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Symmetric Positive Definite (SPD) matrices are ubiquitous
in data analysis under the form of covariance matrices
or correlation matrices. Several O(n)-invariant Riemannian
metrics were defined on the SPD cone, in particular the
kernel metrics introduced by Hiai and Petz. The class of
kernel metrics interpolates between many classical O(n)-
invariant metrics and it satisfies key results of stability and
completeness. However, it does not contain all the classical
O(n)-invariant metrics. Therefore in this work, we investigate
super-classes of kernel metrics and we study which key results
remain true. We also introduce an additional key result
called cometric-stability, a crucial property to implement
geodesics with a Hamiltonian formulation. Our method to
build intermediate embedded classes between O(n)-invariant
metrics and kernel metrics is to give a characterization of
the whole class of O(n)-invariant metrics on SPD matrices
and to specify requirements on metrics one by one until
we reach kernel metrics. As a secondary contribution, we
synthesize the literature on the main O(n)-invariant metrics,
we provide the complete formula of the sectional curvature
of the affine-invariant metric and the formula of the geodesic
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parallel transport between commuting matrices for the Bures-
Wasserstein metric.
© 2023 The Authors. Published by Elsevier Inc. This is an
open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Symmetric Positive Definite (SPD) matrices are ubiquitous in data analysis because
in many situations, the data (signals, images, diffusion coefficients...) can be represented
by their covariance matrices. This is the case in the domains of Brain-Computer Inter-
faces, diffusion and functional MRI, Computer Vision, Diffusion Tensor Imaging (DTI)...
SPD matrices form a cone in the vector space of symmetric matrices so a first idea to
compute with SPD matrices could be to perform Euclidean computations on symmetric
matrices. However, this method has several drawbacks. As geodesics are straight lines,
they leave the SPD cone at finite time so extrapolation methods could lead to non
admissible matrices, namely with negative eigenvalues. Moreover, the trace is linearly
interpolated but other invariants such as the determinant are not monotonically inter-
polated along geodesics. For example in DTI, where SPD matrices are represented by
3D ellipsoids, the ellipsoids along the geodesic can have a larger volume than the two el-
lipsoids at extremities, which leads to non realistic predictions in fiber tracking (swelling
effect).

Hence, other Riemannian metrics were used in applications to solve these prob-
lems. The affine-invariant/Fisher-Rao metric [28,23,13,9,19,4,34,3] provides a Rieman-
nian symmetric structure to the SPD manifold: it is negatively curved, geodesically
complete (matrices with null eigenvalues are rejected to infinity), it is invariant under
the congruence action (which, in the context of covariance matrices, corresponds to the
invariance of the feature vector under affine transformations) and it is inverse-consistent.
The log-Euclidean metric [2] is diffeomorphic to a Euclidean inner product: it also pro-
vides a Riemannian symmetric space, it is geodesically complete and inverse-consistent.
It is not curved and it is not affine-invariant although it is still invariant under orthogonal
transformations and dilations. The Bures-Wasserstein/Procrustes metric [6,7,31,16] is a
positively curved quotient metric which is also invariant under orthogonal transforma-
tions. It is not geodesically complete but geodesics remain in the cone with boundaries:
this means that this metric is suited for computing with Positive Semi-Definite (PSD)
matrices. Many other interesting metrics exist with different properties: Bogoliubov-
Kubo-Mori [24,17], polar-affine [29], Euclidean-Cholesky [35], log-Euclidean-Cholesky
[14], log-Cholesky [25,15], power-Euclidean [8], and more recently power-affine [33],
alpha-Procrustes [10], mixed-power-Euclidean [32].

Except those named after Cholesky, all the other Riemannian metrics cited above are
invariant under orthogonal transformations. If we consider SPD matrices as covariance
matrices, this transformation corresponds to a rigid-body transformation of the feature
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vector X € R™ —— RX + Xy where R is an orthogonal matrix. In 2009, Hiai and
Petz introduced the subclass of kernel metrics [11], which are O(n)-invariant metrics
indexed by smooth symmetric maps ¢ : (RT)? — RT. This class satisfies key results:
it contains most of the cited O(n)-invariant metrics, it is stable under a certain class of
diffeomorphisms and it provides a sufficient condition for geodesic completeness. This
sufficient condition becomes necessary if we restrict the class to the subclass of mean
kernel metrics which is indexed by kernel maps of the form ¢ = m? where m : (R*)? —
R™ is a symmetric homogeneous mean and 6 € R is a power. However, the class of kernel
metrics does not contain all the aforementioned O(n)-invariant metrics. The main goal
of this paper is to study the super-classes of kernel metrics, especially the whole class of
O(n)-invariant metrics for which we give a characterization. More precisely, our objective
is to determine which key results on kernel metrics can be generalized and thus to
understand better the specificity of kernel metrics within these super-classes.

1.1. Results and organization of the paper

In the remainder of the Introduction, we give the notations and conventions used in
the paper. In Section 2, we introduce two preliminary concepts and one result. The first
concept is the notion of O(n)-equivariant map on symmetric matrices. We especially
explain how to build them from a map defined on diagonal matrices via the spectral
theorem because this is a procedure we need several times in the paper. Then the sec-
ond concept is a particular case of the previous one, called univariate map. These are
maps characterized by a map on positive real numbers. They are particularly interesting
because their differential is known in closed form modulo eigenvalue decomposition and
because the class of kernel metrics is stable under univariate diffeomorphisms. Finally
the result is the characterization of O(n)-invariant inner products on symmetric matri-
ces. These inner products are composed of two terms, the Frobenius term and the trace
term, which have different weights so they form a two-parameter family. In the proof,
we give elementary tools that we reuse when we characterize O(n)-invariant metrics on
SPD matrices.

To explain why kernel metrics do not encompass all the O(n)-invariant metrics cited
above, we need to present them or at least the most important ones. One can notice
that many metrics and families of metrics are actually based on five of them, namely
the Euclidean, the log-Euclidean, the affine-invariant, the Bures-Wasserstein and the
Bogoliubov-Kubo-Mori metrics. That is why in Section 3, we synthesize the literature
on these five noted metrics. For each of them, we give the fundamental Riemannian op-
erations (squared distance, Levi-Civita connection, curvature, geodesics, logarithm map,
parallel transport map) when they are known. As a secondary contribution of the paper,
we give the complete formula of the sectional curvature of the affine-invariant metric and
we also give, for the Bures-Wasserstein metric, the new formula of the parallel transport
between commuting matrices and simpler formulae of the Levi-Civita connection, the
curvature and the parallel transport equation.
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In Section 4, after reviewing kernel metrics and their key properties, we give two new
observations on them. Firstly, the cometric of a metric on SPD matrices can be considered
itself as a metric on SPD matrices by identifying the vector space of symmetric matrices
and its dual via the Frobenius inner product. Therefore we observe that the cometric
of a kernel metric defined by the kernel map ¢ is a kernel metric characterized by 1/¢.
This remarkable result has an important consequence for the numerical computation of
geodesics. Indeed, the geodesic equation V44 = 0, which is a second order equation, has
a Hamiltonian version which is a first order equation that only involves the cometric,
not the Christoffel symbols. The Hamiltonian equation is much simpler to integrate and
numerically more stable, that is why it is often preferred in numerical implementations,
for instance in the Python package geomstats [18]. Hence knowing a simple explicit
formula for the cometric helps to compute numerically the geodesics. Secondly, there
is a natural extension of kernel metrics that encompasses all the aforementioned O(n)-
invariant metrics, which still satisfies the key properties of kernel metrics including the
cometric stability. Roughly speaking, kernel metrics look like the Frobenius inner product
on symmetric matrices where the elementary quadratic forms (the X fj) are weighted by
a coefficient involving the kernel map ¢ and depending on the point. Since the Frobenius
inner product is not the only O(n)-invariant inner product on symmetric matrices as
explained above, the trace term can be added to the framework of kernel metrics to form
extended kernel metrics.

In Section 5, we characterize the class of O(n)-invariant metrics on SPD matrices by
means of three multivariate maps a, 3,7 : (RT)" — R operating on the eigenvalues
(dy, ..., dy) of the SPD matrix and which satisfy three conditions of symmetry, compatibil-
ity and positivity (Theorem 5.1). Then, we observe that kernel metrics are characterized
by two properties within this family. They are ortho-diagonal: it means that the metric
matrix is diagonal, i.e. § = 0. They are bivariate: it means that the remaining func-
tions a and v do not depend on their n — 2 last terms, and the compatibility condition
imposes that they are equal so we can write v = a = 1/¢ : (RT)? — RT. Since the
term “kernel” is quite overloaded in many different contexts (such as in Reproducing
Kernel Hilbert Spaces in machine learning or in kernel density estimation/regression in
statistics), we propose to designate them as Bivariate Ortho-Diagonal (BOD) metrics.
Afterwards, we give key properties of O(n)-invariant metrics in analogy with the key
properties of BOD (kernel) metrics. Since we do not have a closed-form expression for
the cometric anymore, we introduce the intermediate class of bivariate separable metrics
which is cometric-stable and we give the expression of the cometric. A summary of the
classes of metrics defined in the paper is shown on Fig. 1.

Section 6 is dedicated to the conclusion.

1.2. Notations and conventions

Manifolds Our manifold-related notations are summarized in Table 1. A chart ¢ : U C
M — R¥ provides a local basis of vectors (01, ...,0n) where 0 = 8;:,6 is a short
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Fig. 1. Super-classes of kernel metrics.

Table 1

Notations in a manifold.
TeM, TM Tangent space at z, tangent bundle
do f,df Differential of map f at z, differential of map f
5 fe Pullback via f, pushforward via f
¥ Derivative of curve ~y
g,G Metric on Sym™ (n), metric on another space
d Riemannian distance on Sym™ (n)
v Levi-Civita connection
R Curvature R(X,Y)Z = VxVyZ - VyVxZ - Vx,v|Z
Yz, x) (t) Geodesic at time ¢t with v(0) = ¥ and 4(0) = X
Exp, Log Riemannian exponential and logarithm maps
MysaX Parallel transport of X along curve v from ¥ to A

notation defined for all differentiable maps f : M — R and at each point x € U

by (O f)z = 6({9%{1) o’ A vector field X can be locally decomposed on this basis,
p(x
X = X*0,, where X* : if — R are the coordinate functions of X and where we used

Einstein’s summation convention. As we deal with matrices in this paper, the coordinates
often have two indices: X = X% 0ij.

Manifolds of matrices We denote the matrix spaces as shown in Table 2. The (i, j)-
coefficient of a matrix M is denoted M;;, [M];; or M(i,j) depending on the context. To
build a matrix from its coefficients, we denote M = [M;;]1<i j<n Or simply M = [M;;]; ;.
We denote (C;;) the canonical basis of matrices, E;; = Cy;, Eij = %(Cij + Cj;) and
Fry = 3(Cy + Ci) for i # j and k,l € {1,..,n}. The norms are denoted |M|; =
S, (M| and [|M [}y = /ir(MALT).
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Table 2
Notations for matrix spaces.
Vector space of matrices Manifold of matrices
Mat(n) n X n real matrices GL(n) General Linear group
GL* (n) Positive determinant
Sym(n) Real symmetric Sym™(n) Symmetric positive definite
Skew(n) Real skew-symmetric O(n) Orthogonal group
SO(n) Rotation group
Diag(n) Diagonal Diag™ (n) Positive diagonal

The congruence action is the following action of the general linear group on matrices
x 1 (A, M) € GL(n) x Mat(n) — AMAT € Mat(n) which leaves stable the spaces
of symmetric matrices and SPD matrices. Then, A € GL(n) naturally acts on M =
M“jl"“’iqjqciljl R ® Ciqjq c Mat(n)®q by:

As M = MHitssiqdq (AxCij)) @ @ (AxCy j,) € Mat(n)®9.

GL(n) also acts by x on any Cartesian product [[;_; Sym(n)®% component-wise, espe-
cially on Sym(n)P.

Let £ and F be two spaces on which GL(n) acts by . Let G C GL(n) be a subgroup
of GL(n). Amap f:& — F is:

- G-equivariant if f(AxM)=Ax f(M) forall A€ G, forall M € &,
- G-invariant if f(Ax M) = f(M) for all A € G, for all M € £.

In particular, a Riemannian metric g : Sym™(n) x Sym(n) x Sym(n) — R (or an
inner product) is G-invariant if gay 4T (AXAT, AXAT) = gn(X,X) forall A€ G, ¥ €
Sym™(n) and X € Sym(n).

The symmetric group of order n is denoted by &,, and the permutations by small
greek letters o, 7.... The permutation matrix associated to the permutation o, which
sends any basis (e1, ..., e,) of R™ to the permuted basis (€,(1), -+, €x(n)), is denoted P.
We have Py, (i,7) = 04(;),; where d is the Kronecker symbol. Given a matrix M € Mat(n),
we have (P, MP,)(i,j) = M(c(i),0(5)).

The manifold of SPD matrices The manifold Sym™ (n) is an open set of the vector space
of symmetric matrices Sym(n). Hence, the canonical immersion id : Sym™ (n) < Sym(n)
provides:

- An identification between the tangent space Tx;Sym™ (n) and the vector space Sym(n)
at any point ¥ € Sym™(n) by dsid : TxSym™(n) =+ Sym(n). Thus, any tangent
vector X € TsSym™(n) is considered as a symmetric matrix: X = dxid(X) € Sym(n).

- A global chart (id, Sym™ (n)) of the manifold Sym™ (n), thus a global derivation dxY =
X(0;;Y*)0y, defined by derivation of coordinates in this global chart. More generally,
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if f: Sym™(n) — Sym(n) is a diffeomorphism on its image, it provides a global
derivation denoted 9.

Another important tool is the matrix exponential exp(X) = Z:a ),i—,k which is a
diffeomorphism between Sym(n) and Sym™ (n), and therefore its inverse, the symmetric
matrix logarithm log : Sym™ (n) — Sym(n).

The spectral theorem ensures that symmetric matrices are orthogonally congruent
to a diagonal matrix. If the symmetric matrix is SPD, then the diagonal matrix has
positive elements on the diagonal. Most of the time in this paper, for an SPD matrix
¥ € Sym*t(n), we denote ¥ = PDPT one spectral decomposition with P € O(n)
and D = diag(dy,...,d,) € Diag"(n). When we consider tangent vectors X,Y,... €
TxSym™ (n), we denote X’ = PT X P so that every matrix expressed in the orthogonal
basis given by P is denoted with a prime: X = PX'PT Y = PY'PT, ..

Products of symmetric matrices share two nice properties with symmetric matrices.
First, if X,Y € Sym(n), then eig(XY) C R where eig denotes the set of complex
eigenvalues. Second, if ¥, A € Sym™(n), then XA has a unique square-root matrix that
represents a positive definite self-adjoint endomorphism, it is denoted (ZA)I/ 2_/ZA=
BU2(D/2AR2)1/25-1/2 = A-1/2(AV2ZEA/2)1/271/2,

2. Preliminary concepts and results
2.1. Extending maps defined on diagonal matrices

Thanks to the spectral theorem, O(n)-equivariant maps f : Sym™(n) — F are
characterized by their values on positive diagonal matrices. A question that arises several
times in this paper is: are we allowed to extend a map f : Diag™(n) — F into an O(n)-
equivariant map f : Sym™ (n) — F by the formula f(PDPT) = Px f(D)? To do so, we
need to show that given two eigenvalue decompositions ¥ = PDPT = QAQT, we have
Px f(D) = Q* f(A). Note that (Q,A) is highly constrained by (P, D). The following
lemma gives explicitly the possible cases, hence it tells exactly what is to be checked in
such an extension process. We omit the proof.

Lemma 2.1 (Relation between two eigenvalue decompositions of an SPD matriz).
Let D,A € Diag™(n) and P,Q € O(n) such that PDPT = QAQ". Let 7 €
&(n) be a permutation that orders the values of D decreasingly, i.e. such that D =
PTDiag()qul,...,/\pImp)PTT with Ay > ... > A, > 0. Then, there exists permutation
o € 6(n) and a block-diagonal orthogonal matriz R = Diag(Ry, ..., R,) € O(n) with j-th
block R; € O(m;) such that A= P P'DP,P, and Q = PP, RP,.

Proof. A is clearly a permutation of D so there exists ¢ € &(n) such that A =
PTPTDP,P,. Let R = PIPTQP]. Then PDPT = QAQT is equivalent to
Diag(Ailm,, -, Aplm, )R = RDiag(Ailm,, ..., \plym,). Decomposing R by blocks, the
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off-diagonal blocks have to be null since the A;’s are distinct. Since RRT = I,, the
diagonal blocks are orthogonal. O

This result tells what is to be checked to extend f : Diag™(n) — F. In the paper,
we only need to extend tensorial maps T : Diagt(n) — Sym(n)®? @ (Sym(n)*)®P or
equivalently T : Diag™ (n) x Sym(n)? — Sym(n)®? for p,q € N. Hence, we state the
result in this particular case though it is valid for F.

Lemma 2.2 (Spectral extension). Let T : Diag™(n) x Sym(n)? — Sym(n)®? be a map
such that for all Dy = Diag(Ailm,, ..., A\pIm,) with Ay > ... > X, > 0 and for all
X € Sym(n)P:

(a) T(Do, X) = P, xT(P] DyP,, P x X) for all permutations o € &(n),
(b) T(Dg, X) = RxT(Dgy, R" xX) for all block-diagonal orthogonal matrices R € O(n),
R = Diag(Rl, . Rp) with Rj S O(mj)

Then, T : Sym™ (n) x Sym(n)? — Sym(n)®? defined by T(PDPT,X) := PxT(D,P" %
X) extends T, with D € Diag™ (n), P € O(n) and X € Sym(n)P.

Proof. Assume that PDPT = QAQ". Then by Lemma 2.1, let 0,7 € &(n) and R
as in (b) such that Dy = PTDP, = Diag(MIpm,, ..., \pIm,), A = P DyP, and Q =
PP,RP,. Then, by applying (a) with o, (b) with R and (a) with 7, we easily see that
Q*T(A,QT«X)=PxT(D,P" % X). Thus T : Sym™ (n) x Sym(n)? — Sym(n)®7 is
well defined. O

In practice in the paper, we use Lemma 2.2 for:

- p=0,q=1for f:Diag"(n) — Sym(n) in Section 2.2,
- p=1,q=1for ®: Diag"(n) x Sym(n) — Sym(n) in Section 4.2.3,
- p=2,q=0 for g: Diag"(n) x Sym(n) x Sym(n) — R in Section 5.2.

2.2. Univariate maps

We apply Lemma 2.2 to a real function f : R™ — R, extended to positive diagonal
matrices f : Diag™ (n) — Diag(n) by f(Diag(dy, ...,dy)) := Diag(f(d1), ..., f(dy)).

(a) Since f is defined component-wise, we have f(D) = P, f(P,) DP,)P].

(b) As f(ALm,) = f(A)Im,, the matrix Rf(D)R" is a block diagonal matrix with
j-th block f(A))R;R] = f(\j)Im,, which corresponds to f(D)’s j-th block so
RI(D)RT = f(D).

Therefore f can be extended into an O(n)-equivariant map f : Sym™(n) — Sym(n)
by f(PDP") = Pf(D)PT. This extension is called the functional calculus of f in
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Functional Analysis. In this paper, we call it a univariate map. The symmetric matrix
logarithm log : Sym™ (n) — Sym(n), the power diffeomorphisms pow,, : Sym*(n) —
Sym™ (n) with p # 0 or the constant map pow, : ¥ € Sym™(n) — I,, € Sym(n) are
examples of univariate maps.

Definition 2.1 (Univariate maps). A univariate map is the extension of a real function
f: Rt — R into an O(n)-equivariant map f : Sym™*(n) — Sym(n) by the equality
f(PDPT) = PDiag(f(dy), ..., f(d,)) PT. Moreover [5, Theorem V.3.3], if f € C}(R*),
then its extension f is differentiable and the differential df : Sym™(n) x Sym(n) —
Sym(n) is O(n)-equivariant, thus it is characterized by its values at diagonal matrices
D € Diag™ (n), given by:

VX € Sym(n), [dp f(X)];; = f(di, d;) Xy, (1)

where fU is the first divided difference defined below. Thus, a C'-diffeomorphism f :
R+ — R* is extended into a diffeomorphism f : Sym™ (n) — Sym™ (n).

Definition 2.2 (First divided difference). [5] Let f € C1(RT). The first divided difference
of f is the continuous symmetric map fI : (R*)?2 — R defined for all 2,5 € R by:

f@)—fly)
[1] _ = if x#£y ' 9
fH(z,y) { f,(;’) ey } (2)

2.3. O(n)-invariant inner products on symmetric matrices

To characterize the O(n)-invariant metrics on SPD matrices, an appropriate starting
point is the characterization of O(n)-invariant inner products on the tangent space, i.e.
on symmetric matrices. The following theorem states that such inner products form a
two-parameter family indexed by a Scaling factor @ > 0 and a Trace factor 8 > —a/n.

Theorem 2.1 (Characterization of O(n)-invariant inner products on symmetric matri-
ces). Let (-|-) : Sym(n) x Sym(n) — R be an inner product on symmetric matrices. It is
O(n)-invariant if and only if there exists (o, ) € ST = {(a, ) € R?| min(a, a +nf) >
0} such that:

VX € Sym(n), (X|X) = atr(X?) 4+ Btr(X)>. (3)

Moreover, the linear isometry that pulls the Frobenius inner product back onto this one
is Fyq(X) = qX + E=4t(X) I, with p=+/a+nB and q = /a.

There are several proofs of this elementary result. We give one based on the following
lemma because we reuse it to characterize O(n)-invariant metrics on SPD matrices. This
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lemma gives the characterization of inner products on symmetric matrices which are
respectively invariant under two subgroups of O(n):

(a) the group D*(n) := {¢ = Diag(+1,...,.£1)} = {—1,+1}" of diagonal matrices
taking their diagonal values in {—1,+1},

(b) the group &*(n) := {eP, € Mat(n)|(¢,0) € D¥(n) x &(n)} = D*(n) x &(n) of
signed permutation matrices.

Lemma 2.3 (Characterization of inner products on symmetric matrices invariant under
D*(n) or &*(n)). Let (-|-) : Sym(n) x Sym(n) — R be an inner product on symmetric
matrices.

(a) It is D*(n)-invariant if and only if there exist ™ ( U positive real numbers ;=
aji > 0 for i # j and a matriz S € Sym™ (n) such that.

VX € Sym(n), (X|X) = i X5+ Y 8i;XuXj;. (4)
1#] i,J

(b) It is &*(n)-invariant if and only if there exist (o, 3,7) € R with a > 0, v > 8
and v+ (n — 1) > 0 such that:

i#] i#]

Proof of Lemma 2.3.

(a) We write (X|X) = Zm,k’l 5,151 X X a general inner product. Note that a;;x =
Gjikl = Gjilk = Gijk by symmetry of X and a;j k1 = ax,i; by symmetry of the inner
product. We use the invariance under the matrix &, € D*(n) with —1 on the m-th
component and 1 elsewhere, for m € {1,...,n}. We denote P XOR Q = 1 if the
“exclusive or” between propositions P and Q holds, and otherwise P XOR Q = 0.
Thus, we have [g,,Xen]i; = (—1)F=XORG=) X0 and [e,, XemijlemXemlu =
OiikimXij Xpt With 0;jppm = (—1)[F=m)XORG=m)XOR[(k=m)XOR(I=m)] ¢ f_1 1},
Then the equality (X|X) = (e, Xem|emXem) leads to aijp = 0;jkimij k. There-
fore, if there exists m € {1,...,n} such that 6;;xm,m = —1, then a;; 5 = 0. One can
easily show that 0;;xim = —1 if and only if m equals exactly one or exactly three
index(es) among i, j, k,[. There exists such an m if:

- card({i,7,k,1}) =4, i.e. i, j, k, | are distinct,
- card({i,j,k,1}) = 3,
- card({7,7,k,1}) = 2 and three of them are equal.
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Thus we are left with (X|X) = ZKj 4aij,ini2j + Z” a4, X X;;. Then, we
get the expression (4) by denoting o;; = 2a,j;; and S;; = aj;; = Sji. Since
the quadratic form splits into two quadratic forms defined on supplementary vec-
tor spaces (off-diagonal and diagonal terms), it is positive definite if and only if
these two quadratic forms are positive definite, i.e. ay; > 0 for all ¢ # j and S
is positive definite. Conversely, Equation (4) clearly defines D¥ (n)-invariant inner
products.

(b) A &*(n)-invariant inner product on symmetric matrices is D¥ (n)-invariant so it
is of the form of Equation (4). Since it is invariant under permutations, we have
i = ap =: cvand S = Sy =: Bforalli # jand k # [ and S; = Sj; = v
for all 4, 7. Under these notations, Equation (4) becomes Equation (5). Since S =
(y = B) I, + 11T, then S € Sym™(n) if and only if y — 8 > 0 and v — B +
nB > 0 as expected. Conversely, Equation (5) clearly defines G*(n)-invariant inner
products. O

Proof of Theorem 2.1. An O(n)-invariant inner product on symmetric matrices is

&% (n)-invariant so it is of the form of Equation (5). We define the rotation ma-

. R, 0 . 1 1
trix R = < 0/4 In2) € O(n) with R,y = @ (_1 1) € O(2) and we apply

it to the matrix X = (;,WT };) € Sym(n) with M = (Z lc)> € Sym(2). Since

RW/4MR;T'—/4 =1 <a—|;c_—;2b a—Ec_—a%)’ the coefficient of b? in (X|X) in Equation
(5) is 2 and the coefficient of b? in (RXRT|RXRT) is 2y — 2. Hence by invariance,
v = a+ f and the positivity condition becomes a > 0 and « + nf > 0. Conversely,

Equation (3) clearly defines O(n)-invariant inner products. O
3. Main O(n)-invariant metrics on SPD matrices with new formulae

The goal of this section is to describe the main O(n)-invariant metrics on SPD matrices
that can be found in the literature, namely the Euclidean (abbreviated ‘E’, Section 3.1),
the Log-Euclidean (‘LE’, Section 3.2), the Affine-invariant (‘A’, Section 3.3), the Bures-
Wasserstein (‘BW’, Section 3.4) and the Bogoliubov-Kubo-Mori (‘BKM’, Section 3.5)
metrics. For each metric, we give a short explanation on the way it was introduced, some
useful references and a synthetic table that summarizes its fundamental Riemannian
operations: squared distance, Levi-Civita connection, curvature, geodesics, logarithm
map, parallel transport map (abbreviated ‘PT map’).

Our contributions are (1) the synthesis of many results scattered in the literature
especially for the Bures-Wasserstein metric, (2) the complete formula of the sectional
curvature of the affine-invariant metric, (3) the new formula of the parallel transport
between commuting matrices and new expressions of the Levi-Civita connection, the
curvature and the parallel transport equation of the Bures-Wasserstein metric.
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Table 3
Riemannian operations of O(n)-invariant Euclidean metrics on SPD matrices.
Metric gs(X, X) = a|| X||3 + Btr(X)?
Sq. dist. d(Z,A)? = al|A — 2|2 + B(tr(A) — tr(2))?
Levi-Civita VxY =0xY
Curvature R=0
Geodesics Y(=,x)(t) =X +tX for t € I where I depends on Apmin =
min eig(Zle) and Amax = max eig(EilX) as follows:
o If Amin < 0 < Amax, then I = (=1/Amax, —1/Amin)-
e If 0 < Amin, then I = (=1/Amax, +00).
o If Apax < 0, then I = (—o0, —1/Amin)-
Logarithm Logss(A)=A—-3%
PT map Does not depend on the curve:
TsSym™(n) — Tx\Sym™(n)
LI5SV c =1 s —
X —  (daid) " (dsid(X)) = X

3.1. O(n)-invariant Euclidean metrics

A Euclidean metric on SPD matrices is the pullback of an inner product (-|-) on
symmetric matrices by the canonical immersion id : Sym™ (n) — Sym(n). As we know
O(n)-invariant inner products on symmetric matrices from Theorem 2.1, we know all
the O(n)-invariant Euclidean metrics on SPD matrices.

Definition 3.1 (O(n)-invariant Euclidean metrics on SPD matrices). An O(n)-invariant
Euclidean metric on SPD matrices is a Riemannian metric of the following form for all
¥ € Sym™(n) and X € Sym(n):

gg(oc,ﬁ)(X7 X)= atr(XQ) + ﬁtr(X>2, (6)

with (o, 8) € ST, i.e. @« > 0 and 8 > —«a/n. Its Riemannian operations are detailed in
Table 3.

3.2. O(n)-invariant log-Euclidean metrics

A log-Euclidean metric on SPD matrices [2] is the pullback of an inner product (:|-)
on symmetric matrices by the symmetric matrix logarithm log : Sym™ (n) — Sym(n).
Hence the SPD manifold endowed with the log-Euclidean metric is isometric to a
Euclidean space, thus geodesically complete. From Theorem 2.1 and the fact that
dlog : Sym™(n) x Sym(n) — Sym(n) is O(n)-equivariant, we know all the O(n)-
invariant log-Euclidean metrics.

Definition 3.2 (O(n)-invariant log-Euclidean metrics on SPD matrices). An O(n)-
invariant log-Euclidean metric on SPD matrices is a Riemannian metric of the following
form for all ¥ € Sym™(n) and X € Sym(n):
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Table 4
Riemannian operations of O(n)-invariant log-Euclidean metrics on SPD ma-
trices.

Metric gs(X, X) = allds log(X) |2 + Btr(Z71 X)?
Sq. dist. d(Z,A)? = al|log A — log =||3 + B log(det(A)/ det(X))?
Levi-Civita VxY = aﬁgg Y
Curvature R=0
Geodesics vt € R, vz, x)(t) = exp(log(X) + t ds log(X))
Logarithm Logs(A) = (ds log) "' (log A — log %)
PT map Does not depend on the curve:
M,y : { TsSym™T(n) — TA§)17m+ (n)
X —  (dalog) ™' (dx log(X))
g5 "7 (X, X) = atr(ds log(X)*) + B (27 X)?, (7)

with (a,8) € ST, i.e. @« > 0 and § > —a/n. Moreover, this metric is the pullback
of the Frobenius log-Euclidean metric (o« = 1 and 8 = 0) by the isometry f,, : ¥ €
Sym™(n) — exp(F,,(logX)) = det(2)+'%9 € Sym™t(n) with p = a+nB and
q = v/o, where F, ; was defined in Theorem 2.1. Its Riemannian operations are detailed
in Table 4.

3.8. Affine-invariant metrics

Affine-invariant metrics were introduced in many different ways. We adopt here the
most recent viewpoint [22], which underlies the term “affine-invariant”. Consider SPD
matrices ¥ € Sym™(n) as covariance matrices of a random vector X € R”, namely
L=1E((X - X)(X — X)T) with X = E(X), where E denotes the expectation. Define
the affine action on vectors ((4, B), X) € (GL(n) x R") x R" — AX + B € R". Then,
the induced action on SPD matrices is ((4, B),¥) € (GL(n) x R") x Sym™(n) —
AYAT € Sym™(n). It is simply the congruence action of GL(n) on matrices. Hence
an affine-invariant metric on SPD matrices simply designates a GL(n)-invariant met-
ric.

Historically, Siegel introduced a metric on the half space § = {X + iX|X €
Sym(n),%~ € Sym™(n)} which is invariant under the action of the symplectic group
[27]. As a consequence, the restriction of this metric to SPD matrices by the immersion
¥ € Sym™(n) < i¥ € S was proved to be invariant under GL(n) and under inversion
and to provide a Riemannian homogeneous structure to Sym™ (n). The expression of this
metric is g»(X,Y) = tr(Z71X2D7LY).

Rao considered the Fisher information of a family of densities as a Riemannian metric
on the space of parameters [26] and Skovgaard detailed all the properties of the Fisher-
Rao metric of the family of multivariate Gaussian densities [28]. By restriction to the
family of centered multivariate Gaussian densities, we get the same metric as Siegel’s
scaled by a factor 1/2, namely g5(X,Y) = 1tr(S7'XE71Y). In addition, Amari and
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Nagaoka stated that the canonical immersion id : ¥ € Sym™(n) — ¥ € Sym(n) and
the inversion inv : ¥ € Sym™(n) — 7! € Sym(n) give two dual coordinate systems
with respect to this metric [1].

Between 2005 and 2007, this metric was used in many computational methods for
Diffusion Tensor Imaging [23,13,9,19,4], in functional MRI [34] and in Brain-Computer
Interfaces [3]. It was claimed to be the unique affine-invariant metric. However, Pennec
showed that GL(n)-invariant metrics are characterized by O(n)-invariant inner products
on the tangent space at I,, that is on symmetric matrices. Hence from Theorem 2.1,
there is actually a two-parameter family of affine-invariant metrics [22].

Definition 3.3 (Affine-invariant metrics on SPD matrices). An affine-invariant metric
on SPD matrices is a GL(n)-invariant Riemannian metric. It is of the following form for
all ¥ € Sym™(n) and X € Sym(n):

ga @ (X, X) = atr((71X)%) + Btr(S71X)2, (8)

with (e, 8) € ST, i.e. @« > 0 and 8 > —a/n. The Fisher-Rao metric often refers to
the affine-invariant metric with (o, 5) = (1/2,0). Moreover, given « > 0, this metric
is the pullback of the affine-invariant metric with 8 = 0 by the isometry f,1 : X €

Sym™ (n) — det(X)" " € Sym* (n) with p = \/%"5.

The following proposition details the characteristics of homogeneity and symmetry
of these Riemannian metrics. The Riemannian operations, essentially due to Skovgaard
[28], are detailed in Table 5. The second term of the sectional curvature is part of our
contributions as it seems to be forgotten in [28].

Proposition 3.1 (Riemannian symmetric structure of the affine-invariant metric). The
Riemannian manifold (Sym™ (n), g*(®) is a Riemannian symmetric space, hence it is
geodesically complete. The underlying homogeneous space is GL'(n)/SO(n) and g*(®#)
is a quotient metric obtained by the submersion 7 : A € GL*(n) — AAT € Sym™(n)
from the left-invariant metric Ga(M, M) = datr(A"TM(A M) ") +48tr (A1 M)? for
A€ GL"(n) and M € TAGL™ (n). The symmetries are sx. : A € Sym™ (n) — LAY €
Sym™ (n).

Proof of sectional curvature in Table 5. Firstly, we compute the sectional curvature of
the affine-invariant metrics for 3 = 0 at ¥ € Sym™'(n) in the orthonormal basis
(SYV2E;;35Y2) 1 <cicj<n, With By, E;j for i # j defined by Ej;(k,1) = §;,.64 and Ejj(k,1) =
% As kx(X,Y) = % we have ky(SY/2E;; 512 Y2 E, w1/2) =
%tr((EijEkl)Q - (EijEkl)(EijEkl)T) so we only need to compute a few expressions. In
the following equalities, when an elementary matrix E has two different indexes, they
are assumed to be distinct:
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Table 5
Riemannian operations of affine-invariant metrics on SPD matrices.
Metric gs(X, X) = a||=71 X3 + Btr(Z71X)?
Sq. dist. d(=,M)? = o log(Z™V2AS 12|12 4 8 log(det(£1A))?
Levi-Civita (VxY)s = (0xY) s — 2(X27'Y + YE1X)
Curvature The sectional curvature k € [—1/2a,0]. More precisely, the

Riemann and sectional curvatures are:

Rs(X,Y,2,7)= ¢(X2 'ys Yz 'T -T2 'Z)=7 1)
ks (DV2EGRY2 B2 ESM2) = —1/4a for i # j

ks (R2ESSY2 SV2EI ) = —1/8afor i £ j £ K # i

where ELBJ =E;; — ln;ppdijln. Other terms are null.

Geodesics vt € R, vz, x)(t) = n/2 exp(t o2 x w2 nt/2
Logarithm Logs (A) = n1/21og(n~1/2An"1/2)n1/2
PT map Depends on the curve. Along a geodesic:
o [ TeSym™T(n) — TxSym™(n)
ToA X —  (AZTH)/2x(5TIA)/2
— 2 _
* EiEj; = 0i5Ci; hence || Eii Ejjl5 = 65,

° E”E]k = \%(5”02;6 + 51kC”) hence HEHEJICH% = %(5” + 5ik),
e EijEy = 3(6;5Cit + 6iCji + 6;.Cit + 6:1Cji;)

hence ||E;; Ey 3 = i(&k + 0i + 0k + 651),
¢ (EiiEj;)? = 6;;Cij hence tr((EiiEj;)?) = w
e (EByEj)* =0 hence tr((Ei; Eji)?) =
e (EijEw)* = 3(6;600(Cit + Cji) + 6,0 (Cire + Cj1)),

hence tr((E;j Ew)?) = 4 (060 + 6j10i).

[ ] I{[TL (E“, E]]) - 0,
® K, (E“, Ejk) = _i(éij +5ik)7
o b1, (Eij, Bra) = —ga (G — 8;0)% + (61 — 0;x)%).

Hence the non null terms are g, (Ej;, Eij) = — 2= and &y, (Eij, Ei) = — .

Secondly, for 5 # 0, we use the isometry f,i: the values are the same if we replace
SY2E;EY2 by (dsfpa) " (fpa (D)2 Ei; fp1(8)Y/?2) = SV2E] N2,

To prove that k € [—1/2a,0], it suffices to note that for normed and orthogonal
X,Y € Sym(n), we have rr,(X,Y) = —2-[|[X,Y]|]3. Diagonalizing X = PAPT and
denoting Z = PTYP, from (d; — d;)* < 2(d} + d3) < 2||D|]?, we get s, (X,Y) =

(A Z)=-4 iz (di — dj)2Zi2j > —5-||D|?|| Z||* = — 5. This bound is reached for
X = ﬁ( i — ]J) and Y = El] O

Another metric that also provides a Riemannian symmetric structure on Sym™ (n)
was used in [29,36]. It was introduced directly by the quotient structure detailed in
Proposition 3.1 but with the submersion /7 : A € GL*(n) — VAAT € Sym™ (n) based
on the polar decomposition of A (and without the coefficient 4). We called it the polar-
affine metric in [32]. It is GL(n)-invariant with respect to the action (4, X) € GL(n) x
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Sym™(n) — VAX2AT € Sym™ (n). Hence it is O(n)-invariant in the usual sense. It is
the pullback metric of the affine-invariant metric via the square diffeomorphism pows, :
¥ — %2 [32].

3.4. Bures-Wasserstein metric

The L2-Wasserstein distance between multivariate centered Gaussian distributions is
given by d(2,A)? = tr¥ + trA — 2tr(($A)'/2). It corresponds to the Procrustes distance
between square-root matrices, namely d(X,A)? = infyeom) |22 — AY2U|3,,,- The
second order approximation of this squared distance defines a Riemannian metric called
the Bures metric (or the Helstrom metric) in quantum physics. All these viewpoints are
explained in details with modern notations in [6]. In particular, the expression of the
Riemannian metric is derived in [6] and we take it as a definition.

Definition 3.4 (Bures-Wasserstein metric). The Bu