation perform badly compared to Adaptation-Full which justifies the use of
Adaptation-Imputation when confronted to missing non-stochastic data.
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Fig. 8: Embeddings for MNIST→MNIST-M dataset for ADV models on a batch. Figures on the
left represent the source (red) and target (blue) clusters; Figures on the right represent the classes
on source and target.
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Fig. 9: Embeddings for MNIST→ MNIST-M dataset for OT models on a batch. Figures on the
left represent the source (red) and target (blue) clusters; Figures on the right represent the classes
on source and target.
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Fig. 10: Embeddings for MNIST→ USPS dataset for OT models on a batch. Figures on the left
represent the source (red) and target (blue) clusters; Figures on the right represent the classes on
source and target.
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