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Abstract : This paper presents, in a synthetic way, several works performed on shape 
memory alloys (SMAs). Three scales of description are used according to whether one 
seeks to numerically predict the possible microstructural configurations of phases in 
equilibrium or the behavior of a mono- and polycrystal of SMA during a phase 
transition. 
Keywords: SMA, phase transition, thermomechanical coupling, multiscaling. 
 
 

1.  INTRODUCTION 
 
Shape memory alloys (SMAs) may undergo remarkable microstructural transformations: 
they may change the structure of their crystallographic lattice under mechanical and/or 
thermal loading. This transformation, called martensitic transformation, is displacive in 
the sense that it corresponds to a collective displacement of atoms. From a 
thermodynamic point of view, it belongs to the family of first order phase transitions 
insofar as it is accompanied by a latent heat of phase change. SMAs are being closely 
studied at the present time, for various reasons. From a fundamental point of view, 
researchers have found in the SMAs an amazing example of solid-solid phase transition, 
the domain of which is generally close to room temperature and thus is relatively easy 
to observe. From a more practical point of view, the number of industrial applications, 
using SMAs properties, grows day by day. 
Three length scales can be introduced to study the SMA behaviour. The microscopic 
length scale corresponds to the crystal lattice, and is about several times the size of the 
unit cell; it can also be related to the representative volume element (RVE) of the 
continuous medium that is associated with the lattice. As for the mesoscopic and 
macroscopic length scales, they correspond to the RVEs of mono and polycrystal, 
respectively. 
Since this transformation is able to generate a large variety of phase mixtures, some 
authors have systematically studied the possible microstructural arrangements 
(twinning) or rearrangement mechanisms due to straining (variants reorientation) when 
the material is in mechanical and thermodynamic equilibrium [Ball et al., 1987]. 
(*) List of authors: P. ALART, X. BALANDRAUD, A. CHRYSOCHOOS, C. LICHT, O. MAISONNEUVE, 
S. PAGANO, R. PEYROUX, B. WATTRISSE. name@lmgc.univ-montp2.fr. 



  

Others are interested in the phase transition itself and in its correlation with more 
macroscopic effects: pseudoelasiticy, self-accommodation, one-way or two-way shape 
memory effects, aging, etc. They are many experimental tests, mathematical modelling 
or numerical works on these matters. Many of these studies are directly related to 
engineering purposes and industrial applications, [Patoor et al., 1994]. 
This paper gathers and tries to synthetize the researches, performed by several teams at 
LMGC, which concern the thermomechanical behaviour of SMAs. In section 2 we recall 
the thermodynamic concepts and results used in this paper, then we will present 
investigations into the three scales of description. In section 3, following works of Ball 
and James, we show numerically computed examples of twinned microstructures. At 
this scale of description, the symmetries of the crystal lattice and the material frame-
indifference principle will be invoked to introduce non-convex potentials having 
multiple wells. Section 4 will be devoted to research performed at the mesoscopic scale. 
Two examples of “micro-meso” passage will be pointed out ; they will be based on a 
(quasi)convexification procedure of the thermodynamic potential. The goal here will be 
the deduction, from microstructural considerations of section 3, of the properties of 
mesoscopic (quasi-convex) potentials. A third example, more inspired by experimental 
results obtained on monocrystalline samples, will deal with the pseudoelastic behaviour 
of SMAs. We will underline the strong coupling that represents the mechanism of phase 
change, and the important role played by the temperature variations, particularly those 
induced by the latent heat. This model of monocrystal will be used, in section 5, to 
numerically predict the behaviour of a set of grains considered as a RVE for the 
polycrystal. Comparisons between calculations and experiments will be shown, 
considering at the same time the mechanical, thermal, and energy aspects of the phase 
transition. 
 
 

2. A CONVENIENT THERMOMECHANICAL FRAMEWORK 
 
Currently many physicists or chemists like to introduce phase transitions as unstable 
thermodynamic phenomena [Kondepudi et al., 1998]. The instability is in the sense 
defined by the Gibbs-Duhem criterion [Glansdorff et al., 1971] and is invoked in a wide 
range of situations [Papon et al., 1999]. Deduced from an analysis of the entropy 
source, the thermodynamic instability is related to a change of the convexity of the 
thermodynamic potentials and may consequently imply a non-monotonic mechanical 
behaviour. In such a context, the reversibility assumption is necessary to derive the 
famous equal-area rule due to Maxwell which enables us to determine the phase 
diagram. These ingredients have been widely exploited for describing the martensitic 
transformation [Müller et al., 1991], [Abeyaratne et al., 1993]. 
In what follows, we have chosen other ways for determining the microstructures 
corresponding to the possible phase mixtures at equilibrium or for introducing the phase 
change mechanisms in the constitutive equations. We will first assume that the phase 
transition is a quasi-static process possibly accompanied by irreversibilities. A 
convenient thermomechanical framework is the Continuum Thermodynamics [Germain, 



  

1973] that postulates the local state axiom. More particularly, we will use the formalism 
of generalised standard materials [Germain et al., 1983] for which the constitutive 
equations can be derived from a thermodynamic potential and a dissipation potential. 
The interest of modelling phase transition into such a framework is at least twofold. 
Theoretically, it gives a convenient mathematically consistent background to predict 
phase change for any thermomechanical loading. In other words, it is able to include, in 
the same model phase diagram, properties and kinetics of phase change induced by 
stress and/or temperature variations. Of course, when only stable equilibrium states of 
phase mixture are considered, the dissipation potential is no longer necessary and a 
thermostatic framework is sufficient. Experimentally, energy balance construction 
facilitates the interpretation of thermal and calorimetric phenomena accompanying the 
phase change. Besides, it leads to a better understanding of certain pseudoelastic effects 
such as the hysteresis loops of the stress-strain curves [Chrysochoos et al., 1993].  
To describe the martensitic transformation at meso or macrolevel, the following 
variables are often chosen to characterise the thermodynamic state of each volume 
element :  the absolute temperature,  a strain tensor and ,  variables 
describing the phase mixture. 
If denotes the specific Helmholtz free energy, the Clausius-Duhem inequality defines 
the intrinsic dissipation  and the thermal dissipation , both supposed to be 
separately positive : 

, 

where  is the Cauchy stress tensor,  the Eulerian strain rate tensor, r the mass 
density, and  the heat influx vector. The dot stands for the material time derivative. 
The equality  characterises reversible thermodynamic processes. 
The intrinsic dissipation per unit volume  is the difference between the inelastic 

energy rate  and the stored energy rate . Deduced 
from both principles of thermodynamics, the local heat conduction equation is  

, 

where  denotes the specific heat capacity at constant  and , while  

stands for the external heat supply. The intrinsic dissipation , the thermoelastic 
coupling term  and the rate of latent heat  have been collected in 
the right hand member of the heat equation. Taking into account an isotropic conduction 
of heat ( ), we underline that the left hand side becomes a partial 
derivative operator applied to the temperature. This property has been experimentally 
used to deduce the distribution of heat sources  from temperature charts by the use 
of infrared techniques [Chrysochoos et al., 2000]. The volume heat source is defined by 
the equation :  

. 

T e n1,.., xx n

W
d1 d2

ïî

ï
í
ì

³-=

³r-er-s= e

0grad.

0:D:

2

ix,,1 i

T
T
qd

xWWd !!

s D
q

021 =+= ddd

1d

er-s= e !:D: ,
' Ww
in ix,

'
i
xWws !r=

erxWTWTdqTC +r+er+=+r ee ix,,1x, iT,T, :div !!!

x,eC e ( ) n 1,ii =x er

1d
er e !:,T,WT ix, iT, xWT !r

Tkq grad-= 

chw¢

ix,,1ch iT,T, : xWTWTdw !! r+er+=¢ e



  

We emphasise that the rate of latent heat is here defined as the heat source related to the 
thermomechanical couplings between temperature and state variables characterising the 
phase mixture. An interesting property can be directly derived from the energy balance 
when a mechanical hysteresis loop is associated with a thermodynamic cycle of 
duration . In [Peyroux et al., 1998], we showed that : 

, 

where  is the energy associated with the hysteresis area. This result shows that the 
presence of a mechanical hysteresis is not only due to dissipative effects, but also to 
thermomechanical coupling mechanisms. The experimental investigations confirmed 
the main role played by the temperature on the mechanical behaviour [Chrysochoos et 
al., 1995]. In fact, even during quasi-static loading, the temperature variations induced 
by the latent heat are of the same order of magnitude as the transition domain “width”. 
Consequently, we emphasized that these variations strongly modify the kinetics of an 
apparent stress-induced phase change and we claimed that the transformation is to be 
considered a priori as an anisothermal process. The thermomechanical couplings and 
the heat diffusion generate a time-dependence on SMA behaviour, to which we will 
return in the last sections of this paper. 
 
 

3. ATTEMPTS AT MULTISCALE MODELLING 
 

3.1. Microscopic scale 
 

3.1.1. A variational model for microstructures 
 

A neat description, which has its origins in the work of J. L. Ericksen, can be found in 
[Ball et al., 1987], [Ball et al., 1992], [James et al., 1989] and roughly summarized as 
follows. Under the Cauchy and Born rule [Ericksen, 1984], an abstract continuous 
medium is associated with the crystalline lattice. This medium is assumed to be 
thermoelastic. In the framework of the finite transformations, the free energy density 
function W depends on the temperature T and on the gradient of deformation . This 
density function inherits some properties of a crystalline lattice encountering phase 
transitions: 

i) W is frame indifferent: 
, 

 is the set of all rotations,  the set of all square matrices of order 3 with positive 
determinant, 

ii)  has a finite number of potential wells: 
at each T, there exists a finite number  of symmetric, positive definite matrices of 
order 3, , such that the minimizers of W(.,T) are the orbits 

. For instance « at each temperature greater than , the minimizers of 
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 are » corresponds to the existence of the austenite state at a 
temperature greater than the transition temperature . While « at each temperature 

lower than , the minimizers of  are » corresponds to the 
existence, at each temperature below , of the martensite state which appears in k 
variants, k being the index of the symmetry group of the martensite lattice in the 
symmetry group of the austenite lattice. Of course, the minimizers of  are the 

k+1 orbits , . 
Finding stable equilibrium configurations of a piece of monocrystal at a uniform 
temperature T, with for instance a displacement boundary condition on its whole 
boundary, leads to the determination of the exact minimizers of the total energy 

 

on the reference configuration  for all admissible deformations . Here, the 
temperature acts as a parameter, thus the variable T is, from now on, omitted in this 
section. In many situations, because of the numerous potential wells, the previous 
problem has no solutions. The (weak) limits of the minimizing sequences of  do not 
minimize , and they have to develop finer and finer oscillations. The fact that these 
spatial oscillations correspond to the observed microstructures is the basic assumption 
of this theory. 
Our own contribution is confined to the determination of microstructures by numerical 
energy minimization. The aim of our numerical experiments is to check if minimizers of 
the discrete problems, which always exist, account for the microstructures. We denote 
by Y the microscopic domain of observation, and F the mesoscopic gradient of 
deformation (i. e. the average on Y of the microscopic gradient of deformation). 
 

3.1.2. Numerical experiments at microscale 
 
In contrast with most previous computations [Collins, 1993] we do not use, in this part, 
either finite elements or gradient-like algorithms, but a method using a trigonometric 
interpolation and a decoupling of the deformation fields from their gradients. Saddle 
points of an augmented Lagrangian: 

 

are obtained by an Uzawa algorithm: 
. 

This method is worthwhile, since a step of a relaxation procedure to minimize  
involves a global linear problem of Laplace type, and local nonlinear problems of 
minimization of a quadratic perturbation of W in a suitable set of matrices. Moreover, to 
compute the microstructures, we take advantage of being free to choose the domain of 
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computation and, to a certain extent, the boundary conditions. With Y cubic and a 
boundary condition of place, we can use a trigonometric interpolation on a grid of order 
N, rather than finite elements. This method avoids storing a stiffness matrix and the fast 
Fourier transform algorithm (FFT) is faster than solving the linear system involved by 
finite elements. 
For our numerical two-dimensional experiments [Licht, 97] we have chosen an 
Ericksen-like energy density function [Collins, 93]: 

 

. 
If , the microstructure is unique 
[Ball et al., 92] and is a single twinned laminate orthogonal to  with phases 

corresponding to the wells ,  in proportions x, 1- x. Thus a valuable test of this 
numerical method is to check if minimizers  of the discretized problem account for 
this microstructure. 
Figures 1a (resp.1b) displays  for the case x = 1/3 and N=16 (resp.N=32) 
where, as proposed by [Collins, 93], 

. 

Except of course in the vicinity of , where  must satisfy the boundary condition 

 essentially takes the values  and  in vertical layers in 
proportions  and . Whereas  depends strongly on N, the distribution of the 
values of  does not. 
Thus, our numerical method gives the microstructure on the scale of the grid, but these 
nice results were obtained through initial fields with oscillations of the same wavelength 
as the expected microstructure. Random initialization (Fig.1c) gives a less regular 
distribution of S+ and S-, but the horizontal proportions are still about  and . 
Even with slowly decreasing random perturbation of the updating of the multiplier , 
we did not succeed in avoiding this kind of local minimum (Fig.1d), however the 
average proportions of the vertical layers are   and . Figures 1e-1h concern the 

case in which x = 1/2 and  are replaced by . When  is compatible 
with the grid, twinning is once more obtained. 
Nevertheless trigonometric interpolation seems more flexible than piecewise affine 
finite elements for capturing slanting oscillations, because of the Hadamard jump 
condition. But as in [Collins, 93], we never succeeded in trapping laminates of order 
two (layers within layers)! 
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Figure 1 ; Examples of microstructures 
 
Similar results may be obtained with a more rudimentary model in the context of small 
perturbations. Frémond’s model may be related to the Khachaturyan-Roytburd-Shalatov 
theory; Kohn [Kohn, 1991] showed that this last theory is the geometrically linear 
analogue of the one developed by Ball and James in the context of finite deformations 
[Ball et al.,1992]. The free energy density function is then a function of the small strain 
tensor . The frequency of the oscillations of the layered microstructure depends on the 
mesh. Due to the choice of the residual stress tensor (introduced below)  parallel to I, 
the orientation of the microstructure is arbitrary [Pagano, 1998]. 
 

3.2 Mesoscopic scale 
 

3.2.1Quasiconvexification and scale transition 
 
If the material is assumed to be non dissipative, a first proposal for the mesoscopic 
strain energy density function is the quasiconvexification of the microscopic density 
function. The justification for this rests on the mechanical interpretation of two 
mathematical properties of the minimizing sequences of the total energy that were 
invoked in section 3.1.1, [Dacarogna, 82]. First their (weak) limits describe the average, 
say mesoscopic, state of a grain due to the convergence of the gradient averages in 
every subdomain. Next, these limits do not minimize the true total energy, but a total 
energy whose density is the quasiconvexification QW of the true density W : 

, 

QW(F) is the infimum of the average of the strain energy for deformations whose 
average gradient is F. Thus the mesoscopic behavior of the monocrystal is not described 
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by the true (microscopic) energy density function W but by an apparent density QW. 
The main difficulty with this approach is the computation of QW. 
Another approach is to propose a strain energy density W through phenomenological 
considerations and to check if it is quasiconvex (i. e. W = QW !). 
 

3.2.2 An academic two-phase phenomenological modeling 
 
Many phenomenological models of two-phase shape memory material incorporate a so-
called interaction term  in the free energy; x is a phase proportion and h 
a non-negative function of the temperature. Thus, if the material is assumed to be non 
dissipative, the strain energy is not a convex function of the linearized strain e. This lack 
of convexity generates controversies which may lead to a rejection of the previous 
structure of ; we showed [Licht, 2000] that if h is not too large the previous 
structure provides a good model. 
We confine our attention to the case of two linearly thermoelastic phases with different 
stress-free strains  but with the same elastic stiffness  ; the energy density function 
of each phase is 

, 

and a common proposal for a family of free energies and strain energies of the mixture 
is  

, 

, 
ax (resp. wx) is the convex combination in proportions x and (1-x) of  (resp. ). 

Let . 

Through Fourier analysis as in [Kohn, 91], it can be shown that 
 is convex if and only if , 
 is not convex but quasiconvex if and only if , 
 is not quasiconvex if and only if . 

Of course the second case does not occur if H=0, that is to say, if the stress-free strains 
are compatible. Thus the good range for h (  quasiconvex or convex) depends strongly 
on the compatibility of the . On the other hand, incorporating a term like  in a more 
rational definition of the macroscopic energy of a mixture like 
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yields a free energy equal to . Thus quasiconvexity of  implies 
which agrees with a proposal by [James et al., 1993 ] for mismatch energy. 

Moreover, if , the function  has a double-well structure for 
suitable S, so that the total mechanical energy of a body subjected to a uniform surface 
loading may have two strong local minimizers. Thus in some displacement-controlled 
tests, a negative slope of the stress-strain response curve of a specimen can be observed, 
while in some load-controlled test a kind of hysteresis occurs. 
We also proved that approximations of the previous local minimizers can be obtained 
by classical finite element methods. 
 

3.2.3  D. C. algorithm: a convenient numerical tool 
 
The previous approach may be extended to a three phase mixture, as is usual for some 
models of SMAs with an austenitic phase (proportion ) and two variants of martensite 
(proportions  and ). We assume that the stress-free strain of the austenite is zero  
( ) and the stress-free strains of the martensites are opposite (  and 

). Similarly the term  is equal to  and we define 
. To relate this formulation with others ([Frémond, 1987, 

Raniecki et al., 1992]), it is useful to introduce a residual stress tensor t and to express 
the stress-free strain with respect to it, to the elastic tensor A and a scalar function a(T) 
of the temperature: . We have then 3 interaction terms between 2 phases, 

,  and . But it seems natural enough to suppose that . By 
choosing  [Leclercq et al., 1996, Pagano et al., 1999], the previous 
analysis about a two-phase mixture is preserved and the convexity and quasiconvexity 
properties may be recovered with respect to the single parameter G. Consequently, a 
family of free energies of the mixture may be expressed as follows: 

 

where  
. 

Similarly to the 2-phase mixture, we can then distinguish 2 important values  and  
which are determined according to our assumptions. For a bidimensional modeling, the 
isotropic elastic tensor (l and µ the Lamé coefficients) and we have, 
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by convexification and quasiconvexification of the bulk energy proposed by Frémond, 
which corresponds to G equal to zero [Frémond, 1987]. By neglecting dissipative 
effects, we define the bulk energy density as the marginal function of the free energy for 
all admissible volume proportions (  belongs to the simplex C, 

: . 
This bulk energy density is then a three-well or a two-well potential with five or three 
regimes described below. For an efficient numerical treatment it is useful to split it into 
the difference between two convex functions [Pagano et al., 1998]; the first is quadratic, 
represents the bulk energy density of the austenitic phase and does not depend on G: 

 with . 

If , the second convex function presents five regimes: 

. 

If , we recover a two-well potential with three regimes: 

. 

To reproduce local instabilities inherent to phase transition [James, 1987, Zhong et al., 
1996], we search for only a local minimum of the total energy P on a domain W which 
may still be split into two convex parts, including the bulk energy and the work of the 
external loading l(v): 

 

. 

This decomposition leads us quite naturally to introduce a type II Lagrangian according 
to the terminology of Auchmuty [Auchmuty, 1989], depending on the Fenchel 
conjugate function of , and associated with a min-min problem: 

. 

The D.C. algorithm [Stavroulakis et al.,1993] consists in constructing a minimizing 
sequence of  descending, alternately, in the primal variable and the dual one. 
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D.C. algorithm:  given, with  known, determine successively 

 as follows : 

 Step 1:  , 

 Step 2:  . 

 

 
As an example of application (figure 2), numerical 
simulations [Pagano et al., 1999] on a tensile test 
showed a propagation of the phase transition 
initialized at the connection zone of the sample and 
spreading out over the gauge length in accordance 
with some recent experiments. 
 
 
 
Figure 2 ; Evolution of phase transition during the loading 

 
3.2.4 The phase change: a thermomechanical coupling mechanism 

 
In a previous paragraph, we pointed out the properties of the quasiconvex energy QW. 
This energy was deduced from an analysis at a microscopic scale. Another way to 
identify the mesoscopic potential is based on experiments on monocrystalline samples.  
The phenomenological features we saw led us to consider a convex energy at this scale. 
The confrontation between the micro and meso approaches and the phenomenological 
one was profitable. In this section, we present the retained mesoscopic free energy 

 and the derived constitutive equations of the monocrystal, in order properly 
to describe different phenomena such as pseudoelasticity, reorientation effect and 
thermomechanical couplings accompanying the phase change. 
The experiments [Balandraud, 2000] were carried out on a monocrystalline CuZnAl 
specimen. First, uniaxial load-unload tests were performed in the “low temperature 
region” (typically 22°C). The apparent permanent strain observed in Figure 3 can be 
recovered by a heating-cooling process under zero stress. This effect, induced by 
martensite variant reorientation, leads us to consider, at low temperatures, a non-strictly 
convex property of the marginal energy : 

. 

Note also that, once the reorientation strain is annealed, the stress, the strain and the 
temperature recover their initial values. Therefore, and from a thermomechanical point 
of view, we do not refer to plasticity to explain reorientation strain.  
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Another interesting test concerns pseudoelasticity. If the load-unload is imposed in the 
“high temperature region” (typically 30°C), we can observe (Figure 4a) a hysteresis 
loop in the strain-stress diagram that must be studied in the light of the thermodynamic 
framework presented in part 2. Moreover, temperature variations of the sample can be 
observed (Figure 4b) around the prescribed value (the temperature of the environmental 
chamber). These variations, though small, are induced by significant heat sources. 
Energy balance makes it possible to split the volume heat source  into a part due to 
dissipative effects and another one due to thermomechanical coupling mechanisms. In 
all the tests performed, the first part was always small compared to the second (<2%). 
 

 
Figure 3 ; Stress-strain curve in a reorientation test 

 

  
Figure 4a ; Stress-strain curve 

in a pseudoelastic test 
Figure 4b ; Temperature variation 

in a pseudoelastic test  
 
Note that, for all uniaxial tests performed, we did not observe non-monotonous stress-
strain curves. In all cases where non-monotonous load-displacement curves occurred, 
strain localization effects were seen (propagation of transformation band, 
[Wattrisse,1999, Balandraud, 2000]). All these remarks lead us to consider phase 
change in SMAs as an anisothermal process, and to use a quasiconvex energy density 
function. For the sake of simplicity and without any data on multiaxial behaviour, we 
chose a convex function to suitably describe the behaviour in terms of the kinetics of 
phase change. The retained free energy W is 

. 
Here  is the characteristic function of admissible values of x, and 
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, 

where the subscript pc stands for phase change, and . 

The values  characterise the phase change strain associated with the variant k and 
derive directly from microscopic studies of the crystallographic lattice. 

, 

with L the latent heat and  the reference temperature. 
Now, in the formalism of standard materials, a choice of a dissipation potential  leads 
to complementary laws, and the writing of intrinsic dissipation gives the expression for 
the transition domain: 

, 

where  stands for the partial sub-differential of f with respect to . 
In the particular case of a zero dissipation potential , the last expression reduces to 

, 

and represents the transition domain in a temperature-stress plane (  is the zero stress 
transition temperature). Figure 5 represents the numerical results obtained in a 
pseudoelastic test by using this model. The hysteresis loop is correctly predicted, and 
the temperature variations are consistent with experiment. 
 

 
a    b    c 

Figure 5; a) hysteresis due to thermomechanical couplings, b) temperature variations 
due to “stress-induced” phase change, c) thermodynamic path in the phase diagram 
corresponding to the load-unload anisothermal cycle. 
 
Even if thermal effects due to dissipation are difficult to measure, it is legitimate to 
suppose that a slight irreversibility accompanies the phase change. To test the influence 
of slight dissipation, we chose 

. 
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The existence of terms in  in the expression for the transition diagram expresses a 
dependence on the sense of transformation (M®A or A®M). Figure 6 shows that this 
slight dissipation has significant effects on the size of the hysteresis loop area, while the 
temperature evolutions with and without dissipation are hardly distinguishable. 
 

 
 
Figure 6; a) hysteresis due to thermomechanical couplings and to a slight intrinsic 
dissipation, b) temperature variations due to a “stress-induced” dissipative phase 
change, c) corresponding path in the phase diagram. 
 
These constitutive equations and the heat equation have been included in a finite 
element program to simulate the fully coupled thermomechanical behavior of 
monocrystalline SMAs [Peyroux, 1998, Balandraud, 2000]. It allows a correct 
prediction of pseudoelasticity, reorientation effect and recovery strain, it predicts 
phenomena such as asymmetry in tension-compression tests, time effects due to heat 
diffusion, inducing “relaxation”. 
 
 

3.3 Macroscopic scale; towards modeling of the polycrystal behaviour 
 

3.3.1. Macroscopic variables 
 
We now focus on the macroscopic behaviour of a SMA polycrystalline aggregate. We 
suppose that each grain behaves as a monocrystal, and the aim of this part is to derive 
the homogenized thermomechanical characteristics of the material. 
The first assumption is that the macroscopic behavior can be derived from the 
thermomechanical response of a representative volume element (RVE). The observation 
of a polycrystalline sample by means of electronic and optical microscopy, allowed us 
to gather data on the crystallographic texture, the shape and the statistical representation 
of the grains in the RVE. (Figure 7) 
In the following, we will consider that all the grains differ only by their crystallographic 
orientation. 
 
It is established [Suquet, 1984] that for microscopic constitutive equations containing 
internal variables, “the homogenized law does not reduce to a single equation” on the 
macroscopic domain. “The knowledge of the macroscopic law requires as data the 
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(mesoscopic) state variables”. An alternative and pragmatic attitude is to link the 
macroscopic thermomechanical variables together, by prescribing thermomechanical 
loading and numerically solving the problems on the RVE. The RVE is considered as a 
virtual sample, and the finite element code as a virtual thermomechanical testing device. 
 

 
 

Figure 7;  RVE of a polycrystalline sample of CuZnAl SMA obtained by image 
analysis; Different colors stand for different crystallographic orientations 

 
The set of variables used at the mesoscopic level is , and additional variables 
such as the stress tensor  or the heat influx vector , can be deduced from the initial 
set owing to the transition diagram or the heat equation. 
On the macroscopic level, we consider the classic and natural macroscopic strain and 
stress tensors  and  defined as average values of  and : 

 and . 
At first we assume a quasi-homogeneous mesoscopic temperature field, the value of 
which is identified with the macroscopic temperature. Recall that the quasi-
homogeneity of the temperature field does not imply the homogeneity of its gradient. 
At this point , part of macroscopic strain due to phase change, is given by 

. 
It remains to define : macroscopic equivalence to the volume proportion of phase 
change. Deriving , macroscopic latent heat, from , we can propose as a 
definition of : . This macroscopic proportion has to be regarded as an 
energy indicator of the advancement of phase change. The value of  is 0 if the 
polycrystal is completely austenitic, and 1 if completely martensitic. On the other hand 
a value between 0 and 1 can be reached under several microscopic configurations. 
 
 

3.3.2 Some numerical results on the macroscopic behavior of a polycrystalline SMA 
A convenient set of macroscopic variables being established, we present in this part 
some results of finite element simulations on the RVE. 
First, we performed a so-called pseudoelasticity test consisting of a load-unload path at 
a room temperature upper than  and the different results are plotted in Figure 8. The 
imposed strain is increased from point a to point d, and maintained at a certain level 
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between points b and c. In the particular stage bc, we can observe the role played by the 
thermomechanical couplings. The material keeps on transforming (  increases), the 
stress relaxes while the temperature returns to the imposed value. Now, concerning the 
entire test, the evolution of the different variables is consistent with experimental results 
obtained on polycrystalline SMA. This macroscopic behaviour is of course different to 
the monocrystalline one and corresponds to the particular ordering of grains chosen in 
the RVE. 

  
Figure 8; Pseudoelastic “numerical” test 

 
From Figures 7 we can deduce some interesting points in the macroscopic transition 
domain. If we perform this analysis at several room temperatures, we obtain isovalues 
of transformation in the stress-temperature plane (Figure 9). An interesting result is that, 
according to the slope of the isovalues, it appears to be difficult to reach a complete 
transformation under reasonable stresses. In fact, some grains in the RVE have a non-
compatible crystallographic orientation with respect to the imposed stress, while others 
transform easier. Note that taking into account a non zero dissipation leads to “moving 
lines” with regard to the direction of transformation. 

 
Figure 9 ; Phase diagram for uniaxial tension test performed ; T ³ TA and d1=0. 

 
The possibilities of this approach have been widely developed in [Balandraud, 2000]. 
For instance, low-temperature tests allowed determining the value of the macroscopic 
recoverable strain due to variants reorientation at zero-stress. This numerical tool could 
also be used to investigate multiaxial behavior of polycrystalline SMAs and to study the 
influence of various dissipation potentials. Finally, this approach giving access to 
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mesoscopic behaviour, the evolution of phase change in each grain might be soon 
correlated with optical observations to check the consistency of this multiscale 
modeling. 
 
 

4. CONCLUDING COMMENTS 
 
We have tried to present the different points of view developed at the LMGC concerning 
the understanding of the SMA behaviour. This variety of approaches comes from the 
different analysis methods and from the chosen scales of description. Even though 
certain theoretical concepts were borrowed from other works in the literature, all our 
approaches led to original numerical tools. From an experimental point of view, the 
LMGC has developed for more than ten years infrared image processing techniques 
allowing us to perform calorimetric balances. For of SMAs, these tools made it possible 
to observe the strong thermomechanical coupling that the martensite transformation 
represents. At meso and macroscopic scales, the experiments highlighted the quasi-
static and slightly dissipative character of the kinetics of this solid-solid phase 
transition. 
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