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Abstract: Wood materials are being adopted as nature-based architectural themes inside the health-
care buildings. Concern is raised that the organic and porous character of wood might support
microbial survival. Therefore, this review discusses the hygienic properties of wood including the an-
timicrobial potential and its cleanability in comparison to smooth surface materials. In general, wood
has antimicrobial properties owing to its chemical composition and physical structure. However,
the hygienic potential of wood is influenced by the type of wood, age of wood, the cleaning method,
surface treatment, and its moisture content. This information is intended to guide decision-makers
regarding the use of wood in hygienically sensitive places and researchers to help them identify the
variables for better utilizing the hygienic potential of this material.

Keywords: surface hygiene; wood; antimicrobial; biofilms; green buildings

1. Introduction

The construction of hospitals and other healthcare facilities has a significant impact
on the environment in terms of material usage and consumption of energy and waste
generation [1]. Therefore, sustainable construction of healthcare buildings demands the
use of eco-friendly materials which can be recycled and have low embodied energy and
environmental impact [2,3].

The occupants of healthcare buildings including the patients and the staff, have a
higher level of stress as compared to general populations [4]. In the patients, stress is
mainly linked to the illness, while for the staff is linked to long working hours and the need
to take life-saving decisions [4]. Past research has shown that the interior environment
could reduce the level of this stress in the hospital building occupants [5]. One of the main
modifications is the use of nature-based architectural themes which provide a healing and
relaxing environment to the patients and the staff of healthcare buildings [6].

Wood is an organic and renewable resource of nature that is abundantly used for
eco-friendly constructions and is an important component of nature-based themes [7].
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Therefore, using wood material in the construction and designing of healthcare buildings
can contribute to the reduction of stress in occupants and the improvement of sustainability
markers of healthcare buildings [1,8]. This is the reason that the growing number of
healthcare buildings are adapting this material.

There is still hesitancy in widely adopting wood for indoor applications in healthcare
buildings because this material is perceived as unhygienic owing to its porosity and organic
nature [9]. However, some research has shown that untreated wood materials have antimi-
crobial properties against a wide range of pathogens responsible for healthcare-associated
infections (HAI) [10]. Moreover, the most common microbes, including the SARS-CoV-2,
survive least on porous materials as compared to smooth solid materials [11–13]. Mean-
while, the cleanability of wood is no worse than other materials such as plastic, glass, and
steel [9].

This literature review aims to gather knowledge on the potential uses of wood material
in healthcare buildings. It discusses the antimicrobial and hygienic properties of wood
along with the influencing variables. This information is intended to identify the knowledge
gaps and provide guidelines to the stakeholders regarding the hygienically safe uses of
wood in healthcare buildings.

2. Wood as an Indoor Material for Healthcare Buildings

Wood, as indoor material, is generally used for two purposes, i.e., construction and
aesthetics, and mostly both go along together, for example, in making furniture, floors,
ceiling, and walls [14]. The structure may involve untreated wood, however, a treatment
is often applied to protect against wood degrading pests and fungi depending upon the
type of wood, geographic location, and the desired look. Indoor surfaces of wood are
also frequently coated to protect them from scratches, stains, and weathering [15]. Indeed,
various chemicals are used for processing of wood, such as adhesives, pesticides, solvents,
resin binders, waterproofing compounds, stains, pigments, paints, and varnishes [9,16].
Some of these chemicals can be toxic [17], as some countries allow the use of, creosote,
pentachlorophenol (PCP), or chromated copper arsenate (CCA) [18]. In addition, various
volatile organic compounds (VOC) are emitted during such treatments (wood processing)
and can cause respiratory or other health-related issues/illnesses. Therefore, nontoxic
compounds are favored for wood treatments [18].

Therefore, in this review, we mostly discuss ‘untreated wood’, which is free from
surface treatment and coating, because this condition best represents the natural properties
of wood. In addition, the application of surface finishes could make wood materials more
difficult to recycle. Although some studies discuss the antimicrobial properties of wood
coatings [19,20], that is a different subject. In addition, untreated wood is sometimes used
as an indoor material in form of non-contact furniture surfaces, ceilings, floors, and some
wall frames. Such untreated materials are more preferred to be recycled as compared to
treated wood.

3. Healthcare-Associated Infections (HAI) and Role of Environmental Surfaces

Nosocomial or healthcare-associated infections (HAI) are transmitted to patients when
they receive medical care in healthcare facilities. The World Health Organization (WHO)
remarks HAI as the most common adverse event among hospitalized patients [21]. In
general, the HAI concern up to 7% of the hospitalized patients in developed and 10% in
developing countries [22]. They are responsible for increasing the economic burden on the
healthcare system by prolonged hospital staying time, disability, and treatment cost [23,24].

Generally, HAI are characterized as ventilator-associated pneumonia (VAP), central
line-associated bloodstream infections, catheter-associated urinary tract infections, and
surgical site infections [25]. The severity of these infections can range from mild to fatal
depending upon the causative microorganism, e.g., bacteria, fungi, or viruses, and the type
of infection or system infected.
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The prevalence of these microbial agents differs depending upon patient populations,
available medical facilities and the condition of the indoor environment. The most notable
etiological agents causing HAI can be listed as: Staphylococcus aureus, Enterococcus spp. (e.g.,
E. faecalis, E. faecium), Escherichia coli, Candida spp. (e.g., C. albicans, C. glabrata), Klebsiella
pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii and Aspergillus fumigatus [26].
The viruses are also very important in the context of HAI, especially, the seasonal influenza
virus, and the recent Severe Acute Respiratory Syndrome associated Coronavirus (COVID-
19 virus).

Environmental surfaces are the non-clinical items including medical devices (catheters,
surgical instruments, stethoscopes, electronic thermometers, blood pressure cuffs, infusion
pumps, hemodialysis machines, etc.), and the household surfaces of the patient room,
washroom, and surrounding objects (Figure 1). The household surfaces can be further
classified based on the frequency of touch as the high contact (bed railings, sink, tap,
door handle, curtain, etc.), medium contact (furniture, window frame, floor, etc.), and low
contact surfaces (ceilings, walls, pillars, etc.) [27].
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Figure 1. Classification of indoor environmental surfaces in healthcare buildings.

Environmental surfaces inside healthcare buildings could be a reservoir of infectious
agents and can play a role in transmission (Figure 2). Primarily, patients contaminate
the environmental surfaces when they directly touch them [22,28]. Meanwhile, the set-
tling down of sneezed and coughed droplets can also contaminate surfaces [29]. Some
aerosol particles generated during washing and toilet flush can also contaminate the sur-
rounding surfaces [30]. These environmental surfaces are a continuous risk as long as
the contaminating microbes survive on them, and this survival time can be short, from
minutes, to long, for months, [31] depending upon the type of microorganism and the
surface material (Table 1). The transmission occurs when a susceptible individual comes in
contact with these contaminated surfaces [27,32]. Healthcare personnel’s hands can also
get contaminated from surfaces and pass pathogens to susceptible patients [32].

Low to non-contact surfaces, such as ceilings, walls, floors, window frames, and some
furniture are not considered as an important source of microbial transmission. Therefore,
they are not cleaned as often as the frequent contact surfaces [33]. However, they may
sustain the microbes and can result in transmission by accidental contact, or by indoor
air contamination during cleaning, construction, and renovation operations [34,35]. Such
air contamination is less likely, and if it happens, can cause respiratory and surgical site
wound infections in susceptible patients [27].
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Figure 2. Role of environmental surfaces in the transmission of healthcare-associated infections.

Table 1. Survival of the most common nosocomial pathogens on different substrate conditions.

Microorganisms Survival Time

Various Substrates Wood

Acinetobacter baumannii

3 days to 1 year (in vitro); 36 days within
biofilm and <15 days for

non-biofilm-forming strains [31]; <2 days
plastic; <7 days aluminum and steel [12]

<24 h [12]

Aspergillus spp. >30 days [31] >28 days [36,37]
Candida spp. >30 days [31] >30 days

Clostridioides (Clostridium) difficile
5 months for spores; 15 min (dry surface)

and 6 h (moist surface) for vegetative
form [31]

N/A

Coronavirus SARS CoV 1 and 2 <5 min up to 24 h (on paper), 5–28 days
(at room temp.), 28 days (at 4 ◦C)

≤24 h SARS-Cov-2 [38,39]
8 to ≤96 h SARS-Cov-1 [40]

Enterococcus spp. 5 days to 30 months [31] >7 days (flood water) [41]

Escherichia coli 1.5 h to 16 months [31] 1h (food contact) [42], >7 days (flood
water) [41], 28 days (farm surface) [43]

Influenza virus
1–28 days (strain dependent), 1–3 days

(on banknotes), up to 8 days (admixed in
mucous) [31]

1–2 days [44–46], 1–28 days (depending
upon environmental conditions) [47]

Klebsiella spp.
>2 h to 30 months; 7 days in detergent
solution [31]; > 15 days on plastic, steel

and aluminum [12]
<2 days on untreated oak wood [12]

Pseudomonas aeruginosa 6 h up to 16 months (5 weeks on dry floor
and few hours in aerosol) [31] N/A

Shigella dysenteriae 2 h on plastic, aluminum and glass 3 h [28]

Staphylococcus aureus

7 days up to 1 year (in vitro) [31], >15
days (plastic, steel, aluminum) [12], 6 h

(copper), 28 days (dry mops) and 14 days
(in water) [31]

>28 days on hardwood floor [36]
<7 days on untreated oak wood [12]

N/A = no data found.

4. Hygienic and Antimicrobial Behavior of Wooden Surfaces

In the outdoor and humid environment, many microbes are present on wood material.
This flora is normally found in soil and on plants [48] and they are responsible for the
degradation of organic materials [49]. This is the reason that the indoor air of the wood
processing industry can have a higher microbial load as compared to outside air [50].
Therefore, the organic, porous, and moisture-absorbing nature of wood is perceived as
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microbe heaven. However, in the low moisture and indoor environments, the survival
of microbes on wood material is difficult [9]. Moreover, the persistence of hygienically
important bacteria and fungi is also low because of the antimicrobial activity of wood
material [51]. The theory behind the antimicrobial behavior is linked to the chemical
composition and porous hygroscopic nature of wood materials [42].

4.1. Biochemical Composition and Antimicrobial Activity

Wood contains non-structural compounds known as extractives. These chemicals pro-
tect wood against microbial degradation and many of them have antimicrobial properties,
e.g., tannins, phenolic acids, flavonoids, terpenoids, etc. As these compounds have different
chemical natures they may have a different mode of action against various microorganisms
as shown in Table 2 [9].

Table 2. Antimicrobial actions of wood chemicals against microbes *.

Target Wood Chemicals

Cell wall and cell membrane Flavonoids, tannins, aldehydes, phenolic acids,
terpenoids, alkaloids, terpenes

Nucleic acid Flavonoids, aldehydes, alkaloids
Metals metabolism Tannins
Protein synthesis Aldehydes, tannins

Energy metabolism Flavonoids, phenolic acids
Adhesion and Biofilm formation Phenolic acids, quinones

* Reproduced from Munir et al. [9] with permission.

Types and quantity of wood extractives may vary among different wood species
and parts of trees, therefore the antimicrobial properties also vary among different wood
species (Table 3) [52] and extractives from different parts of wood, i.e., sapwood and
heartwood [53]. However, there is only a minor difference of types of extractives present
in the same parts of different trees of a wood species growing in different regions [54,55].
Likewise, no significant difference in antimicrobial activity was observed among the sessile
oak trees collected from different regions in France that had different soil fertilities and,
therefore, presumably different growing conditions [56].

Table 3. Grading of wood species depending upon the hygienic suitability *.

Bacteria Ranking Reference

S. aureus, P. aeruginosa, Enterobacter faecium,
Bacillus subtilis Pine > larch [57]

E. coli
E. faecium

Pine = oak = larch > maple > spruce > beech > polar
Pine = oak > larch = maple = spruce = beech = poplar [58]

B. subtilis, P. fluorescens Oak > spruce [59]
Poultry manure flora Pine > larch = maple [60]

E. coli 0157:H7 White ash > red oak > black cherry > maple [61]
E. coli, E. faecium Pine > poplar = beech [62]

S. aureus, P. aeruginosa, A. baumannii Oak > Douglas fir = pine > poplar [63]
S. aureus, E. coli, E. faecalis, Streptococcus

pneumoniae Pine > spruce [64–66]

E. coli, Pichia membranifaciens, P. aeruginosa, S.
aureus Norway spruce > beech > poplar [67]

* Reproduced from Munir et al. [9] with permission.

Various treatment variables can influence the composition of extractives in wood. For
example, heat treatments are the part of wood processing, and they are used to increase the
durability of this material [68]; meanwhile, heating can accelerate the emissions of volatile
organic compounds [64], and as these VOC are also responsible for the antimicrobial
activity of wood [69], the antimicrobial behavior may change with heat treatments [56,64].
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Logically, some VOC are lost during the usage and storage life of wood, therefore, an
influence on the VOC-based antimicrobial activity is expected, however, in our previous
study, we observed that the antimicrobial activity of various wood samples stored for two
years did not change [52]. Schönwälder et al. [62] also reported that the age and storage
time of pinewood did not influence its antimicrobial behavior.

Wood extractives are also used to treat the surfaces of less durable wood to increase
their durability against microbial biodegradation [70]. Meanwhile, the removal of extrac-
tives has been reported to increase the thermal durability of wood [71]. In such cases,
extracting these compounds for surface treatment of wood could give desirable results
of durable and antimicrobial wooden surfaces. However, further studies are needed to
evaluate the influence of such treatments on indoor VOC emissions.

Wood is an acidic material due to the presence of acidic functional groups in the
polymers and extractives of wood. The pH of different wood species ranges from slightly
acidic, e.g., pH of poplar and fir is 6, to very acidic, for example, pH of oak wood species
can be 3.5 [72]. This acidic environment can pose a challenge to microbial growth when
compared to inert solid inanimate surfaces.

4.2. Role of Physical Structure in the Antimicrobial Activity of Wood

The physical structure of wood contributes as a microbial counter mechanism mainly
by moisture regulation. The porosity and hygroscopic properties of wood are the main
characteristics involved in this behavior; however, controversies surround the microbial
survival and hindrance in cleaning due to these physical properties.

4.2.1. Porosity of Wood

Wood is a product of a living tree, therefore it contains the dead elongated cells and
they appear in the form of pores at the surface. The porosity varies with the anatomy of
wood species, part of tree, and cutting plane of wood. It is sometimes perceived that the
open pores of untreated wood surfaces could contain the microbes, ultimately making
surface cleaning and microbial removal difficult. Microbes can for sure enter into the
porous surfaces of wood, however, they should not necessarily be considered as a hygienic
risk. Many studies have shown that the porosity of wood can be a challenge to recover
microbes from wood and it can influence the interpretation of microbial survival results.
In a previous review, we reported that the recovery of microbes was dependent upon
the method of recovery and the moisture content of samples, however, the best results
were obtained when the elution-based methods were used [51]. Using the elution-based
recovery method to study the microbial survival, we observed that microbial recovery
from wood and non-porous materials was similar, however, the survival of most common
HAI bacteria was lowest on wood compared to other surfaces such as plastic, steel, or
aluminum [12]. In a similar study, Vainio-Kaila et al. [73] observed that lower CFU of
E. coli and L. monocytogenes were recovered from pine heartwood as compared to a glass
surface. To further test whether the cultivable bacetria were still hiding in pores or not,
they resuspended the wood pieces in the culture medium to let the hidden microbes grow.
After one day of incubation, no microbial growth was observed, proving that no culturable
microbes were hidden inside the pores [73].

The porosity of wood does not necessarily impact its cleaning, for example, studies
of wooden cutting boards have shown that the in-use methods of cleaning were equally
efficient for wood as they were for plastic surfaces [59,74–79]. In addition, washing does
not decrease the cleanability of wood over time [80] and the action of disinfectants in clean-
ing equally efficient for cleaning E. coli, L. monocytogenes, P. aeruginosa, S. aureus, C. jejuni,
Salmonella Typhimurium, E. coli O157:H7 on both the plastic and wooden boards [81–84].
Another recent study from indoor hospital surfaces showed the wipe cleaning with disin-
fectant was sufficient to decrease the microbial numbers on wooden surfaces [8].

Porous surfaces have a greater surface area as compared to non-porous surfaces and
it may help in faster drying. Therefore, wood dries faster as compared to non-porous
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materials [85]. A study by Chiu et al. [86] observed that Vibrio parahaemolyticus survived
less on porous material (bamboo and wood) as compared to smooth surfaces (plastic,
stainless steel, and glazed ceramic), and this difference in survival is more likely because
the smooth surfaces retain surface moisture for a longer time [87].

As described above, the pores are the long cells of wood and they can have a length of
3 mm, likewise, the microbes can descend deep inside the pores on wood. However, most
porosity is on transversally cut (RT) wood, which is not commonly used for construction
operations [12]. Prechter et al. [88] reported that E. coli cells and spores of Bacillus subtilis
descended deeper (around 3 mm) in RT cuttings than in longitudinal cut (LT) wooden
boards. In contrast, boards with LT faces are easier to clean because of shallow and
wider openings on the surface [89]. The persistence of porosity of wooden surfaces may
change over time, for example, Kotradyova et al. [8] reported that the pores of wooden
surfaces were filled with organic debris and dust during the usage life of wooden surfaces
inside the hospital buildings. However, it still remains to be investigated, how long it
takes for the filling of pores in various indoor environments and how it can influence the
surface hygiene.

Overall, the transfer of microbes from wooden surfaces to food or hands is also lower
as compared to non-porous surfaces [90–93]. For example, a recent study reported that
E. coli and Penicillium expansum not only survived less on wood compared to plastic and
cardboards but their transfer from wood surface to apples was also lower [42]. However, if
the microbes survive inside the surfaces, they are a continuous risk, in this scenario, inno-
vative microscopic tools can be handy for risk assessment and microbial bio-distribution
studies [77,89].

4.2.2. Hygroscopicity and Capillary Action

Hygroscopicity of a material is the property of absorbing and adsorbing moisture from
the environment. This ability is influenced by environmental humidity and temperature,
and free water, bound water, and fiber saturation point of the wood [94]. Most bacteria
and some fungi are sensitive to desiccation and need a water potential of ≤−2.8 MPa for
growth, motility, and nutrient uptake [9,58]. However, properly dried wood (12% moisture)
has a higher water potential that does not offer enough water for microbial growth and
multiplication [9,58]. This is the reason that the hygroscopic nature of wood leads to faster
absorption of moisture as compared to other non-porous contact surfaces, consequently,
microbes survive least on wood compared to non-absorptive smooth surfaces such as
plastics and metals [12,86,95–97]. However, after reaching the fiber saturation point, wood
does not adsorb more moisture and the hygroscopic antimicrobial activity may diminish.
For example, Gehrig et al. [85] reported very high E. coli counts on both polyethylene and
wood, while the bacterial number was lower on wood in a drier environment.

Coating of wood materials may decrease or diminish the surface hygroscopicity, thus
influencing microbial adhesion and survival [67]. Hedge [16] studied the survival of
E. coli, P. aeruginosa, S. aureus on untreated and varnished beechwood, and plastic. The
microbes decreased fastest on natural wood, followed by varnished wood and plastic. Here,
the difference of survival can be attributed to the moisture absorbing ability of surfaces,
especially the difference between varnished and no-varnished wood.

The lower microbial recovery and moisture retention of wooden surfaces also lead
to the assumption that the microbes are strongly attached to wooden surfaces which
could help the biofilm formation [98]. However, many studies have shown that microbial
attachment to wood is not stronger compared to other smooth surfaces [67]. In fact,
in our recent study, we found that the bacteria attached more to non-porous melamine
surfaces and formed biofilm while no biofilm was found on oak wood surfaces in similar
experimental conditions [99].
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5. Conclusions and Future Outlook

Wood material is used in the green healthcare buildings, mostly as a medium to
non- contact surfaces. Therefore, it very unlikely that wooden surfaces would increase
HAI transmission.

Many wood species have antimicrobial properties due their chemical nature and
physical structure. In addition, various microbes responsible for HAI survive less on
wooden surfaces compared to other porous or non-porous surfaces. However, future
studies should investigate whether the use of wooden surfaces inside the healthcare
buildings can influence the prevalence and transmission of HAI.

Porosity of wood material can offer some hindrance in cleaning, however, with proper
cleaning methods the cleanability of wooden and non-wooden surfaces is similar. Mean-
while, there is no evidence that the microbes would hide inside the pores of wood and
become a risk of transmission after cleaning. In addition, the filling of wooden pores with
debris and dust in the indoor healthcare environment also needs exploration to see if it can
influence the microbial survival or cleanability of surfaces.

As the antimicrobial properties of wood materials are influenced by various factors,
future studies should consider the variables of the species, treatment, cutting, and age of
wood while studying the hygienic properties of this material.

There are no current estimates on the amount and economy of wood usage in the
healthcare buildings. Therefore, respective stakeholders should investigate these figures to
estimate the real value addition of wood usage in the healthcare buildings to the economy.

Author Contributions: All authors participated in the designing and construction of this review
article. All authors have read and agreed to the published version of the manuscript.

Funding: This article is a part of the chapter “literature review” of the Ph.D. thesis of Muhammad
Tanveer Munir (University of Bretagne Loire, Doctoral school SPI of Ecole Centrale de Nantes)
co-funded by CODIFAB and Region Pays de la Loire.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chías, P.; Abad, T. Green Hospitals, Green Healthcare. Int. J. Energy Prod. Manag. 2017, 2, 196–205. [CrossRef]
2. Kumari, S.; Kumar, R. Green Hospital—A Necessity and Not Option. J. Manag. Res. Anal. 2020, 7, 46–51. [CrossRef]
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