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Symmetric Positive Definite (SPD) matrices are ubiquitous 
in data analysis under the form of covariance matrices 
or correlation matrices. Several O(n)-invariant Riemannian 
metrics were defined on the SPD cone, in particular the 
kernel metrics introduced by Hiai and Petz. The class of 
kernel metrics interpolates between many classical O(n)-
invariant metrics and it satisfies key results of stability and 
completeness. However, it does not contain all the classical 
O(n)-invariant metrics. Therefore in this work, we investigate 
super-classes of kernel metrics and we study which key results 
remain true. We also introduce an additional key result 
called cometric-stability, a crucial property to implement 
geodesics with a Hamiltonian formulation. Our method to 
build intermediate embedded classes between O(n)-invariant 
metrics and kernel metrics is to give a characterization of 
the whole class of O(n)-invariant metrics on SPD matrices 
and to specify requirements on metrics one by one until 
we reach kernel metrics. As a secondary contribution, we 
synthesize the literature on the main O(n)-invariant metrics, 
we provide the complete formula of the sectional curvature 
of the affine-invariant metric and the formula of the geodesic 
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parallel transport between commuting matrices for the Bures-
Wasserstein metric.

© 2023 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Symmetric Positive Definite (SPD) matrices are ubiquitous in data analysis because 
in many situations, the data (signals, images, diffusion coefficients...) can be represented 
by their covariance matrices. This is the case in the domains of Brain-Computer Inter-
faces, diffusion and functional MRI, Computer Vision, Diffusion Tensor Imaging (DTI)... 
SPD matrices form a cone in the vector space of symmetric matrices so a first idea to 
compute with SPD matrices could be to perform Euclidean computations on symmetric 
matrices. However, this method has several drawbacks. As geodesics are straight lines, 
they leave the SPD cone at finite time so extrapolation methods could lead to non 
admissible matrices, namely with negative eigenvalues. Moreover, the trace is linearly 
interpolated but other invariants such as the determinant are not monotonically inter-
polated along geodesics. For example in DTI, where SPD matrices are represented by 
3D ellipsoids, the ellipsoids along the geodesic can have a larger volume than the two el-
lipsoids at extremities, which leads to non realistic predictions in fiber tracking (swelling 
effect).

Hence, other Riemannian metrics were used in applications to solve these prob-
lems. The affine-invariant/Fisher-Rao metric [28,23,13,9,19,4,34,3] provides a Rieman-
nian symmetric structure to the SPD manifold: it is negatively curved, geodesically 
complete (matrices with null eigenvalues are rejected to infinity), it is invariant under 
the congruence action (which, in the context of covariance matrices, corresponds to the 
invariance of the feature vector under affine transformations) and it is inverse-consistent. 
The log-Euclidean metric [2] is diffeomorphic to a Euclidean inner product: it also pro-
vides a Riemannian symmetric space, it is geodesically complete and inverse-consistent. 
It is not curved and it is not affine-invariant although it is still invariant under orthogonal 
transformations and dilations. The Bures-Wasserstein/Procrustes metric [6,7,31,16] is a 
positively curved quotient metric which is also invariant under orthogonal transforma-
tions. It is not geodesically complete but geodesics remain in the cone with boundaries: 
this means that this metric is suited for computing with Positive Semi-Definite (PSD) 
matrices. Many other interesting metrics exist with different properties: Bogoliubov-
Kubo-Mori [24,17], polar-affine [29], Euclidean-Cholesky [35], log-Euclidean-Cholesky 
[14], log-Cholesky [25,15], power-Euclidean [8], and more recently power-affine [33], 
alpha-Procrustes [10], mixed-power-Euclidean [32].

Except those named after Cholesky, all the other Riemannian metrics cited above are 
invariant under orthogonal transformations. If we consider SPD matrices as covariance 
matrices, this transformation corresponds to a rigid-body transformation of the feature 
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vector X ∈ Rn �−→ RX + X0 where R is an orthogonal matrix. In 2009, Hiai and 
Petz introduced the subclass of kernel metrics [11], which are O(n)-invariant metrics 
indexed by smooth symmetric maps φ : (R+)2 −→ R+. This class satisfies key results: 
it contains most of the cited O(n)-invariant metrics, it is stable under a certain class of 
diffeomorphisms and it provides a sufficient condition for geodesic completeness. This 
sufficient condition becomes necessary if we restrict the class to the subclass of mean 
kernel metrics which is indexed by kernel maps of the form φ = mθ where m : (R+)2 −→
R+ is a symmetric homogeneous mean and θ ∈ R is a power. However, the class of kernel 
metrics does not contain all the aforementioned O(n)-invariant metrics. The main goal 
of this paper is to study the super-classes of kernel metrics, especially the whole class of 
O(n)-invariant metrics for which we give a characterization. More precisely, our objective 
is to determine which key results on kernel metrics can be generalized and thus to 
understand better the specificity of kernel metrics within these super-classes.

1.1. Results and organization of the paper

In the remainder of the Introduction, we give the notations and conventions used in 
the paper. In Section 2, we introduce two preliminary concepts and one result. The first 
concept is the notion of O(n)-equivariant map on symmetric matrices. We especially 
explain how to build them from a map defined on diagonal matrices via the spectral 
theorem because this is a procedure we need several times in the paper. Then the sec-
ond concept is a particular case of the previous one, called univariate map. These are 
maps characterized by a map on positive real numbers. They are particularly interesting 
because their differential is known in closed form modulo eigenvalue decomposition and 
because the class of kernel metrics is stable under univariate diffeomorphisms. Finally 
the result is the characterization of O(n)-invariant inner products on symmetric matri-
ces. These inner products are composed of two terms, the Frobenius term and the trace 
term, which have different weights so they form a two-parameter family. In the proof, 
we give elementary tools that we reuse when we characterize O(n)-invariant metrics on 
SPD matrices.

To explain why kernel metrics do not encompass all the O(n)-invariant metrics cited 
above, we need to present them or at least the most important ones. One can notice 
that many metrics and families of metrics are actually based on five of them, namely 
the Euclidean, the log-Euclidean, the affine-invariant, the Bures-Wasserstein and the 
Bogoliubov-Kubo-Mori metrics. That is why in Section 3, we synthesize the literature 
on these five noted metrics. For each of them, we give the fundamental Riemannian op-
erations (squared distance, Levi-Civita connection, curvature, geodesics, logarithm map, 
parallel transport map) when they are known. As a secondary contribution of the paper, 
we give the complete formula of the sectional curvature of the affine-invariant metric and 
we also give, for the Bures-Wasserstein metric, the new formula of the parallel transport 
between commuting matrices and simpler formulae of the Levi-Civita connection, the 
curvature and the parallel transport equation.
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In Section 4, after reviewing kernel metrics and their key properties, we give two new 
observations on them. Firstly, the cometric of a metric on SPD matrices can be considered 
itself as a metric on SPD matrices by identifying the vector space of symmetric matrices 
and its dual via the Frobenius inner product. Therefore we observe that the cometric 
of a kernel metric defined by the kernel map φ is a kernel metric characterized by 1/φ. 
This remarkable result has an important consequence for the numerical computation of 
geodesics. Indeed, the geodesic equation ∇γ̇ γ̇ = 0, which is a second order equation, has 
a Hamiltonian version which is a first order equation that only involves the cometric, 
not the Christoffel symbols. The Hamiltonian equation is much simpler to integrate and 
numerically more stable, that is why it is often preferred in numerical implementations, 
for instance in the Python package geomstats [18]. Hence knowing a simple explicit 
formula for the cometric helps to compute numerically the geodesics. Secondly, there 
is a natural extension of kernel metrics that encompasses all the aforementioned O(n)-
invariant metrics, which still satisfies the key properties of kernel metrics including the 
cometric stability. Roughly speaking, kernel metrics look like the Frobenius inner product 
on symmetric matrices where the elementary quadratic forms (the X2

ij) are weighted by 
a coefficient involving the kernel map φ and depending on the point. Since the Frobenius 
inner product is not the only O(n)-invariant inner product on symmetric matrices as 
explained above, the trace term can be added to the framework of kernel metrics to form 
extended kernel metrics.

In Section 5, we characterize the class of O(n)-invariant metrics on SPD matrices by 
means of three multivariate maps α, β, γ : (R+)n −→ R operating on the eigenvalues 
(d1, ..., dn) of the SPD matrix and which satisfy three conditions of symmetry, compatibil-
ity and positivity (Theorem 5.1). Then, we observe that kernel metrics are characterized 
by two properties within this family. They are ortho-diagonal: it means that the metric 
matrix is diagonal, i.e. β = 0. They are bivariate: it means that the remaining func-
tions α and γ do not depend on their n − 2 last terms, and the compatibility condition 
imposes that they are equal so we can write γ = α = 1/φ : (R+)2 −→ R+. Since the 
term “kernel” is quite overloaded in many different contexts (such as in Reproducing 
Kernel Hilbert Spaces in machine learning or in kernel density estimation/regression in 
statistics), we propose to designate them as Bivariate Ortho-Diagonal (BOD) metrics. 
Afterwards, we give key properties of O(n)-invariant metrics in analogy with the key 
properties of BOD (kernel) metrics. Since we do not have a closed-form expression for 
the cometric anymore, we introduce the intermediate class of bivariate separable metrics 
which is cometric-stable and we give the expression of the cometric. A summary of the 
classes of metrics defined in the paper is shown on Fig. 1.

Section 6 is dedicated to the conclusion.

1.2. Notations and conventions

Manifolds Our manifold-related notations are summarized in Table 1. A chart ϕ : U ⊂
M −→ RN provides a local basis of vectors (∂1, ..., ∂N ) where ∂k = ∂

k is a short 

∂ϕ

https://geomstats.github.io/
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Fig. 1. Super-classes of kernel metrics.

Table 1
Notations in a manifold.

TxM, TM Tangent space at x, tangent bundle

dxf, df Differential of map f at x, differential of map f

f∗, f∗ Pullback via f , pushforward via f

γ̇ Derivative of curve γ

g,G Metric on Sym+(n), metric on another space

d Riemannian distance on Sym+(n)

∇ Levi-Civita connection

R Curvature R(X,Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z

γ(Σ,X)(t) Geodesic at time t with γ(0) = Σ and γ̇(0) = X

Exp,Log Riemannian exponential and logarithm maps

Πγ;Σ→ΛX Parallel transport of X along curve γ from Σ to Λ

notation defined for all differentiable maps f : M −→ R and at each point x ∈ U
by (∂kf)|x = ∂(f◦ϕ−1)

∂xk

∣∣∣
ϕ(x)

. A vector field X can be locally decomposed on this basis, 

X = Xk∂k, where Xk : U −→ R are the coordinate functions of X and where we used 
Einstein’s summation convention. As we deal with matrices in this paper, the coordinates 
often have two indices: X = Xij∂ij .

Manifolds of matrices We denote the matrix spaces as shown in Table 2. The (i, j)-
coefficient of a matrix M is denoted Mij , [M ]ij or M(i, j) depending on the context. To 
build a matrix from its coefficients, we denote M = [Mij ]1�i,j�n or simply M = [Mij ]i,j . 
We denote (Cij) the canonical basis of matrices, Eii = Cii, Eij = 1√

2(Cij + Cji) and 

Fkl = 1
2 (Ckl + Clk) for i �= j and k, l ∈ {1, ..., n}. The norms are denoted ‖M‖1 =∑

i,j |Mij | and ‖M‖2 =
√

tr(MM�).
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Table 2
Notations for matrix spaces.

Vector space of matrices Manifold of matrices

Mat(n) n × n real matrices GL(n) General Linear group
GL+(n) Positive determinant

Sym(n) Real symmetric Sym+(n) Symmetric positive definite

Skew(n) Real skew-symmetric O(n) Orthogonal group
SO(n) Rotation group

Diag(n) Diagonal Diag+(n) Positive diagonal

The congruence action is the following action of the general linear group on matrices 
	 : (A, M) ∈ GL(n) × Mat(n) �−→ AMA� ∈ Mat(n) which leaves stable the spaces 
of symmetric matrices and SPD matrices. Then, A ∈ GL(n) naturally acts on M =
M i1j1,...,iqjqCi1j1 ⊗ · · · ⊗ Ciqjq ∈ Mat(n)⊗q by:

A 	M = M i1j1,...,iqjq (A 	 Ci1j1) ⊗ · · · ⊗ (A 	 Ciqjq ) ∈ Mat(n)⊗q.

GL(n) also acts by 	 on any Cartesian product 
∏r

i=1 Sym(n)⊗qi component-wise, espe-
cially on Sym(n)p.

Let E and F be two spaces on which GL(n) acts by 	. Let G ⊆ GL(n) be a subgroup 
of GL(n). A map f : E −→ F is:

· G-equivariant if f(A 	 M) = A 	 f(M) for all A ∈ G, for all M ∈ E ,
· G-invariant if f(A 	M) = f(M) for all A ∈ G, for all M ∈ E .

In particular, a Riemannian metric g : Sym+(n) × Sym(n) × Sym(n) −→ R (or an 
inner product) is G-invariant if gAΣA�(AXA�, AXA�) = gΣ(X, X) for all A ∈ G, Σ ∈
Sym+(n) and X ∈ Sym(n).

The symmetric group of order n is denoted by Sn and the permutations by small 
greek letters σ, τ... . The permutation matrix associated to the permutation σ, which 
sends any basis (e1, ..., en) of Rn to the permuted basis (eσ(1), ..., eσ(n)), is denoted Pσ. 
We have Pσ(i, j) = δσ(i),j where δ is the Kronecker symbol. Given a matrix M ∈ Mat(n), 
we have (P�

σ MPσ)(i, j) = M(σ(i), σ(j)).

The manifold of SPD matrices The manifold Sym+(n) is an open set of the vector space 
of symmetric matrices Sym(n). Hence, the canonical immersion id : Sym+(n) ↪→ Sym(n)
provides:

· An identification between the tangent space TΣSym+(n) and the vector space Sym(n)
at any point Σ ∈ Sym+(n) by dΣid : TΣSym+(n) ∼−→ Sym(n). Thus, any tangent 
vector X ∈ TΣSym+(n) is considered as a symmetric matrix: X ≡ dΣid(X) ∈ Sym(n).

· A global chart (id, Sym+(n)) of the manifold Sym+(n), thus a global derivation ∂XY =
Xij(∂ijY kl)∂kl defined by derivation of coordinates in this global chart. More generally, 
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if f : Sym+(n) −→ Sym(n) is a diffeomorphism on its image, it provides a global 
derivation denoted ∂f .

Another important tool is the matrix exponential exp(X) =
∑+∞

k=0
Xk

k! which is a 
diffeomorphism between Sym(n) and Sym+(n), and therefore its inverse, the symmetric 
matrix logarithm log : Sym+(n) −→ Sym(n).

The spectral theorem ensures that symmetric matrices are orthogonally congruent 
to a diagonal matrix. If the symmetric matrix is SPD, then the diagonal matrix has 
positive elements on the diagonal. Most of the time in this paper, for an SPD matrix 
Σ ∈ Sym+(n), we denote Σ = PDP� one spectral decomposition with P ∈ O(n)
and D = diag(d1, ..., dn) ∈ Diag+(n). When we consider tangent vectors X, Y, ... ∈
TΣSym+(n), we denote X ′ = P�XP so that every matrix expressed in the orthogonal 
basis given by P is denoted with a prime: X = PX ′P�, Y = PY ′P�, ...

Products of symmetric matrices share two nice properties with symmetric matrices. 
First, if X, Y ∈ Sym(n), then eig(XY ) ⊂ R where eig denotes the set of complex 
eigenvalues. Second, if Σ, Λ ∈ Sym+(n), then ΣΛ has a unique square-root matrix that 
represents a positive definite self-adjoint endomorphism, it is denoted (ΣΛ)1/2 =

√
ΣΛ =

Σ1/2(Σ1/2ΛΣ1/2)1/2Σ−1/2 = Λ−1/2(Λ1/2ΣΛ1/2)1/2Λ1/2.

2. Preliminary concepts and results

2.1. Extending maps defined on diagonal matrices

Thanks to the spectral theorem, O(n)-equivariant maps f : Sym+(n) −→ F are 
characterized by their values on positive diagonal matrices. A question that arises several 
times in this paper is: are we allowed to extend a map f : Diag+(n) −→ F into an O(n)-
equivariant map f : Sym+(n) −→ F by the formula f(PDP�) = P 	f(D)? To do so, we 
need to show that given two eigenvalue decompositions Σ = PDP� = QΔQ�, we have 
P 	 f(D) = Q 	 f(Δ). Note that (Q, Δ) is highly constrained by (P, D). The following 
lemma gives explicitly the possible cases, hence it tells exactly what is to be checked in 
such an extension process. We omit the proof.

Lemma 2.1 (Relation between two eigenvalue decompositions of an SPD matrix). 
Let D, Δ ∈ Diag+(n) and P, Q ∈ O(n) such that PDP� = QΔQ�. Let τ ∈
S(n) be a permutation that orders the values of D decreasingly, i.e. such that D =
PτDiag(λ1Im1 , ..., λpImp

)P�
τ with λ1 > ... > λp > 0. Then, there exists permutation 

σ ∈ S(n) and a block-diagonal orthogonal matrix R = Diag(R1, ..., Rp) ∈ O(n) with j-th 
block Rj ∈ O(mj) such that Δ = P�

σ P�
τ DPτPσ and Q = PPτRPσ.

Proof. Δ is clearly a permutation of D so there exists σ ∈ S(n) such that Δ =
P�
σ P�

τ DPτPσ. Let R = P�
τ P�QP�

σ . Then PDP� = QΔQ� is equivalent to 
Diag(λ1Im1 , ..., λpImp

)R = RDiag(λ1Im1 , ..., λpImp
). Decomposing R by blocks, the 
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off-diagonal blocks have to be null since the λi’s are distinct. Since RR� = In, the 
diagonal blocks are orthogonal. �

This result tells what is to be checked to extend f : Diag+(n) −→ F . In the paper, 
we only need to extend tensorial maps T : Diag+(n) −→ Sym(n)⊗q ⊗ (Sym(n)∗)⊗p or 
equivalently T : Diag+(n) × Sym(n)p −→ Sym(n)⊗q for p, q ∈ N. Hence, we state the 
result in this particular case though it is valid for F .

Lemma 2.2 (Spectral extension). Let T : Diag+(n) × Sym(n)p −→ Sym(n)⊗q be a map 
such that for all D0 = Diag(λ1Im1 , ..., λpImp

) with λ1 > ... > λp > 0 and for all 
X ∈ Sym(n)p:

(a) T (D0, X) = Pσ 	 T (P�
σ D0Pσ, P�

σ 	 X) for all permutations σ ∈ S(n),
(b) T (D0, X) = R	T (D0, R� 	X) for all block-diagonal orthogonal matrices R ∈ O(n), 

R = Diag(R1, ..., Rp) with Rj ∈ O(mj).

Then, T : Sym+(n) ×Sym(n)p −→ Sym(n)⊗q defined by T (PDP�, X) := P 	T (D, P� 	

X) extends T , with D ∈ Diag+(n), P ∈ O(n) and X ∈ Sym(n)p.

Proof. Assume that PDP� = QΔQ�. Then by Lemma 2.1, let σ, τ ∈ S(n) and R
as in (b) such that D0 = P�

τ DPτ = Diag(λ1Im1 , ..., λpImp
), Δ = P�

σ D0Pσ and Q =
PPτRPσ. Then, by applying (a) with σ, (b) with R and (a) with τ , we easily see that 
Q 	 T (Δ, Q� 	 X) = P 	 T (D, P� 	 X). Thus T : Sym+(n) × Sym(n)p −→ Sym(n)⊗q is 
well defined. �

In practice in the paper, we use Lemma 2.2 for:

· p = 0, q = 1 for f : Diag+(n) −→ Sym(n) in Section 2.2,
· p = 1, q = 1 for Φ : Diag+(n) × Sym(n) −→ Sym(n) in Section 4.2.3,
· p = 2, q = 0 for g : Diag+(n) × Sym(n) × Sym(n) −→ R in Section 5.2.

2.2. Univariate maps

We apply Lemma 2.2 to a real function f : R+ −→ R, extended to positive diagonal 
matrices f : Diag+(n) −→ Diag(n) by f(Diag(d1, ..., dn)) := Diag(f(d1), ..., f(dn)).

(a) Since f is defined component-wise, we have f(D) = Pσ f(P�
σ DPσ)P�

σ .
(b) As f(λImj

) = f(λ)Imj
, the matrix Rf(D)R� is a block diagonal matrix with 

j-th block f(λj)RjR
�
j = f(λj)Imj

, which corresponds to f(D)’s j-th block so 
Rf(D) R� = f(D).

Therefore f can be extended into an O(n)-equivariant map f : Sym+(n) −→ Sym(n)
by f(PDP�) = Pf(D)P�. This extension is called the functional calculus of f in 
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Functional Analysis. In this paper, we call it a univariate map. The symmetric matrix 
logarithm log : Sym+(n) −→ Sym(n), the power diffeomorphisms powp : Sym+(n) −→
Sym+(n) with p �= 0 or the constant map pow0 : Σ ∈ Sym+(n) �−→ In ∈ Sym(n) are 
examples of univariate maps.

Definition 2.1 (Univariate maps). A univariate map is the extension of a real function 
f : R+ −→ R into an O(n)-equivariant map f : Sym+(n) −→ Sym(n) by the equality 
f(PDP�) = P Diag(f(d1), ..., f(dn)) P�. Moreover [5, Theorem V.3.3], if f ∈ C1(R+), 
then its extension f is differentiable and the differential df : Sym+(n) × Sym(n) −→
Sym(n) is O(n)-equivariant, thus it is characterized by its values at diagonal matrices 
D ∈ Diag+(n), given by:

∀X ∈ Sym(n), [dDf(X)]ij = f [1](di, dj)Xij , (1)

where f [1] is the first divided difference defined below. Thus, a C1-diffeomorphism f :
R+ −→ R+ is extended into a diffeomorphism f : Sym+(n) −→ Sym+(n).

Definition 2.2 (First divided difference). [5] Let f ∈ C1(R+). The first divided difference 
of f is the continuous symmetric map f [1] : (R+)2 −→ R defined for all x, y ∈ R by:

f [1](x, y) =
{

f(x)−f(y)
x−y if x �= y

f ′(x) if x = y

}
. (2)

2.3. O(n)-invariant inner products on symmetric matrices

To characterize the O(n)-invariant metrics on SPD matrices, an appropriate starting 
point is the characterization of O(n)-invariant inner products on the tangent space, i.e. 
on symmetric matrices. The following theorem states that such inner products form a 
two-parameter family indexed by a Scaling factor α > 0 and a Trace factor β > −α/n.

Theorem 2.1 (Characterization of O(n)-invariant inner products on symmetric matri-
ces). Let 〈·|·〉 : Sym(n) ×Sym(n) −→ R be an inner product on symmetric matrices. It is 
O(n)-invariant if and only if there exists (α, β) ∈ ST := {(α, β) ∈ R2| min(α, α+ nβ) >
0} such that:

∀X ∈ Sym(n), 〈X|X〉 = α tr(X2) + β tr(X)2. (3)

Moreover, the linear isometry that pulls the Frobenius inner product back onto this one 
is Fp,q(X) = q X + p−q

n tr(X)In with p =
√
α + nβ and q =

√
α.

There are several proofs of this elementary result. We give one based on the following 
lemma because we reuse it to characterize O(n)-invariant metrics on SPD matrices. This 
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lemma gives the characterization of inner products on symmetric matrices which are 
respectively invariant under two subgroups of O(n):

(a) the group D±(n) := {ε = Diag(±1, ..., ±1)} ∼= {−1, +1}n of diagonal matrices 
taking their diagonal values in {−1, +1},

(b) the group S±(n) := {εPσ ∈ Mat(n)|(ε, σ) ∈ D±(n) × S(n)} ∼= D±(n) × S(n) of 
signed permutation matrices.

Lemma 2.3 (Characterization of inner products on symmetric matrices invariant under 
D±(n) or S±(n)). Let 〈·|·〉 : Sym(n) × Sym(n) −→ R be an inner product on symmetric 
matrices.

(a) It is D±(n)-invariant if and only if there exist n(n−1)
2 positive real numbers αij =

αji > 0 for i �= j and a matrix S ∈ Sym+(n) such that:

∀X ∈ Sym(n), 〈X|X〉 =
∑
i�=j

αijX
2
ij +

∑
i,j

SijXiiXjj . (4)

(b) It is S±(n)-invariant if and only if there exist (α, β, γ) ∈ R3 with α > 0, γ > β

and γ + (n − 1)β > 0 such that:

∀X ∈ Sym(n), 〈X|X〉 = γ
n∑

i=1
X2

ii + α
∑
i�=j

X2
ij + β

∑
i�=j

XiiXjj . (5)

Proof of Lemma 2.3.

(a) We write 〈X|X〉 =
∑

i,j,k,l aij,klXijXkl a general inner product. Note that aij,kl =
aji,kl = aji,lk = aij,lk by symmetry of X and aij,kl = akl,ij by symmetry of the inner 
product. We use the invariance under the matrix εm ∈ D±(n) with −1 on the m-th 
component and 1 elsewhere, for m ∈ {1, ..., n}. We denote P XOR Q = 1 if the 
“exclusive or” between propositions P and Q holds, and otherwise P XOR Q = 0. 
Thus, we have [εmXεm]ij = (−1)(i=m)XOR(j=m)Xij and [εmXεm]ij [εmXεm]kl =
θijklmXijXkl with θijklm = (−1)[(i=m)XOR(j=m)]XOR[(k=m)XOR(l=m)] ∈ {−1, 1}. 
Then the equality 〈X|X〉 = 〈εmXεm|εmXεm〉 leads to aij,kl = θijklmaij,kl. There-
fore, if there exists m ∈ {1, ..., n} such that θijklm = −1, then aij,kl = 0. One can 
easily show that θijklm = −1 if and only if m equals exactly one or exactly three 
index(es) among i, j, k, l. There exists such an m if:

· card({i, j, k, l}) = 4, i.e. i, j, k, l are distinct,
· card({i, j, k, l}) = 3,
· card({i, j, k, l}) = 2 and three of them are equal.
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Thus we are left with 〈X|X〉 =
∑

i<j 4aij,ijX2
ij +

∑
i,j aii,jjXiiXjj . Then, we 

get the expression (4) by denoting αij = 2aij,ij and Sij = aii,jj = Sji. Since 
the quadratic form splits into two quadratic forms defined on supplementary vec-
tor spaces (off-diagonal and diagonal terms), it is positive definite if and only if 
these two quadratic forms are positive definite, i.e. αij > 0 for all i �= j and S
is positive definite. Conversely, Equation (4) clearly defines D±(n)-invariant inner 
products.

(b) A S±(n)-invariant inner product on symmetric matrices is D±(n)-invariant so it 
is of the form of Equation (4). Since it is invariant under permutations, we have 
αij = αkl =: α and Sij = Skl =: β for all i �= j and k �= l and Sii = Sjj =: γ
for all i, j. Under these notations, Equation (4) becomes Equation (5). Since S =
(γ − β) In + β 11�, then S ∈ Sym+(n) if and only if γ − β > 0 and γ − β +
nβ > 0 as expected. Conversely, Equation (5) clearly defines S±(n)-invariant inner 
products. �

Proof of Theorem 2.1. An O(n)-invariant inner product on symmetric matrices is 
S±(n)-invariant so it is of the form of Equation (5). We define the rotation ma-

trix R =
(
Rπ/4 0

0 In−2

)
∈ O(n) with Rπ/4 =

√
2

2

(
1 1
−1 1

)
∈ O(2) and we apply 

it to the matrix X =
(

M Y
Y � Z

)
∈ Sym(n) with M =

(
a b
b c

)
∈ Sym(2). Since 

Rπ/4MR�
π/4 = 1

2

(
a + c + 2b c− a

c− a a + c− 2b

)
, the coefficient of b2 in 〈X|X〉 in Equation 

(5) is 2α and the coefficient of b2 in 〈RXR�|RXR�〉 is 2γ − 2β. Hence by invariance, 
γ = α + β and the positivity condition becomes α > 0 and α + nβ > 0. Conversely, 
Equation (3) clearly defines O(n)-invariant inner products. �
3. Main O(n)-invariant metrics on SPD matrices with new formulae

The goal of this section is to describe the main O(n)-invariant metrics on SPD matrices 
that can be found in the literature, namely the Euclidean (abbreviated ‘E’, Section 3.1), 
the Log-Euclidean (‘LE’, Section 3.2), the Affine-invariant (‘A’, Section 3.3), the Bures-
Wasserstein (‘BW’, Section 3.4) and the Bogoliubov-Kubo-Mori (‘BKM’, Section 3.5) 
metrics. For each metric, we give a short explanation on the way it was introduced, some 
useful references and a synthetic table that summarizes its fundamental Riemannian 
operations: squared distance, Levi-Civita connection, curvature, geodesics, logarithm 
map, parallel transport map (abbreviated ‘PT map’).

Our contributions are (1) the synthesis of many results scattered in the literature 
especially for the Bures-Wasserstein metric, (2) the complete formula of the sectional 
curvature of the affine-invariant metric, (3) the new formula of the parallel transport 
between commuting matrices and new expressions of the Levi-Civita connection, the 
curvature and the parallel transport equation of the Bures-Wasserstein metric.
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Table 3
Riemannian operations of O(n)-invariant Euclidean metrics on SPD matrices.

Metric gΣ(X, X) = α‖X‖2
2 + β tr(X)2

Sq. dist. d(Σ, Λ)2 = α‖Λ − Σ‖2
2 + β(tr(Λ) − tr(Σ))2

Levi-Civita ∇XY = ∂XY

Curvature R = 0

Geodesics γ(Σ,X)(t) = Σ + tX for t ∈ I where I depends on λmin =
min eig(Σ−1X) and λmax = max eig(Σ−1X) as follows:
• If λmin < 0 < λmax, then I = (−1/λmax, −1/λmin).
• If 0 � λmin, then I = (−1/λmax, +∞).
• If λmax � 0, then I = (−∞, −1/λmin).

Logarithm LogΣ(Λ) = Λ − Σ

PT map Does not depend on the curve:

ΠΣ→Λ :
{

TΣSym+(n) −→ TΛSym+(n)
X �−→ (dΛid)−1(dΣid(X)) ≡ X

3.1. O(n)-invariant Euclidean metrics

A Euclidean metric on SPD matrices is the pullback of an inner product 〈·|·〉 on 
symmetric matrices by the canonical immersion id : Sym+(n) −→ Sym(n). As we know 
O(n)-invariant inner products on symmetric matrices from Theorem 2.1, we know all 
the O(n)-invariant Euclidean metrics on SPD matrices.

Definition 3.1 (O(n)-invariant Euclidean metrics on SPD matrices). An O(n)-invariant 
Euclidean metric on SPD matrices is a Riemannian metric of the following form for all 
Σ ∈ Sym+(n) and X ∈ Sym(n):

g
E(α,β)
Σ (X,X) = α tr(X2) + β tr(X)2, (6)

with (α, β) ∈ ST, i.e. α > 0 and β > −α/n. Its Riemannian operations are detailed in 
Table 3.

3.2. O(n)-invariant log-Euclidean metrics

A log-Euclidean metric on SPD matrices [2] is the pullback of an inner product 〈·|·〉
on symmetric matrices by the symmetric matrix logarithm log : Sym+(n) −→ Sym(n). 
Hence the SPD manifold endowed with the log-Euclidean metric is isometric to a 
Euclidean space, thus geodesically complete. From Theorem 2.1 and the fact that 
d log : Sym+(n) × Sym(n) −→ Sym(n) is O(n)-equivariant, we know all the O(n)-
invariant log-Euclidean metrics.

Definition 3.2 (O(n)-invariant log-Euclidean metrics on SPD matrices). An O(n)-
invariant log-Euclidean metric on SPD matrices is a Riemannian metric of the following 
form for all Σ ∈ Sym+(n) and X ∈ Sym(n):
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Table 4
Riemannian operations of O(n)-invariant log-Euclidean metrics on SPD ma-
trices.

Metric gΣ(X, X) = α‖dΣ log(X)‖2
2 + β tr(Σ−1X)2

Sq. dist. d(Σ, Λ)2 = α‖ log Λ − log Σ‖2
2 + β log(det(Λ)/ det(Σ))2

Levi-Civita ∇XY = ∂log
X Y

Curvature R = 0
Geodesics ∀t ∈ R, γ(Σ,X)(t) = exp(log(Σ) + t dΣ log(X))

Logarithm LogΣ(Λ) = (dΣ log)−1(log Λ − log Σ)
PT map Does not depend on the curve:

ΠΣ→Λ :
{

TΣSym+(n) −→ TΛSym+(n)
X �−→ (dΛ log)−1(dΣ log(X))

g
LE(α,β)
Σ (X,X) = α tr(dΣ log(X)2) + β tr(Σ−1X)2, (7)

with (α, β) ∈ ST, i.e. α > 0 and β > −α/n. Moreover, this metric is the pullback 
of the Frobenius log-Euclidean metric (α = 1 and β = 0) by the isometry fp,q : Σ ∈
Sym+(n) �−→ exp(Fp,q(log Σ)) = det(Σ) p−q

n Σq ∈ Sym+(n) with p =
√
α + nβ and 

q =
√
α, where Fp,q was defined in Theorem 2.1. Its Riemannian operations are detailed 

in Table 4.

3.3. Affine-invariant metrics

Affine-invariant metrics were introduced in many different ways. We adopt here the 
most recent viewpoint [22], which underlies the term “affine-invariant”. Consider SPD 
matrices Σ ∈ Sym+(n) as covariance matrices of a random vector X ∈ Rn, namely 
Σ = 1

nE 
(
(X − X̄)(X − X̄)�

)
with X̄ = E(X), where E denotes the expectation. Define 

the affine action on vectors ((A, B), X) ∈ (GL(n) �Rn) ×Rn �−→ AX +B ∈ Rn. Then, 
the induced action on SPD matrices is ((A, B), Σ) ∈ (GL(n) � Rn) × Sym+(n) �−→
AΣA� ∈ Sym+(n). It is simply the congruence action of GL(n) on matrices. Hence 
an affine-invariant metric on SPD matrices simply designates a GL(n)-invariant met-
ric.

Historically, Siegel introduced a metric on the half space S = {X + iΣ| X ∈
Sym(n), Σ ∈ Sym+(n)} which is invariant under the action of the symplectic group 
[27]. As a consequence, the restriction of this metric to SPD matrices by the immersion 
Σ ∈ Sym+(n) ↪→ iΣ ∈ S was proved to be invariant under GL(n) and under inversion 
and to provide a Riemannian homogeneous structure to Sym+(n). The expression of this 
metric is gΣ(X, Y ) = tr(Σ−1XΣ−1Y ).

Rao considered the Fisher information of a family of densities as a Riemannian metric 
on the space of parameters [26] and Skovgaard detailed all the properties of the Fisher-
Rao metric of the family of multivariate Gaussian densities [28]. By restriction to the 
family of centered multivariate Gaussian densities, we get the same metric as Siegel’s 
scaled by a factor 1/2, namely gΣ(X, Y ) = 1 tr(Σ−1XΣ−1Y ). In addition, Amari and 
2
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Nagaoka stated that the canonical immersion id : Σ ∈ Sym+(n) �−→ Σ ∈ Sym(n) and 
the inversion inv : Σ ∈ Sym+(n) �−→ Σ−1 ∈ Sym(n) give two dual coordinate systems 
with respect to this metric [1].

Between 2005 and 2007, this metric was used in many computational methods for 
Diffusion Tensor Imaging [23,13,9,19,4], in functional MRI [34] and in Brain-Computer 
Interfaces [3]. It was claimed to be the unique affine-invariant metric. However, Pennec 
showed that GL(n)-invariant metrics are characterized by O(n)-invariant inner products 
on the tangent space at In, that is on symmetric matrices. Hence from Theorem 2.1, 
there is actually a two-parameter family of affine-invariant metrics [22].

Definition 3.3 (Affine-invariant metrics on SPD matrices). An affine-invariant metric
on SPD matrices is a GL(n)-invariant Riemannian metric. It is of the following form for 
all Σ ∈ Sym+(n) and X ∈ Sym(n):

g
A(α,β)
Σ (X,X) = α tr((Σ−1X)2) + β tr(Σ−1X)2, (8)

with (α, β) ∈ ST, i.e. α > 0 and β > −α/n. The Fisher-Rao metric often refers to 
the affine-invariant metric with (α, β) = (1/2, 0). Moreover, given α > 0, this metric 
is the pullback of the affine-invariant metric with β = 0 by the isometry fp,1 : Σ ∈
Sym+(n) �−→ det(Σ) p−1

n Σ ∈ Sym+(n) with p =
√

α+nβ
α .

The following proposition details the characteristics of homogeneity and symmetry 
of these Riemannian metrics. The Riemannian operations, essentially due to Skovgaard 
[28], are detailed in Table 5. The second term of the sectional curvature is part of our 
contributions as it seems to be forgotten in [28].

Proposition 3.1 (Riemannian symmetric structure of the affine-invariant metric). The 
Riemannian manifold (Sym+(n), gA(α,β)) is a Riemannian symmetric space, hence it is 
geodesically complete. The underlying homogeneous space is GL+(n)/SO(n) and gA(α,β)

is a quotient metric obtained by the submersion π : A ∈ GL+(n) �−→ AA� ∈ Sym+(n)
from the left-invariant metric GA(M, M) = 4α tr(A−1M(A−1M)�) + 4β tr(A−1M)2 for 
A ∈ GL+(n) and M ∈ TAGL+(n). The symmetries are sΣ : Λ ∈ Sym+(n) �−→ ΣΛ−1Σ ∈
Sym+(n).

Proof of sectional curvature in Table 5. Firstly, we compute the sectional curvature of 
the affine-invariant metrics for β = 0 at Σ ∈ Sym+(n) in the orthonormal basis 
(Σ1/2EijΣ1/2)1�i�j�n, with Eii, Eij for i �= j defined by Eii(k, l) = δikδil and Eij(k, l) =
δikδjl+δilδjk√

2 . As κΣ(X, Y ) = RΣ(X,Y,X,Y )
‖X‖2‖Y ‖2−〈X|Y 〉2 , we have κΣ(Σ1/2EijΣ1/2, Σ1/2EklΣ1/2) =

1
2α tr((EijEkl)2 − (EijEkl)(EijEkl)�) so we only need to compute a few expressions. In 
the following equalities, when an elementary matrix E has two different indexes, they 
are assumed to be distinct:
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Table 5
Riemannian operations of affine-invariant metrics on SPD matrices.

Metric gΣ(X, X) = α‖Σ−1X‖2
2 + β tr(Σ−1X)2

Sq. dist. d(Σ, Λ)2 = α‖ log(Σ−1/2ΛΣ−1/2)‖2
2 + β log(det(Σ−1Λ))2

Levi-Civita (∇XY )|Σ = (∂XY )|Σ − 1
2 (XΣ−1Y + Y Σ−1X)

Curvature The sectional curvature κ ∈ [−1/2α,0]. More precisely, the 
Riemann and sectional curvatures are:

RΣ(X,Y,Z, T ) = α
2 (XΣ−1Y Σ−1(ZΣ−1T − TΣ−1Z)Σ−1)

κΣ(Σ1/2Eβ
iiΣ

1/2,Σ1/2Eβ
ijΣ

1/2) = −1/4α for i �= j

κΣ(Σ1/2Eβ
ijΣ

1/2,Σ1/2Eβ
ikΣ1/2) = −1/8α for i �= j �= k �= i

where Eβ
ij = Eij − 1−p

np δijIn. Other terms are null.

Geodesics ∀t ∈ R, γ(Σ,X)(t) = Σ1/2 exp(t Σ−1/2XΣ−1/2)Σ1/2

Logarithm LogΣ(Λ) = Σ1/2 log(Σ−1/2ΛΣ−1/2)Σ1/2

PT map Depends on the curve. Along a geodesic:

ΠΣ→Λ :
{

TΣSym+(n) −→ TΛSym+(n)
X �−→ (ΛΣ−1)1/2X(Σ−1Λ)1/2

• EiiEjj = δijCij hence ‖EiiEjj‖2
2 = δij ,

• EiiEjk = 1√
2(δijCik + δikCij) hence ‖EiiEjk‖2

2 = 1
2 (δij + δik),

• EijEkl = 1
2 (δjkCil + δikCjl + δjlCik + δilCjk)

hence ‖EijEkl‖2
2 = 1

4 (δik + δil + δjk + δjl),
• (EiiEjj)2 = δijCij hence tr((EiiEjj)2) = δij ,
• (EiiEjk)2 = 0 hence tr((EiiEjk)2) = 0,
• (EijEkl)2 = 1

4 (δjkδil(Cil + Cjk) + δjlδik(Cik + Cjl)),
hence tr((EijEkl)2) = 1

2 (δjkδil + δjlδik).
• κIn(Eii, Ejj) = 0,
• κIn(Eii, Ejk) = − 1

4α (δij +δik),
• κIn(Eij , Ekl) = − 1

8α ((δik − δjl)2 + (δil − δjk)2).

Hence the non null terms are κIn(Eii, Eij) = − 1
4α and κIn(Eij , Eik) = − 1

8α .
Secondly, for β �= 0, we use the isometry fp,1: the values are the same if we replace 
Σ1/2EijΣ1/2 by (dΣfp,1)−1(fp,1(Σ)1/2Eijfp,1(Σ)1/2) = Σ1/2Eβ

ijΣ1/2.
To prove that κ ∈ [−1/2α,0], it suffices to note that for normed and orthogonal 

X, Y ∈ Sym(n), we have κIn(X, Y ) = − 1
4α‖[X, Y ]‖2

2. Diagonalizing X = PΔP� and 
denoting Z = P�Y P , from (di − dj)2 � 2(d2

i + d2
j ) � 2‖D‖2, we get κIn(X, Y ) =

κIn(Δ, Z) = − 1
4α
∑

i�=j(di−dj)2Z2
ij � − 1

2α‖D‖2‖Z‖2 = − 1
2α . This bound is reached for 

X = 1√
2(Eii −Ejj) and Y = Eij . �

Another metric that also provides a Riemannian symmetric structure on Sym+(n)
was used in [29,36]. It was introduced directly by the quotient structure detailed in 
Proposition 3.1 but with the submersion 

√
π : A ∈ GL+(n) �−→

√
AA� ∈ Sym+(n) based 

on the polar decomposition of A (and without the coefficient 4). We called it the polar-
affine metric in [32]. It is GL(n)-invariant with respect to the action (A, Σ) ∈ GL(n) ×
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Sym+(n) �−→
√
AΣ2A� ∈ Sym+(n). Hence it is O(n)-invariant in the usual sense. It is 

the pullback metric of the affine-invariant metric via the square diffeomorphism pow2 :
Σ �−→ Σ2 [32].

3.4. Bures-Wasserstein metric

The L2-Wasserstein distance between multivariate centered Gaussian distributions is 
given by d(Σ, Λ)2 = trΣ + trΛ − 2tr((ΣΛ)1/2). It corresponds to the Procrustes distance 
between square-root matrices, namely d(Σ, Λ)2 = infU∈O(n) ‖Σ1/2 − Λ1/2U‖2

Frob. The 
second order approximation of this squared distance defines a Riemannian metric called 
the Bures metric (or the Helstrom metric) in quantum physics. All these viewpoints are 
explained in details with modern notations in [6]. In particular, the expression of the 
Riemannian metric is derived in [6] and we take it as a definition.

Definition 3.4 (Bures-Wasserstein metric). The Bures-Wasserstein metric is the Rie-
mannian metric associated to the Bures-Wasserstein distance. It is O(n)-invariant and 
given an eigenvalue decomposition Σ = PDP� ∈ Sym+(n) with P ∈ O(n) and 
D = diag(d1, ..., dn) and X = PX ′P�, its expression is:

gBW
Σ (X,X) = gBW

D (X ′, X ′) = 1
2
∑
i,j

1
di + dj

X ′ 2
ij . (9)

The Bures-Wasserstein metric can also be expressed by means of the linear map SΣ :
Sym(n) −→ Sym(n) implicitly defined by the Sylvester equation X = ΣSΣ(X) +SΣ(X)Σ
for X ∈ Sym(n). More explicitly with the previous notations, we have SΣ(X) =
P
[

X′
ij

di+dj

]
i,j

P�. Then we have gBW
Σ (X, Y ) = 1

2 tr(XSΣ(Y )) = tr(SΣ(X)ΣSΣ(Y )), where 

X, Y ∈ TΣSym+(n) are canonically identified with dΣid(X), dΣid(Y ) ∈ Sym(n), as 
explained in the introduction. This is a common expression in recent papers [16,21]. 
However, in [31] which is a reference paper on the Bures-Wasserstein metric, Takatsu 
gives the expression gΣ(X, Y ) = tr(XΣY). The trick comes from the identification 
SΣ(X) ≡ X ∈ Sym(n) that differs from the canonical one dΣid(X) ≡ X ∈ Sym(n). 
As this could be confusing when the formula is written without this precision (and with-
out bold letters), we adopt the same formalism as in [16,6,21].

We recall the quotient structure of the Bures-Wasserstein metric [6] in Table 6. The 
Riemannian operations are detailed in Table 7. Let us precise what was known and what 
is new in Table 7.

The proofs of the formulae of the distance and the logarithm can be found in [6]. The 
Levi-Civita connection and the exponential map were computed in [16]. We computed 
the Levi-Civita connection independently using a more geometric proof that we provide 
in Appendix A. We get a simpler formula.

Takatsu computed the curvature in [30] in a basis of vectors and gave a general 
formula in [31]. However, we argued above that the notations of [31] could be confusing 
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Table 6
Quotient structure of the Bures-Wasserstein metric.

Bundle GL(n)
Group action ρ : (A,U) ∈ GL(n) × O(n) �−→ AU ∈ GL(n)

Submersion π : A ∈ GL(n) �−→ Σ := AA� ∈ Sym+(n)

Vertical space VA = ker dAπ = Skew(n)A−�

Bundle metric GA(M,M) = tr(MM�)

Hor. space HA = V⊥G

A = Sym(n)A

Hor. isometry (dAπ)|HA
:
{

HA = Sym(n)A −→ TΣSym+(n)
Xh = X0A �−→ X = ΣX0 + X0Σ

Sym. lift X0 SΣ :
{

TΣSym+(n) −→ HIn
= Sym(n)

X �−→ X0 = PX0′
P�withX0

ij
′ =

X′
ij

di+dj

Hor. lift Xh X ∈ TΣSym+(n) �−→ Xh = X0A ∈ HA

Table 7
Riemannian operations of the Bures-Wasserstein metric on SPD matrices.

Metric gΣ(X, X) = gΣ1/2 (Xh, Xh) = 1
2
∑

i,j
1

di+dj
X′ 2

ij

Sq. dist. d(Σ, Λ)2 = trΣ + trΛ − 2tr((ΣΛ)1/2)
Levi-Civita (∇XY )|Σ = (∂XY )|Σ − (X0ΣY 0 + Y 0ΣX0)
Curvature The sectional curvature is non-negative.

More precisely RΣ(X, Y, X, Y ) = 3
2
∑

i,j
didj

di+dj

[
X0′

, Y 0′]2
ij

where [V, W ] = VW − WV is the Lie bracket of matrices.
Geodesics γ(Σ,X)(t) = Σ + tX + t2X0ΣX0 for t ∈ I where I depends 

on λmax = max eig(X0) and λmin = min eig(X0) as follows:
• If λmin < 0 < λmax, then I = (−1/λmax, −1/λmin).
• If 0 � λmin, then I = (−1/λmax, +∞).
• If λmax � 0, then I = (−∞, −1/λmin).

Logarithm LogΣ(Λ) = (ΣΛ)1/2 + (ΛΣ)1/2 − 2Σ
PT map Depends on the curve. Along a geodesic between commuting 

matrices Σ = PDP� and Λ = PΔP�:

ΠΣ→Λ :
{

TΣSym+(n) −→ TΛSym+(n)
X �−→ P

[√
δi+δj

di+dj
[P�XP ]ij

]
P�

because of the chosen identification. Moreover, the expression of the curvature given 
there is a bit implicit since it is RΣ(X, Y, X, Y ) = 3

4 tr((|Y, X] −S)Σ([Y, X] −S)�) where 
S = SΣ([X, Y ]Σ + Σ[Y, X]) ∈ Sym(n). Therefore, we prove in Appendix A the compact 
and explicit formula provided in Table 7 using the same method: O’Neill’s equations of 
submersions [20].

Finally, the geodesic parallel transport between commuting SPD matrices is new. We 
provide a new formulation of the equation of the parallel transport between any two 
SPD matrices in the following proposition. It is used in the Python package geomstats
[18] to compute the parallel transport. The proofs are given in Appendix A.

Proposition 3.2 (Parallel transport equation of Bures-Wasserstein metric). Let γ(t) the 
geodesic between γ(0) = Σ and γ(1) = Λ, and a vector X ∈ TΣSym+(n). We denote 

https://geomstats.github.io/


180 Y. Thanwerdas, X. Pennec / Linear Algebra and its Applications 661 (2023) 163–201
γh(t) = (1 − t)Σ1/2 + tΣ−1/2(Σ1/2ΛΣ1/2)1/2 the horizontal lift of the geodesic γ. The two 
following statements are equivalent.

(i) The vector field X(t) defined along γ(t) is the parallel transport of X.
(ii) X(t) = γ(t)X0(t) + X0(t)γ(t) where X0(t) is a curve in Sym(n) satisfying the 

following ODE:

γ(t)Ẋ0(t) + Ẋ0(t)γ(t) + γh(t)γ̇h�X0(t) + X0(t)γ̇hγh(t)� = 0. (10)

3.5. Bogoliubov-Kubo-Mori metric

The Bogoliubov-Kubo-Mori metric is a Riemannian metric used in quantum physics 
[24], given by gBKM

Σ (X, X) = tr(
∫∞
0 (Σ + t In)−1X(Σ + t In)−1Xdt). It can be seen as 

the integration of the affine-invariant metric on a half-line included in the SPD cone. 
It can be rewritten thanks to the differential of the logarithm and we take this other 
expression as a definition.

Definition 3.5 (Bogoliubov-Kubo-Mori (BKM) metric). The Bogoliubov-Kubo-Mori met-
ric is the O(n)-invariant Riemannian metric defined for Σ ∈ Sym+(n) and X ∈
TΣSym+(n) by:

gBKM
Σ (X,X) = tr(X dΣ log(X)). (11)

Important functions related to this metric are defined by [17] to get simple expres-
sions of the Levi-Civita connection and the curvature. Given Σ = PDP� ∈ Sym+(n), 
they define mij =

∫∞
0 (di + t)−1(dj + t)−1dt which is symmetric in (i, j) and mijk =∫∞

0 (di + t)−1(dj + t)−1(dk + t)−1dt which is symmetric in (i, j, k). They also denote 
gΣ(X) = dΣ log(X) whose expression is gΣ(X) = P gD(X ′) P� and [gD(X ′)]ij = mijX

′
ij

where X ′ = P�XP . This gΣ is defined so that gΣ(X, Y ) = tr(X gΣ(Y )). By differenti-
ating this equality and using the definition of the BKM metric, they get the differential 
of Σ �−→ gΣ:

dΣg(PFijP
�)(PFklP

�) = dDg(Fij)(Fkl)

= −1
2(δjkmiljFil + δjlmikjFik + δilmjkiFjk + δikmjliFjl),

or more compactly [dΣg(PXP�)(PXP�)]ij = −2 
∑n

k=1 mijkXikXjk. The Levi-Civita 
connection and the curvature can be expressed in closed forms by means of g and dg, 
as shown in Table 8. Note that the sign of the sectional curvature is not known. The 
distance, exponential, logarithm and parallel transport maps are not known either.

In this section, we reviewed five of the mainly used O(n)-invariant Riemannian met-
rics and we contributed new formulae. We also highlighted that the O(n)-invariant 
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Table 8
Riemannian operations of the BKM metric on SPD matrices.

Metric gΣ(X, X) = tr(X dΣ log(X))

Levi-Civita (∇XY )|Σ = (∂XY )|Σ + 1
2g

−1
Σ (dΣg(X)(Y ))

Curvature
RΣ(X,Y )Z = − 1

4g
−1
Σ (dΣg(X)(g−1

Σ (dΣg(Y )(Z))))

+ 1
4g

−1
Σ (dΣg(Y )(g−1

Σ (dΣg(X)(Z))))

Euclidean, the O(n)-invariant log-Euclidean and the affine-invariant metrics are ac-
tually two-parameter families of Riemannian metrics indexed by (α, β) ∈ ST while 
this extra term weighted by the trace factor β is never defined in the literature for 
the Bures-Wasserstein and the Bogoliubov-Kubo-Mori metrics. Actually, there does not 
seem to exist a natural way of extending them with a trace term. Indeed, under the 
Bures-Wasserstein metric, there is a choice of an O(n)-right-invariant inner product on 
GL(n) but they differ from O(n)-invariant inner products on symmetric matrices given 
in Theorem 2.1. Indeed, any inner product on GL(n) of the form 〈X|X〉 = tr(X�SX)
with S ∈ Sym+(n) is O(n)-right-invariant. As for the BKM metric, we could change 
the inner product in the integral but after computation, we would obtain this metric: 
α gBKM

Σ (X, X) +β
∑

i,j log[1](di, dj)X ′
iiX

′
jj . The fact that we cannot separate the indices 

i and j in the trace term differs from the previous situations.
In the next section, we recall the definition of the class of kernel metrics [11,12] and 

a selection of its key properties. Since this class of Riemannian metrics contains all 
the previously introduced metrics without trace term, we show that this is the right 
framework to define the trace term extension. We show that this new class of extended 
kernel metrics still satisfies the key results on kernel metrics we selected. We also prove 
another property of these two classes: the stability under the cometric.

4. The interpolating class of kernel metrics: new observations

Kernel metrics were introduced by Hiai and Petz in 2009 [11]. It is a family of O(n)-
invariant metrics indexed by smooth bivariate functions φ : (R+)2 −→ R+ called kernels. 
It has several key properties and it encompasses all the O(n)-invariant metrics introduced 
in Section 3 without trace factor (β = 0). After recalling these key results (Section 4.1), 
we provide new observations on kernel metrics (Section 4.2), especially the trace term 
extension and the stability under the cometric.

4.1. The general class of kernel metrics

Definition 4.1 (Kernel metrics, mean kernel metrics). [11] A kernel metric is an O(n)-
invariant metric for which there is a smooth bivariate map φ : (R+)2 −→ R+ such that 
gΣ(X, X) = gD(X ′, X ′) =

∑
i,j

1
φ(di,dj)X

′ 2
ij , where Σ = PDP� with P ∈ O(n) and 

D = Diag(d1, ..., dn), and X = PX ′P�.
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Table 9
Bivariate functions of all the O(n)-invariant metrics of Section 3.

Metric φ(x, y) Mean m θ

Euclidean 1 Any mean 0
Log-Euclidean ( x−y

log(x)−log(y) )
2 Logarithmic mean 2

Affine-invariant xy Geometric mean 2
Polar-affine ( 2xy

x+y )2 Harmonic mean 2
Bures-Wasserstein 4 x+y

2 Arithmetic mean 1
BKM x−y

log(x)−log(y) Logarithmic mean 1

A mean kernel metric is a kernel metric characterized by a bivariate map φ of the 
form φ(x, y) = a m(x, y)θ where a > 0 is a positive coefficient, θ ∈ R is a homogeneity 
power and m : (R+)2 −→ R+ is a symmetric homogeneous mean, that is:

1. symmetric, i.e. m(x, y) = m(y, x) for all x, y > 0,
2. homogeneous, i.e. m(λx, λy) = λ m(x, y) for all λ, x, y > 0,
3. non-decreasing in both variables,
4. min(x, y) � m(x, y) � max(x, y) for all x, y > 0. It implies m(x, x) = x.

As the goal of this paper is to extend the class of kernel metrics, we selected from 
[11,12] the results that we found simple and powerful to be able to generalize them 
later on. It would be interesting to study other properties such as monotonicity and 
comparison properties but it is beyond the scope of this paper. Our selection of results 
is in Proposition 4.1.

Proposition 4.1 (Key results on kernel metrics). [11]

1. (Generality) The Euclidean, log-Euclidean and affine-invariant metrics without trace 
term (β = 0), the polar-affine, the Bures-Wasserstein and the Bogoliubov-Kubo-Mori 
metrics are mean kernel metrics. The kernels and the names of the corresponding 
means are given in Table 9.

2. (Stability) The class of kernel metrics is stable under univariate diffeomorphisms. 
More precisely, if g is a kernel metric with kernel function φ and if f is a univariate 
diffeomorphism (defined in Section 2.2), then the pullback metric f∗g is a kernel 
metric with bivariate function (x, y) �−→ φ(f(x),f(y))

f [1](x,y)2 . Note that the class of mean 
kernel metrics is not stable under univariate diffeomorphisms because of the non-
decreasing property required for mean kernel metrics.

3. (Completeness) A mean kernel metric with homogeneity power θ is geodesically com-
plete if and only if θ = 2. Therefore this result provides a sufficient condition for 
kernel metrics to be geodesically complete.

Another property that we left for a different reason is the attractivity of the Log-
Euclidean metric, i.e. the fact that the log-Euclidean metric is the limit when p tends 
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to 0 of 1
p2 pow∗

pg, that is the pullback of a kernel metric by a power diffeomorphism 

powp : Σ ∈ Sym+(n) �−→ Σp ∈ Sym+(n), scaled by 1
p2 . However, it is not specific to 

kernel metrics since this is the case for any metric g.

4.2. New observations on kernel metrics

4.2.1. Kernel metrics form a cone
The class of kernel metrics is a sub-cone of the cone of Riemannian metrics on the 

SPD manifold. Indeed, it is stable by positive scaling and it is convex because if g, g′
are kernel metrics associated to φ, φ′, then (1 − t)g + tg′ is a kernel metric associated to 
φφ′/((1 − t)φ′ + tφ) > 0 for t ∈ [0, 1].

4.2.2. Cometric stability of the class of kernel metrics
A Riemannian metric g : TM × TM −→ R on a manifold M defines a cometric 

g∗ : T ∗M × T ∗M −→ R defined for all covectors ω, ω′ ∈ T ∗M by g∗(ω, ω′) = ω(x′)
where x′ ∈ TM is the unique vector such that for all vectors x ∈ TM, g(x, x′) = ω′(x)
(Riesz’s theorem).

On the manifold of SPD matrices M = Sym+(n), we have a canonical identification 
of TΣM with Sym(n) given by dΣid. Hence by duality, we also have a canonical iden-
tification between T ∗

ΣM and Sym(n)∗. So to identify TΣM with T ∗
ΣM, we only need 

an identification between Sym(n) and Sym(n)∗. This is provided by the Frobenius inner 
product. To summarize, there is a natural identification between the tangent space and 
the cotangent space given by:

{
TΣSym+(n) −→ T ∗

ΣSym+(n)
X �−→ (Y ∈ TΣSym+(n) �−→ tr(dΣid(X)dΣid(Y )))

. (12)

Hence, a cometric on SPD matrices can be seen as a metric.
Back to kernel metrics, it is interesting to note that this class is stable under taking 

the cometric and that the cometric has a simple expression.

Proposition 4.2 (Cometric stability of kernel metrics). Let g be a kernel metric with 
kernel function φ. Then the cometric g∗ seen as a metric through the identification 
explained above is a kernel metric with kernel function φ∗ = 1/φ.

This elementary fact is interesting from a numerical point of view. Indeed, to com-
pute numerically the geodesics, one can either integrate the geodesic equation involving 
the Christoffel symbols (which is of second order) or integrate its Hamiltonian version 
involving the cometric (which is of first order). Hence, the fact that the cometric of 
a kernel metric is available is a quite important result that appeared to be previously 
unnoticed. More precisely, the geodesic equation writes ẍk + Γk

ij ẋ
iẋj = 0 where x(t) is 

a curve on the manifold M and Γk
ij are the Christoffel symbols related to the metric 
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by Γk
ij = 1

2g
kl(∂igjl + ∂jgil − ∂lgij). By considering a curve p(t) on the cotangent bun-

dle T ∗M instead, and x(t) the curve on the manifold M such that p(t) ∈ T ∗
x(t)M, the 

geodesic equation admits the following Hamiltonian formulation:

{
ẋk = gklpl

ṗl = −1
2
∂gij

∂xl pipj
. (13)

The Hamiltonian equation is often preferred to compute the geodesics numerically since 
the integration is simpler and more stable. It only involves the cometric g∗ = (gij)i,j , 
which is very easy to compute for a kernel metric.

4.2.3. Canonical Frobenius-like expression of a kernel metric
An expression of kernel metrics was given in [11] by means of the operators LΣ :

X �−→ ΣX, RΣ : X �−→ XΣ and φ(LΣ, RΣ) : Sym(n) −→ Sym(n) defined for Σ =
PDP� ∈ Sym+(n) by φ(LΣ, RΣ)X = P

(
[φ(di, dj)]i,j ◦ (P�XP )

)
P�, where ◦ denotes 

the Schur (entry-wise) product. This expression is gφΣ(X, X) = tr(Xφ(LΣ, RΣ)−1(X)). 
The existence of the map Φ : Sym+(n) ×Sym(n) −→ Sym(n) hidden in φ(LΣ, RΣ) := ΦΣ
is ensured by extending the O(n)-equivariant map Φ : Diag+(n) × Sym(n) −→ Sym(n)
defined by [ΦD(X)]ij = φ(di, dj)Xij . Indeed, one can easily check that Φ satisfies the 
two hypotheses of Lemma 2.2. In this work, we even prefer to define the bivariate map 
ψ = φ−1/2 and define in a analogous way the map Ψ : Sym+(n) × Sym(n) −→ Sym(n)
so that we can write the kernel metric with a suitable Frobenius-like expression:

gφΣ(X,X) = tr(ΨΣ(X)2). (14)

We can give explicitly Ψ in some particular cases:

1. Euclidean metric: ΨE
Σ(X) = X;

2. log-Euclidean metric: ΨLE
Σ (X) = dΣ log(X);

3. affine-invariant metric: ΨA
Σ(X) = Σ−1/2XΣ−1/2.

This is an important step towards the trace term extension.

4.2.4. Kernel metrics with a trace term
The class of kernel metrics does not encompass the O(n)-invariant Euclidean, O(n)-

invariant log-Euclidean and affine-invariant metrics with a trace factor β �= 0. However, 
thanks to the previous canonical expression, we can define a natural extension of a kernel 
metric with a trace term.

Definition 4.2 (Extended kernel metrics). Let gφ be a kernel metric associated to the 
kernel function φ : (R+)2 −→ R+. We define the map ψ = φ−1/2 and the map Ψ :
Sym+(n) ×Sym(n) −→ Sym(n) as described above so that gΣ(X, X) = tr(ΨΣ(X)2). We 
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define a two-parameter family which extends the kernel metric gφ for all Σ ∈ Sym+(n)
and X ∈ Sym(n) by:

gφ,α,βΣ (X,X) = α tr(ΨΣ(X)2) + β tr(ΨΣ(X))2, (15)

where (α, β) ∈ ST, i.e. α > 0 and α + nβ > 0.

We can apply this definition to the Bures-Wasserstein and the BKM metrics. One can 
show that the trace term such defined is β tr(Σ−1/2X)2. Contrarily to the log-Euclidean 
and the affine-invariant cases, there is no isometry a priori between two metrics of the 
family. It is interesting to note that Propositions 4.1 and 4.2 are still valid for these 
extended kernel metrics. We omit the proofs since they are analogous to the ones given 
for kernel metrics in [11].

Proposition 4.3 (Key results on extended kernel metrics). 

1. (Generality) All the metrics in Section 3 are extended kernel metrics.
2. (Stability) The class of extended kernel metrics is stable under univariate diffeomor-

phisms and the transformation is the same as in Proposition 4.1.
3. (Completeness) An extended mean kernel metric with homogeneity power θ is geodesi-

cally complete if and only if θ = 2.
4. (Cometric) The class of extended kernel metrics is cometric-stable and the correspond-

ing transformation is (φ, α, β) �−→ ( 1
φ , 

1
α , −

β
α(α+nβ) ).

In this section, we recalled the definition of kernel metrics and three key properties. 
We added the property of stability under the cometric with an explicit expression and 
we argued that it is an interesting property from a numerical point of view to compute 
geodesics. We found a wider class of metrics which satisfies the same key properties and 
which encompasses all the O(n)-invariant metrics defined in Section 3. It is now tempting 
to look for wider classes of O(n)-invariant metrics and to determine if these properties 
are still valid.

In the next section, we characterize O(n)-invariant metrics by means of three mul-
tivariate functions satisfying conditions of symmetry, compatibility and positivity. This 
result allows to understand better the specificity of kernel metrics and extended kernel 
metrics within the whole class of O(n)-invariant metrics. Then we give a counterpart of 
Proposition 4.3 and we propose a new intermediate class of O(n)-invariant metrics which 
is cometric stable.

5. Characterization of O(n)-invariant metrics

In this section, we give a characterization of O(n)-invariant metrics on SPD matri-
ces. We present it as an extension of Theorem 2.1 characterizing O(n)-invariant inner 
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products on symmetric matrices. Instead of two parameters α, β which satisfy a positiv-
ity condition, an O(n)-invariant metric is characterized by three multivariate functions 
α, β, γ : (R+)n −→ R which satisfy a positivity condition plus a symmetry condition and 
a compatibility condition. This is explained in Section 5.1. We also give two corollary 
results which characterize two subclasses of O(n)-invariant metrics with additional in-
variances: scaling invariance and inverse-consistency. Section 5.2 is dedicated to the proof 
of the theorem. In Section 5.3, we reinterpret kernel metrics in light of the theorem. In 
Section 5.4, we give key results on O(n)-invariant metrics and we compare them to those 
on kernel metrics given in Proposition 4.1. In particular, we state that the cometric can 
be difficult to compute. Hence in Section 5.5, we introduce the class of bivariate separa-
ble metrics which is an intermediate class between O(n)-invariant and extended kernel 
metrics, which is cometric-stable and for which the cometric is known in closed-form.

5.1. Theorem and corollaries

Let us rephrase the characterization of O(n)-invariant inner products on Sym(n) (The-
orem 2.1). An inner product 〈·|·〉 on Sym(n) is O(n)-invariant if and only if there exist 
real numbers γ, α > 0 and β ∈ R such that:

〈X|X〉 = γ
∑
i

X2
ii + α

∑
i�=j

X2
ij + β

∑
i�=j

XiiXjj , (16)

1. (Compatibility) γ = α + β,
2. (Positivity) the symmetric matrix S defined by Sii = γ and Sij = β is positive 

definite.

The characterization of O(n)-invariant metrics on Sym+(n) has an analogous form where 
real numbers are replaced by n-multivariate functions and where there is an additional 
property of symmetry of these functions. We introduce this notion of symmetry before 
stating the theorem. The proof is in Section 5.2.

Definition 5.1 ((k, n − k)-symmetric functions). We say that a function f : (R+)n −→ R

is (k, n −k)-symmetric if it is symmetric in its k first variables and symmetric in its n −k

last variables. In other words, f is invariant under permutations σ = σ1σ2 where σ1 has 
support in {1, ..., k} and σ2 has support in {k+1, ..., n}. Hence, given a set I ⊆ {1, ..., n}
of cardinal k and d ∈ (R+)n, we denote f(di∈I , di/∈I) := f(σ · d) where σ({1, ..., k}) = I

and (σ · d)i = dσ(i).

Theorem 5.1 (Characterization of O(n)-invariant metrics). Let g be a Riemannian met-
ric on Sym+(n). If g is O(n)-invariant, then there exist three maps γ, α : (R+)n −→ R+

and β : (R+)n −→ R such that for all Σ = PDP� ∈ Sym+(n) and X = PX ′P� ∈
TΣSym+(n):
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gΣ(X,X) = gD(X ′, X ′) (17)

=
∑
i

γ(di, dk �=i)X ′ 2
ii +

∑
i�=j

α(di, dj , dk �=i,j)X ′ 2
ij +

∑
i�=j

β(di, dj , dk �=i,j)X ′
iiX

′
jj ,

0. (Symmetry) γ is (1, n − 1)-symmetric and α, β are (2, n − 2)-symmetric,
1. (Compatibility) γ equals α + β on the set D = {d ∈ (R+)n|d1 = d2},
2. (Positivity) for all d ∈ (R+)n, the symmetric matrix S(d) defined by Sii(d) =

γ(di, dk �=i) and Sij(d) = β(di, dj , dk �=i,j) is positive definite.

Conversely, if there exist such maps α, β, γ, then Equation (17) correctly defines an 
O(n)-invariant Riemannian metric that we denote gα,β,γ or equivalently gα,S.
Moreover, g is continuous if and only if α, β, γ are continuous.

Before giving the proof, we observe that this theorem allows to characterize subclasses 
of O(n)-invariant metrics as well. Here we give the general form of O(n)-invariant metrics 
that are invariant under scaling and under inversion respectively. We omit the proof.

Proposition 5.1 (Characterizations of subclasses of O(n)-invariant metrics). Let g be an 
O(n)-invariant metric characterized by the maps α, β, γ.

1. g is invariant under scaling if and only if f(λd) = 1
λ2 f(d) for f ∈ {α, β, γ}, for all 

d ∈ (R+)n and for all λ > 0.
2. g is invariant under inversion if and only if γ(d−1

1 , ..., d−1
n ) = d4

1 γ(d1, ..., dn) and 
f(d−1

1 , ..., d−1
n ) = d2

1d
2
2 f(d1, ..., dn) for f ∈ {α, β}, for all d ∈ (R+)n.

5.2. Proof of the theorem

Proof of Theorem 5.1 (Characterization of O(n)-invariant metrics). Let g be an O(n)-
invariant metric on Sym+(n). Since any diagonal matrix D is invariant under the 
subgroup D±(n), the inner product gD is D±(n)-invariant. Hence, Lemma 2.3 (a) ensures 
that there are positive coefficients αij(D) = αji(D) and a matrix S(D) ∈ Sym+(n) s.t. 
gD(X, X) =

∑
i�=j αij(D)X2

ij +
∑

i,j Sij(D)XiiXjj . Then, we define the three maps:

· α : d ∈ (R+)n �−→ α12(Diag(d)) > 0,
· β : d ∈ (R+)n �−→ S12(Diag(d)),
· γ : d ∈ (R+)n �−→ S11(Diag(d)) > 0.

Following the same idea as in the proof of Lemma 2.3 (b), we use the invariance under 
permutations since Diag+(n) is stable under this action. Then, one easily checks that 
α, β are (2, n − 2)-symmetric and γ is (1, n − 1)-symmetric and that we can express the 
other coefficients in function of α, β, γ by permuting the di’s. We get for i �= j:
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· αij(Diag(d)) = α(di, dj , dk �=i,j),
· Sij(Diag(d)) = β(di, dj , dk �=i,j),
· Sii(Diag(d)) = γ(di, dk �=i).

So we get the expression (17), the symmetry and the positivity conditions. We only 
miss the compatibility condition so let d = (d1, ..., dn) ∈ (R+)n such that d1 = d2. Since 
D = Diag(d) is stable under any block-diagonal orthogonal matrix R = Diag(Rθ, In−2) ∈
O(n) with Rθ ∈ O(2), with the same computations as in the proof of Theorem 2.1, we 
get γ(d) = α(d) + β(d).

Conversely, if α, β, γ are three maps satisfying the conditions of symmetry, compatibil-
ity and positivity, then we define gD(X, X) =

∑
i γ(di, dk �=i)X2

ii+
∑

i�=j α(di, dj , dk �=i,j)X2
ij

+
∑

i�=j β(di, dj , dk �=i,j)XiiXjj . In other words, we define a map g : Diag+(n) ×
Sym(n) × Sym(n) −→ R and we would like to extend it by defining gPDP�(X, X) =
gD(P�XP, P�XP ). According to Lemma 2.2, we have two cases to study. One can 
easily show that the first condition with permutations is satisfied. The non-trivial 
condition is the second one, involving a diagonal matrix D = Diag(λ1Im1 , ..., λpImp

)
with sorted diagonal values λ1 > ... > λp > 0 and a block-diagonal orthogonal 
matrix R = Diag(R1, ..., Rp) ∈ O(n) with Rk ∈ O(mk). So we have to show that 
gD(R�XR, R�XR) = gD(X, X) for all matrix X ∈ Sym(n), since R�DR = D. We 
denote X̄kl ∈ Mat(mk, ml) the (k, l) block matrix defined by X̄kl

ij = Xnk−1+i,nl−1+j

where nk =
∑k

j=1 mj . Note that X̄kk ∈ Sym(mk) is the k-th diagonal block of X and 

X̄ lk = (X̄kl)�. Therefore R�XR
kl

= R�
k X̄

klRl. In the following, we split the sums 
between the blocks with multiplicity 1 and the blocks with higher multiplicity and we 
use the compatibility condition. The notation α(λk, λl, ...) stands for α(di, dj , dm�=i,j)
where λk = di and λl = dj , i.e. nk−1 + 1 � i � nk and nl−1 + 1 � j � nl. We compute 
the difference:

gD(R�XR,R�XR) − gD(X,X)

=
∑

k:mk=1

γ(dnk
, dm�=nk

)((R�XR)2nknk
−X2

nknk
)︸ ︷︷ ︸

0

+
∑
k �=l

mk=ml=1

α(λk, λl, ...)((R�XR)2nknl
−X2

nknl
)︸ ︷︷ ︸

0

+
∑
k �=l

mk=ml=1

β(λk, λl, ...)((R�XR)nknk
(R�XR)nlnl

−Xnknk
Xnlnl

)︸ ︷︷ ︸
0

+
∑

k:mk>1

γ(λk, λk, ...)︸ ︷︷ ︸
nk∑

i=nk−1+1
((R�XR)2ii −X2

ii)

α(λk,λk,...)+β(λk,λk,...)
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+
∑
k,l

mk orml>1

α(λk, λl, ...)
∑

nk−1+1�i�nk

nl−1+1�j�nl

i�=j

((R�XR)2ij −X2
ij)

+
∑
k,l

mk orml>1

β(λk, λl, ...)
∑

nk−1+1�i�nk

nl−1+1�j�nl

i�=j

((R�XR)ii(R�XR)jj −XiiXjj).

Hence the missing term i = j in the two last sums is provided by the sum weighted 

by γ. After a change of indices based on the equality R�XR
kl

= R�
k X̄

klRl, we get:

gD(R�XR,R�XR) − gD(X,X)

=
∑
k,l

mk orml>1

α(λk, λl, ...)
mk∑
i=1

ml∑
j=1

((R�
k X̄

klRl)2ij − (X̄kl)2ij)︸ ︷︷ ︸
tr(R�

k X̄klRl(R�
k X̄klRl)�)−tr(X̄kl(X̄kl)�)=0

+
∑
k,l

mk orml>1

β(λk, λl, ...)
mk∑
i=1

ml∑
j=1

((R�
k X̄

kkRk)ii(R�
l X̄

llRl)jj − X̄kk
ii X̄ ll

jj)︸ ︷︷ ︸
tr(R�

k X̄kkRk)tr(R�
l X̄llRl)−tr(X̄kk)tr(X̄ll)=0

= 0.

This proves that gΣ is well defined for all Σ ∈ Sym+(n) and O(n)-invariant by con-
struction. The positivity condition ensures that g is a metric.

Finally, it is clear that α, β, γ have at least the same regularity as the metric g since 
they are coordinates of the map D ∈ Diag+(n) �−→ gD. Let us prove that if α, β, γ are 
continuous, then g is continuous. The main argument is in the following lemma (proved 
after the proof of the theorem).

Lemma 5.1 (Eigenvalues and eigenvectors of close symmetric matrices). Let Σ, Λ ∈
Sym+(n). Let D, Δ ∈ Diag+(n) be their matrices of ordered eigenvalues, i.e. D =
Diag(d1, ..., dn) and Δ = Diag(δ1, ..., δn) with d1 � ... � dn and δ1 � ... � δn. We 
denote m = mΣ = min

λ �=μ∈eig(Σ)
(λ − μ)2 if Σ /∈ R+In, and m = +∞ otherwise. Then:

1. [5, (IV.62)] ‖D − Δ‖2 � ‖Σ − Λ‖2,
2. there exists (P, Q) ∈ O(n) ×O(n) such that Σ = PDP�, Λ = QΔQ� and ‖P −Q‖2 �

2
√

2
m‖Σ − Λ‖2.

Let us prove that g is continuous by showing that for all ε, for all Σ, Λ ∈ Sym+(n), 
there exists η such that if ‖Σ − Λ‖2 � η, then for all X ∈ Sym+(n), |gΣ(X, X) −
gΛ(X, X)| � ε‖X‖2

2. Let ε > 0 and Σ, Λ ∈ Sym+(n). Given Lemma 5.1, let D, Δ ∈
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Diag+(n) and P, Q ∈ O(n) such that Σ = PDP�, Λ = QΔQ�, ‖D − Δ‖2 � ‖Σ − Λ‖2
and ‖P −Q‖2

2 � 4
√

n
m‖Σ − Λ‖2. For all X ∈ Sym(n):

|gΣ(X,X) − gΛ(X,X)| �
∑
i

|γ(di, dk �=i)[P�XP ]2ii − γ(δi, δk �=i)[Q�XQ]2ii|

+
∑
i�=j

|α(di, dj , dk �=i,j)[P�XP ]2ij − α(δi, δj , δk �=i,j)[Q�XQ]2ij |

+
∑
i�=j

|β(di, dj , dk �=i,j)[P�XP ]ii[P�XP ]jj − β(δi, δj , δk �=i,j)[Q�XQ]ii[Q�XQ]jj |.

To use Lemma 5.1, we separate the eigenvalues and eigenvectors by introducing 0 =
−γ(di, dk �=i)[Q�XQ]2ii + γ(di, dk �=i)[Q�XQ]2ii in the absolute value on the first line:

∑
i

|γ(di, dk �=i)[P�XP ]2ii − γ(δi, δk �=i)[Q�XQ]2ii|

�
∑
i

|γ(di, dk �=i)| |[P�XP ]2ii − [Q�XQ]2ii| +
∑
i

|γ(di, dk �=i) − γ(δi, δk �=i)| |[Q�XQ]ii|2

� C
∑
i

|[P�XP ]2ii − [Q�XQ]2ii| + ‖X‖2
2
∑
i

|γ(di, dk �=i) − γ(δi, δk �=i)|

� C
∑

i,j,k,l

|[P�XP ]ij [P�XP ]kl − [Q�XQ]ij [Q�XQ]kl| + ‖X‖2
2
∑

σ∈S(n)

|γ ◦ σ(D) − γ ◦ σ(Δ)|,

where C = maxf∈{α,β,γ},σ∈S(n) |f ◦σ(D)|. We can get analogous bounds for α, β. There-
fore, we get:

|gΣ(X,X) − gΛ(X,X)| � 3C
∑
i,j,k,l

|[P�XP ]ij [P�XP ]kl − [Q�XQ]ij [Q�XQ]kl|

+ 3‖X‖2
2 max
f∈{α,β,γ}

∑
σ∈S(n)

|f ◦ σ(D) − f ◦ σ(Δ)|.

Since α, β, γ and permutations are continuous, the term maxf

∑
σ |f ◦σ(D) −f ◦σ(Δ)|

can be made inferior to ε
6 for Δ sufficiently close to D, let’s say ‖D − Δ‖ � η1 for a 

given η1 > 0. On the other hand:

∑
i,j,k,l

|[P�XP ]ij [P�XP ]kl − [Q�XQ]ij [Q�XQ]kl|

�
∑
i,j,k,l

|[P�XP ]ij |(|[P�XP ]kl − [P�XQ]kl| + |[P�XQ]kl − [Q�XQ]kl|)

+ (|[P�XP ]ij − [P�XQ]ij | + |([P�XQ]ij − [Q�XQ]ij)|)|[Q�XQ]kl|

� (‖P�XP‖1 + ‖Q�XQ‖1)(‖(P�X(P −Q)‖1 + ‖(P −Q)�XQ‖1)

� 4n2‖P −Q‖2‖X‖2
2.
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So for ‖P − Q‖2 � ε
24n2C and ‖D − Δ‖2 � η1, we have |gΣ(X, X) − gΛ(X, X)| �

ε‖X‖2
2. Thus if we choose η := min(η1, 

√
m

2
√

2
ε

24n2C ), then if ‖Σ − Λ‖2 � η, we have 

|gΣ(X, X) − gΛ(X, X)| � ε‖X‖2
2, which proves the continuity. �

Proof of Lemma 5.1 (Eigenvalues and eigenvectors of close symmetric matrices). The 
first point comes from [5, (IV.62)]. Let us prove the second point. Let P, Q ∈ O(n)
such that Σ = PDP� and Λ = QΔQ� ∈ Sym+(n), where D, Δ are sorted by increasing 
order.

We denote R = Diag(R1, ..., Rp) ∈ O(n) a block-diagonal orthogonal matrix with 
Rj ∈ O(mj), where m1, ..., mp ∈ N are the multiplicities of the eigenvalues of D =
Diag(λ1Im1 , ..., λpImp

). We are looking for R such that ‖PR − Q‖2 � 2
√

2
m‖Σ − Λ‖2

with m = mini�=j(λi − λj)2. We denote U = P�Q and W = Diag(W1, ..., Wp) the 
block-diagonal pinching of U where Wj ∈ Mat(mj). We choose R as the orthogonal 
factor in a polar decomposition of W = SR where S =

√
WW� is a symmetric positive 

semi-definite matrix. Since for all j ∈ {1, ..., p}, WjW
�
j � Imk

for the Loewner order 
(because Wj is a principal block of the orthogonal matrix U), we have WW� � In. Thus 
S =

√
WW� � WW� since 

√
x � x for all x ∈ [0, 1]. So tr(WR�) = tr(S) � tr(WW�). 

Thus:

‖PR−Q‖2
2 = 2tr(In −R�U) = 2tr(In −R�W )

� 2tr(In −WW�) = 2
∑
di �=dj

U2
ij

� 2
m

∑
di �=dj

(di − dj)2U2
ij = 2

m
‖DU − UD‖2

2 = 2
m
‖Σ −QDQ�‖2

2,

‖PR−Q‖2 �
√

2
m

(‖Σ − Λ‖2 + ‖Q(Δ −D)Q�‖2) � 2
√

2
m
‖Σ − Λ‖2,

which proves the result. �
The smoothness seems to be more complicated to study. We suspect additional con-

ditions of compatibility on the derivatives of the smooth maps α, β, γ at the singular set 
of SPD matrices with repeated eigenvalues in order to make the metric g is smooth.

5.3. Reinterpretation of kernel metrics

Theorem 5.1 allows to reinterpret kernel metrics. The curiosity of this theorem is 
the function γ because we have no information on it as soon as the di’s are distinct. If 
α, β, γ do not depend on their n −2 last arguments, i.e. if they are bivariate, then γ does 
not depend on its second argument and γ(d1) must be equal to α(d1, d1) + β(d1, d1). 
Hence gΣ(X, X) =

∑
i,j α(di, dj)X ′ 2

ij +
∑

i,j β(di, dj)X ′
iiX

′
jj with α > 0 and α+nβ > 0, 

which is much more tractable. Moreover, if β = 0, then the quadratic form has a diagonal
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Table 10
Name correspondences for kernel metrics and sub/
super-classes.

Previous description New designation
Kernel metric BOD metric
Mean kernel metric MOD metric
Extended kernel metric BOST metric
Extended mean kernel metric MOST metric

expression (sum of squares X ′ 2
ij , no mixed terms X ′

iiX
′
jj) in the basis of matrices induced 

by the orthogonal matrix P ∈ O(n) in the eigenvalue decomposition of Σ. In this case, 
we say that the metric is ortho-diagonal.

To sum up, the subclass of kernel metrics has two fundamental properties: it is bi-
variate (α = γ − β = 1/φ) and ortho-diagonal (β = 0). This is the reason why we 
propose to designate kernel (resp. mean kernel) metrics as Bivariate Ortho-Diagonal or 
BOD metrics (resp. Mean Ortho-Diagonal or MOD metrics), as summarized in Table 10. 
We say that the metric is Bivariate Ortho-ST when it is the extension by Definition 4.2
of a Bivariate Ortho-Diagonal metric with the Scaling and Trace factors α > 0 and 
β > −α/n. Hence, the extended (mean) kernel metrics can also be designated as BOST 
(and MOST) metrics.

5.4. Key results on O(n)-invariant metrics

In Section 4, we gave four key results on BOD/MOD metrics in Propositions 4.1 and 
4.2, and four key results on BOST/MOST metrics in Proposition 4.3. Here we give the 
counterpart of these propositions for O(n)-invariant metrics.

Proposition 5.2 (Key results on O(n)-invariant metrics). 

1. (Generality) The class of O(n)-invariant metrics obviously contains the classes of 
BOD, MOD, BOST, MOST metrics, hence it contains all the metrics in Section 3.

2. (Stability) The class of O(n)-invariant metrics is obviously stable by O(n)-equivariant 
diffeomorphisms of Sym+(n). Hence it is stable by univariate diffeomorphisms f :
Sym+(n) −→ Sym+(n) and in this case, the pullback metric f∗gα,β,γ is characterized 
by the three maps:

(a) αf : d ∈ (R+)n �−→ α(f(d))
f [1](d1,d2)2

,
(b) βf : d ∈ (R+)n �−→ β(f(d))

f [1](d1,d2)2
,

(c) γf : d ∈ (R+)n �−→ γ(f(d))
f ′(d1)2 .

3. (Completeness) Let g = gα,β,γ be an O(n)-invariant metric. We assume that α, β, γ
satisfy a homogeneity property which is similar to the one assumed for mean kernel 



Y. Thanwerdas, X. Pennec / Linear Algebra and its Applications 661 (2023) 163–201 193
metrics: there exists θ ∈ R such that for f ∈ {α, β, γ}, x ∈ (R+)n and λ > 0, we have 
f(λx) = λ−θf(x). If the metric g is geodesically complete, then θ = 2.

4. (Cometric) The class of O(n)-invariant metrics is obviously cometric-stable. The co-
metric is characterized by α∗ = 1/α and S∗ = S−1 where S(d) ∈ Sym+(n) is defined 
by Sij(d) = β(di, dj , dk �=i,j) and Sii(d) = γ(di, dk �=i) for all d ∈ R+ and i �= j.

We omit the proof since it consists in elementary verifications for all but the third 
statement, whose proof is analogous to the one given in [11].

About completeness, the result is much weaker for general O(n)-invariant metrics. 
Indeed, we lost the converse implication: “if θ = 2, then the metric is geodesically com-
plete”. According to the proof of [11], the key element to prove this converse implication 
is exactly the bivariance, plus the fact that a symmetric homogeneous mean satisfies 
m(x, x) = x. It is worth noticing that θ = 2 is still necessary though.

About the cometric, we lost the closed-form expression we had for BOD and BOST 
metrics. Computing the cometric is numerically quite heavy in general because it is 
equivalent to invert the matrix S(d) for all d ∈ (R+)n. However, note that when β = 0, 
the cometric is obviously given by the triple (1/α, 0, 1/γ). These ortho-diagonal metrics 
can be seen as the multivariate generalization of BOD metrics. In the next section, we 
give a cometric-stable extension of the class of BOST metrics for which the cometric can 
be computed in closed form: the class of bivariate separable metrics.

5.5. Bivariate separable metrics

We argued in Section 5.3 that bivariate metrics are of the form gΣ(X, X) =∑
i,j α(di, dj)X ′ 2

ij +
∑

i,j β(di, dj)X ′
iiX

′
jj with α > 0 and α + nβ > 0. Then, the first 

term corresponds to a BOD metric and it can be rewritten tr(ΨΣ(X)2), but it is still 
difficult to write the second term in a more compact way. If the function β is separa-
ble, i.e. if β can be written β(x, y) = ψ(1)(x)ψ(2)(y), then the second term is simply 
tr(Ψ(1)

Σ (X))tr(Ψ(2)
Σ (X)). Indeed, we can define Ψ(k)

D (X) = Diag(ψ(k)(di)Xii) and extend 
it into Ψ(k)

Σ as explained in Section 4.2.3. In particular, BOST metrics correspond to 
the case when β(x, y) = λ

√
α(x, x)α(y, y) with 1 + nλ > 0. The wider class of bivariate 

separable metrics is actually cometric-stable and the cometric can be computed quite 
easily. This is stated in Proposition 5.3.

Proposition 5.3 (Cometric of bivariate separable metrics). Let ψ : (R+)2 −→ R+

be a symmetric map and let ψ(1), ψ(2) : R+ −→ R+ be two maps on positive real 
numbers. As explained above, we define their extensions Ψ, Ψ(1), Ψ(2) : Sym+(n) ×
Sym(n) −→ Sym(n). The quadratic form defined by gΣ(X, X) = tr(ΨΣ(X)2) +
tr(Ψ(1)

Σ (X))tr(Ψ(2)
Σ (X)) automatically satisfies the symmetry and compatibility condi-

tions of Theorem 5.1. Then g is positive definite if and only if the vectors x = x(d) =(
ψ(1)(di)
ψ(di,di)

)
1�i�n

and y = y(d) =
(

ψ(2)(di)
ψ(di,di)

)
1�i�n

satisfy the inequality ‖x‖‖y‖ −〈x|y〉 < 2

for all d ∈ (R+)n.
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In this case, we say that g is a Bivariate Separable metric. As an O(n)-invariant 
metric, it is characterized by α(d) = ψ(d1, d2)2 and the matrix S = S(d) = Δ(In +
1
2 (xy� + yx�))Δ with Δ = Diag(ψ(di, di)). This class of metrics is cometric-stable. If 
x = 0 or y = 0, the cometric at Σ is simply characterized by S−1 = Δ−2. Otherwise, the 
cometric is given by:

S−1 = Δ−1
[
In − 1

4c (2 + 〈x|y〉)(xy� + yx�) + 1
4c(‖y‖2xx� + ‖x‖2yy�)

]
Δ−1, (18)

with c = 1 + 〈x|y〉 − 1
4 (‖x‖2‖y‖2 − 〈x|y〉2) > 0.

Proof of Proposition 5.3. To determine when g is a metric, we express the functions 
α, β, γ, S of Theorem 5.1 in function of ψ, ψ(1), ψ(2):

1. α(d1, ..., dn) = ψ(d1, d2)2 > 0,
2. β(d1, ..., dn) = 1

2 (ψ(1)(d1)ψ(2)(d2) + ψ(1)(d2)ψ(2)(d1)),
3. γ(d1, ..., dn) = ψ(d1, d1)2 + ψ(1)(d1)ψ2(d1),
4. hence Sij(d) = Δ2

ij + 1
2 (ψ(1)(di)ψ(2)(dj) + ψ(2)(di)ψ(1)(dj)), so we have S = Δ(In +

1
2 (xy� + yx�))Δ with the notations of the proposition.

The symmetry and compatibility conditions of Theorem 5.1 are trivially satisfied. The 
positivity condition reduces to S ∈ Sym+(n), i.e. In + 1

2 (xy� + yx�) ∈ Sym+(n). As the 
eigenvalues of M = xy� + yx� are 0 (with multiplicity n − 2) and 〈x|y〉 ± ‖x‖‖y‖, S is 
positive definite if and only if 2 + 〈x|y〉 ± ‖x‖‖y‖ > 0. But 〈x|y〉 + ‖x‖‖y‖ � 0 so there 
is only one condition: 2 > ‖x‖‖y‖ − 〈x|y〉(� 0), as announced.

Now, we want to compute S−1. If x = 0 or y = 0, the result is obvious so we assume 
that x, y �= 0. As M is of rank 2 at most, there exists a polynomial P of degree 3 at 
most such that P (In + 1

2M) = 0. Let us find such a polynomial to compute S−1. Since 
M2 = 〈x|y〉M +N with N = ‖y‖2xx� + ‖x‖2yy� and NM = ‖x‖2‖y‖2M + 〈x|y〉N , we 
have:

(
In + 1

2M
)2

= In +
(

1 + 〈x|y〉
4

)
M + 1

4N,

(
In + 1

2M
)3

=
(
In + 1

2M
)2

+ 1
2

(
In + 1

2M
)2

M

=
(
In + 1

2M
)2

+ 1
2M + 1

2

(
1 + 〈x|y〉

4

)
M2 + 1

8NM

=
(
In + 1

2M
)2

+ 4 + 4〈x|y〉 + 〈x|y〉2 + ‖x‖2‖y‖2

8 M + 1
4(2 + 〈x|y〉)N

= a

(
In + 1

M

)2

+ b
M − (2 + 〈x|y〉)In
2 2
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= a

(
In + 1

2M
)2

+ b

(
In + 1

2M
)

+ c In,

with 

⎧⎪⎨
⎪⎩
a = 3 + 〈x|y〉
b = −12−8〈x|y〉−〈x|y〉2+‖x‖2‖y‖2

4
c = 1 + 〈x|y〉 + 〈x|y〉2−‖x‖2‖y‖2

4 = 1 − a− b > 0
. Indeed, c > 1 +〈x|y〉 − 1

2 (‖x‖‖y‖ +

〈x|y〉) = 1 − 1
2(‖x‖‖y‖ − 〈x|y〉) > 0. Hence, denoting S0 := In + 1

2M , we have S−1
0 =

1
c

(
S2

0 − aS0 − bIn
)

= In + 1
4c (N − (2 + 〈x|y〉)M) and S−1 = Δ−1(In + 1

4c (N − (2 +
〈x|y〉)M)

)
Δ−1 which is exactly Equation (18).

Finally, we want to prove that the cometric is bivariate separable. Regarding Equation 
(18), we look for x′ = Ax+By

4c and y′ = Cx + Dy for A, B, C, D ∈ R such that:

x′y′ � + y′x′ � = − 1
2c (2 + 〈x|y〉)(xy� + yx�) + 1

2c (‖y‖2xx� + ‖x‖2yy�) (19)

It is satisfied if AC = ‖y‖2, BD = ‖x‖2 and AD + BC = −2(2 + 〈x|y〉), or equivalently 
(AX+B)(CX+D) = ‖y‖2X2−2(2 +〈x|y〉)X+‖x‖2. This is a second-order polynomial 
with roots λ = 2+〈x|y〉+

√
δ

‖y‖2 and μ = 2+〈x|y〉−
√
δ

‖y‖2 where δ = (2 + 〈x|y〉 + ‖x‖‖y‖)(2 +
〈x|y〉 −‖x‖‖y‖) > 0 is the discriminant. Hence, it suffices to define A = ‖y‖, B = −λ‖y‖, 
C = ‖y‖ and D = −μ‖y‖, so that S−1 = Δ−1 (In + 1

2 (x′y′ � + y′x′ �)
)
Δ−1. Hence, the 

cometric is bivariate separable and this class of metrics is cometric-stable. �
6. Conclusion

To encompass all the O(n)-invariant metrics summarized in Section 3, including the 
ones with a trace term (β �= 0), we defined the class of extended kernel metrics. This 
class satisfies the key results of stability and completeness we selected from [11] plus the 
cometric-stability with cometric in closed form, which is important to compute geodesics 
numerically via the Hamiltonian formulation. Then, from the characterization of O(n)-
invariant metrics in terms of three continuous maps α, β, γ : (R+)n −→ R+ satisfying 
properties of symmetry, compatibility and positivity, we were able to characterize kernel 
metrics as Bivariate Ortho-Diagonal (BOD) metrics. Among the key results on mean 
kernel metrics, the sufficient condition of completeness and the closed-form expression 
of the cometric disappear for general O(n)-invariant metrics. We finally defined the 
intermediate class of bivariate separable metrics which is cometric-stable and for which 
the cometric has a simple expression.

Since kernel metrics encompass very different metrics regarding curvature and com-
pleteness, it would be nice to introduce some more requirements on metrics to perform 
the opposite work of defining principled sub-classes of (mean) kernel metrics. There is 
actually a companion paper entitled “The geometry of mixed-Euclidean metrics on sym-
metric positive definite matrices” where we propose some principled subfamilies of kernel 
metrics. It would also be interesting to rely on the cometric-stability of kernel metrics 
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or super-classes to effectively compute the geodesics numerically and to investigate their 
properties regarding statistical analyses.

Another interesting direction would be to consider other properties of kernel metrics 
that were described in the original paper, namely monotonicity and comparison prop-
erties. It would be challenging to understand how they could be generalized to BOST 
metrics or even to O(n)-invariant metrics. Furthermore, to our knowledge there is no 
trace of families of non O(n)-invariant metrics in the literature. However, there exist 
some situations where the O(n)-invariance is not relevant, for example on correlation 
matrices because the space is not stable under this group action. This a promising per-
spective for future works.
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Appendix A. Proofs on the Bures-Wasserstein metric

Proof of Levi-Civita connection in Table 7. Let X, Y be vector fields on Sym+(n). The 
Levi-Civita connection is computed in [16]. With our notation X0 = SΣ(X) defined by 
X = ΣX0 + X0Σ, their result writes ∇XY = ∂XY − {X0Y + Y 0X}S + {ΣX0Y 0 +
ΣY 0X0}S where {A}S = 1

2(A + A�) is the symmetric part of the matrix A. It is easy 
to see that it rewrites ∇XY = ∂XY − (X0ΣY 0 +Y 0ΣX0) which is a simpler expression.

We would like to give a different proof that relies on the geometry of the horizon-
tal distribution. According to [20], Lemma 1, dπ(∇G

hY
h) = ∇XY , where ∇G = ∂
X
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is the Levi-Civita connection of the Frobenius metric G on GL(n), i.e. the deriva-
tive of coordinates in the canonical basis of matrices. We differentiate the equality 
Xh = (X0 ◦ π) × IdGL(n) on GL(n):

(∇G
XhY

h)|A = ∂Xh
A
(Y 0 ◦ π)A + Y 0

π(A)X
h
A

= (∂Xπ(A)Y
0)A + Y 0

π(A)X
0
π(A)A,

(∇XY )|AA� = dAπ((∇G
XhY

h)|A)

= AA�(∂Xπ(A)Y
0) + (∂Xπ(A)Y

0)AA�

+ AA�X0
π(A)Y

0
π(A) + Y 0

π(A)X
0
π(A)AA�,

(∂XY )|Σ = Σ(∂XΣY
0) + (∂XΣY

0)Σ + XΣY
0
Σ + Y 0

ΣXΣ

= Σ(∂XΣY
0) + (∂XΣY

0)Σ + ΣX0
ΣY

0
Σ + Y 0

ΣX
0
ΣΣ

+ X0
ΣΣY 0

Σ + Y 0
ΣΣX0

Σ

= (∇XY )|Σ + X0
ΣΣY 0

Σ + Y 0
ΣΣX0

Σ.

Finally, we find ∇XY = ∂XY − (X0ΣY 0 + Y 0ΣX0) as expected. �
Proof of curvature in Table 7. Let X, Y ∈ TΣSym+(n) be tangent vectors at Σ ∈
Sym+(n). We would like to compute the sectional curvature κ(X, Y ) = R(X,Y,X,Y )

‖X‖2‖Y ‖2−〈X|Y 〉2 , 
i.e. R(X, Y, X, Y ). Let Xh, Y h ∈ HΣ1/2 be the horizontal lifts of X, Y at Σ1/2 and 
X0, Y 0 ∈ Sym(n) defined as explained above. We extend Xh, Y h into vector fields by 
Xh

A := X0A and Y h
A := Y 0A. We do so because the formula we use to compute the cur-

vature is based on a Lie bracket and can only be computed with fields. As the curvature 
is a tensor, it only depends on the values of X and Y at Σ so the way we extend the 
fields does not influence the result (but it simplifies the computation).

A first strategy to compute the curvature is to use the Levi-Civita connection via 
the definition R(X, Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z. It is tedious but doable. 
Another one consists in using the relation between the curvatures of the quotient metric 
(here, Bures-Wasserstein) and the original metric (here, Frobenius) found in [20], for-
mula {4}. According to this formula, since the Euclidean metric is flat, the formula is 
RΣ(X, Y, X, Y ) = 3

4‖ver�Xh, Y h�Σ1/2‖2 where ver : Xv + Xh ∈ TGL(n) �−→ Xv ∈ V is 
the vertical projection and �·, ·� denotes the Lie bracket on vector fields of GL(n), which 
must be distinguished from the matrix Lie bracket [V, W ] = VW −WV . Note that the 
right term only depends on Xh

Σ1/2 and Y h
Σ1/2 because if f : GL+(n) −→ R is a map, then 

ver�fXh, Y h�Σ1/2 = f(Σ1/2)ver�Xh, Y h�Σ1/2 + dΣ1/2f(Y h)ver(Xh)︸ ︷︷ ︸
0

.

The rest of the proof consists in computing ver�Xh, Y h� = �Xh, Y h� − hor�Xh, Y h�. 
On the one hand, �Xh, Y h�A = Y 0Xh

A −X0Y h
A = −[X0, Y 0]A. On the other hand, let 

Zh
A := hor�Xh, Y h�A =: Z0

�A ∈ HA. Now, we can fix Σ ∈ Sym+(n) and A = Σ1/2. We 
AA
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take a spectral decomposition Σ = PDP� and we denote with a prime all the previous 
matrices taken in the basis P of eigenvectors of Σ, e.g. X0′ = P�X0P . Then:

ZΣ := dΣ1/2π(�Xh, Y h�Σ1/2) = Σ[X0, Y 0] − [X0, Y 0]Σ,

Zh
Σ1/2 = (dΣ1/2π|HΣ1/2 )−1(dΣ1/2π(�Xh, Y h�Σ1/2))

= (dΣ1/2π|HΣ1/2 )−1(ZΣ),

[Z0′

Σ ]ij = 1
di + dj

(D[X0′, Y 0′] − [X0′, Y 0′]D)ij

= di − dj
di + dj

[X0′, Y 0′]ij ,

[Zh′

Σ1/2 ]ij =
√

dj [Z0′

Σ ]ij =
√

dj
di − dj
di + dj

[X0′, Y 0′]ij ,

(ver�Xh, Y h�Σ1/2)′ij = (�Xh, Y h�Σ1/2)′ij − [Zh′

Σ1/2 ]ij

= − [X0′, Y 0′]ij
√

dj −
√

dj
di − dj
di + dj

[X0′, Y 0′]ij

= −
2di
√

dj

di + dj
[X0′, Y 0′]ij ,

RΣ(X,Y,X, Y ) = 3
4‖(ver�Xh, Y h�Σ1/2)′‖2

= 3
∑
i,j

d2
i dj

(di + dj)2
[
X0′, Y 0′

]2
ij

= 3
2
∑
i,j

didj
di + dj

[
X0′, Y 0′

]2
ij
,

where P�XP = DX0′ + X0′D and P�Y P = DY 0′ + Y 0′D. �
Proof of geodesic parallel transport between commuting matrices in Table 7. We want 
to prove that the geodesic parallel transport of the Bures-Wasserstein metric between 

two commuting matrices is ΠΣ→ΛX = P
[√

δi+δj
di+dj

[P�XP ]ij
]
i,j

P� where Σ = PDP�

and Λ = PΔP� ∈ Sym+(n). The geodesic parallel transport is O(n)-invariant so we 

only need to prove that [ΠD→ΔX]ij =
√

δi+δj
di+dj

Xij . The geodesic from D to Δ is γ(t) =

((1 − t)
√
D + t

√
Δ)2. Let us define X(t) =

[√
((1−t)di+tδi)2+((1−t)dj+tδj)2

di+dj
Xij

]
i,j

and let 
us check that ∇γ̇X = 0. We compute:

[X0(t)]ij = [X(t)]ij
γi(t) + γj(t)

= 1√
di + dj

√
((1 − t)di + tδi)2 + ((1 − t)dj + tδj)2

Xij ,

γ̇(t) = 2(
√

Δ −
√
D)((1 − t)

√
D + t

√
Δ),
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γ̇0(t) = 1
2 γ̇(t)γ−1(t) = 1

2γ
−1(t)γ̇(t) = (

√
Δ −

√
D)((1 − t)

√
D + t

√
Δ)−1,

[Ẋ(t)]ij =
2(
√
δi −

√
di)((1 − t)di + tδi) + 2(

√
δj −

√
dj)((1 − t)dj + tδj)

2
√
di + dj

√
((1 − t)di + tδi)2 + ((1 − t)dj + tδj)2

Xij

= (
√
δi −

√
di)((1 − t)di + tδi)[X0(t)]ij

+ [X0(t)]ij(
√
δj −

√
dj)((1 − t)dj + tδj)

= [γ̇0(t)γ(t)X0(t) + X0(t)γ(t)γ̇0(t)]ij ,

∇γ̇(t)X = Ẋ(t) − (γ̇0(t)γ(t)X0(t) + X0(t)γ(t)γ̇0(t)) = 0.

So the geodesic parallel transport from Σ = PDP� to Λ = PΔP� is ΠΣ→ΛX =
P
[√

δi+δj
di+dj

[P�XP ]ij
]
i,j

P�. �
Proof of equation of the geodesic parallel transport in Table 7. The geodesic parallel 
transport equation is ∇γ̇(t)X = 0 along the geodesic γ(t) = γh(t)γh(t)� between 
Σ and Λ ∈ Sym+(n), where γh(t) = (1 − t)Σ1/2 + tΣ−1/2(Σ1/2ΛΣ1/2)1/2. For a 
vector field X(t) on Sym+(n) defined along γ(t), we can define the horizontal lift 
Xh(t) = X0(t)γh(t) ∈ Hγh(t) where X0(t) is defined by X(t) = γ(t)X0(t) + X0(t)γ(t). 
We are going to prove that X(t) is the geodesic parallel transport of X ∈ TΣSym+(n) if 
and only if X0(t) satisfies the following ODE:

γ(t)Ẋ0(t) + Ẋ0(t)γ(t) + γh(t)γ̇h�X0(t) + X0(t)γ̇hγh(t)� = 0. (A.1)

To rewrite the geodesic parallel transport equation ∇γ̇(t)X = 0, we need to compute the 
following derivatives:

Ẋ(t) = γ(t)Ẋ0(t) + Ẋ0(t)γ(t) + γ̇(t)X0(t) + X0(t)γ̇(t),

γ̇(t) = γ̇hγh(t)� + γh(t)γ̇h� where γ̇h = γ̇0(t)γh(t).

Now, we simply rewrite the equation:

∇γ̇(t)X = 0 ⇐⇒ Ẋ(t) − (γ̇0(t)γ(t)X0(t) + X0(t)γ(t)γ̇0(t)) = 0

⇐⇒ γ(t)Ẋ0(t) + Ẋ0(t)γ(t)

+ (γ̇(t) − γ̇hγh(t)�)X0(t) + X0(t)(γ̇(t) − γh(t)γ̇h�) = 0

⇐⇒ γ(t)Ẋ0(t) + Ẋ0(t)γ(t) + γh(t)γ̇h�X0(t) + X0(t)γ̇hγh(t)� = 0. �
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