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Abstract 21 

Sandy shorelines morphodynamics responds to a myriad of processes interacting at different 22 

spatial and temporal scales, making shoreline predictions challenging. Shoreline modelling 23 

inherits uncertainties from the primary driver boundary conditions (e.g. sea-level rise and wave 24 

forcing) as well as uncertainties related to model assumptions and/or misspecifications of the 25 

physics. This study presents an analysis of the uncertainties associated with future shoreline 26 

evolution at the cross-shore transport dominated sandy beach of Truc Vert (France) over the 21st 27 

century. We explicitly resolve wave-driven shoreline change using two different equilibrium 28 

modelling approaches to provide new insight into the contributions of sea-level rise, and free 29 

model parameters uncertainties on future shoreline change in the frame of climate change. Based 30 

on a Global Sensitivity Analysis, shoreline response during the first half of the century is found to 31 

be mainly sensitive to the equilibrium model parameters, with the influence of sea-level rise 32 

emerging in the second half of the century (~2050 or later), under several simulated scenarios. The 33 

results reveal that the seasonal and interannual variability of the predicted shoreline position is 34 

sensitive to the choice of the wave-driven equilibrium-based model. Finally, we discuss the 35 

importance of the chronology of wave events in future shoreline change, calling for more 36 

continuous wave projection time series to further address uncertainties in future wave conditions. 37 

Our contribution demonstrates that unmitigated climate change can result in shoreline retreat of 38 

several tens of meters by 2100, even for sectors that have been stable or slightly accreting over the 39 

last century. 40 

1 Introduction 41 

Ongoing climate change is one of the largest concerns of our time, and its largest impacts on the 42 

world’s environment are yet to come.  Global mean sea-level rise is accelerating since 1870, and 43 

is expected to continue rising over the 21st century, although acceleration may be avoided if the 44 

Paris Agreement ‘below 2°C climate warming’ target is met (Church et al., 2013; Oppenheimer et 45 

al., 2019). In addition, global wave power is adapting to the sea surface temperature since the late 46 

1940’s (Reguero et al., 2019), and is expected to change along with storminess by 2100 (Morim 47 

et al., 2020).  48 
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Sandy beaches provide precious natural, structural and social-economical resources to coastal 49 

communities (Ghermandi & Nunes, 2013; Poumadère et al., 2015), and constitute about one third 50 

of the ice-free coasts worldwide (Luijendijk et al., 2018). Open sandy beaches constantly evolve 51 

in response to multiple environmental drivers occurring on different time scales, making sandy 52 

shoreline dynamics strongly sensitive to sea-level rise and wave climate change (Ranasinghe, 53 

2016, 2020). Meanwhile, the expected growth of population density in low-lying coastal areas 54 

during the twenty-first century (Merkens et al., 2016; Neumann et al., 2015) increases the need for 55 

efficient adaptation plans of coastal communities (Oppenheimer et al., 2019).  56 

The spatial heterogeneity of sea-level rise (SLR), wave-climate change, time scales of adaptation, 57 

and vulnerability of coastal communities raises the need for shoreline projections with their related 58 

uncertainties that provide full support to risk-informed decision making process (Hinkel et al., 59 

2019; Losada et al., 2019; Toimil et al., 2018, 2020; Wainwright et al., 2015). However, limits in 60 

our understanding and modelling capacity of the primary processes driving shoreline change, 61 

together with the uncertainties associated to the future climate (e.g. carbon emission scenario, SLR, 62 

storminess, etc.), undermine the confidence in future shoreline estimates proportionally to the time 63 

scale of application (Ranasinghe, 2020; Toimil et al., 2020). Many studies focused on the effects 64 

of SLR uncertainties (Athanasiou et al., 2020; Le Cozannet et al., 2016, 2019; Thiéblemont et al., 65 

2021; Vousdoukas et al., 2020) and changes in storminess based on data extrapolation and/or 66 

empirical models (Allenbach et al., 2015; Casas-Prat et al., 2016; Toimil et al., 2017; Vousdoukas 67 

et al., 2020) on future shoreline uncertainties. However, these studies do not explicitly resolve 68 

wave-driven shoreline change, and it is advocated that new methods have to be developed to 69 

predict the impacts of SLR on the coast (Cooper et al., 2020). Short- and long-term variability in 70 

wave energy, as well as the chronology of storm events, can strongly affect future shoreline 71 
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patterns (Besio et al., 2017; Cagigal et al., 2020; Coco et al., 2014; Dissanayake et al., 2015; 72 

Vitousek et al., 2021). Recently, Cagigal et al. (2020) developed and used a stochastic climate-73 

based wave emulator to generate ensembles of wave time series at several beaches, and addressed 74 

shoreline response to different wave chronologies. Based on the same emulator, Vitousek et al. 75 

(2021) analytically investigated the uncertainties in shoreline predictions associated to the inherent 76 

variability of the wave climate in the context of equilibrium shoreline modelling. Kroon et al. 77 

(2020) showed the significant effects of wave-climate variability and model uncertainty on the 78 

short-term (1 year) probabilistic assessment of coastline change at the Sand Engine (Netherlands). 79 

The authors used a one-line model, i.e. resolving wave-driven longshore sediment transport 80 

gradients and resulting shoreline evolution, as this stretch of coast is longshore transport 81 

dominated.  82 

Currently, there are no studies addressing the time evolution of the effects that uncertainties in 83 

future SLR and model parameters have on shoreline projections to the end of the 21st century while 84 

explicitly resolving wave-driven shoreline response. The recent development of equilibrium 85 

shoreline models opened the way to skilful simulation of wave-driven shoreline response on cross-86 

shore transport dominated sites, which are ubiquitous worldwide, on time scales from hours (storm 87 

events) to decades, with low computational cost (Antolínez et al., 2019; Davidson et al., 2013; 88 

Lemos et al., 2018; Robinet et al., 2018; Splinter et al., 2014a; Vitousek et al., 2017; Yates et al., 89 

2009). Equilibrium shoreline models are based on the principle that the shoreline dynamically 90 

moves towards a time-varying equilibrium condition (Wright & Short, 1984), which can be 91 

expressed as a function of the current shoreline position (Yates et al., 2009) or antecedent wave 92 

conditions (Davidson et al. 2013). While the two latter equilibrium formulations show similar skill 93 

against shoreline observations on a multi-year timescale (Castelle et al., 2014; Montaño et al., 94 
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2020), the accuracy of one approach over the other in different wave forcing scenarios is unclear, 95 

particularly on long timescales (multi-decadal). In addition, in this type of models, sediment 96 

transport processes are described by semi-empirical relationships that require site-specific 97 

calibration against observed shoreline data, introducing further uncertainty (D’Anna et al., 2020; 98 

Splinter et al., 2013). Implementations of cross-shore equilibrium models into probabilistic 99 

frameworks recently showed that uncertainties in the calibration of model free parameters 100 

(D’Anna et al., 2020) and in future wave conditions (Vitousek et al., 2021) have a significant 101 

impact on model predictions. In addition, recent studies found an inherent connection between the 102 

seasonality of wave climate and shoreline model parameters that defines the frequency of shoreline 103 

response, for several beaches along the Australian coast (Ibaceta et al., 2020; Splinter et al., 2017).  104 

SLR-driven shoreline retreat is often estimated using the Bruun (1962) model. This model relates 105 

the rate of shoreline erosion to the SLR rate and the average slope of the active beach profile, 106 

defined between the seaward and landward limits of cross-shore sediment exchange. The seaward 107 

limit of the active beach profile is commonly identified by the depth of closure (Hallermaier, 108 

1978). As local scale bathymetric surveys are scarce and the estimation of the depth of closure is 109 

essentially empirical, the active beach profile slope is typically associated with large uncertainties 110 

(Nicholls, 1998; Ranasinghe et al., 2012).  111 

In this work, we aim at deepening our understanding in the role and impact of different 112 

uncertainties in shoreline projections. We perform a Global Sensitivity Analysis (GSA) (Saltelli 113 

et al., 2008) to unravel the respective contributions of SLR, depth of closure, and shoreline model 114 

free parameters uncertainties. The framework is applied to the cross-shore dominated Truc Vert 115 

beach (SW France) using two different wave-driven shoreline models, the Bruun model, and state-116 

of-the-art SLR and wave projections for two future Representative Concentration Pathways (RCP) 117 
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scenarios. The likely range provided along with median SLR estimates in IPCC reports does not 118 

cover the full uncertainty range of mean sea level projections. Hence, there remains a probability 119 

of up to 33% that sea-level rise exceeds the likely range. Therefore, we also assess shoreline 120 

projections in the deterministic high-end SLR scenario, which remains unlikely but plausible and 121 

is associated with large impacts (Stammer et al 2019). The remainder of this paper includes: an 122 

outline of Truc Vert beach, the data, the shoreline models, and the method (Section 2); a 123 

description of the GSA input variables’ probability distributions and the numerical modelling setup 124 

(Section 3); and the presentation of the results (Section 4). Discussion and conclusions are 125 

provided in Section 5 and 6, respectively. 126 
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2 Study site, data and method 127 

2.1 Truc Vert beach 128 

Truc Vert is a meso-macrotidal wave dominated sandy beach located in the south of the Gironde 129 

coast, southwest France, which extends roughly 100 km between the Gironde river estuary and the 130 

south of the Arcachon basin (Figure 1a,b). Truc Vert is backed by a high (~20 m) and wide (~250 131 

m) coastal dune system (Robin et al., 2021). The wave climate is characterized by strong seasonal 132 

energy fluctuations, and strong interannual winter energy variability (Castelle et al., 2018a; 133 

Charles et al., 2012; Robinet et al., 2016), the latter associated to large-scale climate patterns of 134 

atmospheric variability in the northeast Atlantic region (Castelle et al., 2017). Monthly-averaged 135 

significant wave height ranges from 1.1 m in August with dominant W-NW direction to 2.4 m in 136 

January with dominant W direction. Truc Vert beach has been intensively monitored since 2003 137 

with monthly to bi-monthly topographic DGPS surveys, with additional daily topographic surveys 138 

and high-resolution bathymetric surveys collected during the ECORS’08 field campaign (Parisot 139 

et al., 2009), see Castelle et al. (2020) for detailed description of the datasets. Since 2017, high-140 

resolution digital elevation model covering 4 km of beach-dune are also derived seasonally from 141 

photogrammetry of UAV images (Laporte-Fauret et al., 2019).  142 

The beach morphology is highly dynamic and responds primarily to cross-shore processes driven 143 

by the temporal variability of the incident wave climate (Castelle et al., 2014; Robinet et al., 2016, 144 

2018). Overall, this segment of coastline has been observed to be reasonably stable over the past 145 

decades (Castelle et al., 2018b), although the interannual distribution of winter wave energy may 146 

result in episodic severe beach and dune erosion (Castelle et al., 2015; Masselink et al., 2016). 147 
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  148 

 149 

Figure 1 (a) Location of Truc Vert beach (green), wave hindcast grid point co-located with the 150 

CANDHIS in situ wave buoy (red), and wave projections grid point (yellow); (b) Picture of Truc 151 

Vert beach and dune landscape (photo by V. Marieu); (c) 4 km alongshore-averaged beach-dune 152 

profile from merged 2008 topo-bathymetry (submerged beach) and 2018 UAV-photogrammetry 153 

digital elevation model (emerged beach and dune); (d) Mean shoreline (1.5-m beach profile 154 

elevation proxy) positions between 2011 and 2020 derived from the bimonthly topographic 155 

surveys. 156 

2.2 Wave data: historical and projections 157 

While a dataset of future waves is required to simulate future shoreline change, hindcast wave data 158 

were also needed for the present study in order to: (1) run the shoreline models on the past period 159 

and estimate the distribution of the model parameters; and (2) support the correction of the wave 160 

projection dataset. 161 

2.1.1 Hindcast wave data (1994-2020) 162 
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Historical wave data (Hs, Tp, and Dm), from January 1994 to January 2020, was extracted from the 163 

NORGAS-UG regional hindcast model (Michaud et al., 2016) at the grid point co-located with the 164 

in situ CANDHIS wave buoy (44°39’9” N; 1°26’48” W) moored in ~50 m depth offshore of Truc 165 

Vert beach (Figure 1a). The NORGAS-UG model covers the French Atlantic coastal area using an 166 

unstructured mesh grid with resolution of 10 km offshore, increasing to 200 m nearshore. The 167 

wave model was validated against several French and international wave buoy data, and showed 168 

0.96-0.99 correlations coefficients, 0.15-0.21 m RMSE, and -0.02 to 0.04 m bias (Michaud et al., 169 

2016). The hindcasted wave time series (1994-2020) shows the typical seasonal and interannual 170 

modulation of the incident wave climate at Truc Vert beach (Figure 2a). 171 

2.2.2 Future wave climate (2020 - 2100) 172 

Wave-driven shoreline change at cross-shore transport dominated sites is controlled by the 173 

variability in incident wave energy including temporal clustering and chronology of storm wave 174 

events (Splinter et al., 2014b; Dissanayake et al., 2015; Angnuureng et al., 2017). Thus, the 175 

assessment of future shoreline evolution at Truc Vert requires a continuous wave time series with 176 

high resolution (e.g. few hours). Bricheno and Wolf (2018) (hereafter BW18) provide state-of-the-177 

art wave projections throughout the 21st century in the Northeast Atlantic region for the RCP8.5 178 

and RCP4.5 scenarios. As part of the Coordinated Ocean Wave Climate Project (COWCLIP), 179 

BW18 wave data belong to an ensemble of global and regional wave climate projections, forced 180 

with several Global Climate Models and using different wave models. Within COWCLIP, changes 181 

were found to be robust in the North Atlantic region, suggesting a slight decrease of annual mean 182 

Hs and a clockwise rotation of waves off the Aquitanian coast that is more pronounced for high 183 

climate forcing (Morim et al., 2019). However, amongst the COWCLIP ensemble, to our 184 

knowledge, only BW18 produced uninterrupted time series of wave data with sufficient spatial 185 
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resolution to properly reproduce the wave climate offshore our study site. The continuous hourly 186 

time series of wave conditions was produced by BW18 using a dynamical downscaling approach 187 

and a nested setup of the WaveWatchIII® spectral wave model (Tolman, 2009). The wave model 188 

covers the Northwest European coastal area with a grid resolution of 0.083° (<9 km) and was 189 

forced with the downscaled EC-Earth global climate model (Hazeleger et al., 2012). For both RCP 190 

scenarios, BW18 model is run from 2006 to 2100 in a regional atmospheric model configuration 191 

(~0.11° resolution), in the context of the EURO-CORDEX project.  BW18 also provide the results 192 

of a historic model run, forced with the EC-Earth model climate, for the period 1970-2004. Such 193 

simulation is needed to estimate relative change between past and future wave climate or for the 194 

correction of the potential biases between the modelling results and reference wave data (e.g. wave 195 

buoy data or modelled wave hindcast), which result from climate models bias (see e.g. Charles et 196 

al., 2012). From the BW18 modelling, we extracted wave data (Hs, Tp, and Dm) over 2020-2100 197 

(for shoreline projections) from the nearest grid point to the CANDHIS wave buoy (~3 km North-198 

East; Figure 1a), in ~50 m depth, for both RCP8.5 and RCP4.5 scenarios. To reduce the bias in 199 

modelled future waves, we analysed the seasonal quantiles of the 1994-2004 portion of BW18 200 

historic wave time series (extracted at the same location as the 2020-2100 wave data) and the 201 

seasonal quantiles of the NORGAS-UG hindcast, and set-up a seasonal quantile-quantile 202 

correction that we applied to the 2020-2100 wave dataset (details in Text S1 of Supporting 203 

Information). The corrected BW18 wave time series for RCP8.5 and RCP4.5 scenarios are shown 204 

in Figure 2b and Figure 2c, respectively. Hereon, we refer to BW18 as the corrected wave time 205 

series. 206 
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 207 

Figure 2 Wave data offshore of Truc Vert, including: time series of Hs (black lines) and 3-month 208 

averaged Hs
2Tp (red lines) for (a) the 1994-2020 wave hindcast from NORGAS-UG model 209 

(44°39’9” N; -1°26’48” W), and (b) RCP8.5 and (c) RCP4.5 scenarios corrected 2020-2100 210 

Bricheno and Wolf (2018) wave projections; linear trends (solid lines) of annual (d) summer and 211 

(e) winter mean Hs (dashed lines) of 2020-2100 corrected Bricheno and Wolf (2018) wave 212 

projections, for RCP4.5 (blue) and RCP8.5 (orange) scenarios. For RCP8.5 (RCP4.5), the trend of 213 
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summer and winter mean Hs are -2 mm/year (-1 mm/year) and -0.05 mm/year (-0.05 mm/year). 214 

These trends were tested to be statistically significant (more than 99% significance) using 215 

Student’s t-tests. (f) Quantile-quantile comparison between RCP4.5 and RCP8.5’s 3-month 216 

average of Hs
2Tp projections for the four seasons (black crosses) and for the full datasets (grey 217 

circles). 218 

 219 

Here, we adopted Hs
2Tp (m2s) as a representative variable for deep-water wave energy. The 220 

RCP8.5 and 4.5 2020-2100 wave series show a strong interannual modulation of incident wave 221 

energy, which is in line with current wave climate characteristics offshore of Truc Vert. Both 222 

scenarios of the BW18 wave projections show several peaks of the 3-month average Hs
2Tp that are 223 

comparable to the 2013-2014 outstanding high-energy winter (Hs
2Tp = 178 m2s) experienced at 224 

Truc Vert (Figure 2a-c). For the RCP8.5 (RCP4.5) scenario, the projected 3-month average Hs
2Tp 225 

reaches at least 90% of the 2013-2014 peak in 2030, 2080, 2086, and 2099 (2060, 2068, 2073 and 226 

2085) (Figure 2b,c). While characterized by similar integrated intensity, these winters are preceded 227 

by different multi-annual energy trends, with the RCP8.5 (RCP4.5) 2080, 2086 and 2099 (2060 228 

and 2068) winters following a positive trend of wave energy (similarly to the 2013-2014 winter), 229 

and the 2030 (2060 and 2068) winter following a negative trend of winter energy. Although in 230 

both RCP scenarios the incident wave energy fluctuates with a similar interannual period with 231 

nearly the same average Hs
2Tp (52 and 54 m2s for RCP8.5 and RCP4.5, respectively), the RCP4.5 232 

scenario associates slightly higher energy during Autumn, Summer and Spring (Figure 2f). The 233 

2020-2100 summer mean wave height (𝐻𝑠
̅̅ ̅

𝑠𝑢𝑚𝑚𝑒𝑟
) fluctuates between 0.9 m and 1.7 m, with a 234 

statistically significant decrease of 2 mm/year (1 mm/year) rates for the RCP8.5 (RCP4.5) (Figure 235 

2d). Future winter mean wave height (𝐻𝑠
̅̅ ̅

𝑤𝑖𝑛𝑡𝑒𝑟
), which is a key driver of cross-shore wave-236 

dominated shoreline evolution (Dodet et al., 2019), varies between 1.5 m and 3 m with a 237 
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statistically significant decreasing trend under 0.05 mm/year in both RCP scenarios (Figure 2e). 238 

This is consistent with previous regional projections (Charles et al., 2012; Perez et al., 2015; 239 

Morim et al., 2019). 240 

2.3 Mean sea level and vertical land motion 241 

2.3.1 Past mean sea level reconstruction 242 

As SLR-driven shoreline retreat is explicitly accounted for in the calibration of the shoreline 243 

models, past MSL information is required. We reconstructed the geocentric MSL change in the 244 

Bay of Biscay over the period 2012-2020 using a Kalman filter approach assimilating available 245 

tide gauge records in this region (Rohmer & Le Cozannet, 2019). The resulting SLR rates are 246 

roughly constant at 2.1 ±0.1 mm/year (median ± σ). Local relative MSL change at Truc Vert beach 247 

was calculated by adding the effect of vertical land motion to the relative regional sea level 248 

estimate. Vertical land motion in Truc Vert area was estimated using the near Cap-Ferret 249 

permanent GNSS station from the SONEL database (Santamaria-Gomez et al., 2017), which 250 

provides data from 2005 to 2012, when the station was decommissioned. The GNSS station 251 

measures the effects of Glacial Isostatic Adjustment and current gravitational, rotational and 252 

deformation changes associated to ongoing glaciers and ice-sheets melting (Frederikse et al., 253 

2020). We subtract their effects from the observed GNSS records over the observation period to 254 

assess residual vertical ground motions obtaining a subsidence rate of 1.2 ±0.6 mm/yr. This results 255 

in a roughly constant SLR rate of 3.3 ±0.7 mm/yr over the past decade (see Figure S5 of Supporting 256 
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Information). The observed lowering ground might be due to slow subsidence of the former Leyre 257 

riverbed (Klingebiel & Legigan, 1992).  258 

The pointwise Cap-Ferret GNSS station information may not be exactly that of the surrounding 259 

area. This is part of the residual uncertainties of our study. 260 

2.3.2 Future mean sea level projections 261 

State-of-the-art GMSL projections until 2100 are available from the Special Report of Ocean and 262 

Cryosphere in a Changing Climate (SROCC, Oppenheimer et al., 2019). SROCC estimates build 263 

on the Fifth Assessment Report (AR5, Wong et al., 2014) with a revised assessment of the Antarctic 264 

dynamics contribution based on new evidence on marine ice-sheets instabilities since the AR5. 265 

SROCC provides median values of each sea level change contribution with associated likely range 266 

for several RCP scenarios. Unlike other IPCC reports, the SROCC defines the likely range as the 267 

17th-83rd percentiles of the distribution of sea-level rise (Oppenheimer et al., 2019). We reproduced 268 

the SROCC global MSL projections to Truc Vert beach following Thiéblemont et al. (2019) and 269 

considering the regional fingerprints of each mechanism contributing to sea-level changes, 270 

including the effect of Glacial Isostatic Adjustment (Slangen et al., 2014). This results in regional 271 

relative 2020-2100 SLR estimate (median and likely range) of 0.63 ±0.26 m and 0.37 ±0.16 m for 272 

the RCP8.5 and RCP4.5 scenarios, respectively.  273 

Residual vertical land motion, which is assumed to be due to slow-ongoing geological processes 274 

(see subsection 2.3.1 and Klingebiel & Legigan, 1992), is assumed to remain constant (1.2 ±0.6 275 

mm/yr) over the 21st century. Due to the large uncertainty (0.6 mm/yr) of the subsidence rate, the 276 

stability of the area is not excluded, but has a very low probability (2.1%). The inclusion of ground 277 

motion results in a local relative MSL rise of 0.73 ±0.27 m and 0.47 ±0.17 m from 2020 to 2100 278 
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for RCP8.5 and RCP4.5 scenarios, respectively (see Figure S5 in Supporting Information). Further 279 

detail on future SLR is provided in Section 3.1. 280 

2.4 Shoreline change models 281 

Here, we use two equilibrium-based models to assess wave-driven shoreline response: the Yates 282 

et al. (2009) model, and an adaptation of the ShoreFor model (Davidson et al., 2013; Splinter et 283 

al. 2014a). As the Truc Vert bathymetry iso-contours are essentially shore-parallel, breaking wave 284 

conditions were computed directly from offshore wave conditions using the Larson et al. (2010) 285 

formula. Chronic shoreline retreat induced by SLR was estimated using the Bruun (1962) model. 286 

As shoreline change at Truc Vert is known to be dominated by cross-shore sediment transport with 287 

negligible gradients in longshore transport (Castelle et al., 2014; Splinter et al., 2014a), we did not 288 

compute longshore sediment transport. The following subsections describe the two wave-driven 289 

shoreline models and the Bruun model. 290 

2.4.1 Wave-driven shoreline models and free parameters 291 

Equilibrium shoreline models are based on the principle that local wave climate drives the 292 

shoreline towards a time-varying equilibrium position at a rate that depends on the instantaneous 293 

wave thrust (e.g. wave power or energy) available to move the sediment, and the dynamic 294 

disequilibrium state of the beach (Wright & Short, 1984). The Yates et al. (2009) model and 295 

ShoreFor differ primarily in the formulation of the respective disequilibrium conditions.  296 

2.4.1.1 ShoreFor model 297 

The ShoreFor model (hereafter SF) adopts a disequilibrium condition based on the wave history, 298 

expressed as a disequilibrium of dimensionless fall velocity (ΔΩ) and its standard deviation (σΔΩ). 299 

The governing equation for shoreline change rate reads: 300 
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𝑑𝑌

𝑑𝑡
= 𝑘𝑠

+/−P0.5
∆Ω 

σ∆Ω
+ 𝑏      (1) 301 

where, ks
+/-(m s-1W-0.5) is a response rate parameter, P(W) is the wave power at breaking, and 302 

b(m/s) is a linear term trend. Following Robinet et al. (2018), the disequilibrium term ΔΩ at a given 303 

time is defined as the difference between the equilibrium dimensionless fall velocity (Ωeq(Φ)) and 304 

the offshore dimensionless fall velocity (Ωo), where Ωeq(Φ) is a function of the sediment size, prior 305 

wave conditions, and the free parameter Φ. The parameter Φ (days) is a site-specific ‘beach 306 

memory’, and defines the time over which a given wave event has an impact over the equilibrium 307 

state of the beach. The ks
+/- parameter is the shoreline response rate, and assumes different values 308 

for accretion (ks
+, ΔΩ >0) and erosion (ks

-, ΔΩ <0) events, which are driven by different processes 309 

associating different time scales. The values of the ks
 +/- parameter for accretion and erosion 310 

conditions are considered proportional through a coefficient r (ks
- =rks

+). The r coefficient is not 311 

a model free parameter but is defined by the wave forcing, and is such that no trend in wave forcing 312 

results in no trend in the modelled shoreline position over the simulated period: 313 

𝑟 = |
∑ 〈𝐹+〉𝑁

𝑖=1

∑ 〈𝐹−〉𝑁
𝑖=1

|     (2) 314 

𝐹 = P0.5
∆Ω(Φ) 

σ∆Ω
    (3) 315 

where N is the full length of the simulated period, F+ and F- are the forcing during accretion (ΔΩ 316 

>0) and erosion (ΔΩ <0) events, respectively, and 〈. 〉 denotes an operation that removes the linear 317 

trend. Here, the sign of ΔΩ does not change the absolute value of F+/-. For an extended description 318 

of SF the reader is referred to Davidson et al. (2013) and Splinter et al. (2014a). In SF, the model 319 

free parameters to be calibrated at a given site are ks
+, Φ and b. Physically, the ks

+/-(m s-1W-0.5) is 320 

a measure of the efficiency of wave forcing to drive shoreline change (as described by Splinter et 321 

al., 2014a), which can also be interpreted as a time scale of shoreline response (Vitousek et al., 322 
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2021). Indeed, a low efficiency corresponds to a slow shoreline response and a longer time scale, 323 

and vice versa. Φ(days) is a time scale for the duration of the impact that past waves exerted on 324 

the beach, and provides the ability for the model equilibrium condition to evolve along with long-325 

term wave energy trends. The parameter b(m/s) is a linear term that encapsulates the effect of slow 326 

processes, other than wave-driven equilibrium based, which may drive chronic shoreline change 327 

(e.g. wind driven sediment transport) and that are not explicitly resolved in the model. We note 328 

here that, while accounting for the effects of slow processes using a constant linear trend (i.e. b) 329 

can improve the model skill for simulated periods within the decade, the application of such trend 330 

over longer time scales (decades to centuries) becomes increasingly inaccurate (D’Anna et al., 331 

2020). Therefore, given the long time scale of our application and the absence of secondary 332 

processes (e.g. longshore gradients in sediment transport) that may drive long-term shoreline 333 

trends at Truc Vert, we set b=0.  334 

2.4.1.2 Yates model 335 

In Yates’ model (hereafter Y09) the disequilibrium condition is defined as a function of the current 336 

shoreline position, and the cross-shore rate of shoreline change is calculated as follows: 337 

𝑑𝑌

𝑑𝑡
= 𝑘𝑦

+/−𝐸0.5(𝐸𝑒𝑞(𝑌) − 𝐸 )     (4) 338 

where E (m2) is the wave energy, ky
+/-(m2 s-1/m) is the response rate parameter, Y(m) is the present 339 

shoreline position, and Eeq(Y) is the wave energy in equilibrium with the current shoreline position 340 

Y through a linear relationship:  341 

𝐸𝑒𝑞(𝑌) = 𝑎1𝑌 + 𝑎2   (5) 342 

where a1 (m
2/m) and a2 (m

2) are free model parameters. The ky
+/- parameter is analogous to ks

+/- of 343 

SF in that it represents the efficiency rate of the incident wave forcing to shoreline change, or a 344 

time scale parameter (see the analytical derivation of the Y09 time scale of shoreline response in 345 
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Vitousek et al., 2021). In the Y09 model no assumption is made on a possible relationship between 346 

the ky
+ and ky

-, which are both considered model free parameters and, as well as a1 and a2, require 347 

specific calibration for each field site application. Contrarily to SF, here the equilibrium state 348 

formulation (Equation 5) does not depend on recent wave conditions, making this model 349 

insensitive to wave-climate variability on timescales longer than the calibration period. Instead, 350 

Equation 5 depends on the current shoreline position (Y), introducing the potential for feedbacks 351 

between Y09 and shoreline change induced by other cross-shore processes (e.g. SLR). Herein, 352 

such processes are resolved independently and linearly superposed, so that no feedback is enabled. 353 

Physically, ky
+/-, once again is a measure of the shoreline reactivity to the incident wave forcing, 354 

and is expressed in (m s-1/m). Although the dimensions of a1 and a2 are ‘energy/meter’ and 355 

‘energy’, respectively, the role of these parameters in the model is purely empirical. A 356 

rearrangement of the terms in Equations 2-3 results in combinations of model parameters that are 357 

representative of equilibrium time and spatial scales (Vitousek et al., 2021). However, here we use 358 

Y09 in its original form, where a1 and a2 are treated as empirical parameters.  359 

2.4.2 Sea-level driven shoreline recession 360 

We include SLR-driven shoreline recession using the Bruun (1962) model, which is based on the 361 

equilibrium beach concept and cross-shore balance of sediment volume. While the reliability of 362 

this model is highly debated for its oversimplification of the reality (Cooper & Pilkey, 2004; 363 

Ranasinghe, 2012), its simple linear formulation has been extensively used worldwide. In addition, 364 

Truc Vert beach is a relatively undisturbed beach-dune environment with large accommodation 365 

space, which makes this sites in line with most of the Bruun Rule underlying assumptions. The 366 

Bruun model assumes that under rising sea level, on time scales larger than years, the average 367 

beach profile translates upwards and landwards. The resulting shoreline retreat (dYSLR/dt) depends 368 
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on SLR and the average slope of the active beach profile, here extending from the dune crest down 369 

to the depth of closure (DoC), defined as the depth beyond which sediment exchange is considered 370 

negligible (Bruun, 1988; Wolinsky & Murray, 2009): 371 

𝑑𝑌𝑆𝐿𝑅

𝑑𝑡
=

𝑆𝐿𝑅𝑟𝑎𝑡𝑒

𝑡𝑎𝑛𝛽
            (6)    372 

where SLRrate is the rate of SLR (m/time), and tanβ is the average profile slope defined between 373 

the DoC and the dune crest. We estimated the DoC according to Hallermeier (1978), and the 374 

corresponding tanβ=0.023 using the beach profile reported in Figure 1c. 375 

2.5 Global Sensitivity Analysis 376 

Numerical modelling of shoreline change inherits the uncertainties associated to input variables 377 

and their complex interactions, affecting the robustness of the shoreline projections. While 378 

numerical modelling provides a ‘key-hole’ to observe the explicit interactions among defined sets 379 

of variables, sensitivity analysis provides a way to understand the role of input variables 380 

uncertainties in shoreline predictions. Here, we use the framework proposed by D’Anna et al. 381 

(2020), who used a variance-based Global Sensitivity Analysis (GSA) (Saltelli et al., 2008; Sobol’, 382 

2001) to investigate the relative contributions of the uncertainties affecting input variables to the 383 

uncertainties of modelled shoreline predictions, and their evolution in time. The method consists 384 

in propagating the input uncertainties through the model obtaining a probabilistic estimate of the 385 

shoreline projections, and performing a GSA which decomposes the variance of model results into 386 

several contributions, each one associated with an input variable. Each of these contributions is 387 

used to estimate a measure of the model results sensitivity to the input uncertainties with a 388 

sensitivity index known as first-order Sobol’ index (Si). The Si (0-1) quantifies the ratio of output’s 389 
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variance associated with the uncertainties of a given input Xi, i.e. the reduction in the output 390 

variance that would occur if the uncertain input Xi was set to its true value, and is defined as: 391 

𝑆𝑖 =
𝑉𝑎𝑟(𝐸(𝑌|𝑋𝑖))

𝑉𝑎𝑟 (𝑌)
          (7) 392 

where Var is the variance operator, E is the expectation operator, Y is the modelled shoreline 393 

position, and Xi is the i-th uncertain input variable. Further details on GSA and Si are provided in 394 

Text S3 of Supporting Information.  395 

Here, we address the relative impact of uncertainties associated to SLR, DoC and of model free 396 

parameters on shoreline projections (Y) and their evolution in time for the two different modelling 397 

approaches described in Section 2.4. Identifying the main source of model results uncertainties 398 

through time is a fundamental step towards improving the reliability of long-term shoreline 399 

projections. Following D’Anna et al. (2020), we computed the Sis using the modularized sample-400 

based approach by Li and Mahadevan (2016), which allows accounting for the statistical 401 

dependence between model free parameters, and we estimate Sis for the purpose of “Factors’ 402 

Prioritization” (as defined by Saltelli et al., 2008). At a given time, the Factors’ Prioritization 403 

identifies the main driver of model results uncertainty (associating the largest Si), that is, the 404 

uncertain input variable that would most reduce the output’s variance when fixed to its true value. 405 

The method can be summarized in three steps: 406 

1) Definition of probability distribution associated to each stochastic input variable (SLR, 407 

DoC and model free parameters); 408 

2) Generation of ensemble modelled shoreline projections, by means of a Monte-Carlo-based 409 

procedure (with accounts for dependence among the input parameters); and 410 

3) Computation of first-order Sobol’ index time series for each uncertain input variable. 411 
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The GSA results are interpreted as the repartition of the variance of shoreline projections into 412 

normalized portions (between 0 and 1) imputed to the uncertain input variables. For instance, at a 413 

given time, Si,SLR = 0.3 means that uncertainties in future SLR alone are responsible for 30% of the 414 

variance in shoreline projections. However, the magnitude of a Si alone is not sufficient to identify 415 

the main driver of the shoreline projections’ variance, which is defined by comparing the values 416 

of Si for all input variables and ranking them in terms of importance. 417 

Figure 3 synthesizes the generalized method and details for the Truc Vert probabilistic applications 418 

(excluding the additional high-end SLR deterministic scenario). 419 

  420 

Figure 3 Flowchart of the method applied herein, summarized for a general case (black box), and 421 

for the Truc Vert application (red box) in the four application scenarios. 422 

3 Input probability distributions for future projections 423 

3.1 Probabilistic sea-level rise 424 

Sea-level projections inherit uncertainties associated with physical unknowns and modelling of the 425 

contributing processes. While many efforts were dedicated to assess such uncertainties, there is no 426 
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single approach to define MSL probability distributions yet (Jackson & Jevrejeva, 2016; Jevrejeva 427 

et al., 2019; Kopp et al., 2014). We produced probabilistic relative MSL projections, conditional 428 

to the RCP8.5 and 4.5 scenarios, defining time varying normal probability distributions 429 

characterized by the yearly median and standard deviations obtained in Section 2.3.2 (Figure 4a,b), 430 

following Hunter et al. (2013). In the high-emission scenario (RCP8.5), the large uncertainty 431 

associated with Antarctic ice sheet dynamics generates a skewness of the distributions in the 432 

second half of the 21st century, enhancing the amount of possible extreme SLR (Grinsted et al., 433 

2015; Jackson & Jevrejeva, 2016; Kopp et al., 2014). The upper tail of the skewed probability 434 

distribution is very much debated (Jevrejeva et al., 2019) and is not represented by the Gaussian 435 

distributions. Therefore, in addition to the Gaussian distribution reflecting the SROCC assessment 436 

(Oppenheimer et al., 2019), we consider a high-impact, low probability high-end sea level scenario 437 

that might take place for high greenhouse gas emissions (RCP8.5; black line in Figure 4b) 438 

following the same assumptions as Thiéblemont et al. (2019) (see Text S2 in Supporting 439 

Information for details). 440 

The possibility that the subsidence rate revealed by the Cap-Ferret GPS station is not representative 441 

of the Truc Vert area (located at 8 km distance) constitutes a residual uncertainty that cannot be 442 

quantified, and is not accounted in this study due to the lack of quantitative information supporting 443 

an alternative scenario for residual vertical ground motions.  444 

3.2 Depth of closure 445 

The active beach profile slope is critical to SLR-driven erosion rate (Section 2.4), and strongly 446 

depends on the depth of closure (DoC). The DoC was calculated from the wave climate using the 447 

Hallermeier (1978) formula. Given that DoC depends on the period of time over which the 448 

Hallermeier formula is applied (Nicholls, 1998), we iteratively applied the Hallermeier formula 449 
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over a 1-year moving window of the future wave climate with a 30-days step. For both RCP8.5 450 

and RCP4.5 scenarios, the latter procedure generated an ensemble of possible DoC values well 451 

fitted by a Gaussian distribution (Figure 4c). The DoC probability distribution shows higher 452 

median and standard deviation values in the RCP4.5 (µ = 17.2 m; σ = 1.75 m) than in the RCP8.5 453 

(µ = 16.3 m; σ = 0.95 m). This results from the more frequent occurrence and larger wave heights 454 

associated to isolated extreme events in the RCP4.5 scenario, compared to the RCP8.5 scenario.  455 

3.3 Model parameters 456 

Numerical models are associated with uncertainties owing to the choice of modelling approach 457 

and to the estimation of model free parameters. We accounted for the uncertainty conditional to 458 

the choice of modelling approach assessing the shoreline projections using the Y09 and the SF 459 

models described in Section 2.4.1, in two separated scenarios. Both models rely on shoreline 460 

observations to calibrate the respective free parameters, and inherit uncertainties due to the quality 461 

and amount of available data (Splinter et al., 2013), to possible non-stationarity of the parameters 462 

in respect to the wave climate (Ibaceta et al., 2020), and to the optimization method. Uncertainties 463 

affecting model free parameters of the Y09 model (ky
+/-, a1, a2) and the SF model (ks

+, Φ) are 464 

synthetized by their associated joined probability distribution. We follow the approach developed 465 

in D’Anna et al. (2020), who calibrated the SF model free parameters using the Simulated 466 

Annealing algorithm (Bertsimas & Tsitsiklis, 1993), and determined their joint probability 467 

distribution by fitting an empirical multivariate distribution (multivariate kernel function) on an 468 

ensemble of model parameters combinations. The authors built the latter ensemble selecting all 469 

parameters combinations that produced a RMSE < 10 m against observed shoreline data during 470 

the optimization process. Unlike D’Anna et al. (2020), here we calibrated the models between 471 

January 2012 and December 2019, where no long-term trend in shoreline position is observed, in 472 
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line with the assumption of the SF parameter b=0 (see Section 2.4.1). In addition, we used the 473 

Nash-Sutcliffe (Nash & Sutcliffe, 1970) efficiency score (NS) instead of the RMSE to determine 474 

the models’ performance (as for instance in Kroon et al., 2020). The NS measures the model skill 475 

in comparison to the ‘mean model’ (defined as the observed mean shoreline position), based on 476 

the error’s variance, and it is calculated as follows: 477 

𝑁𝑆 = 1 −
∑ (𝑌𝑚

𝑛 − 𝑌𝑜
𝑛)2𝑁

𝑛=1

∑ (𝑌𝑜̅ − 𝑌𝑜
𝑛)2𝑁

𝑛=1

         (8) 478 

where N is the number of observations, Ym
n and Yo

n are the n-th modelled and observed shoreline 479 

positions, respectively, and  𝑌𝑜̅ is the mean of the observed shoreline positions. The NS coefficient 480 

can range between -∞ and 1, where NS = 1 corresponds to a model perfectly reproducing the 481 

observations, NS = 0 to a model with skill comparable to the ‘mean model’, and NS < 0 corresponds 482 

to models less skilful than the ‘mean model’. We obtained the probability distribution using 483 

combinations of parameters that resulted in a NS ≥ 0.25 (compared to the maximum NS = 0.63), 484 

which corresponds to a max RMSE of ~10 m consistently with D’Anna et al. (2020). We defined 485 

the latter threshold with the iterative procedure described in Text S4 of Supporting Information. 486 

This procedure results in the probability distributions of ky
+/-, a1, and a2 for Y09, and ks

+ and Φ for 487 

SF shown in Figure 4d,e, with the range of possible parameters values reported in Table 1. 488 

 489 
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 490 
Figure 4 Probability distributions of: relative mean sea level over the period 2020-2100, including 491 

the likely (dark shaded areas) and 5th to 95th percentile (light shaded areas) ranges, for (a) RCP4.5 492 

and (b) RCP8.5 scenarios, with deterministic high-end sea-level projections based on 2100 high-493 



manuscript submitted to Journal of Geophysical Research: Earth Surface 

26 

 

end ‘highest-modelled’ estimates following Thiéblemont et al. (2019) (black line); (c) Gaussian 494 

distributions of depth of closure values calculated over the 2020-2100 wave time series for RCP4.5 495 

(blue curve) and RCP8.5 (red curve) scenarios; and empirical joint probability distributions of (d) 496 

ShoreFor [ks
+, Φ] parameters, and (e) Yates [ky

+/-, a1, a2] parameters, obtained fitting a kernel 497 

density function (with bandwidths estimated from the marginal kernel density function for each 498 

variable) on 6000 combinations of model parameters producing NS > 0.25 against shoreline data. 499 

 500 

Table 1 Optimised combinations of cross-shore model free parameters, and respective range of 501 

variation in the probability distributions. 502 

Model Model parameter 
Optimised  

value 

Distribution 

range 

ShoreFor 

ks
+[m1.5 s-1 W0.5] 4.4 x10-8 [2; 7.4] x10-8 

Φ [days] 1193 [400; 1423] 

Yates 

ky
+ [m2s-1 /m] 0.87 [0.24 ; 2] 

ky
- [ m2s-1 /m] 0.5 [0.1 ;1.5 ] 

a1 [m
2/m] -0.008 [-0.02 ; -0.004] 

a2 [m
2] 0.49 [0.33 ; 1] 

 503 

3.4 Model setup of shoreline projections 504 

Four ensembles of 3000 possible shoreline trajectories from 2020 to 2100 were generated using 505 

the SF and Y09 shoreline change models, and the Bruun Rule, for the two RCP8.5 and RCP4.5 506 

scenarios (Table 2). Wave-driven shoreline response (short-term) and SLR (long-term) were 507 

computed individually and then linearly combined, so that no feedback mechanisms occur between 508 

the models, in line with previous applications (D’Anna et al., 2020; Vitousek et al., 2017). 509 
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For each model and RCP scenario, 3000 simulations were run with different combinations of 510 

model free parameters, DoC and SLR time series, sampled from the respective probability 511 

distributions. Shoreline change was computed with a 3-hour time step from the 1st January 2020 512 

to the 31st December 2099 starting from the same shoreline position (Y0 =0), and model outputs 513 

were recorded with a 2-weeks resolution. As the characteristics of the MSL probability distribution 514 

are time-dependent, we randomly sampled percentile values and extracted the corresponding MSL 515 

at each year. The ensemble projections character was synthetized by the likely range, defined here 516 

at each time step as the variance, and the envelope (min and max) of modelled shoreline positions, 517 

acknowledging that the latter is dependent on the number of simulations and the tails of the 518 

probability distributions. The impact of individual winters on shoreline projections is qualitatively 519 

discussed observing the distributions of shoreline positions corresponding to the most seaward and 520 

landward median shoreline position within each simulated annual cycle (1st September to 31th 521 

August). We analysed the decadal shoreline trends by filtering the modelled shoreline time series 522 

with a 5-year running mean. In addition, for RCP8.5 scenario, a deterministic high-end-SLR 523 

simulation was run with both shoreline models using the optimized model parameters (Table 1) 524 

and the median DoC. It is to be noted that the GSA results (i.e. Sis) are calculated on the likely 525 

range (variance) of the model results, regardless of the envelope of modelled shoreline positions. 526 

 527 

Table 2 Probabilistic future scenarios for two Representative Concentration Pathways (RCP) and 528 

two different wave-driven modelling approaches, using the Bruun Rule and 3000 different 529 

combinations of model parameters, SLR percentile and DoC.  530 

Future scenario 
SLR-driven 

shoreline change 

Wave-driven 

shoreline change 

# Combinations of 

uncertain variables 

RCP 4.5 Bruun Rule ShoreFor (SF) 3000 
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Yates (Y09) 3000 

RCP 8.5 Bruun Rule 
ShoreFor (SF) 3000 

Yates (Y09) 3000 

 531 

 532 

4 Results 533 

4.1 Shoreline projections 534 

The four future scenarios in Table 2 resulted each one in 3000 shoreline evolution simulations 535 

spanning 2020-2100 (Figure 5 and Figure 6). Figure 5c,d and Figure 6c,d represent the distribution 536 

of 3000 modelled shoreline positions at each recorded output time. All scenarios show a net erosion 537 

by 2100, mostly driven by SLR (Table 3). All model ensembles also show large interannual 538 

variability that is essentially enforced by the interannual variability in incident winter-mean wave 539 

height (Figure 5a,b and Figure 6a,b). In the RCP8.5 (RCP4.5) scenario we observe a long-term 540 

shoreline change pattern responding to alternating sequences of high- and low-energy winters with 541 

a period of ~20 years (~10 years) and even longer (Figure 5a,e,f and Figure 6a,e,f).  542 

Figure 5c,d (Figure 6c,d) show several episodes of rapid erosion driven by isolated extreme energy 543 

winters, for instance for the RCP8.5 (RCP4.5) scenario in winter 2030, 2076, and 2086 (2068, 544 

2073 and 2085). The two wave-driven shoreline models (Y09 and SF) produce consistent short- 545 

and long-term shoreline cycles, with larger tendency to accretion in SF than in Y09 during 546 

extended periods of low energy winters, for instance during 2050-2055 for RCP4.5 and 2060-2070 547 

for RCP8.5 (Figure 5c,d and Figure 6c,d).  548 

In the RCP4.5 emission scenario, the modelled 2020-2100 Truc Vert shoreline trend leads to a 549 

likely (envelope) retreat of 15 to 33 m (4 to 75 m) with Y09, and 10 to 23 m (6 to 65 m) with SF. 550 
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On a yearly time scale, the shoreline position is likely (envelope) to be farther landward from the 551 

initial position, by 76 m (123 m) with Y09, and 43 m (74 m) with SF (Figure 5c,d, Table 3). Indeed, 552 

the occurrence of extreme winters can produce significant landward shifts of the envelope of 553 

shoreline positions, as observed during the 2084-2085 winter (Figure 5c,d). 554 

 555 
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 556 
Figure 5 (a) Time series of winter mean wave height of the BW18 RCP4.5 projections (dashed 557 

line) with corresponding 5-year average (solid line); (b) BW18 RCP4.5 wave height time series 558 

(black line), and 3-month average Hs
2Tp time series (red line); RCP4.5 scenario 2020-2100 559 

shoreline projections at 14-days resolution obtained using (c) Y09 and (d) SF; and 5-year running 560 

mean shoreline projections modelled with (e) Y09, (f) SF, and the standalone Bruun Rule (green 561 

bars). Dark (light) blue shaded areas indicate the likely (envelope) range, i.e. variance (min-max),  562 

of shoreline position, and solid light line median shoreline position. The dashed vertical line 563 
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indicates the most landward shoreline position over the simulated period. Yellow shaded areas 564 

indicate examples of years including high-energy winters. 565 

When forced with RCP8.5 scenario’s wave and MSL projections, from 2020 to 2100 simulations 566 

indicate an average likely (envelope) erosion of 27 to 48 m (16 to 83 m) using Y09, and 14 to 33 567 

m (2 to 67 m) using SF (Figure 6d,e). In this scenario, over the simulated period the likely 568 

(envelope) most landward shoreline position reaches up to 70 m (108 m) from the initial shoreline 569 

position with Y09 model, and 48 m (76 m) with SF (Figure 6c,d, Table 3). Similarly to the RCP4.5, 570 

here we observe for both models some important shifts in shoreline position distribution owing to 571 

extreme winters such as 2086’s winter (Figure 6c,d). 572 

In the high-end SLR scenario, both models predict a shoreline position within the envelope of 573 

probabilistic projections until 2090, before the shoreline moves further inland during the last 574 

decade (Figure 6d,e). The modelled 5-year averaged shoreline position in 2100 is of 88 and 74 m 575 

for Y09 and SF, respectively (Table 3). The most landward shoreline position observed throughout 576 

the simulation is 107 m with Y09, and 86 m with SF (black dashed line in Figure 6c,d).  577 

The likely (envelope) ranges erosion produced by the combined Y09+Bruun models at the end of 578 

the simulated period are comparable (larger) to the standalone application of the Bruun Rule (Table 579 

3, and in Figure 5,6,e,f with Bruun model predictions in green). With the combined SF+Bruun 580 

models, the likely (envelope) ranges of shoreline positions obtained show ~10 m (~15 m) less 581 

erosion than the Bruun Rule.  582 
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 583 
Figure 6 (a) Time series of winter mean wave height of the BW18 RCP8.5 projections (dashed 584 

line) with corresponding 5-year average (solid line); (b) BW18 RCP8.5 wave height time series 585 

(black line), and 3-month average Hs
2Tp time series (red line); RCP8.5 scenario 2020-2100 586 

shoreline projections at 14-days resolution obtained using (c) Y09 and (d) SF; and 5-year running 587 

mean shoreline projections modelled with (e) Y09, (f) SF, and the standalone Bruun Rule (green 588 

bars). Dark (light) shaded areas indicate the likely (envelope) range , i.e. variance (min-max), of 589 
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shoreline position. Black solid lines indicate shoreline projections in the RCP8.5 high-end SLR 590 

scenario. The dashed vertical line indicates the most landward shoreline position over the 591 

simulated period. Yellow shaded areas indicate examples of years including high-energy winters. 592 

 593 

Table 3 Likely (modelled shoreline variance) and envelope (min-max) values of the 5-year 594 

averaged projected shoreline position in 2100, and 2020-2100 most landward shoreline position, 595 

obtained using the standalone Bruun Rule (B), and the combined B with Y09 and SF equilibrium 596 

shoreline models, for the RCP4.5 and RCP8.5 probabilistic scenarios, and the deterministic high-597 

end SLR scenario. 598 

Scenario 

2100 5-year averaged shoreline 

position 

Most landward 

shoreline position 

likely range  

(m) 

envelope  

(m) 

likely  

(m) 

envelope  

(m) 

RCP 4.5 

Y09+B -15 – -33 -4 – -75 -76 -123 

SF+B -10 – -23 -6 – -52 -43 -74 

B -21  -33 -17 – -60 -33 -60 

RCP 8.5 

Y09+B -27 – -48 -16 – -83 -70 -108 

SF+B -14 – -33 -2 – -65 -48 -76 

B -28 – -49 -21– -86 -49 -86 

Deterministic scenario 

2100 5-year averaged shoreline 

position 

(m) 

Most landward 

shoreline position 

(m) 

High-end 

RCP 8.5 

Y09+B -95 -111 

SF+B -74 -84 

B -81 -81 

 599 

4.2 Global Sensitivity Analysis 600 

In both RCP8.5 and 4.5 scenarios and for both shoreline model applications, the GSA shows that 601 

over the first 30 years of simulation the variance of modelled shoreline projections is driven 602 

primarily by the uncertainties in model free parameters, while the effects of SLR uncertainties on 603 

shoreline position become increasingly significant after 2050 (Figure 7 and Figure 8). The Sis of 604 

the Y09 and SF response rate parameters (ky
+/- and ks

+, respectively) and the SF beach memory 605 
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parameter (Φ) show seasonal (6 months) and decadal modulation with a decreasing trend as 606 

shoreline projections become more sensitive to SLR (Figure 7c,d and Figure 8c,d). Variations in 607 

ky
+/- and ks

+ are the primary source of shoreline projection uncertainties during accretion periods. 608 

However, the response rate parameters’ uncertainties have a stronger impact on seasonal scale 609 

when using the Y09 model (Figure 7c), and a larger impact on interannual scale when using the 610 

SF model (Figure 8c), due to the different response of the models to incident wave energy 611 

variability. Seasonal modulation is also observed for the Sis of the Y09 empirical parameters (a1 612 

and a2), although the correlation between the variability in incident wave conditions and the 613 

parameters’ Sis, (both filtered of their seasonal signal with a 1-year running mean) is negligible 614 

(R2=~0.06 for a1, and R2=~0.03 for a2). However, the estimated a1’s and a2’s Sis remain below 615 

20% during most of the simulated period with occasional peaks up to 45% (Figure 7e,f). The 616 

primary effects of SLR uncertainties emerge at different times, which depend both on the RCP 617 

scenario and on the shoreline model. When using Y09, a positive trend in SLR’s Si emerges in the 618 

2050-2060 period, with  SLR’s Si exceeding those of model parameters since approximately 2060-619 

2070, for both RCP scenarios (Figure 7g). Instead, with SF in the RCP8.5 (RCP4.5) scenario, such 620 

quasi-monotonic trend appears later, approximately during the 2070s’ (2060s’) and only exceeds 621 

the model parameters’ Sis after 2085 (2080) (Figure 8e). For all scenarios, DoC’s Si slowly 622 

increases, with similar trends as SLR’s Si, and reaches approximately 5% and 10%, in the RCP8.5 623 

and 4.5 scenarios, respectively. This difference is probably due to the larger uncertainties of SLR 624 

in the RCP8.5 scenario (Figure 4b), and to the larger variance of the DoC probability distribution 625 

obtained for the RCP4.5 scenario (Figure 4c). 626 
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 627 
Figure 7 Global Sensitivity Analysis results over the period 2020-2100 using the Yates model in 628 

the RCP4.5 (blue lines) and RCP8.5 (orange lines) scenarios. (a) RCP4.5 and (b) RCP8.5 629 

Ensemble shoreline projections (shaded areas) over 2020-2100; First-order Sobol’ index time 630 
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series for (c) ky
+, (d) ky

-, (e) a1, (f) a2, (g) sea-level rise, and (h) depth of closure, with respective 631 

linear fit (solid straight lines). 632 

 633 
Figure 8 Global Sensitivity Analysis results over the period 2020-2100 using the ShoreFor model 634 

in the RCP4.5 (blue lines) and RCP8.5 (orange lines) scenarios. (a) RCP4.5 and (b) RCP8.5 635 

Ensemble shoreline projections (shaded areas) over 2020-2100; First-order Sobol’ index time 636 

series for (c) ks
+, (d) Φ, (e) sea-level rise, and (f) depth of closure, with respective linear fit (solid 637 

straight lines). 638 
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5 Discussion 639 

5.1 Sea-level rise 640 

While observed shoreline erosion in Aquitaine is not yet attributed to SLR, sooner or later a SLR-641 

driven signal will emerge from the current shoreline change variability, as sea levels are committed 642 

to rise by meters over the coming centuries (Anderson et al., 2015; Oppenheimer et al., 2019). Our 643 

results suggest that these times of emergence of a SLR-driven erosive trend could be visible during 644 

the 2nd half of the 21st century, possibly by 2070. This is consistent with the fact that uncertainty 645 

(17th -83 th percentiles) in future sea level grows from roughly 15 cm by the mid 21st century to 30 646 

cm (RCP4.5) and 50 cm (RCP8.5) in 2100. Yet, this result relies on our modelling assumptions, 647 

including the Bruun Rule and the Yates or ShoreFor models.  648 

The GSA applications to four simulated scenarios indicate that uncertainties in the modelled 2020-649 

2100 shoreline projections at Truc Vert are primarily caused by uncertainties in model free 650 

parameters between the present day and 2050. The effects SLR uncertainties always emerge as a 651 

significant contribution to the shoreline change uncertainties in the second half of the century. We 652 

also observed that the time evolution of Sis and the onset of SLR uncertainties effects are 653 

conditional to the RCP scenario (in agreement with Le Cozannet et al., 2019), the choice of 654 

shoreline model, and the variability of forcing wave climate.  655 

The shoreline trajectory obtained in the deterministic high-end SLR scenario exceeds the envelope 656 

of probabilistic projections in the last simulated decade. Truc Vert beach is remote and backed by 657 

a high (~20 m) and wide (~250 m) dune system, so that shoreline retreat is not limited by non-658 

erodible geological outcrops or coastal structure. While such large erosion does not threaten any 659 

human assets close to Truc Vert beach, such scenario, though unlikely, questions adaptation 660 

planning in other eroding urbanised coastal areas with limited accommodation space in southwest 661 

France. 662 
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5.2 Shoreline models 663 

While the SF and Y09 models are both based on the equilibrium beach concept, the respective 664 

model structures and parameters associate different physical interpretations and shoreline 665 

behaviours (Section 2.4.1). Therefore, the uncertainty associated with the choice of the equilibrium 666 

modelling approach cannot be measured by direct confrontation of the Sis obtained with the two 667 

models, but requires consideration of the different model responses to the forcing conditions.  668 

The results obtained for the two disequilibrium approaches (Y09 and SF) show similar seasonal 669 

and interannual shoreline cycles, although with notably different amplitudes. Such behaviours are 670 

rooted in the different expressions of the equilibrium physics adopted in the two wave-driven 671 

models (i.e. the mechanism that would drive the shoreline to an equilibrium position under 672 

constant wave conditions). Vitousek et al. (2021) analytically show that the type of equilibrium 673 

condition is critical for the short- and long-term response of the shoreline model. On one hand, 674 

Y09’s equilibrium condition depends on the current shoreline position, and is not influenced by 675 

storm events that occurred prior to a given time scale that is implicitly defined by the model 676 

calibration (see ‘Appendix A’ of Vitousek et al., 2021). On the other hand, SF’s equilibrium state 677 

is determined by the (time varying) past wave conditions with an explicit ‘beach memory’ 678 

function, and evolves in time accordingly. This means that, in absence of other processes, the Y09 679 

modelled shoreline oscillates persistently around the same position regardless of the temporal 680 

variability of wave energy. Instead, SF can only achieve such a stable mean shoreline trend when 681 

forced with a periodic long-term wave climate (Vitousek et al., 2021). Hence, in presence of long-682 

term trends of wave energy, Y09 emphasizes the short-term shoreline erosion/accretion in order 683 

to re-establish the equilibrium shoreline position, while SF adapts to the wave climate pattern. The 684 

latter results in larger amplitudes of seasonal fluctuations and in attenuation of long-term 685 

fluctuations, compared to SF.  686 
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The combined Y09 and Bruun models simulated shoreline ranges at 2100 are overall comparable 687 

to the ranges of the standalone Bruun Rule, indicating that in this scenario the net erosion modelled 688 

by 2100 is essentially driven by SLR. In fact, Y09 constrains the shoreline response to long-term 689 

wave climate shifts to a limited range (as described above) while the linearly added contribution 690 

of the Bruun model determines the shoreline trend. Instead, SF can produce wave-driven long-691 

term shoreline trends that are combined with the Bruun retreat. This effect is observed in both 692 

RCP4.5 and 8.5 scenarios, where the decreasing wave energy trend (Figure 2d,e) is translated by 693 

SF into shoreline accretion trends, resulting in less erosion than the Buun model alone (Table 3). 694 

Such properties of the two model behaviours highlight the different model sensitivities to long-695 

term variability of the wave climate, which can have implications on the uncertainties in shoreline 696 

projections. Including the uncertainty of long-term wave climate variability in the ensemble 697 

projections would allow investigating the uncertainties related to the different behaviours of the 698 

shoreline models. 699 

5.3 Model free parameters 700 

Resolving process-based shoreline response to time-varying incident wave energy revealed that 701 

uncertainties in model parameters have the largest impact over the first simulated 30 years, 702 

regardless of the cross-shore shoreline model choice. Over this period, Y09 and SF uncertainties 703 

in response rate parameters (ky
+/-and ks

+, respectively) are responsible for most of the results 704 

uncertainties, which increases during low energy winters (on seasonal scale), and is particularly 705 

emphasized for SF in correspondence of extended low energy periods. This suggests that the 706 

assumption of a linear relationship between SF’s response rate parameters (ks
- = r ks

+) may not 707 

hold in the context of long-term simulations, as it might depend on the evolution of waves 708 

properties (Ibaceta et al., 2020). In fact, Ibaceta et al. (2020) found that, such relation is not 709 



manuscript submitted to Journal of Geophysical Research: Earth Surface 

40 

 

necessarily linear, indicating that the value of r may vary dynamically with changes in wave 710 

regimes. While the Sis of the remaining model parameters (Φ for SF; a1 and a2 for Y09) show a 711 

definite seasonality, their variability on longer time scales is unclear. However, Φ’s Si, which 712 

exhibit relatively high values (up to 90%) at the beginning of the simulation, shows an overall 713 

decaying trend for both RCP scenarios applications. The a1 and a2’s Sis remain weak, though not 714 

negligible, (<20%) over all the simulated period. 715 

The behaviour of the model free parameters’ Sis highlights, once again, the importance of wave 716 

energy variability in determining the impact of the parameters uncertainties on shoreline 717 

projections. This was also observed in previous studies, which showed that changes in wave 718 

regime can alter the model parameters and the functional relations between them (Ibaceta et al., 719 

2020; Splinter et al., 2017). As a perspective of future work, one way to reduce the effects of model 720 

free parameters’ uncertainties on modelled shoreline may be to employ non-stationary parameters 721 

that can adjust to changes in wave-climate regimes (Ibaceta et al., 2020). The use of non-stationary 722 

parameters would also imply a dynamic value of the r parameter, reducing uncertainties associated 723 

to the assumption of a linear relationship, between SF’s response rate parameters. In addition, 724 

rearranging the Y09 parameters so that the new parameters have a similar order of magnitudes 725 

may increase the efficiency of model calibration, reducing model parameters uncertainties 726 

(Vitousek et al., 2021).  727 

 5.4 The role of wave time series 728 

Our results indicate that the shoreline erosion is not only associated with large winter energy, but 729 

also depends on the trends of past winter wave energy and the internal variability of high-energy 730 

events within the season. For instance, in the RCP4.5 scenario the winters 2084-2085 and 2059-731 

2060 show similar 3-month averaged Hs
2Tp peak (164 m2s and 172 m2s, respectively), but they are 732 
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preceded by several years of negative and positive winter energy trend, respectively (Figure 2b). 733 

This results in the winter 2084-2085 producing a rapid landward shift of shoreline position 734 

distribution, and the winter 2059-2060 driving more moderate annual changes while contributing 735 

to a long-term erosive trend (Figure 5c,d). We also observe that the interannual patterns of 736 

shoreline evolution are clearly correlated to those of winter wave energy. These behaviours 737 

underline the critical role of high/low energy winters interannual cycles, as well as storms 738 

sequencing, in wave-driven shoreline response, in line with previous studies (Dissanayake et al., 739 

2015; Besio et al., 2017; Dodet et al., 2019). In addition, the temporal variability of wave climate 740 

(e.g. seasonal distribution of storm events) has been observed to affect the frequency (or ‘mode’) 741 

of shoreline response (Splinter et al., 2017; Ibaceta et al., 2020).  742 

Therefore, we further investigated the potential role of future waves uncertainties in shoreline 743 

projections performing the GSA on an additional ensemble of 3000 simulations forcing the Y09 744 

and SF models with 100 different wave time series. We generated 100 random synthetic wave 745 

series using the method proposed by Davidson et al. (2017), which consists in building continuous 746 

series of wave conditions by sampling 1-month portions from a reference dataset of existing wave 747 

data (e.g. historic wave data) at a given location. The method generates synthetic wave time series 748 

with random, though realistic, chronology of wave events, while maintaining the seasonal and 749 

yearly character of the wave climate. However, this assumes a long-term stationarity of the 750 

generated wave time series. We used the BW18 projections for the RCP8.5 scenario as reference 751 

wave data. We individually applied the Davidson et al. (2017) method over 8 windows of 10 years 752 

from 2020 to 2100 in order to preserve the long-term (>10 years) characteristics of the reference 753 

time series while providing enough sampling reference data (Figure 9a). For instance, all the 754 
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synthetic events from 2030 to 2040 were generated using monthly samples from the 2030-2040 755 

reference dataset. 756 

When using the latter approach to generate ensemble waves the SF model shows some limitations. 757 

Therefore, here we exploit only the test results obtained with Y09. The results of the SF test 758 

application and the aforementioned limitations are illustrated in Text S5 and Figure S4 of 759 

Supporting Information. 760 
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 761 

Figure 9 Ensemble of 3000 Yates simulations forced using (a) 3-month average energy (Hs
2Tp) of 762 

100 random wave time series from 2020 to 2100 generated with the Davidson et al. (2017) method 763 

based on the BW18 wave projections for the RCP8.5 scenario; (b) Ensemble shoreline projections 764 
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over the analysed period (dark/light shaded areas indicate the likely/envelope range, i.e. variance 765 

(min-max), of shoreline position); First-order Sobol’ index time series for (c) ky
+, (d) ky

-, (e) a1, (f) 766 

a2, (g) sea-level rise, (h) depth of closure, and (i) wave energy, with respective time series 767 

calculated on the 1-year running average of model results (black lines). 768 

The GSA shows that introducing uncertainties in the temporal distribution of wave events (Figure 769 

9a) has a large impact on the variance of model results (Figure 9b) and, in turn, on the relative 770 

contributions of the remaining uncertain input parameters (Figure 9c-h). In fact, accounting for 771 

uncertainty in wave events chronology (though in a simplistic way) increases the overall model 772 

variance throughout the entire simulated period (Figure 6c and Figure 9b), and associates a 773 

dominating Si (up to 0.3) over the first half of the simulated period (Figure 9i). However, SLR’s 774 

Si still emerges after 2060 and dominate shoreline projections uncertainties over the last two 775 

simulated decades. We also observe that the inclusion of wave chronology uncertainty attenuates 776 

the interannual variability of all Sis while preserving the seasonal and 10-year signals (Figure 9c-777 

h). This is a natural consequence of the method used to generate the wave series ensemble. In fact, 778 

the Davidson et al. (2017) method is designed to preserve the seasonal variability, while its 779 

application to fixed time windows of the reference time series constrains the ensemble members 780 

to maintain the 10-year variability. The black lines in Figure 9c-i show the time evolution of Sis 781 

obtained removing the seasonal signal from the model results with a 1-year running average. When 782 

the seasonal variability of the results is removed, the SLR’s Si compensates the fluctuations of the 783 

model parameter’s Sis, resulting in an increased trend.  784 

The test application illustrated above suggests that including uncertainties in short-term wave 785 

chronology can significantly impact the uncertainties of shoreline projections and the relative 786 

contributions of the remaining uncertain input variables. Further, introducing uncertainties on 787 

long-term non-stationarity of wave conditions would overcome the SF limitations occurring in this 788 
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specific application, and may unveil new implications of the different Y09 and SF equilibrium 789 

approaches in the context of probabilistic long-term shoreline projections. 790 

5.5 Assumptions and limitations 791 

Wave projections are affected by uncertainties owing to the choice of the Global Climate Model 792 

(Morim et al., 2020) and random variability of wave events. Although our results are based on 793 

deterministic BW18’s wave projections, in the northeast Atlantic region the estimated future wave 794 

statistics have been observed to be mostly sensitive to the RCP scenario (Morim et al., 2020). Yet, 795 

the use of deterministic wave projections hides a potentially large impact of the uncertain wave-796 

climate variability on both shoreline predictions uncertainty and behaviour of the shoreline models.  797 

In addition, accounting for uncertainties in wave projections may also increase the uncertainties in 798 

DoC, which were based on one deterministic wave time series in the present study. However, to 799 

the authors’ knowledge there is no other dataset of continuous 2020-2100 wave projections, over 800 

the north Atlantic area, with a sufficient spatial resolution to resolve the site-specific regional scale 801 

processes. This underlines the need of continuous wave time series (obtained with different wave 802 

models of fine enough spatial  resolution,  different climate models, for different RCP scenarios), 803 

as well as tools allowing generating continuous realistic future wave time series, such as climate 804 

based stochastic wave emulators (Anderson et al., 2019; Cagigal et al., 2020). 805 

In the current work, we assumed that MSL 2020-2100 projections are normally distributed. 806 

However, the MSL distribution may be skewed towards higher values due to additional uncertainty 807 

related to Antarctic ice-sheet melting in the RCP8.5 scenario. We simulated a deterministic 808 

RCP8.5 high-end SLR scenario to define a low-probability/high-impact scenario for projected 809 

shoreline erosion. Yet, our high-end SLR scenario is based on a particular combination of high-810 

end contributions to sea-level rise, which makes no consensus in the scientific community (Bamber 811 
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et al., 2019; Edwards et al., 2021; Stammer et al., 2019). While this is not included in the GSA, 812 

the use of a skewed probability distribution may lead to an earlier onset of SLR uncertainties in 813 

shoreline projections. 814 

The Bruun Rule, used in our application to estimate SLR-driven shoreline recession, builds on 815 

several strong assumptions that reduce the applicability of this model to a limited range of beaches 816 

(Cooper et al., 2020). As the Truc Vert is an uninterrupted natural cross-shore transport dominated 817 

beach, with large sediment availability, most underlying assumption of the Bruun model are 818 

satisfied. However, alternative models to address beach response to SLR, such as ShoreTrans 819 

(McCarroll et al., 2020), can be implemented in this framework.  820 

Coupling the Bruun Rule with Y09 and SF allows accounting for long-term effects of SLR while 821 

resolving short-term shoreline response to the wave climate. The Y09 and SF models do not 822 

explicitly resolve sediment sediment exchange between the different beach compartments (e.g. 823 

upper beach and dune), and may fail reproducing episodic shoreline changes such as short-term 824 

accretion following to dune erosion events. However, if such events occur during the model 825 

calibration period, as in our applications (i.e. winter 2013-2014), their influence on the bulk 826 

shoreline response is partially accounted. 827 

Here, we investigated the main effect of the uncertainties in input variables (Sis). While the 828 

estimated Si of the DoC remains relatively low over the simulated period, in all simulated 829 

scenarios, the interaction of DoC and SLR uncertainties (i.e. second-order Sobol’ index) may have 830 

a larger impact. However, estimating robust interaction terms would require a larger ensemble of 831 

simulations (several tens of thousands). Furthermore, in order to rigorously conclude on the 832 

negligible character of some uncertainties, GSA should be conducted within the factors’ fixing 833 

setting (i.e., investigating the ‘total effect’ of uncertain variables, Saltelli et al., 2008). In the 834 
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presence of dependence among the inputs, more advanced GSA indices should be used for this 835 

purpose. In particular, a method that employes the so-called Shapley effects has recently been 836 

proposed and showed very promising results (Iooss & Prieur, 2019). While the direct application 837 

of this method requires computational cost of several order of magnitudes larger than the Sobol’ 838 

indices (see Iooss & Prieur, 2019), Broto et al. (2020) successfully implemented a more 839 

computationally efficient sampling-based method for GSA using Shapley indices. This may be an 840 

interesting perceptive for future works.  841 

6 Conclusions 842 

We performed a Global Sensitivity Analysis on probabilistic 2020-2100 shoreline projections at 843 

the cross-shore transport dominated Truc Vert beach in southwest France. Time varying first-order 844 

Sobol’ indices were calculated for sea-level rise, depth of closure, and model free parameters for 845 

two different cross-shore shoreline models (Yates and ShoreFor) and two RCP scenarios (RCP4.5 846 

and RCP8.5). We show that uncertainties in shoreline projections are initially driven by 847 

uncertainties in model free parameters, with the effects of SLR uncertainties only emerging in the 848 

second half of the 21st century. However, the relative effects of SLR and model parameters 849 

uncertainties on shoreline projections do not only depend on the shoreline modelling approach and 850 

RCP scenarios, but their time evolution is also related to the forcing wave-climate variability. We 851 

also emphasize the importance of accounting for uncertainties related to the temporal distribution 852 

of wave energy, and therefore the need of ensembles of synthetic wave time series that account for 853 

the inherent variability of the wave climate.  854 

 855 
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Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, 1069 

M., Okem, A., Petzold, J., Rama, B., Weyer, N.M. (eds.)] 1070 

Parisot, J. P, Capo, S., Castelle, B., Bujan S., Moreau, J. M., Gervais, M., Réjas, A., et al. (2009). 1071 

Treatment of topographic and bathymetric data acquired at the Truc-Vert Beach (SW France) 1072 

during the ECORS field experiment [Special issue]. J. of Coastal Research 56, Proceedings of the 1073 

https://doi.org/10.1038/s41597-020-0446-2
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1144/GSL.ENG.1998.015.01.08


manuscript submitted to Journal of Geophysical Research: Earth Surface 

58 

 

10th International Coastal Symposium ICS 2009, Vol. II, 1786-1790. 1074 

www.jstor.org/stable/25738097 1075 

Perez, J., Menendez, M., Camus, P., Mendez, F.J. & Losada, I.J. (2015). Statistical multi-model 1076 

climate projections of surface ocean waves in Europe. Ocean Modelling, 96, 161-170. 1077 

doi.org/10.1016/j.ocemod.2015.06.001 1078 

Poumadère, M., Bertoldo, R., Idier, D., Mallet, C., Oliveros, C., & Robin, M. (2015). Coastal 1079 

vulnerabilities under the deliberation of stakeholders: The case of two French sandy beaches. 1080 

Ocean & Coastal Management 105, 166-176. doi.org/10.1016/j.ocecoaman.2014.12.024 1081 

Ranasinghe, R. (2016). Assessing climate change impacts on open sandy coasts: A review.  Earth 1082 

Sci Rev 160, 320-332. doi:10.1016/j.earscirev.2016.07.011 1083 

Ranasinghe, R. (2020). On the need for a new generation of coastal change models for the 21st 1084 

century. Sci Rep 10, 2010. doi.org/10.1038/s41598-020-58376-x 1085 

Ranasinghe, R., Callaghan, D., & Stive, M.J.F. (2012). Estimating coastal recession due to sea 1086 

level rise: beyond the Bruun rule. Climatic Change 110, 561–574. doi:10.1007/s10584-011-0107-1087 

8 1088 

Reguero, B.G., Losada, I.J., & Mendez, F.J. (2019). A recent increase in global wave power as a 1089 

consequence of oceanic warming. Nature Communications 10, 205. 1090 

https://doi.org/10.1038/s41467-018-08066-0 1091 

Robin, N., Billy, J., Castelle, B., Hesp, P., Nicolae Lerma, A., Laporte-Fauret, Q., Marieu, V., et 1092 

al. (2021). 150 years of foredune initiation and evolution driven by human and natural processes. 1093 

Geomorphology, 374, 107516. https://doi.org/10.1016/j.geomorph.2020.107516 1094 

Robinet, A., Castelle, B., Idier, D., Le Cozannet, G., Déqué, M., & Charles, E. (2016). Statistical 1095 

modeling of interannual shoreline change driven by North Atlantic climate variability spanning 1096 

https://www.jstor.org/stable/25738097
https://doi.org/10.1016/j.ocemod.2015.06.001
https://doi.org/10.1016/j.ocecoaman.2014.12.024
https://doi.org/10.1016/j.earscirev.2016.07.011
https://doi.org/10.1038/s41598-020-58376-x
https://doi.org/10.1007/s10584-011-0107-8
https://doi.org/10.1007/s10584-011-0107-8
https://doi.org/10.1038/s41467-018-08066-0
https://doi.org/10.1016/j.geomorph.2020.107516


manuscript submitted to Journal of Geophysical Research: Earth Surface 

59 

 

2000–2014 in the Bay of Biscay. Geo-Marine Letters, 36(6), 479–490. doi:10.1007/s00367-016-1097 

0460-8 1098 

Robinet, A., Idier, D., Castelle, B., & Marieu, V. (2018). A reduced-complexity shoreline change 1099 

model combining longshore and cross-shore processes: The LX-Shore model. Environmental 1100 

Modelling and Software 109, 1-16. doi:10.1016/j.envsoft.2018.08.010 1101 

Rohmer, J., & Le Cozannet, G. (2019). Dominance of the mean sea level in high-percentile sea 1102 

levels time evolution with respect to large-scale climate variability: a Bayesian statistical 1103 

approach. Environmental Research Letters, 14(1). doi:10.1088/1748-9326/aaf0cd 1104 

Saltelli, A., Ratto, M., Andres T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., et al. 1105 

(2008). Global Sensitivity Analysis: The premier. The Atrium, Southern Gate, Chichester,West 1106 

Sussex PO19 8SQ, England. Jhon Wiley & Sons Ltd. 1107 

Santamaría-Gómez, A., Gravelle, M., Dangendorf, S., Marcos, M., Spada, G., & Wöppelmann, G. 1108 

(2017). Uncertainty of the 20th century sea-level rise due to vertical land motion errors. Earth and 1109 

Planetary Science Letters. 473, 24-32. doi:10.1016/j.epsl.2017.05.038 1110 

Sobol’, I.M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte 1111 

Carlo estimates. Mathematics and Computers in Simulation 55(1-3), 271-280. doi:10.1016/S0378-1112 

4754(00)00270-6 1113 

Splinter, K., Turner, I.L., & Davidson, M.A. (2013). How much data is enough? The importance 1114 

of morphological sampling interval and duration for calibration of empirical shoreline models. 1115 

Coastal Engineering, 77, 14-27. doi:10.1016/j.coastaleng.2013.02.009 1116 

Splinter, K., Turner, I.L., Davidson, M.A., Bernard, P., Castelle, B., & Oltman-Shay, J. (2014a). 1117 

A generalized equilibrium model for predicting daily to interannual shoreline response. J. of 1118 

Geophysical Research Earth Surface 119(9), 1936-1958. doi:10.1002/2014JF003106  1119 

https://doi.org/10.1007/s00367-016-0460-8
https://doi.org/10.1007/s00367-016-0460-8
https://doi.org/10.1016/j.envsoft.2018.08.010
https://doi.org/10.1088/1748-9326/aaf0cd
https://doi.org/10.1016/j.epsl.2017.05.038
http://dx.doi.org/10.1016/S0378-4754(00)00270-6
http://dx.doi.org/10.1016/S0378-4754(00)00270-6
http://dx.doi.org/10.1016/j.coastaleng.2013.02.009
https://doi.org/10.1002/2014JF003106


manuscript submitted to Journal of Geophysical Research: Earth Surface 

60 

 

Splinter, K., Carley, J.T., Golshani, A., & Tomlinson, R. (2014b). A relationship to describe the 1120 

cumulative impact of storm clusters on beach erosion. Coastal Engineering. 83, 49-55. 1121 

doi.org/10.1016/j.coastaleng.2013.10.001 1122 

Splinter, K., Turner, I. L., Reinhardt, M., & Ruessink, G. (2017). Rapid adjustment of shoreline 1123 

behaviour to changing seasonality of storms: observations and modelling at an open-coast beach. 1124 

Earth Surface Processes and Landforms 42(8), 1186-1194. doi:10.1002/esp.4088 1125 

Slangen, A.B.A., Carson, M., Katsman, C.A., van de Wal, R.S.W., Kohl, A., Vermeersen, L.L.A., 1126 

& Stammer, D. (2014). Projecting twenty-first century regional sea-level changes. Climatic 1127 

Change 124, 317–332. doi.org/10.1007/s10584-014-1080-9 1128 

Stammer, D., Van de Wal, R.S.W., Nicholls, R.J., Church, J.A., Le Cozannet, G., Lowe, J.A., 1129 

Horton, B.P., et al. (2019). Framework for high‐end estimates of sea level rise for stakeholder 1130 

applications. Earth's Future, 7(8), 923-938. doi:10.1029/2019EF001163 1131 

Taylor, K.E., Stouffer, R.J., & Meehl G.A. (2012). An Overview of CMIP5 and the experiment 1132 

design. Bull. Amer. Meteor. Soc., 93, 485-498. doi:10.1175/BAMS-D-11-00094.1 1133 

Thiéblemont, R., Le Cozannet, G., Rohmer, J., Toimil, A., Alvarez-Cuesta, M., and Losada, I.J. 1134 

(in review, 2021). Deep uncertainties in shoreline change projections: an extra-probabilistic 1135 

approach applied to sandy beaches. Nat. Hazards Earth Syst. Sci Discuss. [preprint]. 1136 

doi.org/10.5194/nhess-2020-412/ 1137 

Thiéblemont, R., Le Cozannet, G., Toimil, A., Meyssignac, B., & Losada, I.J. (2019). Likely and 1138 

High-End Impacts of Regional Sea-Level Rise on the Shoreline Change of European Sandy Coasts 1139 

Under a High Greenhouse Gas Emissions Scenario. Water, 11, 2607. doi:10.3390/w11122607 1140 

https://doi.org/10.1016/j.coastaleng.2013.10.001
https://doi.org/10.1002/esp.4088
https://doi.org/10.1029/2019EF001163
http://dx.doi.org/10.1175/BAMS-D-11-00094.1
https://nhess.copernicus.org/preprints/nhess-2020-412/
https://doi.org/10.3390/w11122607


manuscript submitted to Journal of Geophysical Research: Earth Surface 

61 

 

Toimil, A., Camus, P., Losada, I.J., Le Cozannet, G., Nicholls, R., Idier, D., & Maspataud, A. 1141 

(2020).  Climate Change Driven coastal erosion modelling in temperate sandy beaches methods 1142 

and uncertainty treatment. Earth Science Reviews. 202, 103110. doi.j.earscirev.2020.103110 1143 

Toimil, A., Diaz-Simal, P., Losada, I.J., & Camus, P. (2018). Estimating the risk of loss of beach 1144 

recreation value under climate change. Tourism Management, 68, 387-400. 1145 

doi:j.tourman.2018.03.024 1146 

Toimil, A., Losada, I. J., Camus, P., & Diaz-Simal, P. (2017). Managing coastal erosion under 1147 

climate change at regional scale. Coastal Engineering, 128, 106-122. doi:j.coastaleng.2017.08.004 1148 

Tolman, H. (2009). User manual and system documentation of WAVEWATCH III-version 3.14 1149 

(Tech. rep.): NOAA / NWS / NCEP / MMAB Technical Note-276. 1150 

Vitousek, S., Barnard, P. L., Limber, P., Erikson, L., & Cole, B. (2017). A model integrating 1151 

longshore and cross-shore processes for predicting long-term shoreline response to climate change. 1152 

J. of Geophys.l Res. Earth surface, 122 (4), 782–806. doi:10.1002/2016JF004065 1153 

 Vitousek, S., Cagigal, L., Montaño, J., Rueda, A.C., Mendez, F.J., Coco, G., & Barnard, P. (2021). 1154 

The application of ensemble wave forcing to quantify uncertainty of shoreline change predictions.  1155 

J. of Geophys. Res. Earth Surface, (in Press). doi.org/10.1029/2019JF005506 1156 

Vousdoukas, M.I., Ranasinghe, R., Mentaschi, L., Plomaritis, T.A., Athanasiou, P., Luijendijk, A. 1157 

& Feyen, L. (2020). Sandy coastlines under threat of erosion. Nat. Clim. Chang. 10, 260–263. 1158 

doi.org/10.1038/s41558-020-0697-0 1159 

Wainwright, D.J., Ranasinghe, R., Callaghan, D.P., Woodroffe, C.D., Jongejan, R., Dougherty, 1160 

A.J., Rogers, K., et al. (2015). Moving from deterministic towards probabilistic coastal hazard and 1161 

risk assessment: development of a modelling framework and application to Narrabeen Beach, New 1162 

South Wales, Australia. Coastal Engineering, 96, 92-99. doi:10.1016/j.coastaleng.2014.11.009 1163 

https://doi.org/10.1016/j.earscirev.2020.103110
http://dx.doi.org/10.1016/j.tourman.2018.03.024
http://dx.doi.org/10.1016/j.coastaleng.2017.08.004
https://doi.org/10.1002/2016JF004065
https://doi.org/10.1029/2019JF005506
https://doi.org/10.1038/s41558-020-0697-0
http://dx.doi.org/10.1016/j.coastaleng.2014.11.009


manuscript submitted to Journal of Geophysical Research: Earth Surface 

62 

 

Wong, P.P., Losada, I.J., Gattuso, J.P., Hinkel, J., Khattabi, A., McInnes, K.L., Saito, Y. et al.  1164 

(2014). Coastal systems and low-lying areas. In: Climate Change 2014: Impacts,Adaptation, and 1165 

Vulnerability. Part A: Global and Sectoral Aspects. Contribution of working group II to the Fifth 1166 

Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United 1167 

Kingdom and New York, NY, USA. Cambridge University Press, 361-409. 1168 

Wright, L.D., & Short, A.D. (1984). Morphodynamic variability of surf zones and beaches: a 1169 

synthesis. Marine Geology, 56(1-4), 93-118. doi:10.1016/0025-3227(84)90008-2 1170 

Wolinsky M.A., & Murray, A.B. (2009). A unifying framework for shoreline migration: 2. 1171 

Application to wave-dominated coasts. J. Geophys. Res. 114, F01009, doi:10.1029/2007JF000856 1172 

Yates, M.L., Guza, R.T., & O’Reilly, W.C. (2009). Equilibrium shoreline response: Observations 1173 

and modeling. J. of Geophysical Research Oceans 114(C9), C09014. doi:/10.1029/2009JC005359 1174 

https://doi.org/10.1016/0025-3227(84)90008-2
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1029%2F2007JF000856?_sg%5B0%5D=bnyswlA-TU0rSwOojlPD2Qh_a0KQgkvlQaDwWLrNri9rmLsaKrEoijJJymKZ03qldy_j7EALt_kNW8jzAcqoi8ODpQ.Jj_erjLGSWiDqIj0kJY-isdJHTgljCypceZSyeO3PkwaMOgir9uCXIZbS9ZdIUD0HEb94gMSSOjzb75PVj4r5A
https://doi.org/10.1029/2009JC005359

