
HAL Id: hal-03338639
https://hal.science/hal-03338639

Submitted on 5 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Disentangling tropicalization and deborealization in
marine ecosystems under climate change

Matthew Mclean, David Mouillot, Aurore Maureaud, Tarek Hattab, M. Aaron
Macneil, Eric Goberville, Martin Lindegren, Georg Engelhard, Malin Pinsky,

Arnaud Auber

To cite this version:
Matthew Mclean, David Mouillot, Aurore Maureaud, Tarek Hattab, M. Aaron Macneil, et al.. Dis-
entangling tropicalization and deborealization in marine ecosystems under climate change. Current
Biology - CB, 2021, �10.1016/j.cub.2021.08.034�. �hal-03338639�

https://hal.science/hal-03338639
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


1 
 

Disentangling tropicalization and deborealization in marine 1 
ecosystems under climate change 2 

 3 

Matthew McLean1,12*, David Mouillot2, Aurore A. Maureaud3,4, Tarek Hattab5, M. Aaron 4 
MacNeil1,6, Eric Goberville7, Martin Lindegren4, Georg Engelhard8,9, Malin Pinsky10, Arnaud 5 
Auber11 6 

 7 
1Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2. 8 

2MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, 34095 Montpellier Cedex, France. 9 

3Center for Biodiversity and Global Change, Department of Ecology & Evolutionary Biology, 10 
Yale University, New Haven, CT 06520, USA. 11 

4Centre for Ocean Life, c/o National Institute of Aquatic Resources, Technical University of 12 
Denmark, Kemitorvet Bygning 202, 2800 Kgs. Lyngby, Denmark. 13 

5MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Avenue Jean Monnet, 34200 Sète, 14 
France. 15 

6Ocean Frontier Institute, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2. 16 

7Unité Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum National 17 
d’Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, Université des 18 
Antilles, CNRS, IRD, 75231 Paris Cedex 05, France. 19 

8Centre for Environment, Fisheries & Aquaculture Science (Cefas), Pakefield Road, 20 
Lowestoft NR33 0HT, UK. 21 

9Collaborative Centre for Sustainable Use of the Seas (CCSUS), University of East Anglia, 22 
Norwich NR4 7TJ, UK. 23 

10Department of Ecology, Evolution, and Natural Resources, School of Environmental and 24 
Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 25 
08901. 26 

11IFREMER, Laboratoire Ressources Halieutiques, 150 quai Gambetta, BP699, 62321 27 
Boulogne-sur-Mer, France. 28 

12Lead Contact 29 

*Correspondence: mcleamj@gmail.com 30 

 31 

Key words: climate change, community temperature index, fisheries, marine ecology  32 

 33 

 34 

 35 

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0960982221011386
Manuscript_c5661f999296aff5596b61db923310b6

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0960982221011386
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0960982221011386


2 
 

 36 

Summary 37 

As climate change accelerates, species are shifting poleward and subtropical and tropical 38 

species are appearing in temperate environments1–3. A popular approach for characterizing 39 

such responses is the community temperature index (CTI), which tracks the mean thermal 40 

affinity of a community. Studies in marine4, freshwater5, and terrestrial6 ecosystems have 41 

documented increasing CTI under global warming. However, most studies have only linked 42 

increasing CTI to increases in warm-affinity species. Here, using long-term monitoring of 43 

marine fishes across the Northern Hemisphere, we decomposed CTI changes into four 44 

underlying processes – tropicalization (increasing warm-affinity), deborealization (decreasing 45 

cold-affinity), borealization (increasing cold-affinity), and detropicalization (decreasing 46 

warm-affinity) – for which we examined spatial variability and drivers. CTI closely tracked 47 

changes in sea surface temperature, increasing in 72% of locations. However, 31% of these 48 

increases were primarily attributable to decreases in cold-affinity species, i.e., deborealization. 49 

Thus, increases in warm-affinity species were prevalent, but not ubiquitous. Tropicalization 50 

was stronger in areas that were initially warmer, experienced greater warming, or were 51 

deeper, while deborealization was stronger in areas that were closer to human population 52 

centers or that had higher community thermal diversity. When CTI (and temperature) 53 

increased, species that decreased were more likely to be living closer to their upper thermal 54 

limits or to be commercially fished. Additionally, warm-affinity species that increased had 55 

smaller body sizes than those that decreased. Our results show that CTI changes arise from a 56 

variety of underlying community responses that are linked to environmental conditions, 57 

human impacts, community structure, and species characteristics.  58 

 59 
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Results and Discussion 60 

Fish communities worldwide are responding to global warming through shifts in mean 61 

thermal affinity, which can be represented by the community temperature index (CTI)4,7–9. An 62 

increase in CTI necessarily implies an increase in the relative abundance of warm-affinity 63 

species. However, a key question is whether this is primarily due to increases in the total 64 

abundance of warm-affinity species or to decreases in the total abundance of cold-affinity 65 

species. To resolve this, we decomposed CTI changes into four underlying processes:  66 

● ‘tropicalization’ (increasing abundance of warm-affinity species)  67 

● ‘deborealization’ (decreasing abundance of cold-affinity species) 68 

● ‘borealization’ (increasing abundance of cold-affinity species) 69 

● ‘detropicalization’ (decreasing abundance of warm-affinity species) 70 

Here, we define warm-affinity and cold-affinity species locally within each community: 71 

warm-affinity species are those whose thermal affinity is higher than the mean of the 72 

community and cold-affinity species are those whose thermal affinity is lower than the mean. 73 

Additionally, whereas past literature has used the term ‘tropicalization’ to describe increasing 74 

CTI7 or poleward distribution shifts3,10–12, we explicitly use this term to refer to an increase in 75 

warm-affinity species. We applied this approach to fish communities using scientific 76 

monitoring data from 558 grid cells covering 12 marine regions across the Northern 77 

Hemisphere that showed contrasting changes in sea surface temperatures (SST) over the 78 

period 1990 to 2015. We calculated the relative strength of each underlying processes in each 79 

grid cell and identified which process was strongest when CTI increased or decreased. 80 

Finally, we examined the potential influences of environmental conditions, human impacts, 81 

and community structure on differences in the strength of the underlying processes and 82 
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examined differences between species contributing to opposite processes (e.g., borealization 83 

vs. deborealization).  84 

 Mean-annual SST increased in 72.4% (404) of grid cells between 1990 and 2015 with 85 

a mean of 0.23 ± 0.007°C decade-1 (mean ± standard error), while it decreased in 27.6% of 86 

cells (154) with a mean of -0.10 ± 0.008°C decade-1 (Figure 2A). CTI closely mirrored SST 87 

(Pearson’s correlation: 0.47), increasing in 71.3% (398) of cells, with a mean of 0.28 ± 88 

0.013°C decade-1 (Figure 2B), and decreasing in 28.7% (160), with a mean of -0.14 ± 0.014°C 89 

decade-1 (Figure 2B). Increases in CTI occurred primarily along the northeast coast of the 90 

United States, in the Scottish Seas, the North Sea, the Baltic Sea, the Barents Sea, and around 91 

the Aleutian Islands, while decreases were more prominent along the west and southeast 92 

coasts of the United States and in the Bering Sea (Figure 2B).  93 

 We next decomposed changes in CTI and quantified the strength of each underlying 94 

processes within each grid cell. Across all grid cells, tropicalization was the strongest process 95 

on average being dominant in 47% of cells, while detropicalization was the weakest, being 96 

dominant in only 7% of cells (Figure S1). Among the grid cells where CTI increased, 97 

tropicalization was stronger than deborealization in 68.6% (while deborealization was 98 

stronger in 31.4%) (Figure 2C). Hence, while past literature has focused extensively on 99 

increases in warm-affinity species and poleward distribution shifts3,7,11,13, over one third of 100 

CTI increases were attributable to decreases in cold-affinity species. Among the grid cells 101 

where CTI decreased, borealization was stronger than detropicalization in 75% (Figure 2D). 102 

These patterns were clearly spatially structured, as tropicalization was stronger than 103 

deborealization along the east coast of the United States, in the Scottish Seas, the North Sea, 104 

the Baltic Sea, along the west coast of Norway, in the western Barents Sea, and around the 105 

Aleutian Islands. Deborealization was stronger in the Bering Sea, the Gulf of Mexico, and the 106 

eastern Barents Sea (Figure 2C). Borealization was stronger than detropicalization in nearly 107 
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every region where CTI decreased, especially in the Bering Sea and along the west coast of 108 

the United States (Figure 2D). 109 

 To identify the biotic or abiotic conditions associated with each process, we next 110 

modelled the difference in the strength of (i) tropicalization vs. deborealization when CTI 111 

increased, and (ii) borealization vs. detropicalization when CTI decreased. Thus, the 112 

difference in the strength of the processes was the response variable (i.e., tropicalization 113 

minus deborealization; borealization minus deborealization). Explanatory variables were the 114 

rate of change in SST, initial (i.e., baseline) SST, mean-annual SST variation, depth, distance 115 

to the nearest human population center, mean maximum body size, community thermal 116 

diversity (CTDIV), and community thermal range (CTR) (see STAR methods and Table S2 117 

for details). We used linear mixed effects models with Gaussian likelihood distributions 118 

where grid cells were the unit of observation and survey campaign was included as a random 119 

effect (i.e., varying intercept). When CTI increased, tropicalization was stronger than 120 

deborealization in cells that were initially warmer (effect size = 0.16 [0.07, 0.24; 95% CI]), 121 

experienced greater warming (effect size = 0.07 [0.02, 0.13]) or were deeper (effect size = 122 

0.07 [0.02, 0.11];  Figure 3A). Deborealization was stronger than tropicalization in cells that 123 

were closer to human population centers (effect size = 0.07 [0.02, 0.11]) or that had greater 124 

community thermal diversity (effect size = -0.05 [-0.10,-0.01]; Figure 3A). When CTI 125 

decreased, borealization was stronger than detropicalization in cells that were initially warmer 126 

(effect size = 0.13 [0.01, 0.25]), had greater temperature increases (effect size = 0.07 [0.01, 127 

0.12]) (or lower temperature decreases since CTI decreases are mostly associated with 128 

cooling), or were deeper (effect size = 0.06 [0.01, 0.11]; Figure 3B). 129 

 Theoretically, ignoring all factors other than temperature, when temperature and CTI 130 

are increasing, borealization and detropicalization should not occur, and when temperature 131 

and CTI are decreasing, tropicalization and deborealization should not occur. However, all 132 



6 
 

four processes occurred to some extent in nearly every grid cell (Figure S1). We therefore 133 

hypothesized that there were mechanistic differences between species that explained this 134 

anomaly. For instance, when CTI is increasing, species that contribute to borealization likely 135 

differ in some key features from species that contribute to deborealization. We identified 136 

differences between species contributing to (i) borealization vs. deborealization, and (ii) 137 

tropicalization vs. detropicalization, using linear mixed effects models with binomial 138 

likelihood distributions where species were the unit of observation and grid cell nested in 139 

survey campaign were included as random effects (see STAR methods and Table S3 for 140 

details). Thus, the binary response variable was whether a species was contributing to i) 141 

deborealization (0) or borealization (1), or to ii) detropicalization (0) or tropicalization (1). In 142 

grid cells where CTI increased, explanatory variables included maximum thermal limit, 143 

thermal range, maximum body size, and whether species are commercially fished. In grid 144 

cells where CTI decreased, the same explanatory variables were used except that minimum 145 

thermal limit was used in place of maximum thermal limit. When CTI increased, species 146 

contributing to borealization had higher maximum thermal limits (i.e., more tolerant of 147 

warming) (effect size = 0.72 [0.53, 0.91]) while species contributing to deborealization were 148 

more likely to be commercially fished (effect size = -0.34 [-0.49, -0.19]) and had wider 149 

thermal ranges (effect size = -0.16 [-0.28, -0.04]; Figure 4A). Similarly, species contributing 150 

to tropicalization had higher maximum thermal limits (effect size = 0.57 [0.38, 0.76]) and 151 

smaller body sizes (effect size = -0.17 [-0.24, -0.10]) and species contributing to 152 

detropicalization had wider thermal ranges (effect size = -0.15 [-0.27, -0.03]; Figure 4A). 153 

When CTI decreased, species contributing to borealization had wider thermal ranges than 154 

those contributing to deborealization (effect size = 0.17 [0.04, 0.29]). Species contributing to 155 

detropicalization had higher minimum thermal limits (effect size = -0.35 [-0.52, -0.17]), were 156 

more likely to be commercially fished (effect size = -0.26 [-0.44, -0.08]), and had smaller 157 
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body sizes (effect size = 0.09 [0.01, 0.18]; Figure 4B) than those contributing to 158 

tropicalization. 159 

 Previous studies have documented large-scale changes in CTI but have not identified 160 

the underlying processes of these community thermal shifts3,4,6. Unraveling these processes 161 

has clear implications for predicting future biodiversity responses under global warming, as 162 

well as potential impacts on community trait composition14,15 and their consequences for 163 

ecosystem structure and functioning16–18. For example, communities increasing in CTI due to 164 

emigration or mortality of cold-affinity species (i.e., deborealization) could experience 165 

population crashes or local extinctions under future warming and could be considered 166 

conservation priorities19–21. In contrast, communities increasing in CTI due to immigration or 167 

population growth of warm-affinity species (i.e., tropicalization) may have increased 168 

abundance and productivity despite changing composition8,22,23, and could be resilient to well-169 

managed fishing pressure.  170 

 While increases in CTI have been frequently linked to immigration or poleward 171 

distribution shifts by warm-affinity species3,10,13, we observed that over one third of CTI 172 

increases were primarily explained by decreases in cold-affinity species (i.e., deborealization). 173 

This result has major implications for understanding climate change impacts on community 174 

structure, particularly as tropicalization and deborealization were spatially non-random and 175 

associated with environmental variation and human impacts. Tropicalization was stronger 176 

than deborealization in areas with warmer initial temperatures and areas with greater overall 177 

warming. This is consistent with previous studies showing that community thermal shifts 178 

depend not only on the rate of warming, but also baseline climate. For instance, Antão et al.24 179 

showed that in marine communities exposed to warming, species gains outpaced species 180 

losses under warmer initial conditions, and Lenoir et al.25 showed that marine species track 181 

isotherms more rapidly in initially warm waters. These results are consistent with faster 182 
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colonization and range edge expansion and slower extirpation and range edge contraction11,26. 183 

These results may also be explained by more rapid dispersal and population growth in warmer 184 

environments. In marine organisms, the speed of metabolic and demographic processes 185 

increases with temperature27, and both range expansion by new species and population growth 186 

of existing species should occur more rapidly under warmer conditions. Warm species gains 187 

may also dominate in warmer environments due to the latitudinal gradient in species richness, 188 

as greater numbers and proportions of warm-affinity species are expected in warm, species-189 

rich areas28. 190 

 Tropicalization was generally stronger than deborealization in deeper areas, likely 191 

owing to greater vertical temperature refuge for cold-affinity species9. For instance, 192 

tropicalization was particularly strong along the east coast of the United States, in the Scottish 193 

Seas, and in the western Barents Sea. These regions are situated along deep, open shelves, 194 

which could enable cold-affinity species to temporarily seek refuge in cooler, deeper waters 195 

during warming episodes, preventing their loss locally29. This is consistent with previous 196 

studies showing that relatively small shifts in depth may allow species to remain within their 197 

thermal niches9,30 In the North Sea, a system primarily characterized by tropicalization, many 198 

species have shifted to cooler, deeper waters over the last few decades30. However, the North 199 

Sea is a relatively shallow, semi-enclosed ecosystem and Rutterford et al.31 showed that North 200 

Sea fishes will eventually be constrained by depth limitations, compressing habitat suitability 201 

and potentially driving local extinction. Thus, the increase or immigration of warm-affinity 202 

species could be currently out-pacing the decline or emigration of cold-affinity species, but 203 

this trend could reverse in the future if cold-affinity species are unable to find thermal refuge.  204 

 Areas characterized by deborealization or detropicalization, i.e., decreasing abundance, 205 

had greater community thermal diversity than areas characterized by tropicalization or 206 

borealization. One hypothesis could be that communities with higher thermal diversity have 207 
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fewer vacant niches (i.e., niche saturation) and therefore fewer opportunities for immigration 208 

and establishment by new species32,33. Communities with greater thermal diversity may also 209 

contain more species living closer to their thermal limits, and thus have greater potential for 210 

species losses or population declines due to temperature rises9. For instance, Burrows et al.9 211 

showed that communities with greater thermal diversity may have higher sensitivity to 212 

temperature changes, as species near their thermal limits can be rapidly lost or gained28. 213 

 Tropicalization and borealization were more common than deborealization or 214 

detropicalization. This suggests that habitat suitability is expanding for warm-affinity species 215 

faster than it is retracting for cold-affinity species26. Hence, many cold-affinity species may be 216 

tolerant of current warming, yet future warming could trigger major losses, potentially 217 

shifting the balance between tropicalization and deborealization. Even when CTI decreased, 218 

detropicalization was rarely dominant, as warm-affinity species rarely showed strong 219 

decreases. While some areas did experience cooling during the study period, the average rate 220 

of cooling was roughly half of the rate of warming, and all regions have experienced long-221 

term temperature rises. Thus, warm-affinity species appear to be less impacted by periods of 222 

mild cooling, and detropicalization should become increasingly rare under future warming.  223 

 Interestingly, we found that when CTI increased, some cold-affinity species increased 224 

and some warm-affinity species decreased, counter to expectation. This was primarily 225 

explained by thermal limits and apparent fishing pressure. Cold-affinity species that increased 226 

had higher maximum thermal limits than those that decreased, and those that decreased were 227 

more likely to be commercially fished. Because species were compared within the same grid 228 

cells, species with lower thermal maxima were living closer to their upper limits. Species 229 

decreases can therefore be attributed to temperature rises surpassing thermal tolerances as 230 

well as  potential overfishing.  Hence, both thermal tolerance and fishing pressure are shaping 231 

long-term changes in marine fish communities, and future community responses will be 232 
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driven by the cumulative impacts of climate change and human pressure5,25,34. The potential 233 

impacts of fishing were also highlighted by the finding that deborealization (i.e., decreasing 234 

abundance) was stronger in areas closer to human population centers. 235 

 When CTI increased, warm-affinity species that increased had smaller body sizes than 236 

those that decreased. Smaller-bodied species generally have faster growth rates, shorter 237 

generation times, and less parental investment, enabling populations to rapidly track 238 

environmental changes14,35,36. Thus, small-bodied species whose upper thermal limits were 239 

not surpassed by temperature rises could rapidly increase in abundance following warming, 240 

particularly as warming elevates metabolic and demographic rates. In contrast, large-bodied 241 

species have slower growth rates and reproduce later in life, leading to slower population 242 

turnover and environmental tracking35,36. Large-bodied species are also more susceptible to 243 

human impacts37. Hence, even large-bodied species that are favored by temperature rises 244 

might be decreasing in abundance faster than they can reproduce, leading to population 245 

declines despite warm-water affinities. 246 

 While limited to fish communities from 12 marine regions over a 26-year period, our 247 

approach is applicable to other ecosystems and taxa and may help unravel the underlying 248 

processes of community thermal shifts at a global scale38. Identifying how changes in species’ 249 

distributions and abundances are impacting overall diversity and community dynamics will be 250 

key for planning future conservation and management efforts39–42. Areas with net losses of 251 

cold-affinity species may require careful fisheries regulation, whereas areas gaining warm-252 

affinity species may have increased productivity and exploitation opportunities8,23,43,44. 253 

Overall, we found that over one third of CTI increases were more strongly explained by 254 

decreases in cold-affinity species than by increases in warm-affinity species, with significant 255 

roles of environmental conditions, human impacts, and community structure. Additionally, we 256 

found that species tendencies to increase or decrease in response to temperature changes were 257 
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dictated by thermal limits and commercial fishing status. Future studies should link spatial 258 

patterns in the underlying processes of CTI to changes in seasonality, ocean currents, and 259 

other abiotic factors likely to be modified by climate change, as well as changes in fishing 260 

pressure and human impacts. While past studies have documented extensive shifts in CTI, 261 

ours is the first to decompose CTI into underlying processes at a multi-continental scale, 262 

which could help in anticipating future changes in biodiversity under climate change and 263 

implementing adapted management strategies. 264 
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Figure legends 288 

Figure 1. The four underlying processes contributing to changes in CTI. Increases in CTI 289 
occur when the combination of tropicalization (red) and deborealization (orange) is stronger 290 
than the combination of borealization (blue) and detropicalization (purple). CTI increases can 291 
therefore be attributed to either topicalization or deborealization, whichever process is 292 
stronger, and CTI decreases can be attributed to either borealization or detropicalization, 293 
whichever process is stronger. 294 

Figure 2. Maps showing the rate of change in SST and CTI along with differences in the 295 
strength of the underlying processes. Rate of change in SST (A) and CTI (B) across the 558 296 
spatial sampling grid cells for the period 1990 – 2015. Differences in the strength of 297 
tropicalization and deborealization in grid cells where CTI increased (C), and differences in 298 
the strength of borealization and detropicalization in grid cells where CTI decreased (D). See 299 
also Figure S1, which shows average relative strength of each underlying process, Figure S2, 300 
which shows the area covered by each monitoring survey, Table S1, which provides details on 301 
the monitoring surveys, Figure S3, which shows the method for calculating the strength of 302 
each underlying process, and Figure S4, which compares the rate of change in CTI vs. 303 
(topicalization + deborealization) – (borealization + detropicalization). 304 

Figure 3. Results of linear mixed effects models of differences in the strength of 305 
tropicalization and deborealization in grid cells where CTI increased (A), and of 306 
differences in the strength of borealization and detropicalization in grid cells where CTI 307 
decreased (B). Grey circles represent standardized effect sizes and black horizontal bars 308 
represent 95% confidence intervals. In panel A, positive effects are associated with stronger 309 
tropicalization, and negative effects are associated with stronger deborealization. In panel B, 310 
positive effects area associated with stronger borealization, and negative effects are associated 311 
with stronger detropicalization. See also Table S2, which shows the output summary for each 312 
model. 313 

Figure 4. Results of linear mixed effects models of i) the probability that a species 314 
contributed to borealization or deborealization, and ii) the probability that species 315 
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contributed to topicalization or detropicalization when CTI increased (A) and when CTI 316 
decreased (B). Grey circles represent standardized effect sizes and black horizontal bars 317 
represent 95% confidence intervals. Positive effects are associated with species that 318 
contributed to borealization or tropicalization, and negative effects are associated with species 319 
that contributed to deborealization or detropicalization. See also Table S3, which shows the 320 
output summary for each model, and Table S4, which compares model results using different 321 
subsets of species based on quantiles of abundance changes. 322 
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Further information and requests should be directed to and will be fulfilled by the lead 328 
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Data and Code Availability 334 

This paper analyzes existing, publicly available data. Links for the datasets are provided in the 335 

key resources table. This paper does not report original code. Any additional information 336 

required to reanalyze the data reported in this paper is available from the lead contact upon 337 

request. 338 

 339 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 340 
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All fish monitoring data used in this study are freely available and open access; references and 341 

links are provided in the Key resources table and Supplemental information. No experimental 342 

models (animals, human subjects, plants, microbe strains, cell lines, primary cell cultures) 343 

were used in the study. 344 

 345 

METHOD DETAILS 346 

Fish community data 347 

Thirteen bottom-trawl surveys from 12 marine regions across the northern hemisphere were 348 

used to examine changes in the community temperature index (CTI) in fish communities over 349 

a large geographic scale with substantial longitudinal, latitudinal, and depth gradients. All 350 

surveys used similar sampling protocols, where bottom trawls were towed for an average of 351 

30 minutes and the species composition and abundances of all captured fishes were identified 352 

and recorded (see Table S1). Spatial coverage and resolution differed across surveys, and we 353 

therefore aggregated trawl surveys to 1° longitude × 1° latitude spatial grid cells. A 1° 354 

longitude × 1° latitude resolution was chosen to adequately capture both inter and intra-survey 355 

variation, to reveal gradients in community responses, to maximize data availability, and to 356 

match with the spatial resolution of the HadISST database (see ‘Sea surface temperature’ 357 

below). The length of time series also differed between surveys, and we therefore examined 358 

the period 1990 – 2015, which maximized temporal overlap between surveys. Following 359 

Burrows et al.9, along the US West Coast, two surveys with overlapping spatial coverage but 360 

adjacent temporal periods were combined (see Figure S1 and Table S1). The combined data 361 

were inspected for discontinuities, and we verified that our main results and conclusions were 362 

robust to removing these data from the analyses. Because some surveys are conducted in 363 

multiple seasons, for each grid cell, we only used data for the quarter with the greatest number 364 
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of years surveyed. Lastly, because of spatial and temporal heterogeneity in sampling effort 365 

both between and within grid cells, we performed a bootstrap sampling procedure. We 366 

randomly selected four trawl surveys per grid cell, per year (four was the median number of 367 

trawls per cell, per year), recorded the resulting species’ abundances, repeated this procedure 368 

99 times, and calculated species’ mean abundances across the 99 permutations. Only grid 369 

cells with with maximum sampling gaps of five years or less were considered (some surveys 370 

are only conducted every 3-5 years), resulting in a total of 558 cells. All survey abundance 371 

data were then log10(x+1) transformed before analyses. While we recognize that aggregating 372 

bottom trawl data to a 1° longitude × 1° latitude scale creates species assemblages that are not 373 

true locally interacting biological communities, we use the term ‘community’ for consistency 374 

with existing literature on concepts such as the community temperature index and community 375 

thermal diversity. 376 

 377 

Sea surface temperature (SST) 378 

For each grid cell, we extracted mean-annual sea surface temperature (SST) and annual SST 379 

variation. Minimum and maximum SST were also initially considered, but later dropped 380 

because they were highly correlated with mean SST, but much less informative (i.e., never 381 

had discernable effects in statistical models). SST data for each grid cell were derived from 382 

the Hadley Centre for Climate Prediction and Research’s freely available HadISST1 383 

database46. The HadISST1 database provides global monthly SST on a 1° longitude × 1° 384 

latitude spatial grid and is available for all years since 1870. These data were used to examine 385 

temperature changes during the study period and to model the underlying processes of CTI. 386 

 387 

Calculating community temperature index (CTI) 388 
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Community temperature index (CTI) is the abundance-weighted mean thermal affinity of a 389 

community or assemblage, which reflects the relative abundance of warm-affinity or cold-390 

affinity species50. The inferred thermal affinity for each fish species in this study (1091 391 

species total) was first calculated as the median temperature of each species' occurrences 392 

across its' global range of observations for which data were available (Figure S2). Rather than 393 

surface temperature or bottom temperature, we used mid-water-column temperature (i.e., 394 

from the surface to 200 meters depth) because the surveys included a mixture of demersal 395 

(bottom-living) and pelagic species. We used temperature climatologies from the global 396 

database WOD 2013 V2 (https://www.nodc.noaa.gov/cgi-397 

bin/OC5/woa13/woa13.pl?parameter=t) with a spatial resolution of ¼°. These climatologies 398 

represent average decadal temperatures for 1955-1964, 1965-1974, 1975-1984, 1985-1994, 399 

1995-2004 and 2005-2012 on 40 depth layers. These data were aggregated vertically by 400 

calculating average temperature of the first 200 m depth.  Species' occurrences were extracted 401 

from several databases including OBIS (https://obis.org/), GBIF (https://www.gbif.org/), 402 

VertNet (http://vertnet.org/) and ecoengine (https://ecoengine.berkeley.edu/). After removing 403 

duplicate occurrence records, we made a spatiotemporal match-up between temperature 404 

climatologies and species occurrences, considering both the geographic coordinates of 405 

occurrences, as well as their corresponding decade (to control for climate trends over the past 406 

58 years). We then took the median value of temperature from these records for each species. 407 

Although we included both demersal and pelagic species and used mid-water-column 408 

temperature to infer thermal affinities in our analyses, we tested the sensitivity of our results 409 

to these choices by recalculating thermal affinities using surface temperature and bottom 410 

temperature, both with and without pelagic species (see Supplementary Material). Separate 411 

data sources were used to calculate species’ thermal affinities and to model the underlying 412 

processes of CTI because estimating species’ thermal affinities required matching species’ 413 
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occurrences with mid-water column temperatures, whereas modelling the underlying 414 

processes required a standardized, continuous, temporally resolved database. Mid-water-415 

column data were only available as decadal averages and did not cover the entire study 416 

period. Lastly, for each grid cell, we calculated the rate of change in SST and CTI as the slope 417 

of simple linear regressions of SST and CTI vs. time. 418 

 419 

Comparison of thermal affinities with Cheung et al. 20134 420 

While a variety of past studies have quantified species’ thermal affinities using species’ 421 

distribution models51 or the midpoint of species minimum and maximum temperature 422 

observations28, here we inferred thermal affinities as the median temperature value across a 423 

species’ range of observations. To determine the accuracy of this approach, we compared our 424 

data with those of Cheung et al. 20134 for 252 overlapping species. We found an 83% 425 

correlation between our data and those of Cheung et al. 20134, indicating high consistency 426 

between the two studies. This provides strong support for our approach because Cheung et al. 427 

20134 is a landmark study investigating changes in the community temperature index in 428 

marine fishes. 429 

 430 

QUANTIFICATION AND STATISTICAL ANALYSIS 431 

All data handling and quantitative analyses were performed using R45 version 4.0.0. 432 

 433 

Decomposing CTI into the four underlying processes 434 
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CTI is a community weighted mean and therefore reflects changes in the relative abundances 435 

of warm-affinity and cold-affinity species. CTI will increase when species with thermal 436 

affinities greater than the mean of the community increase and when species with thermal 437 

affinities lower than the mean of the community decrease. Conversely, CTI will decrease 438 

when species with thermal affinities greater than the mean of the community decrease and 439 

when species with thermal affinities lower than the mean of the community increase. Hence, 440 

CTI changes can be decomposed into four underlying process – tropicalization (increasing 441 

warm-affinity species), deborealization (decreasing cold-affinity species), borealization 442 

(increasing cold-affinity species), and detropicalization (decreasing warm-affinity species). 443 

The overall change in CTI reflects the relative strength of these processes. For instance, CTI 444 

will increase when the strength of tropicalization + deborealization is greater than the strength 445 

of borealization + detropicalization. To determine the strength of each underlying process, 446 

species within each grid cell must first be classified as either warm-affinity or cold-affinity. 447 

Because CTI (the mean thermal affinity of the community) changes every year, species may 448 

be warm-affinity one year (i.e., having a thermal affinity higher than the community mean) 449 

and cold-affinity the next (i.e., having a thermal affinity lower than the community mean). 450 

Therefore, to classify species as either warm or cold affinity within each grid cell, we used the 451 

mean CTI value across all years in the time series (i.e., mean of CTI values for 1990 to 2015 452 

for each grid cell). We then separated warm and cold-affinity species into those that increased 453 

in abundance and those that decreased (Figure 1). Because CTI will shift up or down based on 454 

the amount of increase or decrease in species abundances along the thermal affinity axis (i.e., 455 

Figure 1), the strength of each process can be thought of as the amount of “pull” that each 456 

process exhibits on the overall community mean. This is determined by the degree to which 457 

species contributing to each process influence the overall community mean. Species that have 458 

thermal affinities much greater or much lower than the community mean will exhibit more 459 
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influence than those with thermal affinities very similar to the mean. Additionally, species 460 

with large abundance changes will exhibit more influence than those with small abundance 461 

changes. Hence, each species contribution to the change in CTI is a combination of the 462 

difference between its individual thermal affinity (STI) and that of the community (CTI) and 463 

its change in abundance. We therefore calculated the strength of each processes by (i) 464 

calculating the difference between each species’ thermal affinity and the mean of the 465 

community, (ii) multiplying this value by each species’ change in abundance, and (iii) taking 466 

the sum of the resulting values for all species within each process (Figure S3). We assessed 467 

the accuracy of this approach by comparing the value of (tropicalization + deborealization) – 468 

(borealization + detropicalization) to the rate of change in CTI for each grid cell. Note, these 469 

two values will never be a perfect match because, as mentioned above, some species fluctuate 470 

between warm and cold-affinity over time, especially in grid cells where CTI is highly 471 

variable across years. However, we found a correlation of 0.85 between the two values, 472 

indicating that our metric for estimating the strength of the underlying processes accurately 473 

captured changes in CTI (Figure S4). 474 

 475 

Conditions associated with the underlying processes 476 

To identify the biotic and abiotic conditions associated with each underlying process, we 477 

modelled the difference in the strength of tropicalization vs. deborealization (i.e., 478 

tropicalization minus deborealization) when CTI increased, and the difference in the strength 479 

of borealization vs. detropicalization (i.e., borealization minus detropicalization) when CTI 480 

decreased. We used linear mixed effects models with Gaussian likelihood distributions and 481 

included survey campaign as a random effect (i.e., varying intercept). Explanatory variables 482 

were the rate of change in SST, initial (i.e., baseline) SST, mean-annual SST variation, depth, 483 
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distance to the nearest human population center, mean maximum body size, community 484 

thermal diversity (CTDIV), and community thermal range (CTR). Initial SST was defined as 485 

the mean-annual SST for each grid cell for the period 1980-1989, the ten years prior to the 486 

study period. Depth was recorded during each trawl survey, and we calculated mean depth per 487 

grid cell. Distance to the nearest human population center came from Yeager at al.47, which is 488 

calculated as the straight-line distance to the nearest provincial capital as defined by the ESRI 489 

World Cities data set. Body size data came from the open-access trait database of Beukhof et 490 

al.48. CTDIV was defined as the variation in thermal affinities in the community and was 491 

calculated as the abundance-weighted standard deviation of species’ thermal affinities9. CTR 492 

describes whether species in the community have narrow or wide thermal ranges and was 493 

calculated as the abundance-weighted mean of species’ thermal ranges9. Thermal ranges were 494 

defined as the difference between the 90th and 10th percentiles of species thermal affinity 495 

observations. For CTDIV, CTR, and mean body size, we took the mean across the first 10 496 

years of the study period for each grid cell to define baseline conditions in community 497 

structure that may have shaped community responses to warming. All metrics were calculated 498 

for the entire community sampled in each grid cell. Hence, identical predictors were used for 499 

both models, rather than sub-setting predictors to only species contributing to tropicalization 500 

and deborealization or to borealization and detropicalization.  501 

 502 

Species contributing to opposite processes 503 

To identify differences between species contributing to borealization vs. deborealization, and 504 

between species contributing to tropicalization vs. detropicalization, we used linear mixed 505 

effects models with binomial likelihood distributions and grid cell nested in survey campaign 506 

as random effects (i.e., varying intercepts). In grid cells where CTI increased, explanatory 507 
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variables included maximum thermal limit, thermal range, maximum body size, and whether 508 

species are commercially fished. In grid cells where CTI decreased, the same explanatory 509 

variables were used except that minimum thermal limit was used in place of maximum 510 

thermal limit. Maximum and minimum thermal limits were defined as the 90th and 10th 511 

percentiles of species thermal affinity observations, respectively, and species thermal ranges 512 

were defined as the difference between the 90th and 10th percentiles. Body size again came 513 

from Beukhof et al.48. We defined whether a species was commercially fished according to 514 

categories of commercial importance available from FishBase49. Species listed as ‘highly 515 

commercial’, ‘commercial’, or  ‘minor commercial’, were considered commercially fished, 516 

and species listed as ‘of no interest’, ‘of potential interest’, ‘subsistence fisheries’, or 517 

‘unknown’ were considered not commercially fished. All models were performed using the R 518 

package lme452. Model quality and assumptions were verified using the R packages 519 

performance53 and MuMin54 (see Supplementary Material). Initial model inspection revealed 520 

low predictive accuracy and explained variation for the binomial models. This was likely 521 

because all species were initially included in this analysis whether they showed very slight or 522 

very large changes in abundance, i.e., any cold-affinity species whose change in abundance 523 

was greater than 0 was classified as contributing to borealization. All species populations 524 

fluctuate naturally, and so small increases or decreases in abundance are expected that may be 525 

independent of thermal affinity. Hence, including all species in this analysis could potentially 526 

blur patterns. We therefore reran models using i) all species, ii) species whose abundance 527 

changes were in the top 75%, iii) species whose abundance changes were in the top 50%, and 528 

iv) species whose abundance changes were in the top 25%. All approaches yielded very 529 

similar results, but with predictive accuracy and explained variation increasing with stricter 530 

species subsets. We therefore selected the model using species whose abundance changes 531 

were in the top 50% as a compromise between data deletion and model quality (at least 2000 532 
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observations per model and predictive accuracy over 70%), however, all model results are 533 

reported in Table S4.  534 

 535 

Model performance 536 

We assessed the performance of all models using the R package performance. For the two 537 

Gaussian models, we assessed linearity (i.e., residuals vs fitted values), homogeneity of 538 

variance, collinearity, the potential influence of high leverage observations, normality of 539 

residuals, and normality of random effects. This was accomplished with the function 540 

check_model. We also assessed predictive accuracy via the correlation between fitted values 541 

and observed values and via k-fold cross validation using the function performance_accuracy. 542 

Because cross validation results vary between iterations, we ran the performancy_accuracy 543 

function 99 times and recorded the average score. Both models satisfied all assumptions, 544 

including no high leverage observations and Variance Inflation Factors under 2.5 for all 545 

variables. For the model of differences between the strength of tropicalization and 546 

deborealization, the correlation between fitted values and observed values was 62% and the 547 

average cross validation accuracy was 57%. For the model of differences between the strength 548 

of borealization and deborealization, the correlation between fitted values and observed 549 

values was 79% and the average cross validation accuracy was 71%.  550 

 For the four binomial models, we assessed binned residuals and predictive accuracy 551 

using the functions binned_residuals and performance_accuracy. Binned residuals are 552 

assessed by first ordering predicted probabilities from smallest to largest and calculating raw 553 

residuals. Data are then split into bins of equal numbers of observations and the average 554 

residual is plotted against the average predicted probability for each bin. The quality of the 555 

model is then evaluated based on the percentage of binned residuals that lie within confidence 556 
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limits/error bounds. Predictive accuracy was assessed as the area under the receiver operating 557 

characteristic curve (AUC – ROC), which evaluates how accurately a binomial model predicts 558 

group classification. AUC – ROC is bounded between 0 and 1, with 0 indicating 0% accuracy 559 

and 1 indicating 100% accuracy. For sites where CTI increased, the model of differences 560 

between species contributing to borealization and deborealization had 85% of residuals within 561 

error bounds and a predictive accuracy of 73%, while the model of differences between 562 

species contributing to tropicalization and detropicalization had 84% of residuals within error 563 

bounds and a predictive accuracy of 73%. For sites where CTI decreased, the model of 564 

differences between species contributing to borealization and deborealization had 83% of 565 

residuals within error bounds and a predictive accuracy of 71%, while the model of 566 

differences between species contributing to tropicalization and detropicalization had 86% of 567 

residuals within error bounds and a predictive accuracy of 70%. 568 

 Altogether, these results show that our models did not violate assumptions, but that 569 

predictive accuracy was less than desirable. This likely indicates that other drivers that we 570 

were unable to assess are important in explaining variation in the strength of processes and in 571 

differences between species contributing to opposite processes. Further exploration showed 572 

that poor predictive accuracy may have also resulted from inconsistent relationships between 573 

surveys (i.e., regions). For example, including a random slope term for survey in the binomial 574 

models showed that, in sites where CTI decreased, upper thermal maximum was a strong 575 

predictor of whether species underwent borealization or derealization for all surveys except 576 

the Gulf of Alaska, Gulf of Mexico, and Baltic Sea. Additionally, commercially fished status 577 

was a strong predictor of whether species underwent borealization or deborealization in 578 

regions that were closer to human population centers, but not those that were further from 579 

population centers. However, models that included random slope terms did not have greater 580 
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predictive accuracy, indicating that improving model accuracy ultimately hangs on 581 

uncovering other important drivers of process strength and species differences. 582 

 583 

Sensitivity to pelagic species and temperature zone 584 

To determine how including or excluding pelagic species influenced our results, we 585 

recalculated i) the rate of change in CTI, ii) the difference in the strength of tropicalization 586 

and deborealization, and ii) the difference in the strength of borealization and 587 

detropicalization after removing pelagic species. Additionally, to examine the impact of 588 

calculating thermal affinities with different water column zones (i.e., bottom temperature, 589 

mid-water-column temperature, and sea surface temperature) we recalculated the above three 590 

metrics using all three temperature zones. We did this for all possible scenarios, hence for all 591 

species using bottom, mid-water-column, and surface temperature, and for demersal species 592 

only using bottom, mid-water-column, and surface temperature. We then examined the 593 

correlation in metrics across all six scenarios. Across the six scenarios, correlation values for 594 

the rate of change in CTI ranged from 0.666 to 0.996 with a mean of 0.83, correlation values 595 

for the difference in the strength of tropicalization and deborealization ranged from 0.776 to 596 

0.997 with a mean of 0.873, and correlation values for the difference in the strength of 597 

borealization and detropicalization ranged from 0.816 to 0.997 with a mean of  0.894, 598 

altogether indicating that results were robust to including or excluding pelagic species and to 599 

potential choices in thermal affinity calculation. 600 

 601 
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