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ABSTRACT

Intensity mapping of the 21 cm signal of neutral hydrogen will yield exciting insights into the Epoch of Reionisation and the nature
of the first galaxies. However, the large amount of data that will be generated by the next generation of radio telescopes, such as the
Square Kilometre Array, as well as the numerous observational obstacles to overcome, require analysis techniques tuned to extract
the reionisation history and morphology. In this context, we introduce a one-point statistic, which we refer to as the local variance,
σloc, that describes the distribution of the mean differential 21 cm brightness temperatures measured in two-dimensional maps along
the frequency direction of a light cone. The local variance takes advantage of what is usually considered an observational bias, the
sample variance. We find the redshift-evolution of the local variance to not only probe the reionisation history of the observed patches
of the sky, but also trace the ionisation morphology. This estimator provides a promising tool to constrain the midpoint of reionisation
as well as gain insight into the ionising properties of early galaxies.

Key words. dark ages, reionization, first stars – methods: statistical

1. Introduction

The Epoch of Reionisation (EoR) represents an essential time
within the first billion years of the Universe, when the first
light sources formed and gradually ionised the neutral hydro-
gen gas in the intergalactic medium (IGM). However, the exact
properties of these first light sources remain uncertain. With the
help of the Cosmic Microwave Background (CMB) small- and
large-scale data (Planck Collaboration Int. XLVII 2016), obser-
vations of the luminosity functions of star-forming galaxies
(Bouwens et al. 2015), and H i absorption troughs in the spectra
of quasars (McGreer et al. 2015; Bañados et al. 2018), we have
obtained constraints on the ionisation history, that is the time
evolution of the ionisation fraction of the hydrogen gas in the
IGM (Robertson et al. 2015; Gorce et al. 2018). However, reion-
isation is patchy, with different regions of the sky being ionised
at different times.

For this reason, the observation of the time evolution of the
21 cm brightness temperature maps at redshifts z ≥ 5, tracing
the neutral hydrogen gas in the IGM and referred to as 21 cm
tomography is highly anticipated and should be achieved with
the next generation of radio interferometers, such as the Square
Kilometre Array (SKA, Koopmans et al. 2015) or the Hydrogen
Epoch of Reionization Array (HERA, DeBoer et al. 2017). Such
maps will allow us to trace the reionisation process, in particular
the time and spatial evolution of the ionised regions around the
first light sources. Constraints from current observations imply
that star-forming galaxies were the main drivers of reionisa-
tion. The topology of the ionised regions provides a tracer of
the physical properties of these galaxies and their distribution in
the IGM (Zahn et al. 2007; McQuinn et al. 2007; Mesinger et al.

2011). In the recent years, many statistical tools of various
levels of complexity have been developed to extract informa-
tion about the ionisation sources from these maps, but this is
complicated by the cosmological signal often being swamped
with thermal noise and foregrounds (Chapman & Jelić 2019;
Liu & Shaw 2020; Hothi et al. 2021; Gagnon-Hartman et al.
2021). While the power spectrum of the 21 cm signal has been
the main tool to extract the Gaussian part of the 21 cm signal
from reionisation (e.g., Greig et al. 2021; Pagano & Liu 2020),
three-point statistics have been increasingly studied to access
the non-Gaussian part of the signal (Shimabukuro et al. 2016;
Majumdar et al. 2018; Gorce & Pritchard 2019; Watkinson et al.
2019; Hutter et al. 2020).

Choosing a simpler approach, many works have focussed
on the one-point probability distribution function (PDF) of the
differential 21 cm brightness temperature δTb and its moments
(Ciardi & Madau 2003; Furlanetto et al. 2004; Mellema et al.
2006). Since the morphology of this 21 cm signal is driven by
the morphology of the ionised regions during the EoR, it is infor-
mative to assess the PDF of the ionisation fraction distribution.
For example, for a binary ionisation field, where pixels are either
fully ionised or fully neutral, the corresponding one-point PDF
can be derived as a combination of Dirac delta functions δ:

P(xe) = (1 − x̄e) δ(xe) + x̄e δ(xe − 1), (1)

where x̄e is the filling fraction – or the mean ionisation
level of the simulation. From this PDF, analytic expression
for statistical moments can be derived. Comparing how these
statistical moments, derived numerically from more sophisti-
cated models and simulations, deviate from these analytical
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expressions provide us with hints on the nature of reionisa-
tion (Gluscevic & Barkana 2010), such as its reionisation topol-
ogy (e.g., inside-out or outside-in, see Watkinson & Pritchard
2014) and its global reionisation history (Bittner & Loeb 2011;
Patil et al. 2014), even when derived from dirty 21 cm sig-
nal images or after foreground removal (Harker et al. 2009).
Kittiwisit et al. (2018) show that HERA will be able to detect the
variance of the 21 cm brightness temperature field from reion-
isation with high sensitivity, by averaging over measurements
from multiple fields. However, these one-point statistics lack
information on the correlations between pixels. For this rea-
son, Barkana & Loeb (2008) have extended this formalism by
analysing the one-point PDF of the difference in the differential
21 cm brightness temperature measured at two points.

In this work, we present a new higher-order one-point statis-
tic, to which we refer to as the local variance σloc. This local
variance can be computed by dividing the total volume of a
three-dimensional field x(r) into N sub-volumes {Vα}1≤α≤N . Let
us consider a sub-volume Vα centred on rα, described by the win-
dow function

Wα(r) =

3∏
j=1

Θ j(r − rα), Θ j(r) =

{
1 if r j ≤ L j/2,
0 if r j > L j/2,

(2)

where L j is the length of each of the three sides of the sub-
volume. Then the local variance is defined by:

σloc
2 ≡

N∑
α=1

[∫
d3r Wα(r − rα) x(r)

]2

− x̄2, (3)

with x̄ being the expectation value of the field. In other words,
it is the variance of the distribution of the means of the sub-
volumes. In this work, we mostly focus on the case where the
sub-volumes considered are slices cut through the cube. It is
clear from this definition that this estimator is based on sam-
ple variance and will be zero for a sufficiently large data cube.
However, for smaller fields, it will provide us with information
about the morphology imprinted in the field x(r), as it – con-
trary to usual one-point statistics, encompasses information on
the correlations between pixels. It is interesting to note that pre-
vious works have also considered estimators computed in sub-
volumes of data: for example, Chiang et al. (2015), Giri et al.
(2019) investigate the power spectrum of sub-volumes, also
referred to as the position-dependent power spectrum. However,
in contrast to these approaches, our estimator will benefit from
its simplicity.

We fully introduce the local variance and give its phe-
nomenological definition in Sect. 3. In Sect. 4, we apply this
statistic to a range of simulations, that we describe in Sect. 2,
and find that its evolution with redshift is a good tracer of the
ionisation history and topology, even when including observa-
tional effects, such as thermal noise and telescope resolution.
We conclude in Sect. 5. In the following, all distances are in
comoving units and the cosmology used is the best-fit cosmology
derived from Planck 2015 CMB data (Planck Collaboration I
2016): h = 0.6774, Ωm = 0.309, Ωbh2 = 0.02230, Yp = 0.2453,
σ8 = 0.8164 and TCMB = 2.7255 K. We use interchangeably the
terms filling fraction and ionisation level to describe the mean of
ionisation fields x̄e.

2. Simulations

We applied our analysis to two types of simulations in order
to check that our results are robust against different ways of

modelling reionisation. First, we consider the rsage simula-
tions (Seiler et al. 2019), which are based on a N-body simula-
tion with 24003 dark matter (DM) particles and a side length of
160 Mpc. A modified version of the Semi-Analytic Galaxy Evo-
lution (SAGE) model (Croton et al. 2016), which accounts for
delayed supernovae feedback and radiative feedback, describes
the evolution of the galaxies and their properties within the sim-
ulation. The ultraviolet background (UVB) is generated with
the semi-numerical code cifog (Hutter 2018a,b). cifog also
follows the time and spatial evolution of the ionised hydro-
gen regions in the simulation box. Three different prescriptions
for the escape fraction of ionising photons from galaxies into
the IGM, fesc, cover the physical plausible parameter space: In
rsage const, fesc is considered to be constant regardless the
redshift and properties of the galaxies. Its value is fixed to 20%
(Robertson et al. 2015). In rsage fej, fesc scales with the frac-
tion of gas ejected from each galaxy, fej. In rsage SFR, fesc
scales with the star formation rate of each galaxy, resulting in fesc
effectively scaling with halo mass. These different ionising prop-
erties result in a different morphology of the ionisation fields,
with rsage SFR exhibiting the largest ionised bubbles at a given
global ionisation fraction x̄e. This is illustrated in the upper pan-
els of Fig. 1, which show the binary ionisation fields of the three
simulations at x̄e = 0.3, when the simulations are 30% ionised.
Since the three rsage simulations have the same underlying DM
distribution and have been tuned to reproduce the Planck optical
depth, we find their ionisation histories to be very similar (see
the upper right panel of Fig. 4). However, due to the different
descriptions of fesc, they diverge slightly towards the end of the
reionisation process, with rsage SFR reaching a fully ionised
IGM by ∆z ' 0.1 earlier than rsage fej.

Secondly, we use the publicly available 21cmFAST sim-
ulation (Mesinger & Furlanetto 2007; Mesinger et al. 2011)1.
21cmFAST is a semi-numerical code using excursion-set for-
malism (Furlanetto et al. 2004): starting from a matter overden-
sity field, it assumes each cell to be ionised when the number
of photons exceeds the number of baryons in the respective
cell. 21cmFAST has multiple simulation parameters that can be
varied to change the underlying physical model, which again
can result in different reionisation histories and morphology.
Here, we choose to vary the parameter Mturn, the turnover mass,
which corresponds to the minimum halo mass below which
star formation is suppressed exponentially. During the EoR,
Mturn = 108 M� would correspond roughly to a virial temper-
ature of 104 K. We generate three simulations, with the same
dimensions and resolution as the rsage simulations, and assume
Mturn = 108 M�, 109 M� and 1010 M�, to which we refer as M8,
M9 and M10 in the following, respectively. Their global ioni-
sation histories can be seen in the lower-right panel of Fig. 4.
The higher number of sources in M8 leads to an earlier reion-
isation of the IGM than in the other two simulations. In M10,
however, reionisation is delayed until haloes of sufficient mass
have formed. Since more massive sources are also more efficient
at ionising their surroundings, M10 has on average larger ionised
regions than M8 and M9. This can be seen in the lower panels of
Fig. 1, which show the snapshots of the ionisation fields of M8,
M9 and M10 at x̄e = 0.3.

Extracting the ionisation fields from the differential
21 cm brightness temperature maps remains difficult (e.g.,
Malloy & Lidz 2013; Beardsley et al. 2015; Datta et al. 2016;
Giri et al. 2018; Mangena et al. 2020) due to their contamination
by instrumental effects and foregrounds (Gluscevic & Barkana
2010; Chapman et al. 2013; Liu & Shaw 2020): hence, we need

1 Available at https://github.com/21cmfast/21cmFAST
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Fig. 1. Binary ionisation fields cut through
the three rsage simulations (upper panels)
and the three 21cmFAST runs (lower panels)
described in Sect. 2 at x̄e = 0.30, illustrating
how different physics lead to a different reion-
isation morphology.

statistical tools that we can apply directly to these 21 cm maps.
For this reason we apply our new one-point statistics also to the
differential 21 cm brightness temperature δTb cubes in the fol-
lowing. From the rsage neutral fraction, xH i = 1 − xe, and
baryon density, δb, cubes, we construct the corresponding δTb
fields following Pritchard & Loeb (2012):

δTb = 27xH i (1 + δb)
Ωbh2

0.023

√
0.15
Ωmh2

√
1 + z
10

mK. (4)

Here, we assume that X-rays have heated the gas sufficiently
such that the spin temperature of the neutral hydrogen gas
exceeds the CMB temperature considerably. Because this work
is a proof-of-concept for the local variance, we choose to
limit our analysis to results using this assumption. However,
recent works have shown that the CMB temperature might actu-
ally not be negligible during reionisation (Heneka & Mesinger
2020). For the 21cmFAST simulations, the brightness temper-
ature cubes are computed directly by the simulation package,
which allows a more complete derivation than the approximation
given in Eq. (4), namely including velocity corrections. Since
interferometric observations will only measure the fluctuations
in the 21 cm signal, we subtract each cube by its mean so that
the 21 cm cubes have a mean zero. In practice, an interferome-
ter measures a mean-zero map for each frequency bin, which is
equivalent to saying that each slice of this cube has a mean zero
and would make the local variance vanish. Hence, we assume
that using N slices of a coeval cube at fixed redshift z is equiv-
alent to considering N small patches of a larger field-of-view at
fixed frequency. We leave a detailed investigation of this hypoth-
esis for future work.

3. Methods

In order to build intuition for this new estimator, we first look at
the ionisation fields of our simulations. We obtain the 3D vari-
ance of the ionisation field of a coeval cube extracted from the
simulations, at a given redshift z and global ionisation level x̄e,

by computing:

σwhole(z)2 =
1

N3

N∑
i, j,k=1

xi, j,k(z)2 − x̄2
e , (5)

where the ionisation level of a cell (i, j, k) can be either xi, j,k(z) =

0 or 1. It is possible to relate the variance σwhole
2 of a 3D field

xe(r) to its 2-point correlation function (2-PCF) ξ2 and, in turn, to
its power spectrum P(k)2. With this relation, we can estimate the
variance of the EoR 21 cm signal by measuring its power spec-
trum. In this context, Patil et al. (2014) has used forecast LOFAR
observations and the inferred redshift-evolution of σwhole to con-
strain the midpoint and duration of reionisation. From a topo-
logical point of view, examining the evolution of σwhole with x̄e
allowed Watkinson & Pritchard (2014) to differentiate between
outside-in and inside-out scenarios of reionisation. However, in
all the simulations analysed in this work, reionisation proceeds
inside-out. As such, we find for our three rsage simulations
only a ∼1% deviation from the theoretical parabola which can
be derived from the PDF of ionised pixels P(xe) given in Eq. (1):

σwhole
2 =

∫
(xe − x̄e)2 P(xe) dxe = x̄e (1 − x̄e) . (8)

The results also hold for the 21cmFAST simulations and higher
order cumulants, such as the skewness and the kurtosis. There-
fore, the distribution of pixels throughout the whole box can-
not differentiate between the simulations, as it mainly traces the
reionisation history. In particular, it does not account for the cor-
relations between pixels, and hence cannot track morphological
differences.
2 The definition of the 2-PCF yields

ξ2(r) =
1
V

∫
d3 s xe(s) xe(s + r) =

1
(2π)3

∫
d3 k P(k) eik·r, (6)

such that, for an isotropic and homogeneous field,

σ2
whole + x̄2

e =
1
V

∫
d3 s xe(s)2 = ξ2(0) =

1
2π2

∫
k2dk P(k). (7)
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Fig. 2. Left panel: distribution of the ionisation levels of the N slices that can be carved out of the rsage const simulation along one direction.
Each colour corresponds to one of 12 snapshots taken on the range 6.02 ≤ z ≤ 14.63, corresponding to different ionisation levels, represented
as the solid vertical lines. Right panel: evolution of the standard deviations of each distribution with global reionisation history (blue solid line),
compared to the standard deviation of the distribution of ionised pixels throughout the whole box (dashed line, divided by 10).

For this reason, we introduce the local variance, which is
sensitive to the ionisation topology as it includes the small and
large-scale correlations between points:

σloc(z)2 =
1
N

N∑
k=1

 1
N2

N∑
i, j=1

xi, j,k(z)


2

−

 1
N3

N∑
i, j,k

xi, j,k(z)


2

=
1
N

N∑
k=1

µ(k, z)2 − x̄e(z)2.

(9)

Here, µ(k, z) is the mean value of the kth slice along the redshift
direction3. We explain the derivation of this statistic by consid-
ering the three-dimensional binary ionisation field of the rsage
const simulation. The ionisation field is a cube with N = 256
cells on a side, each cell having a width of ∆x = 0.625 Mpc.
Snapshots every 10 Myrs, tracking the reionisation process, are
available. For each snapshot, we compute the average value µ
of each of the N slices, each having a width of one cell along a
chosen direction. Here, we assume this direction to be the red-
shift – or frequency – direction. The resulting distribution of N
filling fractions {µ}0≤k<N is centred around the filling fraction of
the whole 3D box at the respective redshift, x̄e(z). The left panel
of Fig. 2 shows these distributions for redshifts 6 ≤ z ≤ 15. At
the beginning of reionisation, the distribution is very narrow but
widens as reionisation progresses and ionised bubbles grow, trac-
ing the underlying clustered galaxy population and the increas-
ing correlation between pixels. At the end of reionisation, the
distribution is again very narrow as most pixels are fully ionised.
In the right panel of the figure, we summarise our results by plot-
ting the evolution of the standard deviation of these distributions
σloc as a function of the global ionisation level (blue solid line).

As outlined in our motivation, we can see from Eqs. (5) and
(9), that the local variance σloc describes the morphology of the
considered field more accurately than the ordinary 3D variance
σwhole, as it includes the variance of each slice. Indeed, if we
consider Var(k) the variance of the k-th slice, then Var(k)−µ(k) =∑N

i, j x2
i, j,k/N

2, and it is easy to see that

σloc
2 = σwhole

2 −
1
N

N∑
k=1

Var(k). (10)

3 Because we use coeval cubes, we assume that the redshift does not
change from one slice to the next. This is a reasonable assumption
because of the relatively small size of the box (L = 160 Mpc).

Furthermore, we note that since the 3D variance can be
expressed in terms of the 2-PCF given in Eq. (7), the local vari-
ance is also given by

σ2
loc =

1
L

∫
dr µ2(r) =

1
2π

∫
dk Pµ(k), (11)

where µ(r) is the mean of the slice located at r and Pµ(k) is the
power spectrum of the 1D distribution of means {µ(r)}r≤L. Pµ(k)
corresponds to the 3D power spectrum of the field, when only
the modes along the frequency direction in Fourier space are
kept and are rescaled by the area of the observational window
in the sky plane: Pµ(k) = P(k)/L2 for k = (0, 0, kz). Selecting
such modes can be done by using a specific window function,
for example a Bessel function (Muñoz & Cyr-Racine 2021).

4. Results

4.1. Understanding the local variance

In this section, we analyse the evolution of the local variance of
the rsage const simulation. In order to understand the impact
of the ionisation fraction and density distributions on our esti-
mator, we first discuss the local variance of the ionisation frac-
tion fields before we analyse the local variance of the differential
21 cm brightness temperature maps. For clarity, we add a super-
script to σloc, describing the field considered: σion

loc for the ionisa-
tion field, σ21

loc for the brightness temperature field.
We show the local variance of the ionisation field σion

loc of the
rsage const simulation as a function of its mean in the right
panel of Fig. 2. For comparison, we also plot the results for the
scaled 3D variance, σwhole/10. The dotted vertical line indicates
the midpoint of reionisation at x̄e = 0.50, where σwhole is max-
imum (see Eq. (8)). On the other hand, σion

loc(x̄e) (blue line) is
slightly distorted compared to σwhole and reaches its maximum
around x̄e ' 0.60. The location of the maximum indicates the
moment when ionised and neutral regions are the largest, which
will depend on the large-scale structure of the ionisation fields.
We discuss this in more detail in the next Section when we com-
pare different ionisation morphologies. To confirm the physical
origin of this signal, we compute the local variance of a control
test, consisting of a 3D box of the same resolution and size as
our simulations, but randomly filled with ionised pixels to reach
the considered ionisation level. Such a field will contain none of
the correlations we aim at probing with the local variance and
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Fig. 3. Contributions to the local variance of the δTb field in the rsage
const simulation (upper panel) and its reionisation history (lower
panel).

will actually be analogous to a box with white noise power spec-
trum. It can also be seen as a field made of many uncorrelated
very small bubbles, which is close to the ionisation field at the
very beginning of reionisation (see next paragraph). The result-
ing variance, close to zero and largely insignificant compared
to what was obtained for the simulations, is shown as the black
solid line in the right panel of Fig. 2.

In Fig. 3, we show the local variance of the δTb field of
the rsage const simulation as a function of redshift (thick
solid line) along with the local variances of the H i and δb fields
and the covariance of the distributions of means for the ionisa-
tion field (xloc) and the 21 cm brightness temperate field (δb,loc).
Because of correlations, the exact expression of σ21

loc, given in
Appendix A, does not equal the sum of the aforementioned three
elements, but they are useful to understand the behaviour of σ21

loc.
Overall, the redshift-evolution of the local variance σ21

loc(z) traces
the reionisation history and is similar to the one observed in
Patil et al. (2014) for the 3D variance. At high redshift, before
the onset of reionisation (z & 12), the variance across slices
comes from the underlying density field. As the first sources start
ionising neutral hydrogen, zero pixels appear on the Gaussian
δTb background (z ' 9−12), and homogenise the distribution
(Gluscevic & Barkana 2010; Bittner & Loeb 2011), leading to
a dip in the variance at z ' 9.5. At this point, the distribution
of ionised regions is similar to the one of the control test, con-
sidered above, hence the small amplitude of the local variance.
As reionisation proceeds, zero (ionised) pixels start tracing the
reionisation morphology. As their number increases compared
to the number of warm (neutral) pixels (which still follow a
Gaussian distribution), σ21

loc starts mostly tracing the ionisation
field and increases until reaching its maximum around the mid-
point of reionisation, when both ionised and neutral regions are
the largest. As more and more pixels are ionised, the global
brightness temperature approaches zero and so does the local
variance. A similar redshift evolution has been observed in the
skewness of pixel distributions within two-dimensional bright-
ness temperature maps (Harker et al. 2009) and can be recov-
ered using a combination of analytical functions (Ichikawa et al.
2010; Patil et al. 2014). However, these theoretical functions do
not say much about the time and spatial distribution of ionised
regions.

4.2. Comparing simulations

In order to understand how the ionisation morphology affects
the characteristic features in σloc(z), which are the amplitude
and ionisation fraction at which σloc(z) reaches its maximum,
we compare σion

loc(z) for all the simulations described in Sect. 2.
Results for rsage and 21cmFAST are shown in the upper and
lower panels of Fig. 4, respectively.

As we can see from the top right panel, the three rsage sim-
ulations show similar reionisation histories, and, therefore, the
approximate locations of the minima and maxima of the local
variance are similar. However, they differ in their amplitudes.
Here, in contrast to what we have found for σwhole, there is a
clear difference between the three rsage simulations: for exam-
ple, at x̄e = 0.50, the local variances of rsage fej and rsage
SFR are about 20% below and 20% above the one of rsage
const, respectively. We find more variance between the rsage
SFR slices, since the simulation exhibits larger ionised regions
(Seiler et al. 2019). This can be understood as follows. Consider
an ionisation field at a given global ionisation level x̄e. If the
field is made of a few large ionised bubbles and we cut a slice
through the box, we are more likely to pick up a large ionised
region that will bias the filling fraction of the slice µ towards
values larger than x̄e. Conversely, if the field is made of many
small ionised regions, such as in the rsage fej simulation, the
slices cut through the box are more likely to have similar µ val-
ues and σion

loc will be lower.
We confirm these findings and extend our understanding

of how the characteristics of σion
loc depend on the reionisation

morphology by analysing the results we obtain for the three
21cmFAST simulations that differ in their reionisation history
and morphology (see Fig. 1). When computing the local vari-
ance of the 21cmFAST ionisation fields, we find that, sim-
ilarly to rsage, at a given ionisation level, the simulation
with the on average largest ionised regions, M10, yields the
largest σion

loc values. This is in agreement with the findings of
Gluscevic & Barkana (2010), who already noticed that if the ion-
ising sources lie in more massive haloes in one simulation than
another, the impact on the 3D pixel distribution is noticeable
as the ionised regions are larger and more scarce at the same
global ionisation fraction. Since the three 21cmFAST simula-
tions exhibit not only different ionisation morphology but also
different ionisation histories, the redshift-evolution of σion

loc varies
from one simulation to the other in addition to its variations in
amplitude. This result implies that measuring the local variance
of a field will help us to constrain the reionisation history.

Similar to the rsage simulations, the maximal local variance
is also reached around the reionisation midpoint for the three
21cmFAST runs. In general, this is expected to happen when the
derivative of the global signal with respect to redshift is maximal
(Muñoz & Cyr-Racine 2021). During reionisation, we expect the
signal to be maximal when both ionised and neutral regions are
the largest. Applying the bubble size algorithm granulometry
(Kakiichi et al. 2017) to the rsage simulations, we find this to be
the case for all three simulations, at x̄e ∼ 0.6 (Hutter et al. 2020),
which also corresponds to the measured maximum of the local
variance in the simulations. Indeed, we find the maximum to be
located at z = 8.4± 0.1, 6.7± 0.1 and 5.2± 0.1, corresponding to
an ionisation level of x̄e = 0.67±0.02, 0.65±0.02 and 0.58±0.02
for the M8, M9 and M10 simulations, respectively. Interestingly,
this result holds when computing the local variance of a toy
model, made of randomly located fully ionised bubbles. All the
bubbles have the same initial radius and are grown by increas-
ing the radius one pixel at a time until the whole box is ionised
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Fig. 4. Evolution of the standard deviation on the distribution of means measured in the set of N slices that can be carved out of the ionisation fields
of simulations along one direction with redshift (left panel) and ionisation level (middle panel). Right panel: corresponding reionisation histories.
Results for the three rsage simulations (upper panels) and the three 21cmFAST runs (lower panels) are compared.

Fig. 5. Snapshots of the ionisation field at the
maximum of the local variance for the M8, M9
and M10 simulations, corresponding to different
redshifts and different ionisation levels: z = 8.4
and x̄e = 0.67 for M8, z = 6.7 and x̄e = 0.65 for
M9, and z = 5.2 and x̄e = 0.58 for M10.

(details on this toy model can be found in Appendix B). In these
toy models, the maximum local variance is always reached when
the box is about 60% ionised, although slightly sooner when the
initial bubble radius is larger. In Fig. 5, we show snapshots of the
ionisation fields of the three 21cmFAST simulations at the red-
shift when they reach the maximum local variance. Interestingly,
despite these snapshots corresponding to different ionisation lev-
els and redshifts, they have their largest ionised regions in com-
mon. This indicates that, in contrast to its amplitude, the location
of the maximum of the local variance is purely sensitive to the
large-scale structure of the ionisation field. As the total number
of ionising photons decreases in M8, M9 and M10, respectively,
the large-scale ionised regions will reach their maximum size at
lower redshifts; but due to the different ionising emissivity dis-
tributions across sources, the redshifts where the local variance
becomes maximal will correspond to a different ionisation level
of the box. For example, in Fig. 5, we see that the neutral regions
are filled with many small ionised regions in M8, increasing the
overall ionisation level of the simulation to a higher one than in
M10 at the redshift of maximal local variance.

We have seen that differences in the ionisation morphology
across simulations translate into differences in the amplitude of
σion

loc(z), and differences in reionisation histories into translations
in redshift. We now turn to the differential 21 cm brightness tem-
perature fields which, as we have seen in the previous Section,
encompass additional information from the ionisation morphol-
ogy. Figure 6 shows the redshift-evolution of σ21

loc with redshift
for the three rsage simulations (upper panel) and the three
21cmFAST runs (lower panel). We briefly note that the three
rsage simulations show the same local variance at high red-
shifts (z & 12), because σ21

loc is governed by the same underlying
density field. However, as σ21

loc becomes sensitive to the ion-
isation field, its shape traces the reionisation history, while
its amplitude is sensitive to the reionisation morphology: as
observed for the ionisation field, here, the rsage SFR simula-
tion, which has the largest ionised regions on average, exhibits
the largest σ21

loc. However, this is not true for the 21cmFAST
simulations: in contrast to what is expected, M10 exhibits the
lowest amplitude in σ21

loc during reionisation. This is because
M10 reionises later than M8, when the density field is more

A58, page 6 of 14



A. Gorce et al.: Using the sample variance of 21 cm maps as a tracer of the ionisation topology

Fig. 6. Local variance of the 21 cm brightness temperature fields from
the rsage (upper panel) and 21cmFAST (lower panel) simulation, as a
function of redshift. Vertical dotted lines show the ionisation midpoint
of the simulation of the corresponding colour.

heterogeneous and the local variance of the density field larger;
such that the anti-correlation between δb and xH i is stronger,
adding negative signal to the local variance of the overall bright-
ness temperature field (see Fig. 3). The pre-factor of Eq. (4),
which is proportional to

√
1 + z, also contributes to enhancing

the signal at higher redshifts and hence to M8 showing a higher
amplitude at its maximum because it is reached at a higher red-
shift. This also explains why M10 exhibits the shallowest dip
at z ' 7 of the three simulations during cosmic dawn. Finally,
the larger amplitudes of the local variance seen at high redshift
(z & 12 for M8, z & 8 for M10) is found to be related to the extra
terms included in the 21cmFAST derivation of the 21 cm bright-
ness temperature compared to the simplified expression given in
Eq. (4), namely the velocity field.

4.3. Observational effects

Many limitations related to the nature of instruments are
expected to complicate the observation of the 21 cm signal from
reionisation. For this reason, we consider the effects of ther-
mal noise and angular resolution smoothing on our δTb maps
and subsequent measurements of the local variance. In the fol-
lowing, we consider the performance characteristics of SKA1-
Low (Braun et al. 2019), in an optimistic and a pessimistic case,
corresponding respectively to a maximum baseline of bmax =
65 km and 2 km. In both cases, the total effective collecting area

of Atot ∼ 105 m2 is frequency dependent. Indeed, the Australian
interferometer will consist of about 2 × 106 dipoles, gathered
in 512 stations with 24 tiles per station. Each individual dipole
will have an effective area of λ2

21/3, with λ21 being the redshifted
21 cm wavelength.

In order to apply the appropriate SKA1-Low angular
smoothing to our δTb maps, we convolve each simulation cube
(corresponding to a given redshift z) by a Gaussian kernel with a
FWHM of θ(z) dc(z), with dc(z) being the comoving distance to
redshift z and

θ(z) = 1.22 ×
λ21(z)
bmax

, (12)

the angular resolution of the telescope. Because of the size of
the SKA1-Low array, its angular resolution will be very high:
It will range from 0.15 Mpc at z = 4 to 0.66 Mpc at z = 15,
which is smaller than the resolution of our simulation grids
(∆x = L/N = 0.625 Mpc) at all redshifts of interest. Conse-
quently, the smoothed and original maps are very similar, and so
will be the resulting σloc.

We then generate thermal random noise by drawing a noise
value ni from a Gaussian distribution with a varianceσ2

th for each
pixel, with the variance given by (Watkinson & Pritchard 2014):

σ2
th(z) = 2.9 mK ×

(
105 m2

Atot

) (
10 arcmin

∆θ

)2

×

(
1 + z
10

)4.6
√

1 MHz
∆ν

100 h
tint
·

(13)

Here, ∆ν is the frequency resolution of the experiment, which we
match for computational efficiency to the resolution of the sim-
ulation ∆x according to ∆ν = H0ν0

√
Ωm∆x/[c

√
(1 + z)] with

H0 being the Hubble constant and ν0 the rest-frame 21 cm fre-
quency. SKA1-Low is expected to have a much better frequency
resolution than the comoving cell size of 0.625 Mpc used in this
work, with a channel width of 5.4 kHz at a nominal frequency
of 100 MHz (Braun et al. 2019). A thinner resolution will be
beneficial to local variance analyses (see Appendix C). We con-
sider an observation time of tint = 1000 hrs. Using the variance
given in Eq. (13), we add a noise value to each pixel of the
smoothed 21 cm brightness temperature map and compute σloc
for the resulting coeval cubes.

In Fig. 7, we show the local variance computed from the
clean, smoothed and noisy map extracted from the M9 simula-
tion, for the optimistic case. We see that, becauseσloc is based on
variance information and, therefore, not sensitive to the absolute
value of the 21 cm differential brightness temperature, the vari-
ance information is still accessible in both smoothed and noisy
maps, despite the amplitude of the noise being comparable to the
one of the cosmological signal. On the range of redshifts corre-
sponding to the bulk of the reionisation process (6.4 ≤ z ≤ 8.2
for 0.2 ≤ xe ≤ 0.8), the signal-to-noise ratio is above one, reach-
ing its maximum of 3.1 when the signal is maximum. The noise
variance, computed using Eq. (13), increases with increasing
redshift, which provides an explanation for the rough edges of
σloc in the noisy maps at z > 8. In fact, the noise and the cosmo-
logical signal being uncorrelated, we have

σ2
loc,smoothed ' σ

2
loc,noisy map − σ

2
loc,noise. (14)

Subtracting the two local variances, we obtain the results shown
as the dotted line in Fig. 7 and refer to these as the cor-
rected results in the following. In these corrected results, the
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Fig. 7. Local variance of the brightness temperature maps of the
M9 21cmFAST simulation, for a clean map (solid blue line), a map
smoothed to SKA1-Low angular resolution for the optimistic case
(bmax = 65 km, dashed orange line), and a noisy map (dash-dotted green
line). See text for details.

Fig. 8. Local variance of the 21 cm brightness temperature maps of the
21cmFAST simulations, after applying telescope resolution smoothing
and adding telescope noise, for an optimistic case (bmax = 65 km, left),
and a pessimistic case (bmax = 2 km, right). The shaded regions cor-
respond to the standard deviation of the σloc values obtained from 100
different realisations of the thermal noise.

noise bias has been removed, and the measured local variance
is much closer to the local variance values obtained from the
clean smoothed maps than from the uncorrected one. Although
Eq. (14) is an approximation and overlooks potential correlations
between the cosmological signal and the noise within a slice, the
good match between σloc derived from clean maps and from cor-
rected maps shows that their contribution is sufficiently small to
justify this approximation. In the optimistic case, the noise vari-
ance, and the associated fluctuations at high redshift, still remain
but the location of the maximum of the local variance can be
recovered.

In Fig. 8, we show the local variance of the noisy maps
obtained in the optimistic and pessimistic case for the three
21cmFAST simulations: the three models can still be distin-
guished by the amplitude ofσloc when analysing noisy maps. We
see that the smoothing due to the coarser angular resolution of
the pessimistic case leads to a decrease in the signal. However, a
lower angular resolution is also equivalent to a lower noise vari-
ance (see Eq. (13)), such that the local variance of the noise does
not exceed 0.02 mK, and the signal-to-noise ratio is around 50

during the bulk of reionisation. Therefore, we can recover the
location of the maximum as well as the shape of the signal very
well. Additionally, the ratio of the local variance maxima from
one rsage model to another is well preserved: adding observa-
tional effects does not alter the ability of the local variance to
differentiate between reionisation models.

Indeed, we fit a parabola y(z)/σ0 = σmax/σ0 − (z − zmax)2,
with σ0 = 1mK, to the local variance data points of our M9 sim-
ulation, on a redshift range 6.8 ≤ z ≤ 7.5, for clean, noisy and
corrected values. In this expression, zmax is the redshift when the
maximum of the local variance is reached, and σmax its ampli-
tude. To estimate the corresponding uncertainties, we derive the
standard deviation of the local variance by running 21cmFAST
for identical physical and numerical parameters but 200 differ-
ent random seeds, which is equivalent to computing 200 differ-
ent realisations of the simulation. We find that, in the optimistic
case, the recovered amplitude is identical for all three data sets,
giving σmax = (0.82±0.24) mK at the 95% confidence level. The
location of the peak is slightly shifted towards larger redshifts
for noisy data: we find zmax = 7.1+0.3

−0.4 for both the optimistic
and the pessimistic case, which is close to the value obtained
for clean data (zmax = 7.2+0.3

−0.4), and most importantly, within the
size of a redshift bin (the redshift step between two snapshots is
∆z = 0.2).

Accounting for the thermal noise is not sufficient to claim
that our statistic will keep its characteristics and constraining
power when analysing observed data, as we have not consid-
ered the impact of foreground avoidance or removal on our
results. Nevertheless, Harker et al. (2009) have found that one-
point statistics are quite robust against the details of fore-
ground fitting. In contrast, Petrovic & Oh (2011) have shown
that foreground cleaning can significantly distort the one-point
PDF by smoothing out its bi-modal structure4. This will not
be an issue for our local variance analysis, since, in contrast
to the 3D pixel distribution, the distribution of mean values is
smoothed by the averages along the frequency direction, and
therefore not bi-modal. Additionally, foreground cleaning will
reduce the contrast between neutral and ionised regions while
maintaining the topology of the map, so that the distribution of
means values and the variance within individual slices should
be maintained. Finally, and similarly to our thermal noise anal-
ysis, it might be possible to remove the effects of foreground
removal from the measured local variance, if we can char-
acterise the statistical properties of foreground residuals suffi-
ciently well. Analysing the contribution of the different k-modes
to our local variance signal (for details see Appendix D), we
find small k-modes, for which foreground contamination is the
largest, to contribute the most. We therefore discard the possi-
bility of using foreground avoidance to derive the local variance
from 21 cm data. Instead foreground modelling and subtraction
(Chapman et al. 2013; Mertens et al. 2018; Hothi et al. 2021) or
using machine-learning techniques to reconstruct the signal lost
in the foreground wedge (Gagnon-Hartman et al. 2021), should
be preferred. We keep a thorough analysis of the impact of fore-
ground removal on the local variance for future work.

4.4. Cross-correlations between slices

In the previous sections, we have discussed the auto-correlations
of slices within a simulation box. Another option is to anal-
yse the cross-correlations between the average values of slices

4 Ionised pixels form a Dirac peak centred on zero, whilst warm pixels
are distributed more evenly.
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Fig. 9. Cross-correlations between the average values of two slices cut
through the M9 simulation and separated by a distance s, for the snap-
shot corresponding to z = 7.2, normalised by the value at s = 0. Results
are presented for the ionisation field (solid blue line) and the 21 cm
brightness temperature field (dashed orange line).

separated by a given distance s. This approach is similar to what
has been done for the one-point PDF in Barkana & Loeb (2008),
Ichikawa et al. (2010) and Gluscevic & Barkana (2010). For the
M9 simulation, we compute the following variance, to which we
refer to as the cross variance:

V(z, s)2 =
1
N

N∑
k=1

µ(k, z) µ(k + is, z) − x̄2
e , (15)

where µ(k, z) is the average of the kth slice and µ(k + is, z) is the
average of the (k + is)th slice with s = i × ∆x being the dis-
tance in Mpc separating them. This cross variance is equivalent
to computing the 1D 2-point correlation function of the distribu-
tion of the means of slices. An example for the cross-correlation
between slices at z = 7.2 and x̄e = 0.47 is shown in Fig. 9 for
the density, ionisation and brightness temperature fields of the
M9 simulation. We find that, for all fields, the cross correlation
is maximal at s = 0 , corresponding to auto-correlations, and
decreases towards larger separations until it reaches negative val-
ues. A similar evolution was observed in Muñoz & Cyr-Racine
(2021). We note that the values presented in the figure are nor-
malised by V(z, 0). Raw values are of the order of ∼10−6 for the
ionisation field and 0.1 mK2 for the 21 cm brightness tempera-
ture field.

We compute the cross variance for all snapshots available in
the M9 simulation. Interestingly, while the amplitude of V(z, s)
changes with redshift for the density field, its shape remains con-
stant, and so does V(z, s)/V(z, 0). Initially, the cross variance
of the δTb field has the same behaviour as the density field,
until the box is about 10% ionised. For the same redshifts, the
scale at which V(z, s) derived from the ionisation field becomes
zero, s0(z), remains around 15 Mpc. At x̄e ≥ 40%, the δTb field
mostly follows xH i and s0 starts increasing. The maximum of s0
is reached at x̄e = 90%. At this time, all ionised regions have
percolated and the variance drops to zero. If we compare results
between the three 21cmFAST simulations, we find their cross
variances to be very similar, when they are measured at the same
stage in the reionisation process. For this reason, it is not pos-
sible to use the cross variance to constrain reionisation physics.
We keep a thorough investigation of these cross-correlations for
future work.

The value of s0 at z = 7.2 is equivalent to about 1 MHz,
which also corresponds to the order of magnitude of the
coherency length of the cosmological 21 cm signal during reion-
isation. While foregrounds are expected to have a much larger
coherency length (∼50−100 Mpc), noise has a zero coherency
length (Santos et al. 2005; Mertens et al. 2018). These differ-
ences provide the basis for statistical 21 cm signal separation
via Gaussian Process Regression analysis (GPR, Mertens et al.
2018), where the different components of the observed signal are
modelled in order to remove foregrounds from the 21 cm obser-
vations. Because their coherency length is much larger than the
frequency bandwidth, the cosmological 21 cm signal and fore-
grounds measured in two consecutive frequency channels (or,
here, slices) should be almost identical and, when subtracting
measurements in these two channels, only the uncorrelated ther-
mal noise should remain. In Patil et al. (2016), the authors use
this technique to estimate the noise properties and remove noise
from LOFAR data. Indeed, in contrast to foregrounds and cos-
mological signal, the thermal noise is found to be uncorrelated,
even with a frequency separation as small as 0.2 MHz. There-
fore, the difference between two Stokes I images in two consec-
utive frequency channels, after removing bright sources, will be
dominated by thermal noise. Estimating the noise properties with
this method leads to higher noise levels than when using Stokes
V. The authors state that this excess noise is due to their calibra-
tion with an incomplete model. However, since this excess noise
is uncorrelated between different observations, multiplying dif-
ferent observations will decrease the effective noise.

5. Discussion and conclusion

In this paper, we have presented a novel first-order statistics, the
local variance σloc, which can be used to constrain the history
and morphology of reionisation.

The local variance corresponds to the variance of the distri-
bution of means of slices taken along an axis in a simulation,
or along the frequency direction of observations, if the channel
width is sufficiently narrow. At a fixed global ionisation level,
the amplitude of the local variance of the ionisation field σion

loc is
a tracer of the size of ionised regions: it is higher for an ionisation
field showing a few large ionised regions, that is when ionising
sources are more scarce but more efficient at ionising. For a field
made of many small ionised regions, as it arises when low-mass
sources are the main drivers of reionisation for example, the local
variance will be smaller. In future work, we will investigate in
more details how the local variance can constrain the physical
properties of early galaxies. Additionally, the filling fraction for
which the local variance reaches its maximum is mostly sensitive
to the large-scale structure of the ionisation field during reionisa-
tion. It will be reached when both ionised and neutral regions are
the largest, which occurs when approximately 60% of the box is
ionised. We have found that a more biased ionising emissivity
distribution (that is fewer sources with higher ionising emissiv-
ities opposed to many sources with lower ionising emissivities)
results in the maximum local variance being reached earlier in
the reionisation process, that is at a lower ionisation fraction
x̄e. Finally, when applying our novel statistics to the differen-
tial 21 cm brightness temperature fields, the redshift-evolution
of σ21

loc exhibits a characteristic shape that traces the reionisation
history of the sky patch observed. Before the onset of reioni-
sation, σ21

loc traces the correlations within the density field, but
becomes sensitive to the ionisation morphology as a rising num-
ber of ionised regions emerge and grow.
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We have shown that σ21
loc is robust against thermal noise

and angular resolution pollution when conducting 1000 hrs
observations with SKA1-Low. For high angular resolution –
corresponding to a maximum baseline of 65 km, the smoothing
due to limited angular resolution has no impact on the local vari-
ance but the thermal noise adds amplitude and fluctuations to
the signal. We have found that if the statistical properties of the
noise are sufficiently known, the thermal noise contribution can
be removed from the measured signal, and only the thermal noise
fluctuations are conserved. For lower angular resolution – corre-
sponding to a maximum baseline of 2 km, the smoothing leads to
a decrease in the variance of the field and the noise level. In both
cases, we can recover the maximum of the local variance as well
as differentiate between the different reionisation models investi-
gated in this work from noisy 21 cm maps. We expect this result
to hold even after foreground removal. Indeed, σloc changes
only weakly when the one-point PDF is altered by foreground
removal (Petrovic & Oh 2011). A detailed analysis of the impact
of foreground removal on the local variance will be the focus
of future work. In conclusion, local variance data will enable
the recovery of the reionisation history in a model-free fash-
ion, as well as the constraint of astrophysical parameters related
to the physical properties of early galaxies. Applying our local
variance statistics to measurements would consist of obtaining
the reionisation midpoint of a statistical sample of small fields
of view, which are either obtained by dividing a larger obser-
vational window into smaller areas or by performing a series
of different observations, and combining these ‘local’ reionisa-
tion midpoints to estimate a global reionisation midpoint. In this
work, for computational reasons, individual observations have
been represented by the different slices in a single coeval cube.

We note that other sample shapes could have been consid-
ered instead of slices. For example, Giri et al. (2019) consider
the power spectrum measured in sub-cubes of a simulation.
Since observational data cubes will consist of slices at differ-
ent (but gradually increasing) frequencies, our findings can be
easier translated to the results from observations. Alternatively,
Bittner & Loeb (2011) consider the distribution of means mea-
sured across beams drawn along the frequency direction, and one
could also consider the mean of sub-cubes in the entire coeval
simulation box. Preliminary calculations have shown that the
local variances of both shapes suffer from the same drawbacks,
that is their strong dependency on the simulation size and reso-
lution, but yield very similar results.

As the integral of the power spectrum, the local variance
inherently includes the same information about the underlying
reionisation field. However, it will be less affected by obser-
vational limitations. For example, because it is measured at a
given frequency, we can avoid frequency channels contaminated
by radio frequency interference (RFI). In addition, extracting
patches of sky smaller than the total field of view of the 21 cm
observations can eliminate survey boundary effects coming from
tapering. In Appendix E, we find the local variance to be more
robust to thermal noise than the power spectrum, except on
scales k < 0.5 Mpc−1, where the cosmological signal is expected
to be swamped by foregrounds.

Depending on the reionisation scenario, the 21 cm local vari-
ance can reach values as high as 1 mK. However, this value will
naturally decrease as larger field of views or higher frequency
resolutions are considered. While in this work, large values of
the sample variance are desired, it has previously been consid-
ered an issue, as it represents an obstacle for a precise estimate of
the 21 cm global signal or power spectrum and, in turn, of astro-

physical parameters. Muñoz & Cyr-Racine (2021) proposed a
way of quickly estimating the sample variance when measuring
the 21 cm global signal as a function of its derivative with respect
to redshift. Considering a simulation as big as L = 1.8 Gpc,
Muñoz & Cyr-Racine (2021) find a maximum sample variance
of σ21 ∼ 0.6 mK at z = 16.8. In parallel, Kaur et al. (2020)
estimated that a simulation needs to be at least 200−300 Mpc
wide to obtain a bias-free 21 cm power spectrum on scales of
−1.2 < log k/Mpc−1 < 0. In contrast to other estimators, the
local variance uses sample variance, often considered an obser-
vational bias, to our benefit. Looking for optimal observational
strategies allowing a maximum amplitude of the local variance,
while minimising its error bars, in order to offer reliable con-
straints, will be the focus of future work.

Acknowledgements. The authors thank the referee for useful comments on this
manuscript, which helped improve its overall quality. They also thank Catherine
A. Watkinson, Ian Hothi, Adrian C. Liu and Jordan Mirocha for their input on a
draft version of this paper; as well as Jacob Seiler for providing the rsage sim-
ulations. AG and JP acknowledge financial support from the European Research
Council under ERC grant number StG-638743 (“FIRSTDAWN”). AG’s work
was additionally supported by the McGill Astrophysics Fellowship funded by
the Trottier Chair in Astrophysics, as well as the Canadian Institute for Advanced
Research (CIFAR) Azrieli Global Scholars program. AH acknowledges support
from the European Research Council’s starting grant ERC StG-717001 (“DEL-
PHI”). The idea of this work was developed thanks to visits between the authors
of this paper, partly funded by the Leids Kerkhoven-Bosscha Fonds (LKBF).
This research made use of astropy, a community-developed core Python pack-
age for astronomy (Astropy Collaboration 2013, 2018); matplotlib, a Python
library for publication quality graphics (Hunter 2007); and of scipy, a Python-
based ecosystem of open-source software for mathematics, science, and engi-
neering (Jones et al. 2001) – including numpy (Oliphant 2006).

References
Astropy Collaboration (Robitaille, T. P., et al.) 2013, A&A, 558, A33
Astropy Collaboration (Price-Whelan, A. M., et al.) 2018, AJ, 156, 123
Bañados, E., Venemans, B. P., Mazzucchelli, C., et al. 2018, Nature, 553, 473
Banet, A., Barkana, R., Fialkov, A., & Guttman, O. 2021, MNRAS, 503, 1221
Barkana, R., & Loeb, A. 2008, MNRAS, 384, 1069
Beardsley, A. P., Morales, M. F., Lidz, A., Malloy, M., & Sutter, P. M. 2015, ApJ,

800, 128
Bittner, J. M., & Loeb, A. 2011, JCAP, 2011, 038
Bouwens, R. J., Illingworth, G. D., Oesch, P. A., et al. 2015, ApJ, 803, 34
Braun, R., Bonaldi, A., Bourke, T., Keane, E., & Wagg, J. 2019, ArXiv e-prints

[arXiv:1912.12699]
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Appendix A: Local variance of the δTb field

Fig. A.1. Contributions to the local variance of the 21 cm brightness
temperature field in a 21cmFAST simulation.

In the following we consider the 21 cm brightness temperature
field to be the direct product of the neutral hydrogen H i and the
overdensity δb = ρb/ρ̄b − 1 fields,

δTb(x) = xH i(x) × [1 + δb(x)] . (A.1)

If we consider the kth slice along the frequency direction in the
simulation, we yield from the previous equation

δTb,loc(k) = E[δTb(k)] = E [xH i(k) × (1 + δb(k))] , (A.2)

where E is the expectation value, δTb,loc(k) is the mean of the
21 cm field of the slice, xH i(k) its 2D H i field and δb(k) its 2D
overdensity field. Since these two fields are correlated, equation
A.2 can be reformulated as

δTb,loc(k) = x̄H i(k) × (1 + δ̄b(k))
+ Cov [xH i(k) × (1 + δb(k))] .

(A.3)

Then the local variance is the variance of the distribution of
δTb,loc values. If we write X = x̄H i(k) × (1 + δ̄b(k)) and Y =
Cov [xH i(k) × (1 + δb(k))] then

σloc
2 = Var(δTb,loc)

= 2 Cov(X,Y) + VarX + VarY

= Cov[x̄2
H i, (1 + δ̄b)2] +

(
σ2

loc,H i + x̄2
H i

) (
σ2

loc,δb
+ 1

)
−

[
Cov[x̄H i, (1 + δ̄b)] + x̄H i

]2
.

(A.4)

These different elements are represented in Fig. A.1.
We see that the final shape of the local variance is mostly

made of the variance of X, the product of the two local fields, and
of the covariance of X and Y , which are both complicated objects
difficult to interpret. However, as shown in Fig. 3, considering
the local variances of xH i and 1 + δb, as well as their covariance,
is sufficient to understand the redshift-evolution of σ21

loc.

Appendix B: Tests on toy models

We generate toy models with dimensions equal to those of
the rsage simulations, that is a comoving box length of L =
160 Mpc and 256 grid cells on each side. The initial field is a 3D
neutral box filled with enough bubbles of radius Rinit to reach a

Fig. B.1. Local variance σloc for toy models with different starting
radius.

filling fraction of x̄e = 0.01, which are then artificially grown
by 1 cell in radius until a filling fraction of 100% is reached.
We compute the local variance for each of the resulting boxes.
Results can be seen in Fig. B.1 in comparison to a control test
where ionised pixels are randomly distributed. We evolve the
toy model boxes with different initial radii: a large Rinit will be
equivalent to a higher mass threshold for ionising sources, that
is an increasing Rinit will be equivalent to an increasing Mturn in
21cmFAST or transitioning from rsage fej via rsage const
to rsage SFR. The difference to 21cmFAST and rsage is that
ionised bubbles are randomly located, so the ionising sources
are not clustered. Additionally, there are no new ionised regions
throughout the process, since all the bubbles are initialised in
the first field. Despite these differences, the shape of σion

loc(xe)
remains unchanged, and the maximum is still reached for a fill-
ing fraction of about 0.60: x̄e = 0.61 for the field with small
bubbles, and x̄e = 0.56 for the field with large bubbles. Similarly
to what has been seen from the 21cmFAST simulations, the sim-
ulation with the largest bubbles reaches on average its maximum
local variance at smaller filling fractions.

Appendix C: Dependence on box size and other
limitations

Because the information contained in σloc is purely related to
the sample variance, σloc will depend on the size of the box con-
sidered: the larger the box, the smaller the variance. In order
to compare with the fields-of-views anticipated for upcoming
21 cm experiments, we ask what is the limiting size that allows
us to differentiate between reionisation models with σloc. To do
so, we generate a 21cmFAST simulation box for Mturn = 109 M�,
side length L = 480 Mpc and cell size ∆x = 0.625 Mpc, same
as before. We divide this large simulation into sub-cubes of
decreasing size, until a side length of L = 15 Mpc is reached
(All sub-cubes have identical reionisation histories.). We com-
pute the local variance obtained from the 21 cm brightness tem-
perature fields of all sub-cubes and compare their values in
Fig. C.1. The maximum signal is reached for the smallest box
size, L = 15 Mpc, and reaches values as high as 5.5 mK, which
is 10 times higher than the fiducial boxes we analysed in Sect. B.
For all box sizes, we can locate a maximum signal at the same
redshift, corresponding to 61% of global ionisation level. It
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Fig. C.1. Evolution of the standard deviation of the xloc distributions for
M9 simulations of decreasing side length but constant resolution.

decreases drastically with box size, according to

σloc,δTb ∼ 1.3 mK ×
(

L
100 Mpc

)−0.8

. (C.1)

SKA1-Low has a field of view of 327 arcmin at nomi-
nal frequency of 110 MHz, which corresponds to L =
760, 840, 900, 940, and 970 Mpc at z = 5, 7, 9, 11 and 13, respec-
tively. For such wide observational windows, the sample vari-
ance is weak: at z = 6, towards the end of reionisation, it will be
about ∼0.25 mK. This relation is only valid at a time when about
60% of the IGM is ionised, which will correspond to different
redshifts depending on the reionisation scenario. However, it will
give the maximum amplitude of σloc and is therefore a useful
choice, if we want to estimate the errors on 21 cm global signal
measurements. Interestingly, it is about 10 times smaller than the
one found by Muñoz & Cyr-Racine (2021) at z = 16.3, which
confirms how dependent the amplitude of the local variance is
on the physics of reionisation and on the reionisation stage it is
computed at.

Additionally, we expect σloc to depend on the resolution of
the simulation considered – or on the angular resolution of the
telescope used. Indeed, Banet et al. (2021) already pointed out
the impact of instrument resolution and smoothing on the one-
point and differential PDF. The anticipated angular resolution
of SKA1 at a nominal frequency of 110 MHz is expected to be
11 arcsec (Braun et al. 2019), that is between 0.45 and 0.55 Mpc
on the redshift range 5 ≤ z ≤ 13. Running 21cmFAST for
Mturn = 109 M� and a fixed number of cells but an increas-
ing resolution, from ∆x = 0.5 Mpc to 3 Mpc, we find that an
improved resolution enhances the local variance as structures
are better resolved and the number of partially ionised regions
decreases.

Finally, computing σloc requires to have a sufficient number
of slices available: it is obvious from Fig. 2 that without a suf-
ficient number of slices, the xloc distributions will be noisy and
their variance σloc will not be reliable. For the M9 simulation,
we find that 128 slices, so half of the box, will still provide sat-
isfying results, while lower sample sizes make σloc unusable.
However, thanks to the very high frequency resolution of SKA,
anticipated to be 5.4 kHz at 110 MHz (Braun et al. 2019), we
expect to observe a sufficient number of images at sufficiently
close redshifts for σloc to give interesting results. This will be
the focus of future work.

Appendix D: Mode contribution to the local
variance

Fig. D.1. Evolution of the power spectrum of the 1D distribution of
means along the redshift direction Pµ(k) of the M9 simulation, illustrat-
ing the contribution of Fourier modes to the local variance.

To estimate the impact of foregrounds on the local variance, we
analyse the contribution of different k-modes to the σloc(z) sig-
nal. According to Eq. (11), the local variance is the integral over
the power spectrum of the 1D distribution of the mean values
along the line of sight and/or redshift direction Pµ(k). Hence,
Pµ(k) is a direct measure of the contribution of each k-mode
to the local variance: for the M9 simulation, we show Pµ(k) at
z = 5−11 in Fig. D.1.

First, and as expected, the evolution of the global ampli-
tude of Pµ(k) recovers the redshift-evolution of the local vari-
ance and, in particular, its maximum around z ∼ 7. Additionally,
we see that the low-k modes are the ones contributing the most
to the local variance signal as Pµ(k) decreases with increasing
k values following Pµ(k) ∝ k−2 approximately at all redshifts.
This confirms our findings in Sect. 4.2, that the local variance,
and in particular the location of its maximum, is sensitive to
the ionisation morphology on large scales. Furthermore, because
foreground corruption is larger for small k-modes, this result
shows that foreground avoidance is likely to diminish the reion-
isation signal in the local variance of the 21 cm signal. Other
possibilities should be considered, such as foreground removal
(Chapman et al. 2013; Hothi et al. 2021) or machine-learning
techniques to reconstruct the wedge (Gagnon-Hartman et al.
2021).

Appendix E: Performance comparison with the
power spectrum

As an integral of the power spectrum, the variance – local or
not, inherently encompasses the same information. However,
as we explain in this Section, we expect the local variance
o be less affected by observational limitations than the power
spectrum.

In Sect. 2 we have mentioned that, if this work was based
on the analysis of coeval cubes for computational reasons, this
approach is not directly transferable to 21 cm observations since
different slices along the observed light cone correspond to
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Fig. E.1. Relative error bars (left panel) and signal-to-noise ratio (right
panel) obtained from measurements of the local variance and the 21 cm
power spectrum with different realisations of the noise added to a
21cmFAST simulation. Two observational cases are considered: a max-
imum baseline of bmax = 65 km (upper panel), and one of bmax = 2 km
(lower panel).

different redshifts. Instead, we would consider a wide field-of-
view at a given frequency (or redshift), and divide it into sub-
patches – an approach already imagined in Giri et al. (2019).
Comparing the means of these sub-patches is then equivalent to
comparing the means of slices of a coeval cube. Therefore, one
is able to pick sub-patches in a way that avoids survey boundary
effects, which are a common problem of power spectrum esti-
mations. Additionally, since the signal is measured for a given
frequency bin, one can conveniently choose what frequency is

considered, and in particular avoid frequency bands dominated
by, for example, radio-frequency interference (RFI).

We now perform a comparison of the robustness of the power
spectrum and of the local variance to thermal noise. For every
snapshot available from the M9 simulation, we generate 100
realisations of thermal noise fields and add them to the 21 cm
brightness temperature field that is smoothed according to a
maximum baseline of bmax = 2 km or 65 km. We choose a
21cmFAST simulation of box size of 50 Mpc for 100 pixels per
side and set Mturn = 109 M�. We compute the three-dimensional
power spectrum and the local variance of each of these 100
boxes, and take their standard deviation as the error due to noise
for each estimator. The resulting relative error bars are shown
in the left panels of Fig. E.1. We see that, thanks to σloc being
the integral over all k-modes, the relative error of the σloc values
remains constant over the redshift range, with values of ∼6% for
the bmax = 65 km case. For bmax = 2 km, results are even better
with relative errors lower than 1% for z ≥ 6 and lower than the
relative error obtained for the power spectrum on all scales. This
is not surprising, since Eq. (13) shows that the variance of the
noise is inversely proportional to the angular resolution of the
telescope and therefore smaller for our pessimistic case.

Additionally, we compute the power spectrum and local
variance of the 100 realisations of thermal noise alone and
derive the signal-to-noise ratio (SNR) of the two estimators as
〈Psmoothed(k)/Pnoise(k)〉 and 〈σlocsmoothed/σlocnoise〉, respectively
(see right panel in Fig. E.1). For the reasons mentioned above,
the SNR values of the local variance for the bmax = 2 km case
exceed those of the pessimistic baseline case. They are maxi-
mum at the redshifts where the local variance reaches its maxi-
mum (z ' 6.5−7.5), which is the range of greatest interest to us.
For the pessimistic case, the SNR of the local variance is equal
to ∼60 at z ' 6.5−7.5. We note that the SNR of the local vari-
ance is only smaller than the SNR of the power spectrum for
small k-modes, k < 0.5 Mpc−1, but these modes are expected to
be swamped by foregrounds.

In summary, we find that on average our estimator is more
robust to thermal noise than the power spectrum, especially on
scales k > 0.5 Mpc−1 that are key for deriving constraints on the
reionisation morphology from observations.
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