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Abstract

The geometry of the quaternionic anti-de Sitter fibration is studied in details. As
a consequence, we obtain formulas for the horizontal Laplacian and subelliptic heat
kernel of the fibration. The heat kernel formula is explicit enough to derive small time
asymptotics. Related twistor spaces and corresponding heat kernels are also discussed
and the connection to the quaternionic magnetic Laplacian is done.
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1 Introduction

The main goal of the paper is to study in details the geometry, the horizontal Laplacians
and the horizontal heat kernels of the quaternionic anti-de Sitter fibration

SU(2) → AdS4n+3(H) → HHn (1.1)

and of related twistor spaces. This fibration is the quaternionic counterpart of the complex
anti-de Sitter fibration that was studied in details in [8, 18, 33]. Anti-de Sitter spaces
play a fundamental role in mathematical physics since they appear as exact solutions of
Einstein’s field equations for an empty universe with a negative cosmological constant; see
for instance [25] and the references therein for a pedagogical account on the importance
of those spaces and the celebrated AdS/CFT correspondence.

Anti-de Sitter spaces also appear as model spaces in Sasakian geometry: the complex
anti de-Sitter space is the model space of a negative Sasakian manifold (see [9]) and the
quaternionic anti-de Sitter fibration studied in this paper can be thought as the model
space of a negative 3-Sasakian manifold (see [19, 30]).

Let us describe the main results of the paper. Section 2 is devoted to the geometric
study of the quaternionic anti-de Sitter fibration. We approach and describe this geometry
from two complementary points of view: the point of view of pseudo-Riemannian submer-
sions (see [2]) and the point of view of quaternionic contact geometry (see [17]). Then,
an important observation is that SU(2) and the hyperbolic quaternionic space HHn are
both symmetric spaces of rank 1. The fibration (1.1) therefore inherits a large symmetry
group. As a consequence, the heat kernel of the horizontal Laplacian on AdS4n+3(H) only
depends on two variables: a variable r which is the radial coordinate on the base space
HHn and a variable η which is the radial coordinate on the fiber SU(2). We prove that
in these coordinates, the horizontal Laplacian of the fibration writes

∂2

∂r2
+ ((4n − 1) coth r + 3 tanh r)

∂

∂r
+ tanh2 r

(

∂2

∂η2
+ 2cot η

∂

∂η

)

.

In section 3, using this expression, we shall derive an integral representation of the
corresponding heat kernel pt(r, η) by two different methods.

• The first method is geometric and uses an analytic continuation in the fiber variables
similar to the Wick rotations used in physics;

• The second method is related to the study of heat kernels associated with the gen-
eralized Maass Laplacian (see e.g. [29]) and uses the ideas from [8].
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Our main result can be summarized as follows:

Theorem 1.1 Let r ≥ 0 and η ∈ [0, π), then:

pt(r, η)

=
2

π

∫ ∞

0

sinhu

sin η







∑

m≥0

e−m(m+2)t sin[(m+ 1)η] sinh[(m+ 1)u]







qt,4n+3(cosh r coshu)du

=
et√
πt

∑

k∈Z

∫ +∞

0

sinh y sin
(

(η+2kπ)y
2t

)

sin η
e

y2−(η+2kπ)2

4t qt,4n+3(cosh r cosh y)dy. (1.2)

where

qt,4n+3(cosh s) :=
e−(2n+1)2t

(2π)2n+1
√
4πt

(

− 1

sinh(s)

d

ds

)2n+1

e−s2/(4t),

is the heat kernel on the real 4n + 3 dimensional hyperbolic space.

The role of the 4n + 3 dimensional real hyperbolic space in this formula is puzzling.
One can explain it heuristically by noting that the Cartan dual of AdS4n+3(H) obtained
by complexification of the fiber SU(2) can be thought of as the real 4n + 3 dimensional
real hyperbolic space (see the long comment after the proof of theorem 3.1). Several conse-
quences of the formula are then discussed. In particular, we obtain small time asymptotics
for pt(r, η) and prove that

− e−4nt

2π cosh r sin η

∂

∂η
pCt (r, η) = pt(r, η).

where pCt is the horizontal heat kernel of the complex anti de-Sitter fibration as studied in
[8, 33].

In section 4, we study the horizontal Laplacian and corresponding horizontal heat ker-
nel of the twistor space CH2n+1

1 over HHn. This twistor space appears as a S
1 quotient of

the quaternionic anti de-Sitter fibration according to the following commutative diagram:

S
1

SU(2) ✲

✛

AdS4n+3(H)
❄

✲ HHn

CP
1
❄

✲ CH2n+1
1

❄

✲

3



We then prove that the radial part of the horizontal Laplacian on CH2n+1
1 is given by

∂2

∂r2
+ ((4n − 1) coth r + 3 tanh r)

∂

∂r
+ tanh2 r

(

∂2

∂φ2
+ 2cot 2φ

∂

∂φ

)

, (1.3)

where r is, once again, the radial coordinate on HHn and φ is the radial coordinate on
the complex projective space CP

1. The corresponding heat kernel writes

ht(r, φ)

=

∫ ∞

0
(sinhu)2

{

+∞
∑

m=0

(2m+ 1)e−4m(m+1)tP 0,0
m (cos 2φ)P 0,0

m (cosh 2u)

}

qt,4n+3(cosh r coshu)du.

where P 0,0
m are Legendre polynomials.

Finally, in section 5, we discuss further developments. A connection to the quater-
nionic magnetic Laplacian is made and an interesting sub-d’Alembertian on the real 4n+3
dimensional hyperbolic space is discussed.

Acknowledgments: The authors would like to thank Brian Hall for general discus-
sions about complexification of symmetric spaces and the notion of Cartan dual.

2 Geometry of the quaternionic anti de-Sitter fibration

2.1 Definition of AdS4n+3(H)

Let H be the quaternionic field

H = {q = t+ xI + yJ + zK, (t, x, y, z) ∈ R
4},

where I, J,K ∈ SU(2) are the Pauli matrices:

I =

(

i 0
0 −i

)

, J =

(

0 1
−1 0

)

, K =

(

0 i
i 0

)

.

Then, the quaternionic norm is given by |q|2 = t2 + x2 + y2 + z2 and the set of unit
quaternions is identified with SU(2).

We consider the quaternionic anti-de Sitter space AdS4n+3(H) which is defined as a
pseudo-hyperbolic space by:

AdS4n+3(H) = {q = (q1, · · · , qn+1) ∈ H
n+1, ‖q‖2H = −1},

where

‖q‖2H :=
n
∑

k=1

|qk|2 − |qn+1|2.

4



In real coordinates qi = (ti, xi, yi, zi), 1 ≤ i ≤ n+ 1, this pseudo-norm may be written as

t21 + x21 + y21 + z21 + · · ·+ t2n + x2n + y2n + z2n − t2n+1 − x2n+1 − y2n+1 − z2n+1 = −1,

and as such, AdS4n+3(H) is embedded in the flat 4n+4-dimensional space R4n,4 endowed
with the Lorentzian real signature (4n, 4) metric

ds2 = dt21+dx
2
1+dy

2
1+dz

2
1+· · ·+dt2n+dx2n+dy2n+dz2n−dt2n+1−dx2n+1−dy2n+1−dz2n+1. (2.4)

As a matter of fact, AdS4n+3(H) is naturally endowed with a pseudo-Riemannian structure
of signature (4n, 3).

2.2 SU(2) action and fibration

Using quaternionic multiplication on the left, SU(2) acts isometrically on AdS4n+3(H).
In fact, if we consider the rotations eSθ, S = I, J,K, then straightforward computations
show that the infinitesimal generators are given in real coordinates by

d

dθ
f(eIθq) |θ=0=

n+1
∑

i=1

(

−xi
∂f

∂ti
+ ti

∂f

∂xi
− zi

∂f

∂yi
+ yi

∂f

∂zi

)

= T1 (2.5)

d

dθ
f(eJθq) |θ=0=

n+1
∑

i=1

(

−yi
∂f

∂ti
+ zi

∂f

∂xi
+ ti

∂f

∂yi
− xi

∂f

∂zi

)

= T2 (2.6)

d

dθ
f(eKθq) |θ=0=

n+1
∑

i=1

(

−zi
∂f

∂ti
− yi

∂f

∂xi
+ xi

∂f

∂yi
+ ti

∂f

∂zi

)

= T3 (2.7)

The quotient space AdS4n+3(H)/SU(2) can be identified with the quaternionic hyper-
bolic space HHn endowed with its canonical quaternionic Kähler metric. The projection
map AdS4n+3(H) → HHn is a pseudo-Riemannian submersion with totally geodesic fibers
isometric to SU(2). The fibration

SU(2) → AdS4n+3(H) → HHn

is referred to as the quaternionic anti de-Sitter fibration and may be thought of as the
hyperbolic counterpart of the quaternionic Hopf fibration studied in details in [11]. More-
over, it shows that AdS4n+3(H) is simply connected since both the base space and the
fiber are so. We refer to [2] for a description of this submersion, and more generally for a
description of totally geodesic submersions from pseudo-hyperbolic spaces.

2.3 Laplacians and horizontal heat kernel

The horizontal Laplacian L on AdS4n+3(H) is defined as the horizontal lift of the Laplace-
Beltrami operator on HHn by the submersion AdS4n+3(H) → HHn. Note that since
the metric on HHn is Riemannian, the operator L is semi-elliptic (that is, its principal
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symbol is non negative). More than that, from Hörmander’s theorem it is easily seen to
be subelliptic because the horizontal distribution on AdS4n+3(H), i.e. the distribution
transverse to the fibers of the submersion, is everywhere two-step bracket generating (this
comes from the quaternionic contact structure described below).

Furthermore, according to [16], one has the decomposition

�
AdS

4n+3(H) = L−∆SU(2),

where �
AdS

4n+3(H) is the d’Alembertian on AdS4n+3(H) i.e. the Laplace-Beltrami opera-

tor of the pseudo-Riemannian metric, and ∆SU(2) = T 2
1 +T

2
2 +T

2
3 is the Laplace-Beltrami

operator of the fibers. Since the fibers are totally geodesic and thus isometric to SU(2),
∆SU(2) is simply the Laplace-Beltrami operator on SU(2).

The Riemannian metric on AdS4n+3(H), i.e. the one obtained from the pseudo-
Riemannian one by simply changing the signature in the direction of the fibers, is complete,
thus the horizontal Laplacian is essentially self-adjoint on the space of smooth and com-
pactly supported functions (see Section 5.1 in [5]). As a consequence, L is the generator
of a strongly continuous semigroup etL in L2(AdS4n+3(H)) that uniquely solves the heat
equation. By subellipticity of L, this semigroup admits a heat kernel that we will refer to
as the horizontal or subelliptic heat kernel.

2.4 Quaternionic contact structure

In addition to the fibration structure on AdS4n+3(H), there is a quaternionic contact
structure (see [17, 19] for a description of this structure). Indeed, if we consider the
quaternionic form

α =
1

2

(

n
∑

i=1

(dqi qi − qi dqi)− (dqn+1 qn+1 − qn+1 dqn+1)

)

= α1I + α2J + α3K, (2.8)

then the triple (α1, α2, α3) gives the quaternionic contact structure. If we denote

T = −
n
∑

i=1

(

qi
∂

∂qi
− ∂

∂qi
qi

)

+

(

qn+1
∂

∂qn+1
− ∂

∂qn+1
qn+1

)

then T = T1I + T2J + T3K, α(T ) = 3 and we can easily find that

αi(Tj) = −δij .

Thus, T1, T2, T3 are the three Reeb vector fields of α and are also Killing vector fields on
AdS4n+3(H). In this way, AdS4n+3(H) is a negative 3-K contact structure (see [30]).

2.5 Cylindric coordinates

In this paragraph, we shall write down the horizontal Laplacian in cylindrical coordinates:
these consist of coordinates (w1, . . . , wn) in the base space HHn and (θ1, θ2, θ3) in the Lie
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algebra su(2) of traceless skew-Hermitian 2×2 matrices. More precisely, we shall consider
the map

HHn × su(2) → AdS4n+3(H)

(w1, . . . , wn, θ1, θ2, θ3) 7→
(

eIθ1+Jθ2+Kθ3w1
√

1− ρ2
, · · · , e

Iθ1+Jθ2+Kθ3wn
√

1− ρ2
,
eIθ1+Jθ2+Kθ3
√

1− ρ2

)

where

ρ =

√

√

√

√

n
∑

j=1

|wj |2

and wi = qi/qn+1, i = 1, . . . , n, are inhomogeneous coordinates in HHn. Accordingly,

dqi = qn+1dwi + dqn+1wi, dqi = dwiqn+1 +widqn+1,

and we can then rewrite the contact form (2.8) as follows:

α =
1

2

(

n
∑

i=1

((qn+1dwi + dqn+1wi)wi qn+1 − qn+1wi (dwi qn+1 + widqn+1))− (dqn+1 qn+1 − qn+1 dqn+1)

)

=
1

2

(

n
∑

i=1

qn+1dwi wi qn+1 − qn+1wi dwi qn+1

)

− 1

2

(

1− ρ2
)

(dqn+1qn+1 − qn+1dqn+1) .

Set q := Iθ1 + Jθ2 +Kθ3, then

qn+1 =
eq

√

1− ρ2
, eq = e−q, q = −q = q−1η2,

where η2 = θ21 + θ22 + θ23 is the squared Riemannian distance from the identity in SU(2).
Also, the relation 0 = d(q q−1) = qdq−1 + dq q−1 yields

dq−1 = −q−1dq · q−1,

Now, we need to compute deq · e−q. To this end, recall that

eq = cos η +
sin η

η
(θ1I + θ2J + θ3K).

Consequently,

deq · e−q =

(

d(cos η) + d

(

sin η

η
q

))(

cos η − sin η

η
q

)

7



and

deq · e−q − eq · de−q = cos η d

(

sin η

η

)

q− sin η

η
q d cos η

= cos2 η d

(

tan η

η
q

)

As a result,

α =
1

2
eq
(

dwi wi −wi dwi

1− ρ2
− cos2 η d

(

tan η

η
q

))

e−q.

Equivalently, we can consider the following one form

Λ := e−q α eq =
1

2

(

dwi wi −wi dwi

1− ρ2
− cos2 η d

(

tan η

η
q

))

whose horizontal part

ζ :=
1

2

(

dwi wi − wi dwi

1− ρ2

)

(2.9)

is the quaternionic Kähler form on HHn, which induces the following sub-Riemannian
metric

hik̄ =
1

2

(

δik
1− ρ2

+
wiwk

(1− ρ2)2

)

. (2.10)

We are now ready to derive the sub-Laplacian on AdS4n+3(H). Due to radial symmetry,
we are interested in the radial part of the sub-Laplacian, in the sense as follows.

Definition 2.1 Let ψ be the map from AdS4n+3(H) to [0, 1) × [0, π) such that

ψ

(

eIθ1+Jθ2+Kθ3w1
√

1− ρ2
, · · · , e

Iθ1+Jθ2+Kθ3wn
√

1− ρ2
,
eIθ1+Jθ2+Kθ3
√

1− ρ2

)

= (ρ, η) ,

We denote by D the space of smooth and compactly supported functions on [0, 1) × [0, π).
Then the cylindrical part of L is defined by L̃ : D → C∞(AdS4n+3(H)) such that for every
f ∈ D, we have

L(f ◦ ψ) = (L̃f) ◦ ψ.

Proposition 2.2 The radial part of the sub-Laplacian on AdS4n+3(H) is given in the
coordinates (r, η) by

L̃ =
∂2

∂r2
+ ((4n − 1) coth r + 3 tanh r)

∂

∂r
+ tanh2 r

(

∂2

∂η2
+ 2cot η

∂

∂η

)

. (2.11)

where r = tanh−1 ρ is the Riemannian distance on HHn from the origin.
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Proof. Lifting the vector fields ∂/∂wi, 1 ≤ i ≤ n, by means of Λ, we first obtain a basis
(Vi)1≤i≤n of the horizontal bundle H(AdS4n+3(H)):

Vi :=
∂

∂wi
+

wi

2(1− ρ2) cos2 η

∂

∂φ
,

where

φ =
tan η

η
q := φ1I + φ2J + φ3K

and
∂

∂φ
= −

(

∂

∂φ1
I +

∂

∂φ2
J +

∂

∂φ3
K

)

.

Moreover, the inverse of the metric displayed in (2.10) is given by:

hīk = 2(1 − ρ2)(δik − wiwk)

and the sublaplacian admits the following expression:

L = 2

n
∑

i,k=1

ℜ(VihīkVk).

Straightforward computations then yield

L = 4(1 − ρ2)ℜ
(

n
∑

i=1

∂2

∂wi∂wi
−RR− ρ2

4(1− ρ2) cos4 η

(

∂

∂φ

)2

+
1

2 cos2 η

(

R ∂

∂φ
− ∂

∂φ
R
)

)

= ∆HHn +
ρ2

cos4 η

3
∑

i=1

∂2

∂φ2i
+

2(1− ρ2)

cos2 η

(

R ∂

∂φ
− ∂

∂φ
R
)

, (2.12)

where

∆HHn = 4(1− ρ2)ℜ
(

n
∑

i=1

∂2

∂wi∂wi
−RR

)

is the Laplace-Beltrami operator of HHn and

R =

n
∑

i=1

wi
∂

∂wi

is the quaternionic Euler operator. Denote µ2 = φ21 + φ22 + φ23, then µ = tan η so that

∂

∂η
=

1

cos2 η

∂

∂µ
.

9



As a result, for any smooth function f of η,

1

cos4 η

3
∑

i=1

∂2

∂φ2i
f(η) =

1

cos4 η

(

∂2

∂µ2
+

2

µ

∂2

∂µ2

)

f(η)

=

(

∂2

∂η2
− cos2 η

∂

∂η

(

1

cos2 η

)

∂

∂η
+

2cot η

cos2 η

∂

∂η

)

f(η)

=

(

∂2

∂η2
+ 2cot η

∂

∂η

)

f(η)

Since the radial part of ∆HHn is given by

∂2

∂r2
+ ((4n − 1) coth r + 3 tanh r)

∂

∂r2
.

and ρ = tanh(r), the proposition is proved. �

3 The subelliptic heat kernel on the quaternionic anti de-

Sitter space

Recall from the previous section, the radial part of the horizontal Laplacian of the quater-
nionic anti de-Sitter fibration

SU(2) → AdS4n+3(H) → HHn

is given by

∂2

∂r2
+ ((4n− 1) coth r + 3 tanh r)

∂

∂r2
+ tanh2 r

(

∂2

∂η2
+ 2cot η

∂

∂η

)

,

where r ≥ 0 is the radial coordinate on the base space HHn and η ∈ [0, π] is the radial
coordinate on SU(2). With a slight abuse of notation with respect to the previous section,
this operator shall be denoted by L. Let pt(r, η) be its subelliptic heat kernel (issued from
(0, 0)) with respect to the Riemannian volume measure

ν(dr, dη) =
8π2n+1

Γ(2n)
(sinh r)4n−1(cosh r)3(sin η)2drdη.

In this section, we shall derive an integral representation of the corresponding heat
kernel pt(r, η) by two different methods.

• The first method is geometric and uses an analytic continuation in the fiber variables
similar to the Wick rotations;

• The second method is related to the heat kernel associated with the generalized
Maass Laplacian (see e.g. [29]).
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3.1 First method: Complexification of SU(2) and Wick rotations

Theorem 3.1 Let r ≥ 0 and η ∈ [0, π), then:

pt(r, η)

=
2

π

∫ ∞

0

sinhu

sin η







∑

m≥0

e−m(m+2)t sin[(m+ 1)η] sinh[(m+ 1)u]







qt,4n+3(cosh r coshu)du

=
et√
πt

∑

k∈Z

∫ +∞

0

sinh y sin
(

(η+2kπ)y
2t

)

sin η
e

y2−(η+2kπ)2

4t qt,4n+3(cosh r cosh y)dy. (3.13)

where

qt,4n+3(cosh s) :=
e−(2n+1)2t

(2π)2n+1
√
4πt

(

− 1

sinh(s)

d

ds

)2n+1

e−s2/(4t),

is the heat kernel on the real 4n + 3 dimensional real hyperbolic space.

Proof. The following computations are based on geometric ideas that we will describe
after the proof. For conciseness, we omit some of the technical details since a second proof
of the result will be given in the next section. We first decompose

L =
∂2

∂r2
+ ((4n − 1) coth r + 3 tanh r)

∂

∂r2
+ tanh2 r

(

∂2

∂η2
+ 2cot η

∂

∂η

)

.

as follows

L = ∆HHn + tanh2 r∆SU(2),

where

∆HHn =
∂2

∂r2
+ ((4n− 1) coth r + 3 tanh r)

∂

∂r2

is the radial part of the Laplacian on the quaternionic hyperbolic space HHn and

∆SU(2) =
∂2

∂η2
+ 2cot η

∂

∂η

is the radial part of the Laplacian on SU(2). Note that we can also write

L = �
AdS

4n+3(H) +∆SU(2),

where

�
AdS

4n+3(H) = ∆HHn − 1

cosh2 r
∆SU(2)

is the radial part of the d’Alembertian. Note ∆HHn and ∆SU(2) commute. Therefore

etL = et(�AdS4n+3(H)+∆SU(2))

= et∆SU(2)e
t�

AdS4n+3(H)

11



We deduce that the heat kernel of L can be written as

pt(r, η) =

∫ π

0
st(η, u)p

�
AdS4n+3(H)

t (r, u)(sin u)2du, (3.14)

where st is the heat kernel of

∆SU(2) =
∂2

∂η2
+ 2cot η

∂

∂η

with respect to the measure sin2 ηdη, η ∈ [0, π), and p
�

AdS4n+3(H)

t (r, u) the heat kernel at
(0, 0) of �

AdS
4n+3(H) with respect to the measure

dµ4n+3(r, u) =
8π2n+1

Γ(2n)
(sinh r)4n−1(cosh r)3(sinu)2drdu, r ∈ [0,∞), u ∈ [0, π),

The idea to compute (3.14) is to perform an analytic extension in the fiber variable u.
More precisely, let us consider the analytic change of variables τ : (r, η) → (r, iη) that
will be applied on functions of the type f(r, η) = g(r)e−iλu, with g smooth and compactly
supported on [0,+∞) and λ > 0. One sees then that

�
AdS

4n+3(H)(f ◦ τ) = (∆H4n+3f) ◦ τ (3.15)

where

∆H4n+3 = ∆HHn +
1

cosh2 r
∆P

and

∆P =
∂2

∂η2
+ 2coth η

∂

∂η
.

Introducing a new variable δ such that cosh δ = cosh r cosh η, one sees after straightforward
computations that

∆H4n+3 =
∂2

∂δ2
+ (4n+ 2) coth δ

∂

∂δ
.

Thus ∆H4n+3 is the radial part of the Laplacian on the real hyperbolic space of dimen-
sion 4n + 3. One deduces

etL(f ◦ τ) = et∆SU(2)e
t�

AdS4n+3(H)(f ◦ τ)
= et∆SU(2)((et∆H4n+3 f) ◦ τ)
= (e−t∆P et∆H4n+3 f) ◦ τ.

Now, since for every f(r, η) = g(r)e−iλu

(e
t�

AdS4n+3(H)f)(0, 0) = (et∆H4n+3 (f ◦ τ−1))(0, 0),

12



one deduces that for a function g depending only on u, namely g(u) = e−iλu

∫ π

0
g(u)p

�
AdS4n+3(H)

t (r, u)(sin u)2du =

∫ +∞

0
qt,4n+3(cosh r coshu)g(−iu)(sinh u)2du.

Therefore, coming back to (3.14), one infers that using the analytic extension of st one
must have
∫ π

0
st(η, u)p

�
AdS4n+3(H)

t (r, u)(sin u)2du =

∫ +∞

0
qt,4n+3(cosh r coshu)st(η,−iu)(sinh u)2du.

One concludes with the well known formulas (see Section 8.6 in [23])

st(η, u) =
2

π sin η sinu

∑

m≥0

e−m(m+2)t sin[(m+ 1)η] sin[(m+ 1)u] (3.16)

=
et√

πt sin η sinu

∑

k∈Z

sinh

(

(η + 2kπ)u

2t

)

e
−u2−(η+2kπ)2

4t .

�

We now briefly explain the geometric meaning of formula (3.15). The idea behind the
change of variable τ is similar to the idea of “Wick rotation” in physics. More precisely,
consider the complexification of SU(2), which is given by SL(2,C), whose Lie algebra
sl(2,C) consists of traceless complex matrices. A basis of sl(2,C) is given by

I =

(

0 i
i 0

)

, J =

(

0 1
−1 0

)

, K =

(

−i 0
0 i

)

I =

(

0 1
1 0

)

, J =

(

0 −i
i 0

)

, K =

(

−1 0
0 1

)

The Lie algebra of SU(2) consists of traceless complex anti-Hermitian matrices. A basis
of su(2) is given by I, J,K. Clearly we have

[I, J ] = 2K, [J,K] = 2I, [K, I] = 2J.

and
sl(2,C) = su(2) ⊕ i · su(2).

Note that SL(2,C) is isomorphic (as a real analytic variety) to SU(2)×R3 (See Theorem
5, page 21 in [35]). The Lie algebra of SL(2,R) consists of traceless real matrices and a
basis is given by I, J,K and

[I, J ] = 2K, [J,K] = 2I, [K,I] = −2J.

Denote p := i · su(2) and P = SL(2,C)/SU(2). To geometrically describe P , we recall
the complexification of SU(2) ∼= S3. Let Q3 := {z = (z1, z2, z3, z4) ∈ C

4, z21+z
2
2+z

2
3+z

2
4 =
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1} be the complexification of S3. It is well known that Q3 can be considered as a tangent
bundle T (S3) := {(x, y)|x ∈ R

4, y ∈ R
4, |x| = 1, x · y = 0} over S3, using the map

T (S3) → Q3,

(x, y) → cosh |y|x+ i
sinh |y|
|y| y.

Take a metric tensor on S3, we analytically continue it to Q3 and then restrict to the
fibers. It then gives a hyperbolic space H3 := {y21 + y22 + y23 + y24 = −1} with metric
ds2 = −dy21 − dy22 − dy23 − dy24 .

As a consequence, the complexification of SU(2) can be considered as fiber bun-
dle over S3 with fibers being real hyperbolic space H3 and the symmetric space P =
SL(2,C)/SU(2) is therefore isometric to H3.

For any analytic function f(θ1, θ2, θ3) ∈ L2(SU(2)), we consider its extension to holo-
morphic functions fC(θ1 + iµ1, θ2 + iµ2, θ3 + iµ3) on SU(2)C ∼= SL(2,C). It is then easy
to see that

(I2 + J2 +K2)fC = −(I2 + J2 + K2)fC

Hence the push forward of ∆SU(2) through Wick’s rotations gives −∆P where ∆P :=
I2+J2+K2 is the Laplacian on the symmetric space P = H3 = SL(2,C)/SU(2). Formula
(3.15) indicates then that the 4n + 3 real dimensional real hyperbolic space is dual to
AdS4n+3(H) by complexification of the fibers.

We point out that however, there is no (pseudo-) Riemannian submersion from the real
hyperbolic space H4n+3 to the symmetric space HHn. To obtain a fibration structure,
one can consider the rotation

(I, J,K) → (I, J,K)

The new basis (J,K,I) satisfies

J2 = −1, I2 = K2 = 1, JK = I, KI = −J, IJ = K

and form a split-quaternion algebra B. The resulting space is then a para-quaternionic hy-
perbolic space. The quaternionic anti-de Sitter fibration then becomes a pseudo-Riemannian
submersion (see [2])

H3
1 → H4n+3

2n+1 → BHn

with totally geodesic fibers H3
1 := {y21 + y22 + y23 − y24 = −1}, where

H4n+3
2n+1 = Sp(1, n,B)/Sp(n,B), BHn = Sp(1, n,B)/Sp(1,B)Sp(n,B).

Similar rotation can be considered in the complex case as well. In [33], the author at-
tempted to obtain a real hyperbolic space by Wick rotating the S

1 fiber of the complex
anti de-Sitter fibration. The correct rotation should be i→ j, where j is the Lorentz num-
ber that satisfies j2 = 1 and generates a para-complex algebra A. The complex anti-de
Sitter fibration then becomes a pseudo-Riemannian submersion

H1 → H2n+1
n → AHn

with totally geodesic fiber H1 = {t = x+ jy ∈ A, tt = 1, x > 0}, where
H2n+1

n = SU(n, 1,A)/SU(n,A), AHn = SU(n, 1,A)/S(U(1,A)U(n,A)).
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3.2 Second method

The strategy of the second method is similar to the one used in [8] and appeal to some
results proved in [29].

Proof. Firstly, we decompose the subelliptic heat kernel in the basis of Chebyshev poly-
nomials of the second kind

Um(cos(η)) =
sin((m+ 1)η)

sin(η)
, m ≥ 0,

which are eigenfunctions of ∆SU(2):

(

∂2

∂η2
+ 2cot η

∂

∂η

)

Um(cos(·))(η) = −m(m+ 2)Um(cos(η)), m ≥ 0.

Accordingly,

pt(r, η) =
∑

m≥0

fm(t, r)Um(cos(η))

where for each m, fm(t, ·) solves the following heat equation:

∂t(fm)(t, r) =

{

∂2

∂r2
+ ((4n − 1) coth r + 3 tanh r)

∂

∂r2
−m(m+ 2) tanh2 r

}

(fm)(t, r)

=

{

∂2

∂r2
+ ((4n − 1) coth r + 3 tanh r)

∂

∂r2
+
m(m+ 2)

cosh2 r
−m(m+ 2)

}

(fm)(t, r).

Up to a constant (−m(m+ 2)− (2n+ 1)2), the operator

Lm :=
∂2

∂r2
+ ((4n − 1) coth r + 3 tanh r)

∂

∂r2
+
m(m+ 2)

cosh2 r
+ (2n + 1)2

is an instance of the one considered in [29] and denoted there Lαβ
2n with

α = 1 +
m

2
, β = −m

2
.

From Theorem 2 in [29], we deduce that the solution to the wave Cauchy problem associ-
ated with the subelliptic Laplacian is given by

cos(s
√

−Lm)(f)(w) = −sinh(s)

(2π)2n

(

1

sinh s

d

ds

)2n ∫

HHn

Km(s,w, y)f(y)
dy

(1 − ||y||2)2n+2

where f ∈ C∞
0 (HHn),

Km(s,w, y) =
(1− 〈w, y〉)1+m/2

(1− 〈w, y〉)−m/2

√

cosh2(s)− cosh2(d(w, y))+

cosh2(d(w, y))

2F1

(

m+ 2,−m, 3
2
;
cosh(d(w, y)) − cosh(s)

2 cosh(d(w, y))

)

,

15



2F1 is the Gauss hypergeometric function, and dy stands for the Lebesgue measure in C
n.

Using the spectral formula

etL =
1√
4πt

∫

R

e−s2/(4t) cos(s
√
−L)ds,

holding true for any non positive self-adjoint operator, we deduce that the solution to the
heat Cauchy problem associated with Lm is given by:

etLm(f)(w) = −e
−m(m+2)t−(2n+1)2t

√
4πt(2π)2n

∫

R

ds sinh(s)e−s2/(4t)

(

1

sinh s

d

ds

)2n+1

∫

HHn

Km(s,w, y)f(y)
dy

(1 − ||y||2)2n+2
.

Performing 2n+ 1 integration by parts in the outer integral we further get:

etLm(f)(w) = −e
−m(m+2)t−(2n+1)2t

√
4πt(2π)2n

∫

R

ds sinh(s)

(

1

sinh s

d

ds

)2n+1

e−s2/(4t)

∫

HHn

Km(s,w, y)f(y)
dy

(1 − ||y||2)2n+2
= −e

−m(m+2)t−(2n+1)2t

√
4πt(2π)2n

∫

HHn

f(y)
dy

(1− ||y||2)2n+2

∫

R

ds sinh(s)Km(s,w, y)

(

1

sinh s

d

ds

)2n+1

e−s2/(4t) = 2
e−m(m+2)t−(2n+1)2t

√
4πt(2π)2n

∫

HHn

f(y)
dy

(1− ||y||2)2n+2

∫ ∞

d(w,y)
d(cosh(s))Km(s,w, y)

(

− 1

sinh s

d

ds

)2n+1

e−s2/(4t)

Recalling the heat kernel on the hyperbolic space H4n+3:

qt,4n+3(cosh s) :=
e−(2n+1)2t

(2π)2n+1
√
4πt

(

− 1

sinh(s)

d

ds

)2n+1

e−s2/(4t),

we get

etLm(f)(0) = 4πe−m(m+2)t

∫

HHn

f(y)
dy

(1− ||y||2)2n+2

∫ ∞

d(0,y)
d(cosh(s))Km(s, 0, y)qt,4n+3(cosh(s)).

As a result, the subelliptic heat kernel of Lm reads

dy

(1− ||y||2)2n+2

∫ ∞

d(0,y)
d(cosh(s))Km(s, 0, y)qt,4n+3(cosh(s)) = dr cosh3(r) sinh4n−1(r)

∫ ∞

r
d(cosh(s))Km(s, 0, y)qt,4n+3(cosh(s)).
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Performing the variable change cosh(s) = cosh(r) cosh(u) for u ≥ 0, we transform the last
expression into

dr cosh3(r) sinh4n−1(r)
∫ ∞

0
sinh2(u)2F1

(

m+ 2,−m, 3
2
;
1− cosh(u)

2

)

qt,4n+3(cosh(r) cosh(u))du.

Since

(m+ 1)2F1

(

m+ 2,−m, 3
2
;
1− cosh(u)

2

)

=
sinh[(m+ 1)u]

sinh(u)
,

we finally recover the first integral representation displayed in Theorem 3.1. �

3.3 Relation to the horizontal heat kernel of the complex anti de-Sitter

fibration

In C
2n+1, n ≥ 1, we consider the signed quadratic form:

||(z1, . . . , z2n+1)||2H =

2n
∑

i=1

|zi|2 − |z2n+1|2.

Then, the complex anti de-Sitter space AdS4n+1(C) is the quadric defined by

{z = (z1, . . . , zn+1) ∈ C
n+1, ||z||H = −1},

and the circle group U(1) acts on it by z 7→ zeiθ. This action gives rise to the AdS fibration
over the complex hyperbolic space CHn with U(1)-fibers.

Proposition 3.2 Let pCt (r, η) be the subelliptic heat kernel on the 4n + 1-dimensional
complex anti-de Sitter space as defined in [33] and [8]. Then

− e−4nt

2π cosh r sin η

∂

∂η
pCt (r, η) = pt(r, η).

Proof. From [33] we know that for η ∈ [−π, π]

pCt (r, η) =
1√
4πt

∑

k∈Z

∫ +∞

−∞

e
y2

4t q4n+1
t (cosh r cosh(y + iη + 2kπi))dy

where q4n+1
t is the Riemannian heat kernel of the 4n+1-dimensional hyperbolic space. It

is well known that (for instance, see [21])

qt(x) = −e
−(4n+1)t

2π

d

dx
q4n+1
t (x)
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hence we can easily obtain that

∂

∂η
pCt (r, η) =

1√
4πt

∑

k∈Z

∫ +∞

−∞

e
y2

4t
∂

∂η
q4n+1
t (cosh r cosh(y + iη + 2kπi))dy

= −2πe(4n+1)t cosh r√
4πt

∑

k∈Z

∫ +∞

−∞

e
y2−(η+2kπ)2

4t sinh
(η + 2kπ)y

2t
sinh y q4n+3

t (cosh r cosh y)dy

= −2πe(4n+1)t cosh r pt(r, η)

�

3.4 Small-time asymptotics of the subelliptic heat kernel

In this section we analyze the short time asymptotic behaviors of the subelliptic kernel.
First from (3.13) we obtain that the dominating term is k = 0 as t→ 0. This can be seen
from the second expression of (3.16) that for u, η ∈ [0, π),

st(η, u) =
et sinh ηu

2t√
πt sin η sinu

e
−(u2+η2)

4t

(

1 +O(e−C/t)
)

for some constant C > 0. Hence when t→ 0, we have that

pt(r, η) =
et√
πt

∫ +∞

0

sinh y sin
(ηy
2t

)

sin η
e

y2−η2

4t qt,4n+3(cosh r cosh y)dy +O(e−C/t). (3.17)

Before the estimates, let us recall the Riemannian heat kernel qt has the small time asymp-
totic

qt,4n+3(cosh δ
′) =

1

(4πt)2n+
3
2

(

δ′

sinh δ′

)2n+1

e−
δ′2

4t

(

1 +

(

(2n+ 1)2 − (2n + 1)2n(sinh δ′ − δ′ cosh δ′)

δ′2 sinh δ′

)

t+O(t2)

)

.

(3.18)

where δ′ ∈ [0,∞) is the Riemannian distance and cosh δ′ = cosh r cosh y.

Proposition 3.3 When t→ 0, we have

pt(0, 0) =
1

(4πt)2n+3
(An +Bnt+O(t2)),

where An = 4π
∫ +∞

0
y2n+2

(sinh y)2n
dy and Bn = 4π

∫ +∞

0
y(2n+2)

(sinh y)2n

(

4n2 + 4n+ 2− 2n(2n+1)(sinh y−y cosh y)
y2 sinh y

)

dy.

Proof. From (3.17) we know that

pt(0, 0) =
et√
πt

∫ +∞

0
sinh y · e

y2

4t · y
2t
qt,4n+3(cosh y)dy.

18



Plug in (3.18), we have that

pt(0, 0) =
4πet

(4πt)2n+3

∫ +∞

−∞

y2n+2

(sinh y)2n

(

1 +

(

(2n + 1)2 − 2n(2n + 1)(sinh y − y cosh y)

y2 sinh y

)

t

)

dy.

Hence the claimed estimates. �

The small time behavior of the subelliptic heat kernel on the vertical cut-locus, namely
the points (0, η) that can be achieved by flowing along vertical vector fields is quite differ-
ent. A short-cut to its estimate is by differentiating the small time estimate of pCt (0, η).

Proposition 3.4 For η ∈ (0, π), t→ 0,

pt(0, η) =
1

4π sin η 26nt4n+1(2n − 1)!

(

(π + η)η2n−1e−
2πη+η2

4t

)

(1 +O(t)).

Proof. Since

− e−4nt

2π cosh r sin η

∂

∂η
pCt (r, η) = pt(r, η),

we just need to plug in the small time asymptotic of pCt on the cut locus. Recall

pCt (0, η) =
η2n−1

26nt4n(2n− 1)!
e−

2πη+η2

4t (1 +O(t)),

we then have the conclusion. �

We now deduce the small time behavior of the kernel on the horizontal base space of
AdS4n+3(H). i.e. (r, 0), r 6= 0.

Proposition 3.5 For r ∈ (0,∞), we have

pt(r, 0) =
1

(4πt)2n+
3
2

( r

sinh r

)2n+1
e−

r2

4t

(

1

r coth r − 1

)
3
2

(1 +O(t)).

Proof. By (3.17) we have

pt(r, 0) =
et√
4πt

∫ +∞

−∞

(sinh y)
y

2t
e

y2

4t qt(cosh r cosh y)dy,

and by plugging in (3.18), we obtain that

pt(r, 0) =
1

(4πt)2n+2
(1+O(t))

∫ ∞

−∞

e
y2−(cosh−1(cosh r cosh y))2

4t

( y

2t

)

sinh y

(

cosh−1(cosh r cosh y)
√

cosh2 r cosh2 y − 1

)2n+1

dy

Similarly as in [33], we can analyze it by the Laplace method and obtain the desired
result. �

For the case (r, η), with r 6= 0, we use the steepest descent method. Similarly we
obtain
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Proposition 3.6 Let r ∈ (0,∞), η ∈ [0, π). Then when t→ 0,

pt(r, η) =
1

(4πt)2n+
3
2

sinϕ(r, η)

sin η sinh r

(cosh−1 u(r, η))2n+1

√

u(r,η) cosh−1 u(r,η)√
u2(r,η)−1

− 1

e
−

(ϕ(r,η)−η)2 tanh2 r

4t sin2(ϕ(r,η))

(u(r, η)2 − 1)n
(1+O(t)), (3.19)

where u(r, η) = cos r cosϕ(r, η) and ϕ(r, η) is the unique solution in
(

− arccos
(

1
cosh r

)

, arccos
(

1
cosh r

))

to the equation

ϕ(r, η) − η = cosh r sinϕ(r, η)
cosh−1(cosϕ(r, η) cosh r)
√

cosh2 r cos2 ϕ(r, η) − 1
, (3.20)

Proof. From Lemma 3.6 in [33] we know that

f(y) = (cosh−1(cosh r cosh y))2 − (y − iη)2

has a critical point at iϕ(r, η) and

f
′′

(iϕ(r, η)) =
2 sinh2 r

u(r, θ)2 − 1

(

u(r, θ) cosh−1 u(r, θ)
√

u2(r, θ)− 1
− 1

)

,

is positive, where u(r, θ) = cosh r cosϕ(r, θ). Also

f(iϕ(r, θ)) = (cosh−1(cosh y cosϕ))2 − (ϕ− θ)2 =
(ϕ(r, θ) − θ)2 tanh2 r

sin2(ϕ(r, θ))
. (3.21)

Then we follow the idea in [33] and use steepest descent method to obtain the desired
conclusion. �

4 The subelliptic heat kernel on the twistor space of HH
n

4.1 Radial part of the sub-Laplacian on CH
2n+1
1

Besides the action of SU(2) on AdS4n+3(H) that induces the quaternionic anti de-Sitter
fibration which was studied in the previous sections, we can also consider the action of S1

on AdS4n+3(H) that induces the fibration:

S
1 → AdS4n+3(H) → CH2n+1

1 ,

where we simply define CH2n+1
1 as the complex pseudo-hyperbolic space AdS4n+3(H)/S1.

We refer to [3] for a general definition of complex pseudo-hyperbolic spaces. Note that the
metric on CH2n+1

1 has signature (4n, 2). We can then see S
1 as a subgroup of SU(2) and

have the classical Hopf fibration

S
1 → SU(2) → CP

1
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We can therefore construct the following commutative fibration diagram

S
1

SU(2) ✲

✛

AdS4n+3(H)
❄

✲ HHn

CP
1
❄

✲ CH2n+1
1

❄

✲

The pseudo-Riemannian submersion CH2n+1
1 → HHn obtained at the bottom of the

diagram is similar to Example 4, page 4 in [3] and the fibration

CP
1 → CH2n+1

1 → HHn

shows that CH2n+1
1 is therefore the twistor space of the quaternionic contact manifold

HHn.
We consider the sub-Laplacian L on CH2n+1

1 , it is then the lift of the Laplace-Beltrami
operator of HHn. From the above diagram, L is also the projection of the sub-Laplacian
L of AdS4n+3(H) on CH2n+1

1 . As we have seen before, the radial part of L is

L =
∂2

∂r2
+ ((4n − 1) coth r + 3 tanh r)

∂

∂r
+ tanh2 r(

∂2

∂η2
+ 2cot η

∂

∂η
)

where r is the radial coordinate on HHn and η the radial coordinate on SU(2). The
operator

∆SU(2) =
∂2

∂η2
+ 2cot η

∂

∂η

is the radial part of the Laplace-Beltrami operator on SU(2). As it has been proved in
Baudoin-Bonnefont (see [6]), by using the Hopf fibration,

S
1 → SU(2) → CP

1

we can write

∂2

∂η2
+ 2cot η

∂

∂η
=

∂2

∂φ2
+ 2cot 2φ

∂

∂φ
+ (1 + tan2 φ)

∂2

∂θ2

where φ is the radial coordinate on CP
1 and ∂

∂θ the generator of the action of S1 on SU(2).
Therefore the radial part of the sub-Laplacian L on CH2n+1

1 is given by

L =
∂2

∂r2
+ ((4n − 1) coth r + 3 tanh r)

∂

∂r
+ tanh2 r

(

∂2

∂φ2
+ 2cot 2φ

∂

∂φ

)

, (4.22)

and the invariant measure, up to a normalization constant, is (sinh r)4n−1(cosh r)3 sin 2φdrdφ.
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4.2 Integral representation of the subelliptic heat kernel

From (4.22) we notice that ∂2

∂φ2 + 2cot 2φ ∂
∂φ is the radial part of the Laplacian on CP

1.

It is known that the eigenfunction associated to the eigenvalue −4m(m + 1) is given by
P 0,0
m (cos 2φ) where P 0,0

m is the Legendre polynomial

P 0,0
m (x) =

(−1)m

2mm!

dm

dxm
(1− x2)m.

Moreover, the heat kernel of ∂2

∂φ2 + 2cot 2φ ∂
∂φ is given by

ut(φ1, φ2) =
+∞
∑

m=0

(2m+ 1)e−4m(m+1)tP 0,0
m (cos 2φ1)P

0,0
m (cos 2φ2)

By using the same methods as before, we obtain:

Theorem 4.1 Let ht(r, φ) be the subelliptic heat kernel of L. Then, one has for r ≥ 0
and φ ∈ [0, π)

ht(r, φ)

=

∫ ∞

0
(sinhu)2

{

+∞
∑

m=0

(2m+ 1)e−4m(m+1)tP 0,0
m (cos 2φ)P 0,0

m (cosh 2u)

}

qt,4n+3(cosh r coshu)du.

where

qt,4n+3(cosh s) :=
e−(2n+1)2t

(2π)2n+1
√
4πt

(

− 1

sinh(s)

d

ds

)2n+1

e−s2/(4t),

is the heat kernel on the real 4n + 3 dimensional real hyperbolic space.

5 Further developments

5.1 Quaternionic magnetic Laplacian

The second method we used to compute the sub elliptic heat kernel appeal to an operator
Lαβ
n , α, β ∈ R, introduced in [29]. When α = −β, this is the radial part of the so-

called generalized Maass Laplacian and it reduces when n = 1 to the complex-hyperbolic
magnetic Laplacian. Moreover, it was noticed in [8] that the generalized Maass Laplacian
coincides with the partial Fourier transform of the horizontal Laplacian of the complex
AdS space with respect to the U(1)-fiber coordinate (the dual variable of the Fourier
transform is then interpreted as the magnetic field strength).

On the other hand, a quaternionic magnetic Laplacian with uniform field on H was
defined and studied in [27] and [28]. There, the author consider the one-form A (magnetic
potential):

2A = −(B1x+B2y +B3z)dt+ (B1t−B3y +B2z)dx

+ (B2t+B3x−B1z)dy + (B3t−B2x+B1y)dz
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whose exterior derivative (curvature) is the self-dual (with respect to Hodge operator)
two-form corresponding to the uniform magnetic field B = (B1, B2, B3) ∈ R

3:

dA = B1(dt ∧ dx + dy ∧ dz) + B2(dt ∧ dy + dz ∧ dx) + B3(dt ∧ dz + dx ∧ dy).

The quaternionic magnetic Laplacian then defined by

−[(∂t + iA0)
2 + (∂x + iA1)

2 + (∂y + iA2)
2 + (∂z + iA3)

2]

where Ai, 0 ≤ i ≤ 3 are the components of A. This operator was then identified as
the partial Fourier transform of the horizontal Laplacian of the quaternionic Heisenberg
group with respect to the vertical coordinates. Note that if we consider the quaternionic
symplectic form

ω :=
1

2
(dww − wdw) := ω1I + ω2J + ω3K

on H and if B = B1I +B2J +B3K, then the above quaternionic magnetic Laplacian may
be written as a Bochner-type Laplacian:

−(d− iℜ(Bω))⋆(d− iℜ(Bω))

acting on functions, where d is the exterior derivative and ⋆ is the adjoint operator with
respect to the flat Riemannian metric on H ≈ R

4. Accordingly, we may define the quater-
nionic analogue of the generalized Maass Laplacian as the partial Fourier transform of
the horizontal Laplacian displayed in (2.12) with respect to the fiber variables (φ1, φ2, φ3).
However, note that in contrast with the flat setting, we need to add a weight when we
perform the partial Fourier transform in order to neutralize the factor

1

cos2 η
= 1 + tan2 η = 1 + φ21 + φ22 + φ23,

which amounts to get the translation invariance of the sublaplacian with respect to
(φ1, φ2, φ3). Moreover, since

Vi =
∂

∂wi
− 1

cos2 η
ζ

(

∂

∂wi

)

∂

∂φ
,

where we recall that ζ is defined in (2.9), it would be interesting to check whether the
magnetic Laplacian may be written or not as a Bochner-type Laplacian acting on functions.

5.2 The heat kernel of a sub-d’Alembertian on H
4n+3

We may compute the heat kernel of the sub-d’Alembertian on H4n+3 which is given by

L = ∆H4n+3 −∆P =
∂2

∂r2
+ ((4n− 1) coth r + 3 tanh r)

∂

∂r2
− tanh2 r

(

∂2

∂η2
+ 2coth η

∂

∂η

)
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This operator is obtained from the horizontal Laplacian on the quaternionic anti-de Sitter
space by complexification of the fiber SU(2). Indeed, the spectrum of the ‘fiber’ part is
purely continuous:

(

∂2

∂η2
+ 2coth η

∂

∂η

)

φ
(1/2,−1/2)
λ (η) = −(λ2 + 1)φ

(1/2,−1/2)
λ (η), λ ∈ R,

where ([31])

φ
(1/2,−1/2)
λ (η) = 2F1

(

1 + iλ

2
,
1− iλ

2
,
3

2
;− sinh2(η)

)

is the Jacobi function of parameters (1/2,−1/2). Expanding the heat kernel in the η-
variable as a inverse Fourier-Jacobi transform of some smooth function (t, r) 7→ vλ(t, r)
([31]):

∫

R

vλ(t, r)φ
(1/2,−1/2)
λ (η)η2dη,

the function vλ should solve the heat equation associated with the operator

∂2

∂r2
+ ((4n − 1) coth r + 3 tanh r)

∂

∂r2
+ (λ2 + 1) tanh2 r.

Using the identity tanh2(r) = 1− 1/ cosh2(r), then we are led to

(

∂2

∂r2
+ ((4n − 1) coth r + 3 tanh r)

∂

∂r2
− λ2 + 1

cosh2 r
+ (λ2 + 1)

)

vλ(t, r) = ∂tvλ(t, r).

The corresponding heat kernel may then be derived along the same lines written in the
second method by choosing the parameters α, β such that:

α+ β = 1, 4αβ = λ2 + 1,

that is, α = 1− β = (1 + iλ)/2.
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