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The horizontal heat kernel on the quaternionic anti de-Sitter spaces and related twistor spaces

The geometry of the quaternionic anti-de Sitter fibration is studied in details. As a consequence, we obtain formulas for the horizontal Laplacian and subelliptic heat kernel of the fibration. The heat kernel formula is explicit enough to derive small time asymptotics. Related twistor spaces and corresponding heat kernels are also discussed and the connection to the quaternionic magnetic Laplacian is done.

Introduction

The main goal of the paper is to study in details the geometry, the horizontal Laplacians and the horizontal heat kernels of the quaternionic anti-de Sitter fibration

SU(2) → AdS 4n+3 (H) → HH n (1.1)
and of related twistor spaces. This fibration is the quaternionic counterpart of the complex anti-de Sitter fibration that was studied in details in [START_REF] Baudoin | Integral representation of the sub-elliptic heat kernel on the complex anti-de Sitter fibration[END_REF][START_REF] Bonnefont | The subelliptic heat kernel on SL(2,R) and on its universal covering: integral representations and some functional inequalities[END_REF][START_REF] Wang | The subelliptic heat kernel on the anti-de Sitter spaces[END_REF]. Anti-de Sitter spaces play a fundamental role in mathematical physics since they appear as exact solutions of Einstein's field equations for an empty universe with a negative cosmological constant; see for instance [START_REF] Gibbons | Anti-de-Sitter spacetime and its uses[END_REF] and the references therein for a pedagogical account on the importance of those spaces and the celebrated AdS/CFT correspondence. Anti-de Sitter spaces also appear as model spaces in Sasakian geometry: the complex anti de-Sitter space is the model space of a negative Sasakian manifold (see [START_REF] Baudoin | Sub-Laplacian comparison theorems on totally geodesic Riemannian foliations[END_REF]) and the quaternionic anti-de Sitter fibration studied in this paper can be thought as the model space of a negative 3-Sasakian manifold (see [START_REF] Boyer | Surveys in differential geometry: essays on Einstein manifolds[END_REF][START_REF] Jelonek | Positive and negative 3-K contact structures[END_REF]).

Let us describe the main results of the paper. Section 2 is devoted to the geometric study of the quaternionic anti-de Sitter fibration. We approach and describe this geometry from two complementary points of view: the point of view of pseudo-Riemannian submersions (see [START_REF] Baditoiu | Classification of Pseudo-Riemannian submersions with totally geodesic fibres from pseudo-hyperbolic spaces[END_REF]) and the point of view of quaternionic contact geometry (see [START_REF] Biquard | Quaternionic contact structures, In Quaternionic structures in mathematics and physics[END_REF]). Then, an important observation is that SU(2) and the hyperbolic quaternionic space HH n are both symmetric spaces of rank 1. The fibration (1.1) therefore inherits a large symmetry group. As a consequence, the heat kernel of the horizontal Laplacian on AdS 4n+3 (H) only depends on two variables: a variable r which is the radial coordinate on the base space HH n and a variable η which is the radial coordinate on the fiber SU [START_REF] Baditoiu | Classification of Pseudo-Riemannian submersions with totally geodesic fibres from pseudo-hyperbolic spaces[END_REF]. We prove that in these coordinates, the horizontal Laplacian of the fibration writes ∂ 2 ∂r 2 + ((4n -1) coth r + 3 tanh r)

∂ ∂r + tanh 2 r ∂ 2 ∂η 2 + 2 cot η ∂ ∂η .
In section 3, using this expression, we shall derive an integral representation of the corresponding heat kernel p t (r, η) by two different methods.

• The first method is geometric and uses an analytic continuation in the fiber variables similar to the Wick rotations used in physics;

• The second method is related to the study of heat kernels associated with the generalized Maass Laplacian (see e.g. [START_REF] Intissar | Explicit formulae for the wave kernels for the laplacians ∆ αβ in the Bergman Ball B n , n ≥ 1[END_REF]) and uses the ideas from [START_REF] Baudoin | Integral representation of the sub-elliptic heat kernel on the complex anti-de Sitter fibration[END_REF].

Our main result can be summarized as follows:

Theorem 1.1 Let r ≥ 0 and η ∈ [0, π), then: q t,4n+3 (cosh r cosh y)dy.

p t (
(1.2) where q t,4n+3 (cosh s) := e -(2n+1) 2 t (2π

) 2n+1 √ 4πt - 1 sinh(s) d ds 2n+1 e -s 2 /(4t) ,
is the heat kernel on the real 4n + 3 dimensional hyperbolic space.

The role of the 4n + 3 dimensional real hyperbolic space in this formula is puzzling. One can explain it heuristically by noting that the Cartan dual of AdS 4n+3 (H) obtained by complexification of the fiber SU(2) can be thought of as the real 4n + 3 dimensional real hyperbolic space (see the long comment after the proof of theorem 3.1). Several consequences of the formula are then discussed. In particular, we obtain small time asymptotics for p t (r, η) and prove that

- e -4nt 2π cosh r sin η ∂ ∂η p C t (r, η) = p t (r, η).
where p C t is the horizontal heat kernel of the complex anti de-Sitter fibration as studied in [START_REF] Baudoin | Integral representation of the sub-elliptic heat kernel on the complex anti-de Sitter fibration[END_REF][START_REF] Wang | The subelliptic heat kernel on the anti-de Sitter spaces[END_REF].

In section 4, we study the horizontal Laplacian and corresponding horizontal heat kernel of the twistor space CH 2n+1 1 over HH n . This twistor space appears as a S 1 quotient of the quaternionic anti de-Sitter fibration according to the following commutative diagram:

S 1 SU(2) ✲ ✛ AdS 4n+3 (H) ❄ ✲ HH n CP 1 ❄ ✲ CH 2n+1 1 ❄ ✲ 3
We then prove that the radial part of the horizontal Laplacian on CH 2n+1 1 is given by

∂ 2 ∂r 2 + ((4n -1) coth r + 3 tanh r) ∂ ∂r + tanh 2 r ∂ 2 ∂φ 2 + 2 cot 2φ ∂ ∂φ , (1.3) 
where r is, once again, the radial coordinate on HH n and φ is the radial coordinate on the complex projective space CP 1 . The corresponding heat kernel writes

h t (r, φ) = ∞ 0 (sinh u) 2 +∞ m=0
(2m + 1)e -4m(m+1)t P 0,0 m (cos 2φ)P 0,0 m (cosh 2u) q t,4n+3 (cosh r cosh u)du.

where P 0,0 m are Legendre polynomials. Finally, in section 5, we discuss further developments. A connection to the quaternionic magnetic Laplacian is made and an interesting sub-d'Alembertian on the real 4n+3 dimensional hyperbolic space is discussed.
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2 Geometry of the quaternionic anti de-Sitter fibration

Definition of AdS 4n+3 (H)

Let H be the quaternionic field

H = {q = t + xI + yJ + zK, (t, x, y, z) ∈ R 4 },
where I, J, K ∈ SU(2) are the Pauli matrices:

I = i 0 0 -i , J = 0 1 -1 0 , K = 0 i i 0 .
Then, the quaternionic norm is given by |q| 2 = t 2 + x 2 + y 2 + z 2 and the set of unit quaternions is identified with SU(2).

We consider the quaternionic anti-de Sitter space AdS 4n+3 (H) which is defined as a pseudo-hyperbolic space by:

AdS 4n+3 (H) = {q = (q 1 , • • • , q n+1 ) ∈ H n+1 , q 2 H = -1},
where

q 2 H := n k=1 |q k | 2 -|q n+1 | 2 .
In real coordinates q i = (t i , x i , y i , z i ), 1 ≤ i ≤ n + 1, this pseudo-norm may be written as

t 2 1 + x 2 1 + y 2 1 + z 2 1 + • • • + t 2 n + x 2 n + y 2 n + z 2 n -t 2 n+1 -x 2 n+1 -y 2 n+1 -z 2 n+1 = -1,
and as such, AdS 4n+3 (H) is embedded in the flat 4n + 4-dimensional space R 4n,4 endowed with the Lorentzian real signature (4n, 4) metric

ds 2 = dt 2 1 +dx 2 1 +dy 2 1 +dz 2 1 +• • •+dt 2 n +dx 2 n +dy 2 n +dz 2 n -dt 2 n+1 -dx 2 n+1 -dy 2 n+1 -dz 2 n+1 . (2.4)
As a matter of fact, AdS 4n+3 (H) is naturally endowed with a pseudo-Riemannian structure of signature (4n, 3).

SU(2) action and fibration

Using quaternionic multiplication on the left, SU(2) acts isometrically on AdS 4n+3 (H).

In fact, if we consider the rotations e Sθ , S = I, J, K, then straightforward computations show that the infinitesimal generators are given in real coordinates by

d dθ f (e Iθ q) | θ=0 = n+1 i=1 -x i ∂f ∂t i + t i ∂f ∂x i -z i ∂f ∂y i + y i ∂f ∂z i = T 1 (2.5) 
d dθ f (e Jθ q) | θ=0 = n+1 i=1 -y i ∂f ∂t i + z i ∂f ∂x i + t i ∂f ∂y i -x i ∂f ∂z i = T 2 (2.6) d dθ f (e Kθ q) | θ=0 = n+1 i=1 -z i ∂f ∂t i -y i ∂f ∂x i + x i ∂f ∂y i + t i ∂f ∂z i = T 3 (2.7)
The quotient space AdS 4n+3 (H)/SU(2) can be identified with the quaternionic hyperbolic space HH n endowed with its canonical quaternionic Kähler metric. The projection map AdS 4n+3 (H) → HH n is a pseudo-Riemannian submersion with totally geodesic fibers isometric to SU(2). The fibration

SU(2) → AdS 4n+3 (H) → HH n
is referred to as the quaternionic anti de-Sitter fibration and may be thought of as the hyperbolic counterpart of the quaternionic Hopf fibration studied in details in [START_REF] Baudoin | The Subelliptic Heat Kernels of the Quaternionic Hopf Fibration, Potential Analysis[END_REF]. Moreover, it shows that AdS 4n+3 (H) is simply connected since both the base space and the fiber are so. We refer to [START_REF] Baditoiu | Classification of Pseudo-Riemannian submersions with totally geodesic fibres from pseudo-hyperbolic spaces[END_REF] for a description of this submersion, and more generally for a description of totally geodesic submersions from pseudo-hyperbolic spaces.

Laplacians and horizontal heat kernel

The horizontal Laplacian L on AdS 4n+3 (H) is defined as the horizontal lift of the Laplace-Beltrami operator on HH n by the submersion AdS 4n+3 (H) → HH n . Note that since the metric on HH n is Riemannian, the operator L is semi-elliptic (that is, its principal symbol is non negative). More than that, from Hörmander's theorem it is easily seen to be subelliptic because the horizontal distribution on AdS 4n+3 (H), i.e. the distribution transverse to the fibers of the submersion, is everywhere two-step bracket generating (this comes from the quaternionic contact structure described below).

Furthermore, according to [START_REF] Bérard-Bergery | Laplacians and Riemannian submersions with totally geodesic fibres[END_REF], one has the decomposition

AdS 4n+3 (H) = L -∆ SU(2) ,
where AdS 4n+3 (H) is the d'Alembertian on AdS 4n+3 (H) i.e. the Laplace-Beltrami operator of the pseudo-Riemannian metric, and ∆ SU(2) = T 2 1 + T 2 2 + T 2 3 is the Laplace-Beltrami operator of the fibers. Since the fibers are totally geodesic and thus isometric to SU(2), ∆ SU(2) is simply the Laplace-Beltrami operator on SU [START_REF] Baditoiu | Classification of Pseudo-Riemannian submersions with totally geodesic fibres from pseudo-hyperbolic spaces[END_REF].

The Riemannian metric on AdS 4n+3 (H), i.e. the one obtained from the pseudo-Riemannian one by simply changing the signature in the direction of the fibers, is complete, thus the horizontal Laplacian is essentially self-adjoint on the space of smooth and compactly supported functions (see Section 5.1 in [START_REF] Baudoin | Sub-Laplacians and hypoelliptic operators on totally geodesic Riemannian foliations[END_REF]). As a consequence, L is the generator of a strongly continuous semigroup e tL in L 2 (AdS 4n+3 (H)) that uniquely solves the heat equation. By subellipticity of L, this semigroup admits a heat kernel that we will refer to as the horizontal or subelliptic heat kernel.

Quaternionic contact structure

In addition to the fibration structure on AdS 4n+3 (H), there is a quaternionic contact structure (see [START_REF] Biquard | Quaternionic contact structures, In Quaternionic structures in mathematics and physics[END_REF][START_REF] Boyer | Surveys in differential geometry: essays on Einstein manifolds[END_REF] for a description of this structure). Indeed, if we consider the quaternionic form

α = 1 2 n i=1 (dq i q i -q i dq i ) -(dq n+1 q n+1 -q n+1 dq n+1 ) = α 1 I + α 2 J + α 3 K, (2.8)
then the triple (α 1 , α 2 , α 3 ) gives the quaternionic contact structure. If we denote

T = - n i=1 q i ∂ ∂q i - ∂ ∂q i q i + q n+1 ∂ ∂q n+1 - ∂ ∂q n+1 q n+1 then T = T 1 I + T 2 J + T 3 K, α(T ) = 3
and we can easily find that

α i (T j ) = -δ ij .
Thus, T 1 , T 2 , T 3 are the three Reeb vector fields of α and are also Killing vector fields on AdS 4n+3 (H). In this way, AdS 4n+3 (H) is a negative 3-K contact structure (see [START_REF] Jelonek | Positive and negative 3-K contact structures[END_REF]).

Cylindric coordinates

In this paragraph, we shall write down the horizontal Laplacian in cylindrical coordinates: these consist of coordinates (w 1 , . . . , w n ) in the base space HH n and (θ 1 , θ 2 , θ 3 ) in the Lie algebra su(2) of traceless skew-Hermitian 2 × 2 matrices. More precisely, we shall consider the map

HH n × su(2) → AdS 4n+3 (H) (w 1 , . . . , w n , θ 1 , θ 2 , θ 3 ) → e Iθ 1 +Jθ 2 +Kθ 3 w 1 1 -ρ 2 , • • • , e Iθ 1 +Jθ 2 +Kθ 3 w n 1 -ρ 2 , e Iθ 1 +Jθ 2 +Kθ 3 1 -ρ 2 where ρ = n j=1 |w j | 2
and w i = q i /q n+1 , i = 1, . . . , n, are inhomogeneous coordinates in HH n . Accordingly,

dq i = q n+1 dw i + dq n+1 w i , dq i = dw i q n+1 + w i dq n+1 ,
and we can then rewrite the contact form (2.8) as follows:

α = 1 2 n i=1 ((q n+1 dw i + dq n+1 w i ) w i q n+1 -q n+1 w i (dw i q n+1 + w i dq n+1 )) -(dq n+1 q n+1 -q n+1 dq n+1 ) = 1 2 n i=1 q n+1 dw i w i q n+1 -q n+1 w i dw i q n+1 - 1 2 
1 -ρ 2 (dq n+1 q n+1 -q n+1 dq n+1 ) .

Set q := Iθ 1 + Jθ 2 + Kθ 3 , then

q n+1 = e q 1 -ρ 2 , e q = e -q , q = -q = q -1 η 2 ,
where

η 2 = θ 2 1 + θ 2 2 + θ 2 3
is the squared Riemannian distance from the identity in SU (2). Also, the relation 0 = d(q q -1 ) = qdq -1 + dq q -1 yields

dq -1 = -q -1 dq • q -1 ,
Now, we need to compute de q • e -q . To this end, recall that

e q = cos η + sin η η (θ 1 I + θ 2 J + θ 3 K).
Consequently,

de q • e -q = d(cos η) + d sin η η q cos η - sin η η q and de q • e -q -e q • de -q = cos η d sin η η q - sin η η q d cos η = cos 2 η d tan η η q
As a result,

α = 1 2 e q dw i w i -w i dw i 1 -ρ 2 -cos 2 η d tan η η q e -q .
Equivalently, we can consider the following one form Λ := e -q α e q = 1 2

dw i w i -w i dw i 1 -ρ 2 -cos 2 η d tan η η q whose horizontal part ζ := 1 2 dw i w i -w i dw i 1 -ρ 2 (2.9)
is the quaternionic Kähler form on HH n , which induces the following sub-Riemannian metric

h i k = 1 2 δ ik 1 -ρ 2 + w i w k (1 -ρ 2 ) 2 .
(2.10)

We are now ready to derive the sub-Laplacian on AdS 4n+3 (H). Due to radial symmetry, we are interested in the radial part of the sub-Laplacian, in the sense as follows.

Definition 2.1 Let ψ be the map from AdS 4n+3 (H) to [0, 1) × [0, π) such that ψ e Iθ 1 +Jθ 2 +Kθ 3 w 1 1 -ρ 2 , • • • , e Iθ 1 +Jθ 2 +Kθ 3 w n 1 -ρ 2 , e Iθ 1 +Jθ 2 +Kθ 3 1 -ρ 2 = (ρ, η) ,
We denote by D the space of smooth and compactly supported functions on [0, 1)

× [0, π). Then the cylindrical part of L is defined by L : D → C ∞ (AdS 4n+3 (H)) such that for every f ∈ D, we have L(f • ψ) = ( Lf ) • ψ. Proposition 2.2
The radial part of the sub-Laplacian on AdS 4n+3 (H) is given in the coordinates (r, η) by

L = ∂ 2 ∂r 2 + ((4n -1) coth r + 3 tanh r) ∂ ∂r + tanh 2 r ∂ 2 ∂η 2 + 2 cot η ∂ ∂η . ( 2 

.11)

where r = tanh -1 ρ is the Riemannian distance on HH n from the origin.

Proof. Lifting the vector fields ∂/∂w i , 1 ≤ i ≤ n, by means of Λ, we first obtain a basis (V i ) 1≤i≤n of the horizontal bundle H(AdS 4n+3 (H)):

V i := ∂ ∂w i + w i 2(1 -ρ 2 ) cos 2 η ∂ ∂φ , where φ = tan η η q := φ 1 I + φ 2 J + φ 3 K and ∂ ∂φ = - ∂ ∂φ 1 I + ∂ ∂φ 2 J + ∂ ∂φ 3 K .
Moreover, the inverse of the metric displayed in (2.10) is given by:

h īk = 2(1 -ρ 2 )(δ ik -w i w k )
and the sublaplacian admits the following expression:

L = 2 n i,k=1 ℜ(V i h īk V k ).
Straightforward computations then yield

L = 4(1 -ρ 2 )ℜ n i=1 ∂ 2 ∂w i ∂w i -RR - ρ 2 4(1 -ρ 2 ) cos 4 η ∂ ∂φ 2 + 1 2 cos 2 η R ∂ ∂φ - ∂ ∂φ R = ∆ HH n + ρ 2 cos 4 η 3 i=1 ∂ 2 ∂φ 2 i + 2(1 -ρ 2 ) cos 2 η R ∂ ∂φ - ∂ ∂φ R , (2.12) 
where

∆ HH n = 4(1 -ρ 2 )ℜ n i=1 ∂ 2 ∂w i ∂w i -RR
is the Laplace-Beltrami operator of HH n and

R = n i=1 w i ∂ ∂w i is the quaternionic Euler operator. Denote µ 2 = φ 2 1 + φ 2 2 + φ 2 3 , then µ = tan η so that ∂ ∂η = 1 cos 2 η ∂ ∂µ .
As a result, for any smooth function f of η,

1 cos 4 η 3 i=1 ∂ 2 ∂φ 2 i f (η) = 1 cos 4 η ∂ 2 ∂µ 2 + 2 µ ∂ 2 ∂µ 2 f (η) = ∂ 2 ∂η 2 -cos 2 η ∂ ∂η 1 cos 2 η ∂ ∂η + 2 cot η cos 2 η ∂ ∂η f (η) = ∂ 2 ∂η 2 + 2 cot η ∂ ∂η f (η)
Since the radial part of ∆ HH n is given by

∂ 2 ∂r 2
+ ((4n -1) coth r + 3 tanh r) ∂ ∂r 2 .

and ρ = tanh(r), the proposition is proved.

3 The subelliptic heat kernel on the quaternionic anti de-Sitter space

Recall from the previous section, the radial part of the horizontal Laplacian of the quaternionic anti de-Sitter fibration

SU(2) → AdS 4n+3 (H) → HH n
is given by

∂ 2 ∂r 2 + ((4n -1) coth r + 3 tanh r) ∂ ∂r 2 + tanh 2 r ∂ 2 ∂η 2 + 2 cot η ∂ ∂η ,
where r ≥ 0 is the radial coordinate on the base space HH n and η ∈ [0, π] is the radial coordinate on SU [START_REF] Baditoiu | Classification of Pseudo-Riemannian submersions with totally geodesic fibres from pseudo-hyperbolic spaces[END_REF]. With a slight abuse of notation with respect to the previous section, this operator shall be denoted by L. Let p t (r, η) be its subelliptic heat kernel (issued from (0, 0)) with respect to the Riemannian volume measure

ν(dr, dη) = 8π 2n+1 Γ(2n) (sinh r) 4n-1 (cosh r) 3 (sin η) 2 drdη.
In this section, we shall derive an integral representation of the corresponding heat kernel p t (r, η) by two different methods.

• The first method is geometric and uses an analytic continuation in the fiber variables similar to the Wick rotations;

• The second method is related to the heat kernel associated with the generalized Maass Laplacian (see e.g. [START_REF] Intissar | Explicit formulae for the wave kernels for the laplacians ∆ αβ in the Bergman Ball B n , n ≥ 1[END_REF]).

3.1 First method: Complexification of SU(2) and Wick rotations Theorem 3.1 Let r ≥ 0 and η ∈ [0, π), then:

p t (r, η) = 2 π ∞ 0 sinh u sin η    m≥0 e -m(m+2)t sin[(m + 1)η] sinh[(m + 1)u]    q t,4n+3 (cosh r cosh u)du = e t √ πt k∈Z +∞ 0 sinh y sin (η+2kπ)y 2t sin η e y 2 -(η+2kπ) 2 4t
q t,4n+3 (cosh r cosh y)dy.

(3.13)

where

q t,4n+3 (cosh s) := e -(2n+1) 2 t (2π) 2n+1 √ 4πt - 1 sinh(s) d ds 2n+1 e -s 2 /(4t) ,
is the heat kernel on the real 4n + 3 dimensional real hyperbolic space.

Proof. The following computations are based on geometric ideas that we will describe after the proof. For conciseness, we omit some of the technical details since a second proof of the result will be given in the next section. We first decompose

L = ∂ 2 ∂r 2 + ((4n -1) coth r + 3 tanh r) ∂ ∂r 2 + tanh 2 r ∂ 2 ∂η 2 + 2 cot η ∂ ∂η .
as follows

L = ∆ HH n + tanh 2 r∆ SU(2) ,
where

∆ HH n = ∂ 2 ∂r 2 + ((4n -1) coth r + 3 tanh r) ∂ ∂r 2
is the radial part of the Laplacian on the quaternionic hyperbolic space HH n and

∆ SU(2) = ∂ 2 ∂η 2 + 2 cot η ∂ ∂η
is the radial part of the Laplacian on SU [START_REF] Baditoiu | Classification of Pseudo-Riemannian submersions with totally geodesic fibres from pseudo-hyperbolic spaces[END_REF]. Note that we can also write

L = AdS 4n+3 (H) + ∆ SU(2) ,
where

AdS 4n+3 (H) = ∆ HH n - 1 cosh 2 r ∆ SU(2)
is the radial part of the d'Alembertian. Note ∆ HH n and ∆ SU(2) commute. Therefore

e tL = e t( AdS 4n+3 (H) +∆ SU(2) ) = e t∆ SU(2) e t AdS 4n+3 (H)
We deduce that the heat kernel of L can be written as

p t (r, η) = π 0 s t (η, u)p AdS 4n+3 (H) t (r, u)(sin u) 2 du, (3.14) 
where s t is the heat kernel of

∆ SU(2) = ∂ 2 ∂η 2 + 2 cot η ∂ ∂η
with respect to the measure sin 2 ηdη, η ∈ [0, π), and p AdS 4n+3 (H) t (r, u) the heat kernel at (0, 0) of AdS 4n+3 (H) with respect to the measure

dµ 4n+3 (r, u) = 8π 2n+1 Γ(2n) (sinh r) 4n-1 (cosh r) 3 (sin u) 2 drdu, r ∈ [0, ∞), u ∈ [0, π),
The idea to compute (3.14) is to perform an analytic extension in the fiber variable u. More precisely, let us consider the analytic change of variables τ : (r, η) → (r, iη) that will be applied on functions of the type f (r, η) = g(r)e -iλu , with g smooth and compactly supported on [0, +∞) and λ > 0. One sees then that

AdS 4n+3 (H) (f • τ ) = (∆ H 4n+3 f ) • τ (3.15)
where ∆ H 4n+3 = ∆ HH n + 1 cosh 2 r ∆ P and

∆ P = ∂ 2 ∂η 2 + 2 coth η ∂ ∂η .
Introducing a new variable δ such that cosh δ = cosh r cosh η, one sees after straightforward computations that

∆ H 4n+3 = ∂ 2 ∂δ 2 + (4n + 2) coth δ ∂ ∂δ .
Thus ∆ H 4n+3 is the radial part of the Laplacian on the real hyperbolic space of dimension 4n + 3. One deduces

e tL (f • τ ) = e t∆ SU(2) e t AdS 4n+3 (H) (f • τ ) = e t∆ SU(2) ((e t∆ H 4n+3 f ) • τ ) = (e -t∆ P e t∆ H 4n+3 f ) • τ. Now, since for every f (r, η) = g(r)e -iλu (e t AdS 4n+3 (H) f )(0, 0) = (e t∆ H 4n+3 (f • τ -1
))(0, 0), one deduces that for a function g depending only on u, namely g(u) = e -iλu π 0 g(u)p AdS 4n+3 (H) t (r, u)(sin u) 2 du = +∞ 0 q t,4n+3 (cosh r cosh u)g(-iu)(sinh u) 2 du.

Therefore, coming back to (3.14), one infers that using the analytic extension of s t one must have

π 0 s t (η, u)p AdS 4n+3 (H) t (r, u)(sin u) 2 du = +∞ 0 q t,4n+3 (cosh r cosh u)s t (η, -iu)(sinh u) 2 du.
One concludes with the well known formulas (see Section 8.6 in [START_REF] Faraut | Analysis on Lie groups, an introduction[END_REF])

s t (η, u) = 2 π sin η sin u m≥0 e -m(m+2)t sin[(m + 1)η] sin[(m + 1)u] (3.16) = e t √ πt sin η sin u k∈Z sinh (η + 2kπ)u 2t e -u 2 -(η+2kπ) 2 4t
.

We now briefly explain the geometric meaning of formula (3.15). The idea behind the change of variable τ is similar to the idea of "Wick rotation" in physics. More precisely, consider the complexification of SU(2), which is given by SL(2, C), whose Lie algebra sl(2, C) consists of traceless complex matrices. A basis of sl(2, C) is given by

I = 0 i i 0 , J = 0 1 -1 0 , K = -i 0 0 i I = 0 1 1 0 , J = 0 -i i 0 , K = -1 0 0 1
The Lie algebra of SU(2) consists of traceless complex anti-Hermitian matrices. A basis of su( 2) is given by I, J, K. Clearly we have

[I, J] = 2K, [J, K] = 2I, [K, I] = 2J. and sl(2, C) = su(2) ⊕ i • su(2).
Note that SL(2, C) is isomorphic (as a real analytic variety) to SU(2) × R 3 (See Theorem 5, page 21 in [START_REF] Serre | Complex Semisimple Lie Algebras[END_REF]). The Lie algebra of SL(2, R) consists of traceless real matrices and a basis is given by I, J, K and

[I, J] = 2K, [J, K] = 2I, [K, I] = -2J.
Denote p := i • su(2) and P = SL(2, C)/SU(2). To geometrically describe P , we recall the complexification of SU(2)

∼ = S 3 . Let Q 3 := {z = (z 1 , z 2 , z 3 , z 4 ) ∈ C 4 , z 2 1 +z 2 2 +z 2 3 +z 2 4 =
1} be the complexification of S 3 . It is well known that Q 3 can be considered as a tangent bundle T (S 3 ) := {(x, y)|x ∈ R 4 , y ∈ R 4 , |x| = 1, x • y = 0} over S 3 , using the map

T (S 3 ) → Q 3 , (x, y) → cosh |y|x + i sinh |y| |y| y.
Take a metric tensor on S 3 , we analytically continue it to Q 3 and then restrict to the fibers. It then gives a hyperbolic space H 3 := {y 2 1 + y 2 2 + y 2 3 + y 2 4 = -1} with metric ds 2 = -dy 2 1 -dy 2 2 -dy 2 3 -dy 2 4 . As a consequence, the complexification of SU(2) can be considered as fiber bundle over S 3 with fibers being real hyperbolic space H 3 and the symmetric space P = SL(2, C)/SU(2) is therefore isometric to H 3 .

For any analytic function f (θ 1 , θ 2 , θ 3 ) ∈ L 2 (SU( 2)), we consider its extension to holomorphic functions

f C (θ 1 + iµ 1 , θ 2 + iµ 2 , θ 3 + iµ 3 ) on SU(2) C ∼ = SL(2, C). It is then easy to see that (I 2 + J 2 + K 2 )f C = -(I 2 + J 2 + K 2 )f C
Hence the push forward of ∆ SU(2) through Wick's rotations gives -∆ P where ∆ P := I 2 + J 2 + K 2 is the Laplacian on the symmetric space P = H 3 = SL(2, C)/SU(2). Formula (3.15) indicates then that the 4n + 3 real dimensional real hyperbolic space is dual to AdS 4n+3 (H) by complexification of the fibers. We point out that however, there is no (pseudo-) Riemannian submersion from the real hyperbolic space H 4n+3 to the symmetric space HH n . To obtain a fibration structure, one can consider the rotation (I, J, K) → (I, J, K)

The new basis (J, K, I) satisfies

J 2 = -1, I 2 = K 2 = 1, JK = I, KI = -J, IJ = K
and form a split-quaternion algebra B. The resulting space is then a para-quaternionic hyperbolic space. The quaternionic anti-de Sitter fibration then becomes a pseudo-Riemannian submersion (see [START_REF] Baditoiu | Classification of Pseudo-Riemannian submersions with totally geodesic fibres from pseudo-hyperbolic spaces[END_REF])

H 3 1 → H 4n+3 2n+1 → BH n with totally geodesic fibers H 3 1 := {y 2 1 + y 2 2 + y 2 3 -y 2 4 = -1}, where H 4n+3 2n+1 = Sp(1, n, B)/Sp(n, B), BH n = Sp(1, n, B)/Sp(1, B)Sp(n, B
). Similar rotation can be considered in the complex case as well. In [START_REF] Wang | The subelliptic heat kernel on the anti-de Sitter spaces[END_REF], the author attempted to obtain a real hyperbolic space by Wick rotating the S 1 fiber of the complex anti de-Sitter fibration. The correct rotation should be i → j, where j is the Lorentz number that satisfies j 2 = 1 and generates a para-complex algebra A. The complex anti-de Sitter fibration then becomes a pseudo-Riemannian submersion

H 1 → H 2n+1 n → AH n
with totally geodesic fiber H 1 = {t = x + jy ∈ A, tt = 1, x > 0}, where

H 2n+1 n = SU (n, 1, A)/SU (n, A), AH n = SU (n, 1, A)/S(U (1, A)U (n, A)).

Second method

The strategy of the second method is similar to the one used in [START_REF] Baudoin | Integral representation of the sub-elliptic heat kernel on the complex anti-de Sitter fibration[END_REF] and appeal to some results proved in [START_REF] Intissar | Explicit formulae for the wave kernels for the laplacians ∆ αβ in the Bergman Ball B n , n ≥ 1[END_REF].

Proof. Firstly, we decompose the subelliptic heat kernel in the basis of Chebyshev polynomials of the second kind

U m (cos(η)) = sin((m + 1)η) sin(η) , m ≥ 0,
which are eigenfunctions of ∆ SU(2) :

∂ 2 ∂η 2 + 2 cot η ∂ ∂η U m (cos(•))(η) = -m(m + 2)U m (cos(η)), m ≥ 0.
Accordingly,

p t (r, η) = m≥0 f m (t, r)U m (cos(η))
where for each m, f m (t, •) solves the following heat equation:

∂ t (f m )(t, r) = ∂ 2 ∂r 2 + ((4n -1) coth r + 3 tanh r) ∂ ∂r 2 -m(m + 2) tanh 2 r (f m )(t, r) = ∂ 2 ∂r 2 + ((4n -1) coth r + 3 tanh r) ∂ ∂r 2 + m(m + 2) cosh 2 r -m(m + 2) (f m )(t, r).
Up to a constant (-m(m + 2) -(2n + 1) 2 ), the operator

L m := ∂ 2 ∂r 2 + ((4n -1) coth r + 3 tanh r) ∂ ∂r 2 + m(m + 2) cosh 2 r + (2n + 1) 2
is an instance of the one considered in [START_REF] Intissar | Explicit formulae for the wave kernels for the laplacians ∆ αβ in the Bergman Ball B n , n ≥ 1[END_REF] and denoted there L αβ 2n with

α = 1 + m 2 , β = - m 2 .
From Theorem 2 in [START_REF] Intissar | Explicit formulae for the wave kernels for the laplacians ∆ αβ in the Bergman Ball B n , n ≥ 1[END_REF], we deduce that the solution to the wave Cauchy problem associated with the subelliptic Laplacian is given by

cos(s -L m )(f )(w) = - sinh(s) (2π) 2n 1 sinh s d ds 2n HH n K m (s, w, y)f (y) dy (1 -||y|| 2 ) 2n+2 where f ∈ C ∞ 0 (HH n ), K m (s, w, y) = (1 -w, y ) 1+m/2 (1 -w, y ) -m/2 cosh 2 (s) -cosh 2 (d(w, y)) + cosh 2 (d(w, y)) 2 F 1 m + 2, -m, 3 2 
; cosh(d(w, y)) -cosh(s) 2 cosh(d(w, y)) ,

2 F 1 is the Gauss hypergeometric function, and dy stands for the Lebesgue measure in C n . Using the spectral formula

e tL = 1 √ 4πt R e -s 2 /(4t) cos(s √ -L)ds,
holding true for any non positive self-adjoint operator, we deduce that the solution to the heat Cauchy problem associated with L m is given by:

e tLm (f )(w) = - e -m(m+2)t-(2n+1) 2 t √ 4πt(2π) 2n R ds sinh(s)e -s 2 /(4t) 1 sinh s d ds 2n+1 HH n K m (s, w, y)f (y) dy (1 -||y|| 2 ) 2n+2 .
Performing 2n + 1 integration by parts in the outer integral we further get:

e tLm (f )(w) = - e -m(m+2)t-(2n+1) 2 t √ 4πt(2π) 2n R ds sinh(s) 1 sinh s d ds 2n+1 e -s 2 /(4t) HH n K m (s, w, y)f (y) dy (1 -||y|| 2 ) 2n+2 = - e -m(m+2)t-(2n+1) 2 t √ 4πt(2π) 2n HH n f (y) dy (1 -||y|| 2 ) 2n+2 R ds sinh(s)K m (s, w, y) 1 sinh s d ds 2n+1 e -s 2 /(4t) = 2 e -m(m+2)t-(2n+1) 2 t √ 4πt(2π) 2n HH n f (y) dy (1 -||y|| 2 ) 2n+2 ∞ d(w,y) d(cosh(s))K m (s, w, y) - 1 sinh s d ds 2n+1 e -s 2 /(4t)
Recalling the heat kernel on the hyperbolic space H 4n+3 :

q t,4n+3 (cosh s) := e -(2n+1) 2 t (2π) 2n+1 √ 4πt - 1 sinh(s) d ds 2n+1 e -s 2 /(4t) ,
we get

e tLm (f )(0) = 4πe -m(m+2)t HH n f (y) dy (1 -||y|| 2 ) 2n+2 ∞ d(0,y) d(cosh(s))K m (s, 0, y)q t,4n+3 (cosh(s)).
As a result, the subelliptic heat kernel of L m reads

dy (1 -||y|| 2 ) 2n+2 ∞ d(0,y)
d(cosh(s))K m (s, 0, y)q t,4n+3 (cosh(s)) = dr cosh 3 (r) sinh 4n-1 (r) ∞ r d(cosh(s))K m (s, 0, y)q t,4n+3 (cosh(s)).

Performing the variable change cosh(s) = cosh(r) cosh(u) for u ≥ 0, we transform the last expression into

dr cosh 3 (r) sinh 4n-1 (r) ∞ 0 sinh 2 (u) 2 F 1 m + 2, -m, 3 2 ; 1 -cosh(u) 2 q t,4n+3 (cosh(r) cosh(u))du. Since (m + 1) 2 F 1 m + 2, -m, 3 2 ; 1 -cosh(u) 2 = sinh[(m + 1)u] sinh(u) ,
we finally recover the first integral representation displayed in Theorem 3.1.

Relation to the horizontal heat kernel of the complex anti de-Sitter fibration

In C 2n+1 , n ≥ 1, we consider the signed quadratic form:

||(z 1 , . . . , z 2n+1 )|| 2 H = 2n i=1 |z i | 2 -|z 2n+1 | 2 .
Then, the complex anti de-Sitter space AdS 4n+1 (C) is the quadric defined by

{z = (z 1 , . . . , z n+1 ) ∈ C n+1 , ||z|| H = -1},
and the circle group U (1) acts on it by z → ze iθ . This action gives rise to the AdS fibration over the complex hyperbolic space CH n with U (1)-fibers.

Proposition 3.2 Let p C t (r, η) be the subelliptic heat kernel on the 4n + 1-dimensional complex anti-de Sitter space as defined in [START_REF] Wang | The subelliptic heat kernel on the anti-de Sitter spaces[END_REF] and [START_REF] Baudoin | Integral representation of the sub-elliptic heat kernel on the complex anti-de Sitter fibration[END_REF]. Then

- e -4nt 2π cosh r sin η ∂ ∂η p C t (r, η) = p t (r, η).
Proof. From [START_REF] Wang | The subelliptic heat kernel on the anti-de Sitter spaces[END_REF] we know that for η ∈ [-π, π]

p C t (r, η) = 1 √ 4πt k∈Z +∞ -∞ e y 2 
4t q 4n+1 t (cosh r cosh(y + iη + 2kπi))dy where q 4n+1 t is the Riemannian heat kernel of the 4n + 1-dimensional hyperbolic space. It is well known that (for instance, see [START_REF] Davies | Heat Kernel Bounds on Hyperbolic Space and Kleinian Groups[END_REF])

q t (x) = - e -(4n+1)t 2π d dx q 4n+1 t (x)
hence we can easily obtain that

∂ ∂η p C t (r, η) = 1 √ 4πt k∈Z +∞ -∞ e y 2 4t ∂ ∂η q 4n+1 t (cosh r cosh(y + iη + 2kπi))dy = - 2πe (4n+1)t cosh r √ 4πt k∈Z +∞ -∞ e y 2 -(η+2kπ) 2 4t
sinh (η + 2kπ)y 2t sinh y q 4n+3 t (cosh r cosh y)dy = -2πe (4n+1)t cosh r p t (r, η)

Small-time asymptotics of the subelliptic heat kernel

In this section we analyze the short time asymptotic behaviors of the subelliptic kernel. First from (3.13) we obtain that the dominating term is k = 0 as t → 0. This can be seen from the second expression of (3.16) that for u, η ∈ [0, π),

s t (η, u) = e t sinh ηu 2t √ πt sin η sin u e -(u 2 +η 2 ) 4t 1 + O(e -C/t )
for some constant C > 0. Hence when t → 0, we have that q t,4n+3 (cosh r cosh y)dy + O(e -C/t ). (3.17)

p t (r, η) = e t √ πt
Before the estimates, let us recall the Riemannian heat kernel q t has the small time asymptotic

q t,4n+3 (cosh δ ′ ) = 1 (4πt) 2n+ 3 2 δ ′ sinh δ ′ 2n+1 e -δ ′2 4t 1 + (2n + 1) 2 - (2n + 1)2n(sinh δ ′ -δ ′ cosh δ ′ ) δ ′2 sinh δ ′ t + O(t 2 ) . (3.18) 
where δ ′ ∈ [0, ∞) is the Riemannian distance and cosh δ ′ = cosh r cosh y.

Proposition 3.3 When t → 0, we have

p t (0, 0) = 1 (4πt) 2n+3 (A n + B n t + O(t 2 )),
where A n = 4π (sinh y) 2n 4n 2 + 4n + 2 -2n(2n+1)(sinh y-y cosh y) y 2 sinh y dy.

Proof. From (3.17) we know that

p t (0, 0) = e t √ πt +∞ 0 sinh y • e y 2 4t
• y 2t q t,4n+3 (cosh y)dy.

Plug in (3.18), we have that

p t (0, 0) = 4πe t (4πt) 2n+3 +∞ -∞ y 2n+2 (sinh y) 2n 1 + (2n + 1) 2 -
2n(2n + 1)(sinh y -y cosh y) y 2 sinh y t dy.

Hence the claimed estimates.

The small time behavior of the subelliptic heat kernel on the vertical cut-locus, namely the points (0, η) that can be achieved by flowing along vertical vector fields is quite different. A short-cut to its estimate is by differentiating the small time estimate of p C t (0, η).

Proposition 3.4 For η ∈ (0, π), t → 0,

p t (0, η) = 1 4π sin η 2 6n t 4n+1 (2n -1)! (π + η)η 2n-1 e -2πη+η 2 4t (1 + O(t)). Proof. Since - e -4nt 2π cosh r sin η ∂ ∂η p C t (r, η) = p t (r, η),
we just need to plug in the small time asymptotic of p C t on the cut locus. Recall

p C t (0, η) = η 2n-1 2 6n t 4n (2n -1)! e -2πη+η 2 4t (1 + O(t)),
we then have the conclusion.

We now deduce the small time behavior of the kernel on the horizontal base space of AdS 4n+3 (H). i.e. (r, 0), r = 0. Proposition 3.5 For r ∈ (0, ∞), we have

p t (r, 0) = 1 (4πt) 2n+ 3 2 r sinh r 2n+1 e -r 2 4t 1 r coth r -1 3 2 (1 + O(t)).
Proof. By (3.17) we have

p t (r, 0) = e t √ 4πt +∞ -∞ (sinh y) y 2t e y 2
4t q t (cosh r cosh y)dy, and by plugging in (3.18), we obtain that

p t (r, 0) = 1 (4πt) 2n+2 (1+O(t)) ∞ -∞ e y 2 -(cosh -1 (cosh r cosh y)) 2 4t
y 2t sinh y cosh -1 (cosh r cosh y)

cosh 2 r cosh 2 y -1 2n+1 dy
Similarly as in [START_REF] Wang | The subelliptic heat kernel on the anti-de Sitter spaces[END_REF], we can analyze it by the Laplace method and obtain the desired result.

For the case (r, η), with r = 0, we use the steepest descent method. Similarly we obtain Proposition 3.6 Let r ∈ (0, ∞), η ∈ [0, π). Then when t → 0, where u(r, η) = cos r cos ϕ(r, η) and ϕ(r, η) is the unique solution in -arccos 1 cosh r , arccos 1 cosh r to the equation ϕ(r, η) -η = cosh r sin ϕ(r, η) cosh -1 (cos ϕ(r, η) cosh r)

p t (r, η) = 1 (4πt)
cosh 2 r cos 2 ϕ(r, η) -1 , (3.20) 
Proof. From Lemma 3.6 in [START_REF] Wang | The subelliptic heat kernel on the anti-de Sitter spaces[END_REF] we know that

f (y) = (cosh -1 (cosh r cosh y)) 2 -(y -iη) 2
has a critical point at iϕ(r, η) and

f ′′ (iϕ(r, η)) = 2 sinh 2 r u(r, θ) 2 -1 u(r, θ) cosh -1 u(r, θ) u 2 (r, θ) -1 -1 ,
is positive, where u(r, θ) = cosh r cos ϕ(r, θ). Also f (iϕ(r, θ)) = (cosh -1 (cosh y cos ϕ)) 2 -(ϕ -θ) 2 = (ϕ(r, θ) -θ) 2 tanh 2 r sin 2 (ϕ(r, θ)) .

(3.21)

Then we follow the idea in [START_REF] Wang | The subelliptic heat kernel on the anti-de Sitter spaces[END_REF] and use steepest descent method to obtain the desired conclusion.

4 The subelliptic heat kernel on the twistor space of HH n Besides the action of SU(2) on AdS 4n+3 (H) that induces the quaternionic anti de-Sitter fibration which was studied in the previous sections, we can also consider the action of S 1 on AdS 4n+3 (H) that induces the fibration:

S 1 → AdS 4n+3 (H) → CH 2n+1 1 ,
where we simply define CH 2n+1 1 as the complex pseudo-hyperbolic space AdS 4n+3 (H)/S 1 . We refer to [START_REF] Baditoiu | Semi-Riemannian submersions from real and complex hyperbolic spaces[END_REF] for a general definition of complex pseudo-hyperbolic spaces. Note that the metric on CH 2n+1 1 has signature (4n, 2). We can then see S 1 as a subgroup of SU(2) and have the classical Hopf fibration

S 1 → SU(2) → CP 1
We can therefore construct the following commutative fibration diagram where r is the radial coordinate on HH n and η the radial coordinate on SU(2). The operator

S 1 SU(2) ✲ ✛ AdS 4n+3 (H) ❄ ✲ HH n CP 1 ❄ ✲ CH 2n+1
∆ SU(2) = ∂ 2 ∂η 2 + 2 cot η
∂ ∂η is the radial part of the Laplace-Beltrami operator on SU(2). As it has been proved in Baudoin-Bonnefont (see [START_REF] Baudoin | The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds[END_REF]), by using the Hopf fibration,

S 1 → SU(2) → CP 1 we can write ∂ 2 ∂η 2 + 2 cot η ∂ ∂η = ∂ 2 ∂φ 2 + 2 cot 2φ ∂ ∂φ + (1 + tan 2 φ) ∂ 2 ∂θ 2
where φ is the radial coordinate on CP 1 and ∂ ∂θ the generator of the action of S 1 on SU(2). Therefore the radial part of the sub-Laplacian L on CH 2n+1 1 is given by

L = ∂ 2 ∂r 2 + ((4n -1) coth r + 3 tanh r) ∂ ∂r + tanh 2 r ∂ 2 ∂φ 2 + 2 cot 2φ ∂ ∂φ , (4.22) 
and the invariant measure, up to a normalization constant, is (sinh r) 4n-1 (cosh r) 3 sin 2φdrdφ.

Integral representation of the subelliptic heat kernel

From (4.22) we notice that ∂ 2 ∂φ 2 + 2 cot 2φ ∂ ∂φ is the radial part of the Laplacian on CP 1 . It is known that the eigenfunction associated to the eigenvalue -4m(m + 1) is given by P 0,0 m (cos 2φ) where P 0,0 m is the Legendre polynomial

P 0,0 m (x) = (-1) m 2 m m! d m dx m (1 -x 2 ) m .
Moreover, the heat kernel of ∂ 2 ∂φ 2 + 2 cot 2φ ∂ ∂φ is given by

u t (φ 1 , φ 2 ) = +∞ m=0
(2m + 1)e -4m(m+1)t P 0,0 m (cos 2φ 1 )P 0,0 m (cos 2φ 2 )

By using the same methods as before, we obtain:

Theorem 4.1 Let h t (r, φ) be the subelliptic heat kernel of L. Then, one has for r ≥ 0 and φ ∈ [0, π)

h t (r, φ) = ∞ 0 (sinh u) 2 +∞ m=0
(2m + 1)e -4m(m+1)t P 0,0 m (cos 2φ)P 0,0 m (cosh 2u) q t,4n+3 (cosh r cosh u)du.

where

q t,4n+3 (cosh s) := e -(2n+1) 2 t (2π) 2n+1 √ 4πt - 1 sinh(s) d ds 2n+1 e -s 2 /(4t) ,
is the heat kernel on the real 4n + 3 dimensional real hyperbolic space.

5 Further developments

Quaternionic magnetic Laplacian

The second method we used to compute the sub elliptic heat kernel appeal to an operator L αβ n , α, β ∈ R, introduced in [START_REF] Intissar | Explicit formulae for the wave kernels for the laplacians ∆ αβ in the Bergman Ball B n , n ≥ 1[END_REF]. When α = -β, this is the radial part of the socalled generalized Maass Laplacian and it reduces when n = 1 to the complex-hyperbolic magnetic Laplacian. Moreover, it was noticed in [START_REF] Baudoin | Integral representation of the sub-elliptic heat kernel on the complex anti-de Sitter fibration[END_REF] that the generalized Maass Laplacian coincides with the partial Fourier transform of the horizontal Laplacian of the complex AdS space with respect to the U (1)-fiber coordinate (the dual variable of the Fourier transform is then interpreted as the magnetic field strength).

On the other hand, a quaternionic magnetic Laplacian with uniform field on H was defined and studied in [START_REF] Intissar | Landau operator on the quaternionic field[END_REF] and [START_REF] Intissar | Geometric properties of the magnetic Laplacian on the Euclidean 4-space[END_REF]. There, the author consider the one-form A (magnetic potential): The quaternionic magnetic Laplacian then defined by

2A = -(B 1 x + B 2 y + B 3 z)dt + (B 1 t -B 3 y + B 2 z)dx + (B 2 t + B 3 x -B 1 z)dy + (B 3 t -B 2 x + B 1 y)dz
-[(∂ t + iA 0 ) 2 + (∂ x + iA 1 ) 2 + (∂ y + iA 2 ) 2 + (∂ z + iA 3 ) 2 ]
where A i , 0 ≤ i ≤ 3 are the components of A. This operator was then identified as the partial Fourier transform of the horizontal Laplacian of the quaternionic Heisenberg group with respect to the vertical coordinates. Note that if we consider the quaternionic symplectic form ω := 1 2 (dww -wdw) := ω 1 I + ω 2 J + ω 3 K on H and if B = B 1 I + B 2 J + B 3 K, then the above quaternionic magnetic Laplacian may be written as a Bochner-type Laplacian:

-(d -iℜ(Bω)) ⋆ (d -iℜ(Bω))
acting on functions, where d is the exterior derivative and ⋆ is the adjoint operator with respect to the flat Riemannian metric on H ≈ R 4 . Accordingly, we may define the quaternionic analogue of the generalized Maass Laplacian as the partial Fourier transform of the horizontal Laplacian displayed in (2.12) with respect to the fiber variables (φ 1 , φ 2 , φ 3 ). However, note that in contrast with the flat setting, we need to add a weight when we perform the partial Fourier transform in order to neutralize the factor

1 cos 2 η = 1 + tan 2 η = 1 + φ 2 1 + φ 2 2 + φ 2 3 ,
which amounts to get the translation invariance of the sublaplacian with respect to (φ 1 , φ 2 , φ 3 ). Moreover, since

V i = ∂ ∂w i - 1 cos 2 η ζ ∂ ∂w i ∂ ∂φ ,
where we recall that ζ is defined in (2.9), it would be interesting to check whether the magnetic Laplacian may be written or not as a Bochner-type Laplacian acting on functions.

The heat kernel of a sub-d'Alembertian on H 4n+3

We may compute the heat kernel of the sub-d'Alembertian on H 4n+3 which is given by

L = ∆ H 4n+3 -∆ P = ∂ 2 ∂r 2
+ ((4n -1) coth r + 3 tanh r) ∂ ∂r 2 -tanh 2 r ∂ 2 ∂η 2 + 2 coth η

∂ ∂η

This operator is obtained from the horizontal Laplacian on the quaternionic anti-de Sitter space by complexification of the fiber SU(2). Indeed, the spectrum of the 'fiber' part is purely continuous: + ((4n -1) coth r + 3 tanh r) ∂ ∂r 2 + (λ 2 + 1) tanh 2 r.

∂ 2 ∂η 2 +
Using the identity tanh 2 (r) = 1 -1/ cosh 2 (r), then we are led to ∂ 2 ∂r 2 + ((4n -1) coth r + 3 tanh r) ∂ ∂r 2 λ 2 + 1 cosh 2 r + (λ 2 + 1) v λ (t, r) = ∂ t v λ (t, r).

The corresponding heat kernel may then be derived along the same lines written in the second method by choosing the parameters α, β such that:

α + β = 1, 4αβ = λ 2 + 1,
that is, α = 1 -β = (1 + iλ)/2.

e

  -m(m+2)t sin[(m + 1)η] sinh[(m + 1)u]

(

  sinh y) 2n dy and B n = 4π +∞ 0 y (2n+2)

  2n+ 

3 2 1 - 1 e-

 311 sin ϕ(r, η) sin η sinh r(cosh -1 u(r, η)) 2n+1 u(r,η) cosh -1 u(r,η) √ u 2 (r,η)-(ϕ(r,η)-η) 2 tanh 2 r 4t sin 2 (ϕ(r,η)) (u(r, η) 2 -1) n (1 + O(t)),(3.19) 

4. 1

 1 Radial part of the sub-Laplacian on CH 2n+1 1

1 ❄✲ 1 → 1 → 1 , 1 .

 11111 The pseudo-Riemannian submersion CH 2n+1 HH n obtained at the bottom of the diagram is similar to Example 4, page 4 in[START_REF] Baditoiu | Semi-Riemannian submersions from real and complex hyperbolic spaces[END_REF] and the fibrationCP 1 → CH 2n+1 HH nshows that CH 2n+1 1 is therefore the twistor space of the quaternionic contact manifold HH n .We consider the sub-Laplacian L on CH 2n+1 it is then the lift of the Laplace-Beltrami operator of HH n . From the above diagram, L is also the projection of the sub-Laplacian L of AdS 4n+3 (H) on CH 2n+1 As we have seen before, the radial part of L is L = ∂ 2 ∂r 2 + ((4n -1) coth r + 3 tanh r)

  whose exterior derivative (curvature) is the self-dual (with respect to Hodge operator) two-form corresponding to the uniform magnetic field B = (B 1 , B 2 , B 3 ) ∈ R 3 :dA = B 1 (dt ∧ dx + dy ∧ dz) + B 2 (dt ∧ dy + dz ∧ dx) + B 3 (dt ∧ dz + dx ∧ dy).

  -sinh 2 (η)is the Jacobi function of parameters (1/2, -1/2). Expanding the heat kernel in the ηvariable as a inverse Fourier-Jacobi transform of some smooth function (t, r) → v λ (t, r) ([START_REF] Koornwinder | Jacobi functions and analysis on non compact semi simple Lie groups[END_REF]):

	2 coth η	∂ ∂η	φ (1/2,-1/2) λ	(η) = -(λ 2 + 1)φ (1/2,-1/2) λ	(η), λ ∈ R,
	where ([31])							
	φ (1/2,-1/2) λ	(η) = 2 F 1	1 + iλ 2	,	1 -iλ 2	,	3 2	;

R v λ (t, r)φ (1/2,-1/2) λ (η)η 2 dη,

the function v λ should solve the heat equation associated with the operator

∂ 2 ∂r 2