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Abstract
Neural vocoders are systematically evaluated on homogeneous
train and test databases. This kind of evaluation is efficient
to compare neural vocoders in their “comfort zone”, yet it
hardly reveals their limits towards unseen data during train-
ing. To compare their extrapolation capabilities, we introduce a
methodology that aims at quantifying the robustness of neural
vocoders in synthesising unseen data, by precisely controlling
the ranges of seen/unseen data in the training database. By fo-
cusing in this study on the pitch (F0) parameter, our methodol-
ogy involves a careful splitting of a dataset to control which
F0 values are seen/unseen during training, followed by both
global (utterance) and local (frame) evaluation of vocoders.
Comparison of four types of vocoders (autoregressive, source-
filter, flows, GAN) displays a wide range of behaviour to-
wards unseen input pitch values, including excellent extrapo-
lation (WaveGlow); widely-spread F0 errors (WaveRNN); and
systematic generation of the training set median F0 (LPCNet,
Parallel WaveGAN). In contrast, fewer differences between
vocoders were observed when using homogeneous train and test
sets, thus demonstrating the potential and need for such evalu-
ation to better discriminate the neural vocoders abilities to gen-
erate out-of-training-range data.
Index Terms: neural vocoders, pitch, unseen data, synthesis

1. Introduction
Most speech synthesis processing pipelines end with a vocoder
that generates audio waveforms from a set of acoustic features.
Non-neural vocoders classically use a speech signal model to
reconstruct speech from a small set of descriptors [1, 2], and
their robustness to a wide range of input parameters has led to
their extensive use in speech or singing generation for the past
decades [3, 4]. Yet, the hand-craft choice of parameters along
with the absence of phase information in the acoustic features
have been a strong limitation to the generated speech quality.
Recent introduction of neural vocoders has leveraged the issue
of quality by learning from data to predict audio waveforms.
However, this tremendous rise of quality has been at the expense
of a strong data dependency – neural vocoders poorly generalise
to unseen data [5], a recurrent issue in deep learning applica-
tions. As a consequence, most newly proposed neural vocoders
are evaluated on a test set that is homogeneous with the train
set to demonstrate the vocoders’ ability on the most favourable
conditions. Along the same line, recent comparisons of neural
vocoders performances also used homogeneous train and test
sets [6, 7], without giving insights on the vocoders abilities to
extrapolate to new data.

The extension of neural vocoders capacity to synthesise
wider ranges of data has been tackled first by increasing the
size of the training set, using for instance massive multi-speaker
databases [8, 9]. Nevertheless, while pushing the boundary be-

tween seen and unseen data as far as possible, these studies do
not address the issue of extrapolation to unseen data. Alter-
natively attempts have been made to propose network architec-
tures that allow neural vocoders to be less sensitive to unseen F0

[10, 11]. For evaluation, they artificially created unseen F0 by
shifting the original F0 [10] or randomly generated new F0 tra-
jectories [11], but at the risk that the interaction with other input
features might cause a degradation of quality. Moreover, these
models were assessed at utterance scale, i.e. obtaining aver-
age performances over sequences of various input values. Yet,
we believe that quantification of neural vocoders behaviours at
a frame scale, i.e. for each input value, would bring valuable
information on their capability to tackle various range of input
and allow to better target relevant improvements.

Therefore we propose a methodology to evaluate the per-
formance of neural vocoders outside of their “comfort zone” by
synthesising unseen data, with a focus on F0. This methodol-
ogy relies on training models on a carefully segmented database
that excludes ranges of F0 values from training while leaving
them in the test set. Then, we evaluated four classes of neural
vocoders to provide insights on their behaviour towards syn-
thesising unknown F0. After reviewing the different classes of
neural vocoders in section 2, section 3 details our methodology
including database segmentation and model training. Section 4
reports the results of the study before concluding in section 5.

2. Neural Vocoders
Neural vocoders generate audio samples given acoustic features
that carry speech characteristics at each time step. Most sys-
tems use non-parametric acoustic features such as 80-band mel-
spectrograms that implicitly contain both pitch and spectral en-
velope information. Few uses explicit F0 values and smoothed
spectral envelopes [11, 12, 13], and fall within one of the four
categories of neural vocoders studied here and described below.

The first proposed neural vocoders are autoregressive, i.e.,
they generate one audio sample at a time given previously pre-
dicted samples. Historically derived from image processing, the
first neural vocoder WaveNet [14] is built from stacks of di-
lated convolution layers that have been proven particularly effi-
cient to generate high quality output, but also extremely costly.
To reduce complexity, recurrent neural networks that are more
suited to the processing of time series have been introduced
[15, 16, 8, 9]. With the addition of optimisation techniques,
WaveRNN manages to synthesise speech in real-time [16]. To
go further in model simplification, hybrid signal-neural mod-
els include source-filter decomposition of speech [17] in their
model so that the latter can focus on source prediction only, the
filter being derived from the input acoustic features [12, 13, 18].
As mentioned above, part of these models like LPCNet explic-
itly provide F0 values in the acoustic features that condition
the system [12]. Autoregressive models are adapted to on-
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line prediction and have been successfully been simplified to
work in real-time, but they’ll always been limited in computa-
tion efficiency by the impossibility to parallelise calculations.
Flow-based networks have tackled the issue of generating all
samples at a time by removing the autoregression process in
generation. Since WaveNet training process is not autoregres-
sive, it is used as a basis in most flow-based models. One so-
lution it to use this training as a teacher model and transfer
its knowledge to a student non-autoregressive generation net-
work with probability distillation [19, 20]. Alternatively, au-
thors have built reversible non-autoregressive networks from
WaveNet with the help of affine coupling layers [21, 22, 23].
Teacher/student networks have been shown difficult to train and
WaveGlow is one the most used flow-based neural vocoder in
spite of its important memory footprint [21]. Another solution
to train non-autoregressive generators is to use generative ad-
versarial networks (GAN) [24, 25, 26]. Generators are often
non-autoregressive stacked dilated-convolution based networks
again derived from WaveNet, and trained adversarially against a
discriminator that attempts to distinguish synthesised from nat-
ural speech. Auxiliary losses are often used to minimise the dis-
tance between acoustic features extracted from the synthesised
speech and the input features. The use of GANs has drastically
decreased model sizes and training and generation times, com-
pared to flow-based models [25].

In this study, we selected neural vocoders that are repre-
sentative of each class: WaveRNN [16] (autoregressive), LPC-
Net [12] (source-filter with explicit F0 input), WaveGlow [21]
(flow-based) and Parallel WaveGAN [25] (GAN-based).

3. Experimental setup
3.1. Database preparation

To compare the neural vocoders ability to generate unseen F0,
we built a dataset that excludes specific ranges of F0. We used
for this sake the LJ Speech dataset [27], consisting of approxi-
mately 24h of reading from an English female speaker, recorded
as part of the LibriVox project. F0 was extracted from 10 msec-
spaced frames on the full database with Praat [28], whose dis-
tribution in semitones (ST) is displayed on top of Fig. 1. It dis-
plays one main lobe and two small side lobes. The latter are a
consequence of the restricted F0 range given to Praat for extrac-
tion ([75; 600] Hz), and relate to creaky and pseudo-harmonic
hissing sounds for the low and high lobes, respectively. Overall,
we defined three F0 classes: the main lobe that contains 95% of
the values, delimited by the middle green arrow; the tails that
contain 4% of the values on each side of the main lobe, hence
a total of 8% of the values, included in the two red rectangles.
Finally the two extreme lobes each contain 1% of the values and
are classified as outliers.

In our method, we aim at excluding all F0 contained within
the tails (red rectangles) from our training set, while keeping
them in our test set. We first built the latter by selecting the
100 utterances that contains the most low-tail F0 values and the
100 utterances that contains the most high-tail F0 values. The
resulting test set F0 distribution (bottom of Fig. 1) shows that
tail-F0 are over-represented, to voluntary increase the synthesis
difficulty. Second, we built a train set that excludes all tail-F0

values. During training, all neural vocoders split utterances in
small chunks that are processed independently and in random
order. Thus, after excluding the test set, we split all remain-
ing utterances into 800 msec chunks (larger than the ones used
in the selected neural vocoders). End of utterance chunks that
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Figure 1: Distribution of F0 values per frame in the full
LJ Speech data set (top); unseen training set (second row);
seen training set (third row); test set (bottom).

were shorter than 800 msec were discarded, and only chunks
that did not contain any tail-F0 values were kept for the training
set, that finally contained 54.5% of the full dataset, i.e., about
12h of speech. We call unseen this train set, whose correspond-
ing F0 distribution (second row of Fig. 1) displays no tail-F0

values. Finally, as a baseline, we created a second training set
called seen that contains the same number of chunks, but se-
lected randomly from LJ Speech after exclusion of the test set.
The third row of Fig. 1 shows the corresponding F0 distribu-
tion, that is representative of the full LJ speech corpus.

3.2. Training models

We used open-source implementations of neural vocoders [29,
30, 31, 32]. LPCNet and WaveGlow are provided by the origi-
nal paper authors while others are re-implementations. Default
training setups were used, or following their respective paper
description when not specified in the code. LPCNet used audio
sampled at 16 kHz and 20 acoustic features (pitch, pitch cor-
relation, 18 Bark Frequency Cepstrum Coefficients). The three
other models sample audio at 22.05 kHz and use 80-band mel-
spectrograms as acoustic features. WaveRNN was trained with
a batch size of 32 and a learning rate of 1e−4 for 1000K itera-
tions. Important quality variations were observed between the
last iterations, so we refined the model with additional 250K it-
erations at a learning rate of 1e−5. LPCNet was trained with a
batch size of 64 and a learning rate of 5e−4 for 413K iterations
(120 epochs, as in [12]). WaveGlow was trained with a batch
size of 12 and a learning rate of 1e−4 for 580K iterations, and
fine-tuned with additional 40K iterations with a learning rate
of 5e−5 [21]. Parallel WaveGAN was trained for 400K iter-
ations. Learning rates were 1e−4 and 5e−5 for the generator
and discriminator, respectively, and were halved every 200K.
The discriminator was frozen during the first 100K iterations
[25]. Overall, the numbers of trained parameters are WaveRNN:
4.2M; LPCNet: 1.2M; WaveGlow: 87.9M; Parallel WaveGAN:
18.8M. All models were trained twice, on both the unseen and
seen datasets. For each training, given their respective chunk
size in batch, batch size and number of iterations, each model
processed a total of WaveRNN: 689h; LPCNet: 1102h; Wave-
Glow: 1498h; Parallel WaveGAN: 711h of audio.

4. Comparison of Neural Vocoders
Assessment of the ability of neural vocoders to synthesise un-
seen F0 was conducted both at utterance and at frame level. For
this sake, all 200 test utterances were generated 8 times: with
the 4 neural vocoders (system factor) trained on either the un-
seen or seen training set (training factor).
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Figure 2: Evaluation of neural vocoders. From left to right: average MS-RMSE; percentage of MS-RMSE outliers; F0-RMSE; per-
centage of V/UV errors. First four panels display the measures computed by utterances for each neural vocoder (in colours), and each
training set (left: seen (S); right: unseen (U)). Last panel: MUSHRA scores obtained on the unseen training set only.

Table 1: F-scores from the ANOVA performed on each objec-
tive measure against the system and training factors and their
interaction. All effects are significant (p < 0.01).

Factor (d.f.) MS-RMSE F0-RMSE V/UV
Average Outliers error

System (3) 352 118 114 36
Training (1) 8 116 218 190
Interaction (3) 31 35 48 25

4.1. Global utterance-based evaluation

We evaluated global performance of neural vocoders with a se-
ries of objective and subjective measures. First, output quality
is assessed using root-mean-square-error (RMSE) between 80-
band mel-spectrograms (MS) extracted from original and gen-
erated signals, using frames of 92 msec and hop size of 10 msec.
RMSE is computed on each frame to provide a MS-RMSE dis-
tribution for each utterance, from which two values are ex-
tracted: 1) the mean of the distribution as a measure of aver-
age quality; 2) the percentage of frames whose RMSE is higher
than three standard deviations above the mean (outliers). F0 of
generated waveforms were also extracted with Praat, with the
same parameters as the original waveforms (section 3.1), and
RMSE between generated and original F0 were computed for
each utterance, with F0 expressed in ST. Finally, the percent-
age of voiced-unvoiced (V/UV) errors per utterance is calcu-
lated, since unvoicing could be a mean for the neural vocoders
to avoid synthesising unseen F0 values. The four first panels of
Fig. 2 display the distribution of these objective measures calcu-
lated on all test utterances, and organised by system (in colours)
and training factors. For each measure, a 2-way ANOVA us-
ing system and training factors demonstrated the significance of
both factors and their interaction. Corresponding effect sizes
(F-scores) are summarised in Table 1. Post-hoc pair-wise com-
parison between unseen and seen trainings for each system as-
sessed with Tukey HSD tests are superimposed on Fig. 2.

Average MS-RMSE (first panel of Fig. 2) is often con-
sidered as a measure of global quality. Overall, WaveGlow is
the worse system, followed by Parallel WaveGAN and LPC-
Net, while WaveRNN outperforms all. Conversely, statisti-
cal analyses on MS-RMSE outliers (second panel of Fig. 2)
show that overall trainings, LPCNet and WaveRNN have simi-
lar performance and the highest percentage of MS-RMSE out-
liers while WaveGlow has the smallest and Parallel WaveGAN
is in-between. The percentage of MS-RMSE outliers is rarely
studied but is well-related to salient local artefacts in the gen-
erated waveforms. Then, analysis of the training factor shows
that synthesising unseen F0 have a small effect on the average
MS-RMSE, and only on LPCNet and WaveGlow. By contrast,

all systems but WaveRNN trained on unseen F0 have higher
percentages of MS-RMSE outliers than the ones trained on
seen F0. The larger effect of the training factor on MS-RMSE
outliers than on average MS-RMSE emphasises that synthesis-
ing unseen F0 leads to local artefacts in the audio waveform
rather than altering the global quality.

Regarding F0 reconstruction (third panel of Fig. 2), overall
trainings WaveGlow has the lowestF0-RMSE, followed by Par-
allel WaveGAN and WaveRNN (not significant difference), and
then LPCNet. A similar order is observed regarding the degra-
dation of performance given unseen F0 values: WaveGlow is
not altered, followed by a small degradation for WaveRNN and
Parallel WaveGAN (≈ +1 ST), and then LPCNet (≈ +2 ST).
When synthesising seen F0, all models have a similar behaviour
regarding V/UV errors. Nevertheless, the degradation given un-
seen F0 is particularly pronounced for WaveRNN (almost dou-
ble) but does not affect Parallel WaveGAN.

We assessed perceptive quality with a MUSHRA-based
test [33]. We selected 20 utterances from the test set having
the most high- (resp. low-) tail frames, respectively (10 each).
For each, 6 versions were presented at a time: original; synthe-
sis with the four vocoders trained on the unseen dataset; and
with Griffin-Lim (GL) [34] as a low-anchor. All utterances
were downsampled at 16 kHz to comply with LPCNet. Par-
ticipants had to rank them by naturalness on a scale from 0 to
100. 30 native English speakers recruited on the Prolific Aca-
demic platform [35] participated in the experiment. As a control
for listening ability, we discarded the 7 subjects who rated the
reference (resp. low anchor) lower than 80 (resp. higher than
20) in more than 50% of the cases. Last panel of Fig. 2 sum-
marises the results. Scores attributed to all vocoders are around
30% below those in [7], that used the full LJ Speech database
for training and similar anchors in their MUSHRA. Although
comparison between studies is not straightforward, this points
out the severe degradation caused by synthesis of unseen data.
A Kruskal-Wallis rank-sum test showed a significant effect of
the system factor (χ2 = 1327.5, df = 5, p < 0.01) and a
post-hoc Dunn test identified four groups of systems that sig-
nificantly differed (p < 0.01): Griffin-Lim; LPCNet; Original;
and the 3 remaining vocoders. The lower performance of LPC-
Net against the three other vocoders shows a stronger correla-
tion of the subjective perception with MS-RMSE outliers and
F0-RMSE, where LPCNet had the lowest performance as well,
than with average MS-RMSE and V/UV error. This suggests
that subjects were more sensitive to local artefacts and F0 re-
construction rather than overall MS quality. Moreover, the high
percentage of V/UV error didn’t prejudice WaveRNN. On the
contrary, subjects might have been more tolerant to unvoicing
than erroneous F0 values.

To summarise, the training factor has little impact on global
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Figure 3: Test frames distribution on the (F0 target × F0 error) plan, where F0 target is centred around the median of LJ Speech corpus,
and displayed on a colour log-scale. The red rectangles highlight the range of unseen F0 target. Blue lines and corresponding values
represent correlations across frames. Each column corresponds to a system, and rows correspond to training on seen and unseen data.

quality (average MS-RMSE) but degrades performance locally
(outliers MS-RMSE) as well as F0-reconstruction, the two cri-
teria that correlates the most with perceptive quality.

4.2. Local frame-based evaluation

Local frame-based evaluation consists in agglomerating all
frames of the 200 test utterances on which we derived two val-
ues: 1) the distance of the target (input) F0 from the median of
the full LJ Speech distribution, that is an indication of difficulty
to synthesise the input; 2) The error between the synthesised F0

and the input. For each systems and training set, we derived
the distributions of all frames on the (target × error) plan, that
are displayed in Fig. 3. On each panel, the colour (log-scale)
represents the density of frames associated to all possible (F0

target, F0 error) pairs. Correlation coefficients across all frames
are given in blue along with the associated regression line. We
expect a low correlation between input and error. The red rect-
angles highlight the ranges of unseen input F0 values. Systems
trained on seen F0 values (top row) display a high density on
the horizontal axis: F0 errors are small for any input. Correla-
tion coefficients show that all systems behave similarly, except
WaveGlow that is able to have a higher density along the hori-
zontal axis (ρ = −0.15). Second row (unseen F0) shows four
different behaviours. First, WaveGlow behaves similarly than
for seen F0 values, in line with F0-RMSE analysis. Looking
at WaveRNN, we observe a spread of the density across the F0

error in the left red rectangle, i.e. for unseen input F0 only. It
therefore shows a failure to render low-tail F0 values, but with
no specific error pattern. By contrast, the densities within red
rectangles for Parallel WaveGAN and LPCNet are high around
the diagonal, corresponding to a synthesised F0 that equals the
median of LJ Speech distribution. The effect is particularly
pronounced for LPCNet, where the frontier between seen and
unseen F0 is striking, with an abrupt F0 error increase at the
borders of the red rectangles. Compared to all other systems,
F0 values are given explicitly to LPCNet which learns an em-
bedding for each during training. Observation of pitch embed-
ding weights for both trainings displays random (not-learnt)
embeddings for out-of-training-range F0 values in both cases,

thus explaining high errors when those are used in generation.
While explicit F0 input might provide more control, it is ex-
tremely sensitive to unseen values, while non-parametric mel-
spectrograms might contain enough information to compensate
for unseen F0 to a certain extent. A recent neural vocoder pro-
posed in the continuity of LPCNet [36] got rid of explicit F0 for
more robustness, suggesting similar conclusions to this study.

5. Conclusion
In order to precisely quantify the extrapolating capabilities of
neural vocoders, we proposed a methodology that consists in
1) constructing a database that excludes precise ranges of F0

values from a training set and 2) applying a series of evalu-
ation measures at a global and local scale to quantify neural
vocoders behaviours towards seen and unseen F0 values. The
discrepancy between global assessment of quality (average MS-
RMSE) and local assessment (MS-RMSE outliers; frame-based
F0 errors) has demonstrated the need for frame-based analysis
to discriminate between neural vocoders regarding their extrap-
olation capacities to extreme pitch values. Indeed, large F0 er-
rors only happen on unseen F0 input values, leading to abrupt
and localised degradation of quality. Moreover, while WaveG-
low was shown perfectly robust to unseen F0, WaveRNN dis-
plays widely spread errors along with more unvoicing errors,
while LPCNet and Parallel WaveGAN generate F0 around the
median F0 of the training set. These striking differences of
behaviour suggests that different and adapted solutions must
be found for each type of neural vocoder architecture to in-
crease their extrapolation capabilities. Finally, we hope that this
methodology can be a useful tool for research on extrapolation
capabilities of neural vocoders, that can be extended to various
input features, from phonemes identity to voice quality.
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