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Abstract. A calibration process simulation for the interest variable val-
ues, including Cartesian coordinates of exit points, moving platform
poses and initial cable lengths is performed. The simulation considers
the modelling of the pulleys at exit points, and is carried out using non-
linear least square method. The effects of calibration tuning parameters
and of measurement pose number on calibration quality are analyzed.
As a result, the calibration quality increases with the decrease of tun-
ing parameters and the increase of measurement pose number. The use
of Jacobian matrix of the interest function fi,j also leads to a better
calibration quality.
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1 Introduction

Cable-Driven Parallel Robots (CDPRs) are a type of parallel robot that are ac-
tuated by cables. [1] studied reconfigurable Cable-Driven Parallel Robots (RCD-
PRs) whose cable connection points on the base frame can be positioned at a
discrete set of possible locations, and the ways to optimize the sequence of dis-
crete reconfigurations allowing the moving-platform to follow a prescribed path.
A novel concept of RCDPRs that consists of a classical CDPR mounted on mul-
tiple Mobile Bases is known as Mobile CDPR. In [2], the authors developed a
methodology to trace the wrench-feasible-workspace of mobile CDPRs.

Robot calibration is performed in purpose of increasing the accuracy of robot
positioning by sensor data without changing the robot design. Among different
robot configurations, the positioning accuracy can be affected by a large number
of sources. Most previous works on the model-based calibration are dedicated
to the kinematic process [3, 4]. Other than the importance on robot positioning
accuracy, calibration will also contribute on several parts, for example motion
control, robot production evaluation, etc [5]. Well-designed experiments can help
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calibrate quality and efficiency. [6] developed a method to enhance the mea-
surements in geometric parameter identification, the method implemented irre-
ducible geometric model and took into account of different sources of errors. [7]
proposed a method to select manipulator configurations that allow the user to
essentially improve calibration quality. [8] studied the geometric and elastostatic
calibration of robotic manipulator using partial pose measurements, which do
not provide the end-effector orientation, the proposed method improved the cali-
bration efficiency. [9] proposed a concept of the user-defined test-pose to evaluate
the calibration experiments quality. Sensitivity analysis is critical to model-based
control robustness, in [10], the author performed sensitivity analysis of the elasto-
geometrical model to their geometric and mechanical uncertainties, and carried
out a case study with a reconfigurable CDPR ’CAROCA’.

Among different calibration approaches for model parameters, the nonlinear
least square (NLLS) method used in this work is a basic parameter identification
method. In [4], this method is used for kinematic calibration for a new developed
CDPR with large workspace. Several different methods derived from NLLS are
tested in [11]. Another similiar method is orthogonal distance regression (ODR)
[11]. In addition to parameter identification, a sensitivity analysis of CDPR is
performed in [12] to decrease the computing time of the calibration process.

In order to perform CDPR calibration, measurements are required. Two types of
sensors exist. The first one is the internal sensors, including motor encoders and
cable force sensors. Self-calibrations, as the case in this work, are realised by the
help of internal sensors [11]. The moving-platform of a CDPR is finally connected
to the motors through the cables, and encoders can provide the angular position
and velocity of the motors. The force sensors provide directly the cable tensions.
The second category is the external sensors, for example cameras [13], which can
directly measure the position and orientation of the MP. In [14], a look-and-move
calibration procedure is developed based on a wireless camera. A low-cost, and
efficient calibration method using camera is described in [15] .

The sensors could be used alone or in various combinations [16]. In [3], the cali-
bration is carried out with only motor encoders, on a 3-degree-of-freedom CDPR
with a tetrahedral platform, which is used as a haptic interface mechanism.
In [17], the robot calibration is carried out while the Cartesian coordinates of the
exit points expressed in the moving-platform frame are supposed to be known.
Some other contributions using multiple sensors have been made [14,15,18, 19].
Self-calibrations, as the case in this work, are realised by the help of internal
sensors [11].

In this paper, a calibration process simulation for the interest variable val-
ues, including Cartesian coordinates of exit points, moving platform poses and
initial cable lengths is performed, the robot studied has a 3-DoF, point-mass
moving-platform and 4 cables. The calibration simulation takes into account the
modelling of pulleys at the exit points, and is performed with encoders alone.
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The effects of both calibration tuning parameters and measurement pose number
on the calibration quality are analyzed. The calibrations with and without Jaco-
bian matrix are compared. The cable sagging, elasticity and mass are neglected
in the calibration process.

In Section 2, the modelling of the CDPR used in this paper is introduced, the
identification problem perfromed is presented. In Section 3, the robot calibration
methodology is introduced and new formulas to represent the calibration results
are defined. Some simulation results are analyzed and discussed in Section 4.
Finally, conclusions and possible future works are presented in Section 5..

2 CDPR Modelling

The CDPR considered in this work is illustrated in Fig. 1. The mechanism
consists of a 3 DoF point-mass end-effector M , controlled by the m = 4 cables;
each cable will pass around a pulley fixed at an arbitrary exit point Ai, i =
1, 2, 3, 4. The cable lengths are controlled by motors. Each motor is equipped
with an encoder that measures its angular position and velocity. A number of
MP poses are to be defined within the base frame, including one home pose Ph.
The cable exit points positions are also not known exactly. Both the poses and
exit points are to be identified by the identification method presented in this
paper.

Fig. 1: Architecture of the Cable-Driven Parallel Robot under study

The ith loop of the CDPR mechanism under study is represented in Fig. 2,
i = 1, 2, 3, 4. The vectors from the origin O to the pulley and the platform are
denoted as ai and p respectively. The distance from the pulley exit point to the
platform is denoted as lci, or the ith estimated cable length.
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Fig. 2: The ith loop of the cable-driven parallel robot

The parameters assocatiated to the ith pulley are described in Fig. 3. The
cable starts from the encoder to the exit point Ai, then wrapped on part of the
pulley sheave with the length lsi to A′i, then ends on the moving platform Pi.
The radius of the pulley used is rp = 0.075m. The total cable length from exit
point to the moving platform calculated as [20]:

lti = lsi + lci (1)

where lsi is the length of the cable wrapped on pulley sheave, from Ai to A′i, lci
is the cable length from A′i to Pi, and lti is the total cable lengh from exit point
to the moving-platform. Eq. (1) can be calculated directily from the Cartesian
coordinates of cable exit points and poses with the following steps. First, lsi is
calculated by:

lsi = rp(π − αi) (2)

Then, the pulley center oi can be described by ai and the pulley radius rp:

oi = ai + rp
bRixp (3)

with

bRi =

cosθi −sinθi 0
sinθi cosθi 0

0 0 1

 (4)

where oi is the vector pointing from the base frame origin to the pulley center,
bRi is the rotation matrix from base frame to the pulley frame {x, y, z} shown
in Fig. 3, and xp is the unit vector along the x-axis of the mentioned pulley
frame. Li is the vector pointing from the exit point directly to the cable anchor
point, θi is the angle between x-axis of base frame and the pulley, and it can be
calculated by:



Self-Calibration Method for Cable-Driven Parallel Robots 5

θi = atan2(Lyi, Lxi) (5)

where Lxi and Lyi are the x and y components of Li respectively, expressed in
the base frame.

The vector pointing from the pulley center to the anchor point is denoted as
mi:

mi = pi − oi (6)

The length Li is expressed as:

lci =
√

mimi
T − rp2 (7)

The angle relations around the pulley are:

αi = −βi + γi (8)

where βi and γi angles take the form:

βi = −atan2(lci, rp) (9)

and

γi = arcsin
(aiz − piz
||mi||2

)
(10)

Fig. 3: Parameterization of the ith pulley
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As a result, Eq. (1) can be expressed as:

lti = rp

[
π − atan2(

√
(pi − ai + rp

bRixp)(pi − ai + rp
bRixp)T − r2p, rp)

− arcsin(
aiz − piz

||pi − ai + rp
bRixp||2

)
]

+
√

(pi − ai + rp
bRixp)(pi − ai + rp

bRixp)T − r2p

(11)

3 Identification Methodology

As introduced before, the end-effector is connected to the motors by cables.
The information provided by the encoders (the motor angular positions) is used
to perform the CDPR calibration. Here, m = 4 cables control the point-mass
end-effector. At first, the initial cable lengths from exit points to the end-effector
at home pose are denoted as li,0. It should be noted that li,0 are not known ex-
actly, and are to be identified. In order to implement calibration process, the
point-mass end-effector is moved to n different positions within the workspace,
meanwhile the variations in the cable lengths are obtained from the motor en-
coder measurements. Thus, the real cable lengths li,j are calculated by adding
the cable length variations ∆li,j to the initial cable lengths li,0, namely,

li,j = ∆li,j + li,0 (12)

Similarly to [20], in real experiments the variations in the cable lengths obtained
from the motor encoder measurements ∆li,j are inputs of the identification prob-
lem. In this simulation, ∆li,j is calculated from the assumed actual Cartesian
coordinates of home pose and measurement poses. For the Cartesian coordinates
of cable exit points, MP poses and the initial cable lengths, only approximate
values are known in the beginning. Therefore, they are considered as the outputs
of the identification problem. The known values of the identification problem are:
mn cable length variations ∆li,j . The unknowns of the problem: m initial cable
lengths li,0, 3m Cartesian coordinates of cable exit points ai,x, ai,y, ai,z, and
3n Cartesian coordinates for the point-mass end-effector position pj,x, pj,y, pj,z.
The unknowns form a vector x for the variables of the calibration problem:

x = [a1,x, a1,y, a1,z, . . . , am,x, am,y, am,z, l1,0, . . . , lm,0,

p1,x, p1,y, p1,z, . . . , pn,x, pn,y, pn,z]

= [a1, . . . ,am, l0,p1, . . . ,pn]

(13)

The size of x is dependent of the number of measurement poses. If n poses are
used, x will be a (4m+ 3n)-dimensional vector.
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Compared to the real cable length li,j , Eq. (1) gives the estimated cable lengths
derived from the geometric model of the robot mechanism. As a consequence, a
system composed of mn equations is obtained [3, 20]:

fi,j(x) =(lsi + lci)
2 − (∆li,j + li,0)2

=

(
rp

[
π − atan2(

√
(pi − ai + rp

bRixp)(pi − ai + rp
bRixp)T − r2p, rp)

− arcsin(
aiz − piz

||pi − ai + rp
bRixp||2

)
]

+
√

(pi − ai + rp
bRixp)(pi − ai + rp

bRixp)T − r2p

)2

− (∆li,j + li,0)2,

i = 1, . . . ,m, j = 1, . . . , n
(14)

In order to solve the nonlinear system of equations expressed in Eq. (14), the
number of equations should be larger than or equal to the number of unknowns,
namely,

mn ≥ 3m+m+ 3n (15)

From Eq. (15), for a CDPR with m = 4 cables and a point-mass end-effector,
the number of measurement poses should be at least equal to n = 16. Eq. (14)
provides the squared difference of estimated cable length and real cable length.
The nonlinear least-square solver in Matlab is used to solve the curve fitting
problems of the following form, which contains the defined function Eq. (14):

min
x

(
m∑
i=1

n∑
j=1

f2i,j

)
(16)

In order to simulate the calibration process, arbitrary errors err are added on
each real variable value, to obtain xepsi:

xepsi = x + err = [a1,x + err1, a1,y + err2, . . . , pn,z + err16+3n] (17)

The lsqnonlin function takes the starting value xepsi as input, and outputs the
calibrated values x∗ that satisfies Eq. (16):

x∗ = [a∗1, . . . ,a
∗
m, l
∗
0,p
∗
1, . . . ,p

∗
n] (18)

where a∗1, . . . ,p
∗
n are all the simulated identified values. The other input argu-

ments include the objective function fi,j , the lower bound lb and upper bound ub
for xepsi, and optimization options that could be tuned to have a better control
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of the calculation process. Apart from xc, the other output arguments used are
the final solution values of fi,j , saved in a vector fresi:

fresi = F(x∗) = [F1(x∗), . . . ,Fj(x
∗), . . . ,Fn(x∗)] (19)

with Fj(x
∗) = [f1,j(x

∗), . . . , fi,j(x
∗), . . . , fm,j(x

∗)] (20)

The size of fresi is the same as the number of interest function fi,j ,therefore
fresi is mn-dimensional.

The following criterion, named µ, is defined to assess the identification quality:

µ =

∑mn
h=1 |fresi,h|
mn

(21)

For each calibration, the process is performed 500 times with different err
applied. Then 500 calibrated results x∗l , l = 1, 2, . . . , 500, are obtained.

x∗l = [a∗l1, . . . ,a
∗
lm, l

∗
l0,p

∗
l1, . . . ,p

∗
ln], l = 1, 2, . . . , 500 (22)

To prevent any single deviated value to produce a large effect on the final
result, the mean value of them is taken, noted as x∗M:

x∗M,k =

∑500
l=1 x

∗
l,k

500
, k = 1, 2, . . . , 4m+ 3n (23)

To examine the calibration quality, x∗M is compared with the real variable values
x, noted as ε. Smaller ε values indicate better calibration quality.

ε = [ε1, . . . , εk, . . . , ε4m+3n] (24)

εk = |x∗M,k − xk|, k = 1, 2, . . . , 4m+ 3n (25)

In order to speed up the convergence of the algorithm, the following Jacobian
matrix can be used in lsqnonlin [3]:

∂f

∂x
= J =


∂f1,1
∂a1

>
. . .

∂f1,1
∂l1,0

. . .
∂f1,1
∂pn

>

...
. . .

...
. . .

...
∂fn,m

∂a1

>
. . .

∂fn,m

∂l1,0
. . .

∂fn,m

∂pn

>

 (26)
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4 Simulation Results

4.1 Effect of Tuning Parameters

There are a list of tuning parameters inside the option argument of lsqnonlin
function. Among those parameters, ’MaxFunctionEvaluations’, ’MaxIterations’,
’FunctionTolerance’ and ’StepTolerance’ have obvious and important inflluences
on the calculation. ’MaxFunctionEvaluations’ and ’MaxIterations’ are the max-
imum number of function evaluations and iterations allowed respectively, and
with both the default value of 200 times of starting vector length. If the number
is not high enough, the optimization will end prematurely without reaching the
desired termination tolerance. Here the two parameters are set to be 120000 and
8000 respectively. ’FunctionTolerance’ and ’StepTolerance’ are the termination
tolerances for the function value and interest variables respectively, with both
with the default values of 1e-4. The two parameters are set to be 1e-20 and 1e-12
according to their effect on the identification, measured by identification quality
µ. The result is shown in Fig. 4.

Fig. 4: TolFun, TolX influence on identification error

Identification error µ decreases with the decrease of ’FunctionTolerance’ and
’StepTolerance’. ’FunctionTolerance’ causes the result to decrease rapidly while
’StepTolerance’ have a less stronger effect on µ. At the area where the squqre
root of ’FunctionTolerance’ is less than 1e-8 (m) and ’StepTolerance’ is less than
1e-6 (m), µ remains at the same level of magnitude, around 1e-5 (mm). When
’FunctionTolerance’ and ’StepTolerance equal to 1e-20 and 1e-12 respectively,
the value of µ is favourable.

4.2 Effect of Number of Poses

For the identification problem studied in this paper, the minimum number
of measurement poses is 16. In this paper, up to 40 poses were performed to
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obtain more sets of cable length variations from the encoders, in order to achieve
higher calibration quality. The result is shown in Fig. 5. The identification quality
increases with the increase of number of poses.

Fig. 5: Influence of number of measurement moving-platform poses on the iden-
tification quality

4.3 Results analysis

The difference between real and calibrated variable values ε is calculated. For
the Cartesian coordiantes of exit points and moving platform poses, almost all
the result values locate around or under 0.1 (mm), and have a decreasing trend.
Examples of the y coordinate of exit point A1, for the case of using Jacobian
matrix are shown in Fig. 6. Noted by Matlab, the convergence times are 4327 s
and 17278 s for calibration simulation process with and without Jacobian Ma-
trix, respectively. The results show that Jacobian matrix contributes to a faster
convergence and higher calibration quality.

5 Conclusions and Future Work

A simulation of the calibration process of interest variables using lsqnonlin
function was carried out in this paper. The robot, which includes a 3-DoF,
point-mass moving-platform and 4 cables, was studied considering the pulley
modelling. The calibration process was assumed to be performed with encoders,
the only one type of sensor alone. The effect of calibration tuning parameters
on the calibration quality is analyzed. Identification error µ decreases with the
decrease of ’FunctionTolerance’ and ’StepTolerance’. The effects of measurement
pose number on calibration quality and calibrated interest variable values are
calculated. With more poses used, the calibration quality would improve, and
the errors on the calibrated interest variable values would decrease. The use of
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Fig. 6: The error in y-coordinate of the first exit point as a function of the number
of measurement poses, with Jacobian Matrix

Jacobian matrix would result in a better interest variable error. There are uncer-
tainties in the geometric parameters, for example geometrical errors on pulley
radius, the mechanical errors concerning cable elasticity etc. Sensitivity analy-
sis of these uncertainties will be performed to further improve the calibration
quality. This work considered the pulley modelling at the exit points, however
the cable elasticity and cable sagging effects were not. The CDPR studied in
this work contained only 4 cables and a simple point-mass moving-platform. In
future works, real experiments will be carried out, and more complex CDPRs
will be considered.

Acknowledgement

This work was supported by the ANR CRAFT project, grant ANR- 18-CE10-
0004, https://anr.fr/Project-ANR-18-CE10-0004

References

1. L. Gagliardini, S. Caro, M. Gouttefarde, and A. Girin, “Discrete reconfigura-
tion planning for Cable-Driven Parallel Robots,” Mechanism and Machine Theory,
vol. 100, pp. 313–337, 2016.

2. T. Rasheed, P. Long, and S. Caro, “Wrench-Feasible Workspace of Mobile Cable-
Driven Parallel Robots,” Journal of Mechanisms and Robotics, vol. 12, p. 031009,
Jan. 2020.
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