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Abstract

Nonlinear distortions are important issues in many communications systems.
Therefore, this paper deals with the blind and semi-blind identification of non-
linear SIMO/MIMO channels. Quadratic and cubic nonlinearities are consid-
ered for the system model as well as a discussion on how the developed work
can be extended to more general nonlinear models. The proposed blind solution
is initialized by using a subspace approach, which is followed by an appropri-
ate ambiguity removal method, then refined by a Maximum Likelihood (ML)
based processing using the Expectation-Maximization (EM) algorithm. The
proposed semi-bind solution, involving both data and pilots, is fully based on
the EM algorithm. These solutions are supported by some identifiability results
and performance bounds analysis related to the considered models (blind and
semi-blind). Finally, simulation results essentially show that the proposed algo-
rithms exhibit very attractive channel estimation performance, with interesting
convergence speed for the EM-based iterative processing.

1. Introduction

Nonlinear behaviors can be encountered in many practical situations, in
which case appropriate (nonlinear) processing is needed, when such nonlinear-
ities are too important to be disregarded [1, 2]. Indeed, because most of real-
life systems are inherently nonlinear in nature, nonlinear problems have drawn
important interest and extensive attention from engineers, physicists, mathe-
maticians and many other scientists [2]. In communications systems, and due
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to the presence of nonlinear devices such as optical equipments [3, 4] and power
amplifiers, even in some MIMO-OFDM [5] and massive MIMO scenarios [6, 7]
or millimeter wave based systems [8], communication channels are sometimes
corrupted by nonlinear distortions such as nonlinear inter-symbol interference,
nonlinear multiple access interference and nonlinear inter-carrier interference.
These nonlinear distortions can significantly deteriorate the signal reception,
leading to poor system performance. In order to overcome such an issue, non-
linear models are adopted to provide an accurate channel representation and
to allow the development of efficient signal processing techniques capable of
mitigating these nonlinear distortions. In the case of system identification, a
widely used class of nonlinear models is the class of linear-in-the-parameters
models. The input-output relation is essentially nonlinear but the estimation
problem is linear with respect to the channel coefficients. Popular examples are
polynomial filters, and more particularly Volterra filters [9]. They have been
applied in many fields such as, electronic and electrical engineering, mechanical
engineering, aeroelasticity problems and control engineering [10]. Indeed, the
motivation for adopting these filters is that, they have the ability of modeling
the behavior of nonlinear real-life phenomena, especially the ability to capture
their “memory” effects [2]; and have mathematical relationship with other non-
linear system models namely the Wiener series, Hammerstein model, Wiener
model, Wiener-Hammerstein model (block-oriented nonlinear systems), Taylor
series or NARMAX model [10].

For nonlinear system identification, several approaches, most of them based
on Volterra filters, have been proposed in the literature. Some works exploited
training sequences and are essentially based on Least-Mean-Squares adaptive
filters [11], Recursive Least-Squares algorithms [12, 13], and Affine Projection
algorithms [14]. Other approaches are fully blind, thus, they seek to determine
the system’s kernel using the output data only. One could cite the higher or-
der output cumulant-based approach [15], the subspace-based approach [16],
the genetic programming-based method using Volterra filter [17], the tensor-
based frameworks in [18], or the Reversible Jump Markov Chain Monte Carlo
approach [19]. One can notice that, these methods have been adopted and
adapted to nonlinear systems mainly due to their efficiency for the linear case.
Consequently, and due to the attractive advantages of the maximum-likelihood
(ML) approaches (which is used in the current work), namely the consistency,
and the asymptotic efficiency of the estimates, some works proposed ML-based
identification techniques of certain nonlinear systems [20, 21]. In these works,
an approximation of the complex likelihood function is minimized via modified
Gauss-Newton methods assuming the input data to be white Gaussian and a
block-structured system model. However, a review of the current literature re-
veals that an ML solution for the case of nonlinear, finite alphabet, multi-channel
communications systems does not exist.

Other works, like those in [22, 23], have considered a Hammerstein model
with cascaded nonlinear and linear blocks, where the initialization and the sys-
tem identification (channel estimation) are performed by firstly estimating the
impulse response of the linear filter, which is then used to estimate the nonlin-
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ear function parameters. By contrast, in the proposed work, both linear and
nonlinear parameters are estimated simultaneously through solutions that fit
into the framework of joint channel estimation and data detection.
Also, in [24] a blind nonlinear system identification is proposed based on the
parallel factors (PARAFAC) tensor decomposition. However, it is shown that
the input signals must satisfy some orthogonality constraints associated with
the channel nonlinearities in order to allow the desired PARAFAC decomposi-
tion. Hence, a precoding scheme is introduced using temporal redundancy on
the signals, which is carried out by imposing some constraints on the symbol
transitions.

The aim of the current paper is to present ML-like blind and semi-blind chan-
nel estimators for Volterra-like nonlinear Single-Input Multiple-Output (SIMO)
systems, that can be easily extended to MIMO scenarios. The proposed blind
channel estimator combines a subspace-based estimation and an EM-based one.
More precisely, firstly we exploit the received signal Second Order Statistics
(SOS) using a subspace approach for channel estimation where the nonlinear
SIMO system is treated as a linear Multiple-Input Multiple-Output (MIMO)
system. A straightforward motivation is that, the use of SOS-based estimators
avoids the need of high number of data symbols often required for High Or-
der Statistics based methods, e.g. [15]. Then, unlike many blind-based works
(e.g. [16]), we propose also an original method to remove the ambiguity inher-
ent to such a blind approach. Finally, a second estimation is performed based
on a maximum likelihood approach, where an iterative optimization is per-
formed using the Expectation-Maximization (EM) algorithm. Indeed, due to
its sensitivity to initialization, the EM-based estimator is initialized using the
subspace-based one. Note that, efficient and practical initialization for blind
EM-based techniques is often missing in the literature. Moreover, within the
proposed EM-based framework, one could perform a joint channel estimation
and data detection as will be highlighted later in the paper. The global scheme
of the proposed blind EM-based estimator is given in Figure 1, in which the
signal at the received antennas is the input for the subspace-based estimator,
whereas the estimates of linear and nonlinear channel coefficients represent the
output of the EM algorithm after convergence.

To make our method more flexible, and to consider the case where train-
ing sequences (pilots) are available, this work is extended to the semi-blind
framework where data and pilot symbols are jointly exploited to improve the
estimation accuracy and overcome certain limitations of the blind processing. In
this case, the initialization of the EM algorithm is performed by exploiting the
available pilots. The proposed blind and semi-blind approaches are supported
by some identifiability results and performance bounds related to our context,
that allow the reader getting more insights on the problem’s identifiability and
its inherent performance limits.

The rest of the paper is organized as follows. The adopted system model is
presented in section 2. Section 3 describes the proposed blind channel estimation
scheme. It starts by presenting the derivation of the subspace-based estimation,
used for the initialization of our ML solution. Since this method suffers from
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Figure 1: Proposed blind channel estimation scheme.

inherent matrix indeterminacy, it is followed by the introduction of an original
ambiguity removal technique. Then, the ML-based method which exploits the
EM algorithm is presented in details at the end of this section. Motivated
by the widespread use of pilots in communications systems, we then derive,
in section 4, an extension to the aforementioned ML method in a semi-blind
context. In this section, we first detail the proposed semi-blind EM algorithm,
then we provide a discussion on extending it to the MIMO case. In section 5,
some identifiability results and performance bounds are given to corroborate the
proposed solutions. Section 6 is dedicated to certain comments related to the
computational complexity of our algorithms and a discussion on their potential
extension to other nonlinear models. Section 7 provides comparative simulation
result analysis of the proposed algorithms. Finally, the last section contains
concluding remarks

Notations
In the sections below, the following notations have been adopted. Lower-case

letters (e.g., x) denote scalars; lower-case boldface letters (e.g., x) denote (col-
umn) vectors, and upper-case boldface letters (e.g., X) denote matrices. Oper-
ators (·)∗, (·)T , (·)H , (·)#, and tr (·) stand respectively for complex-conjugation,
transposition, Hermitian transposition, matrix pseudo-inverse, and the trace of
a matrix. Operator diag (x) denotes a diagonal matrix with entries of x as di-
agonal elements. IM stands for an M ×M identity matrix; 0a×b is the all-zeros
matrix of size a× b; vec (·) denotes the matrix (column) vectorization operator;
and ? denotes the convolution operator.
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2. System model

This section details the data model adopted in this paper. A nonlinear
SIMO system is considered as illustrated in Figure 2. It is composed of one

Figure 2: Architecture of the considered SIMO system, where f(.) is a nonlinear function
w.r.t. to the linear signal u.

single-antenna transmitter and a receiver equipped with Nr > 2 antennas. The
k-th received signal at the r-th receive antenna, denoted yr(k) with 1 ≤ r ≤ Nr,
is given by:

yr(k) =

Mr,L∑

n=0

hr,L(n)u(k − n) +

Mr,NL∑

n=0

hr,NL(n)ũ(k − n) + vr(k), (1)

where hr,L(n) (resp. hr,NL(n)) refers to the elements of the linear (resp. non-
linear), r-th receiver, channel’s finite impulse response coefficient vector of size
Mr,L + 1 (resp. Mr,NL + 1), u(k) is the transmitted (input) symbol sequence
assumed to be independent and identically distributed (i.i.d.) complex random
variables taking values, with equal probabilities, in a finite alphabet set A =
{a1, a2, . . . , a2B} where B is the number of bits per symbol. ũ(k) stands for a
nonlinear combination of the input signal so that ũ(k) = f(u(k), u(k − 1), . . . )
(f being an appropriate nonlinear function, chosen to accurately model the sys-
tem’s non-linearity) and vr(k) is a white circular Gaussian noise (uncorrelated
from sensor to sensor) with variance σ2

v .
In the sequel, two models for the nonlinear function ũ(k) will be considered.

The first one is a second-order (quadratic) model (e.g., [11, 25]), where ũ(k) =
u(k)2, whereas the second one is a third-order (cubic) model (e.g., [15, 26, 3])
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where ũ(k) = |u(k)|2u(k). These models have been used to model real-life
nonlinearties, namely those related to power amplifiers and optical devices.

Since the system model is nonlinear with respect to the transmitted signal
but linear in regards to the channel coefficients, we propose to treat this nonlin-
ear SIMO model as a linear MIMO model with two inputs (u(k) and ũ(k)) [27].
For this, let us define the following vectors: hr,L = [hr,L(0), . . . , hr,L(M)]T ,
hr,NL = [hr,NL(0), . . . , hr,NL(M)]T ,u(k) = [u(k), u(k − 1), . . . , u(k −M)]T and
ũ(k) = [ũ(k), ũ(k − 1), . . . , ũ(k −M)]T where M = max (Mr,L,Mr,NL), 1 ≤ r ≤
Nr. The received signal, given by equation (1), can be represented as:

yr (k) = hTr ū(k) + vr(k), (2)

where hr = [hTr,L,h
T
r,NL]T and ū(k) = [u(k)T , ũ(k)T ]T . Moreover, by consider-

ing the Nr receive antennas, one can write:

y(k) = Hū(k) + v(k), (3)

where y(k) = [y1(k), . . . , yNr (k)]T , H = [h1, . . . ,hNr ]
T and v(k) = [v1(k), . . . ,

vNr (k)]T .
The system model, provided by equation (3), is considered as a Markov

process where the state vector defined as s(k) = [u(k− 1), . . . , u(k−M)]T con-
tains M successive symbols. The set of N = 2BM states is denoted Qstate =
{q1, . . . ,qN}. The transition vector is defined as xnm = [u(k), . . . , u(k−M)]T ,
containing (M + 1) symbols associated with the transition between two con-
nected successive states qn and qm. The set of the 2B(M+1) possible transitions
is denoted X . For convenience, sequences of observations y(n), . . . ,y(m) and
states s(n), . . . , s(m) are denoted Y[n:m] and S[n:m], respectively. Note that the
number of possible transitions and states depends only on the number of linear
terms since the nonlinear terms are directly obtained from the former.

In what follows, the parameters to be estimated are the channel coefficients
and the noise variance, grouped in a single vector denoted θ = [vec

(
HT
)T
, σ2
v ]T .

3. Blind EM-based estimation

This section details the proposed blind channel estimation approach. A
subspace-based estimation, for the nonlinear SIMO system, is firstly consid-
ered. Then, solutions for ambiguity removal are proposed to get rid of the
inherent ambiguity of the blind processing. After that, an EM-based channel
estimation is detailed, which helps refining the subspace-based estimation al-
ready performed, as illustrated in Figure 1. Besides, a data estimation scheme,
within the EM framework, is provided.

3.1. Subspace-based estimation
Blind subspace-based techniques have been used successfully for channel

estimation based on Second Order Statistics (SOS) in the case of linear MIMO
systems [28]. In what follows, the nonlinear SIMO system will be considered
as a linear MIMO (2×Nr) system, where the term ũ(k) will be treated as the
second source signal. The following assumptions are supposed to hold:
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• The polynomial matrix H(z) = [hL(z), hNL(z)] =
∑M
l=0 H(l)z−l of size

(Nr × 2) is irreducible [28] and its highest order coefficient H(M) is full
column-rank2, with H(l) ∈ CNr×2 contains the l-th channel’s tap matrix
coefficients. The (r, i)-th input of H(z) is the transfer function given by
hr,i(z) =

∑M
l=0 hr,L(l)z−l for i = 1 and hr,i(z) =

∑M
l=0 hr,NL(l)z−l for

i = 2.

• The 2×2 covariance matrix of the input signal [u(k), ũ(k)]T is of full rank.

With the aforementioned assumptions, the subspace channel estimation tech-
nique introduced in [28] will be adopted. It allows us to identify the polynomial
matrix H(z) up to a constant matrix Q of size (2 × 2), which represents the
inherent ambiguity of the blind subspace technique.

This technique exploits the received signal’s SOS through the use of the co-
variance matrix of random vector yw(k) = [y(k)T ,y(k−1)T , . . . ,y(k−Nw)T ]T ,
Nw being the window length3 assumed sufficiently large (Nw ≥ 2M). In this
case the channel matrix has a Sylvester block-Toeplitz structure [29], denoted
by TNw(h) (h = vec

(
HT
)
), of size Nr(Nw + 1)× 2(M +Nw + 1) where its first

block row is given by [H(0), . . . ,H(M),0Nr×2, . . . ,0Nr×2].
Under the previous assumptions, the noise variance σ2

v is the smallest eigen-
value of the covariance matrixRw of yw(k). The eigenspace associated with σ2

v is
referred to as the noise subspace, which is the orthogonal complement of the sig-
nal subspace (i.e., range (TNw(h)) where range (X) denotes the subspace gener-
ated by the column vectors of matrix X) and is denoted ΠN = range (TNw(h))

⊥.
The subspace identification method used is ultimately related to the fact that:

ΠH
NTNw(h) = 0. (4)

To take into account the noise effect, one solves equation (4) in the Least-
Squares (LS) sense, which leads to the following quadratic expression (see [28]
for details):

ĥss = arg min
h

hHQh, (5)

where the subscript "ss" stands for subspace andQ is a 2Nr(M+1)×2Nr(M+1)
symmetric matrix corresponding to the considered LS cost function.
Note that to avoid degenerate solutions, different constraints on h can be con-
sidered including the unit-norm constraint for which the solution of equation
(5) is given by the eigenvector associated to the smallest eigenvalue of Q.

This method allows to estimate the polynomial matrix H(z) up to a 2 × 2
constant matrix Q, i.e., Ĥ(z) = H(z)Q. In order to use the estimated chan-
nels’ vector ĥss for further processing, one needs to remove the latter matrix

2The assumption that H(M) is full rank is not fundamental and is considered here for
simplicity. Indeed, as shown in [28], one can get rid of it for subspace methods or simply use
other SOS-based methods (like the linear prediction or the mutually referenced equalizers)
which do not rely on this particular assumption

3This technique processes the signal using windows of length Nw.

7



ambiguity. In the sequel, solutions are proposed to get rid of Q by exploiting
the nonlinear relation between u(k) and ũ(k).

3.2. Ambiguity removal for quadratic nonlinearity
In this section, it is assumed that ũ(k) = u2(k) (see equation (1)). At first,

a channel equalization is performed based on the subspace channel estimate
ĥ. More precisely, a zero-forcing equalizer of delay M has been used in our
simulations. It is given by the (2M + 1)-th row4 of the pseudo inverse matrix
T #
Nw

(ĥ). The obtained signal, in the noiseless case, is given by:

x(k) = Q−1u(k) with u(k) = [u(k), u2(k)]T , (6)

The unknown matrix Q = (qi,j)1≤i,j≤2 can be seen here as the separating matrix
of the previous mixture, characterized (up to a diagonal) by the fact that vector
z(k) = Qx(k) verifies z2(k) = z1(k)2. Thus, in order to estimate the unknown
matrix Q, we propose to minimize the following LS criterion:

Ns∑

k=1

|z2(k)− z21(k)|2 = ‖Xq‖2, (7)

where q = [q2,1, q2,2, q
2
1,1, q

2
1,2, q1,1q1,2]T ; Ns is the size of the equalized signal

and

X =



−x1(1) −x2(1) x21(1) x22(1) 2x1(1)x2(1)

...
...

−x1(Ns) −x2(Ns) x21(Ns) x22(Ns) 2x1(Ns)x2(Ns)


 .

Vector q is estimated up to a constant. It is proportional to the eigenvector v =

[v1, v2, v3, v4, v5]T associated to the smallest eigenvalue of X
H

X. The latter is
shown to be uniquely identified under some mild assumptions on the input signal
as it will be detailed in section 5. Consequently, it is possible to estimate Q as
follows:

q =




q2,1
q2,2
q21,1
q21,2

q1,1q1,2




= α




v1
v2
v3
v4
v5




(8)

where α is an unknown scalar factor. Hence taking into account the structure
of q, one can write

Q =

[ √
αv3

√
αv5√
v3

αv1 αv2

]
=
√
α

[
1 0
0 λ

]
Q̃. (9)

4Note that the odd rows of T #
Nw

(ĥ) extract symbols u(n) at different delays while even

rows of T #
Nw

(ĥ) extract delayed samples of ũ(k).
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The common scalar factor
√
α can be disregarded due to the scale ambiguity of

such blind processing. However, for the diagonal matrix term, scalar λ =
√
α is

estimated by substituting the expression (9) in the criterion given by equation
(7), leading to:

λ =

∑Ns
k=1 z̃

2
1(k)z̃∗2(k)

∑Ns
k=1 |z̃2(k)|2

, (10)

where z̃(k) = Q̃x(k).
In the case of blind processing, the source signal (and also the channel coeffi-

cients) is estimated up to a constant, which represents the inherent ambiguity of
the considered problem. However, it is possible to further reduce this indetermi-
nation (unknown phase multiple of π/2 for Quadrature Amplitude Modulation
(QAM) signals) by exploiting the independence of the real and imaginary parts
of the transmitted symbols. In our simulations, we have used the phase rotation
given in [30].

3.3. Ambiguity removal for cubic nonlinearity
In this section, it is assumed that ũ(k) = |u(k)|2u(k). Similarly to the

previous case, after channel equalization the obtained signal, in the noiseless
case, is expressed as:

x(k) = Q−1u(k) with u(k) = [u(k), |u(k)|2u(k)]T , (11)

To get rid of the unknown mixing matrix Q, one can minimize:

Ns∑

k=1

|z2(k)− |z1(k)|2z1(k)|2, (12)

with z(k) = Qx(k). This multivariate optimization problem can be reduced to
the search of one complex parameter b = q̄1,2, by normalizing q̄1,1 = 1 (this is
possible thanks to the inherent scale ambiguity of the considered problem) and
by solving equation (12) with respect to [q̄2,1, q̄2,2] in terms of b. Indeed, for a
fixed value of b, the criterion in (12) reduces to a LS optimization problem with
respect to [q̄2,1, q̄2,2], for which a closed-form solution exists:

[q̄2,1, q̄2,2] = [1, b](XX#), (13)

with X = [x(1), . . . ,x(Ns)]. Plugging equation (13) into equation (12) leads
to a nonlinear cost function in terms of parameter b that can be solved using
numerical optimization techniques. Note that, as it will be shown in section
5, criterion given by equation (12) has spurious solutions for small or moderate
size constellations (e.g., QAM 4, 16 and 32) in which case an alphabet matching
cost function (see [31] and references therein) should be used instead.
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3.4. EM-based estimation
This section is devoted to the proposed EM-based, maximum likelihood

channel estimator for the system model given by equation (1). Note that, due
to its sensitivity to initialization, the EM-based estimator is initialized using the
subspace-based estimates given in 3.1, after performing an ambiguity removal
proposed in 3.2 or in 3.3.

The EM algorithm is an iterative method aiming at finding maximum like-
lihood or maximum a posteriori estimates of parameters in statistical models,
where the model depends on unobserved latent variables. Thus, the sequence of
Ns states S[1:Ns], which are not observed, represent the missing data, whereas
the Ns received symbols Y[1:Ns] stand for the incomplete data (observations).
Moreover, the complete-data is given by the sequence (Y[1:Ns],S[1:Ns]). Each
EM iteration alternates between two steps: E-step and M-step as described
below.

3.4.1. E-step
The objective of this step is to find the auxiliary function, denoted by

Q(θ,θ(m)), which is defined as the conditional expectation of the complete-
data log-likelihood, with respect to the conditional distribution of the missing
data S[1:Ns], given the observations Y[1:Ns] and the current estimated param-

eter value at the m-th iteration θ(m) =
(

vec
(
H(m)

)T
, σ2
v
(m)
)
. Thus, such an

auxiliary function can be expressed as:

Q(θ,θ(m)) = E
(

log fθ
(
Y[1:Ns],S[1:Ns]

)∣∣∣Y[1:Ns],θ
(m)
)
, (14)

where E(·) refers to the expectation with respect to the distribution of the
missing data.

After some straightforward derivations and by ignoring terms that are inde-
pendent of θ, Q(θ,θ(m)) is shown to be proportional to (see [32]):

∑

xij∈X

Ns∑

k=1

(
−Nr log(σ2

v)− ‖y(k)−Hx̄ij‖2/σ2
v

)
γθ(m)(k; i, j), (15)

where x̄ij = [xTij , x̃
T
ij ]
T (x̃ij being the nonlinear term associated to xij), and

γθ(m)(k; i, j) = fθ(m)

(
s(k) = qi, s(k + 1) = qj |Y[1:Ns]

)
represents the posterior

probability of the trellis branch (s(k) = qi, s(k+1) = qj) given the observations
Y[1:Ns] and the current estimate of the parameter θ(m). This probability can
be efficiently computed using the forward-backward variables ([33, 34]) denoted
by αθ(m)(k; i) and βθ(m)(k; j). Consequently, by omitting multiplicative scaling
factors independent of k, i, j, it can be shown that:

γθ(m)(k; i, j) ∝ αθ(m)(k; i) βθ(m)(k + 1; j) bθ(m)(k; i, j),

where

αθ(m)(k; i) = fθ(m)(Y[1:k−1], s(k) = qi), (16)
βθ(m)(k; j) = fθ(m)(Y[k:Ns] | s(k) = qj), (17)

10



bθ(m)(k, i, j) ∝
(
σ2(m)
v

)−Nr
exp

(−‖y(k)−H(m)x̄ij‖2

σ
2(m)
v

)
. (18)

The forward and backward variables can be evaluated recursively as:

αθ(m)(k + 1; i) =
1

N

∑

l∈F(i)

αθ(m)(k; l)bθ(m)(k, l, i), (19)

βθ(m)(k; j) =
1

N

∑

l∈B(j)
βθ(m)(k + 1; l)bθ(m)(k, j, l), (20)

where F(i) (resp. B(j)) denotes the set of states connected to qi (resp. qj) in
forward (predecessors) (resp. backward (successors)) directions. Note that, the
predecessors of the state qi = s(k) = [u(k − 1), . . . , u(k −M)]T take the form
s(k − 1) = [u(k − 2), . . . , u(k −M − 1)]T , whereas its successors are given by
s(k+ 1) = [u(k), . . . , u(k−M + 1)]T , where the symbols u(k) and u(k−M − 1)
take values from the set A with equal probabilities. Hence, the total number of
a state’s predecessors and successors is 2B .

3.4.2. M-step
The objective of this step is to find the parameter θ(m+1) that maximizes

Q
(
θ;θ(m)

)
, i.e.,

θ(m+1) = arg max
θ

Q
(
θ;θ(m)

)
. (21)

This process is shown in [35] and [36] to increase the likelihood function, and
consequently it leads to the algorithm’s convergence to a global maximum point.

Since Q
(
θ;θ(m)

)
is quadratic in its argument, the maximization step reduces

to:

H(m+1) = RyxR
−1
xx , (22)

(σ2
v)(m+1) =

1

NsNr
tr
(
Ryy −H(m+1)Rxy

)
, (23)

where Ryy is the autocorrelation matrix of observations, Rxy is the “weighted”
cross-correlation matrix between the unobserved symbol transitions and the
observations, and Rxx stands for the “weighted” auto-correlation matrix of the
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unobserved symbol transitions. These matrices are given by:

Ryy =

Ns∑

k=1

y(k)y(k)H , (24)

Rxy = RH
yx =

Ns∑

k=1

∑

xij∈X
x̄ijy(k)Hγθ(m)(k; i, j)

=

Ns∑

k=1

Eθ(m)(x(k)|Y[1:Ns])y(k)H (25)

Rxx =

Ns∑

k=1

∑

xij∈X
x̄ijx̄

H
ijγθ(m)(k; i, j) =

Ns∑

k=1

Eθ(m)(x(k)x(k)H |Y[1:Ns]).(26)

The iterative procedure can be stopped as soon as ‖θ
(m+1)−θ(m)‖
‖θ(m)‖ < ε, for a

chosen positive threshold ε.

3.5. Data detection within EM framework
Several data detection methods can be designed given the value of the es-

timated parameter obtained at the end of the iterations, denoted by θ(∞); the
observation sequence Y[1:Ns] and the trellis diagram of the channel. The optimal
criterion retained in the current work is the minimum symbol-error probability
[37], which can be easily implemented within an EM framework. Minimizing
the symbol-error probability aims at choosing, at each instant k, the data sym-
bol which maximizes the posterior probability of the symbol u(k) given the
observations Y[1:Ns] and the channel parameters θ(∞) as follows:

û(k) = arg max
ai0∈A

fθ(∞)

(
u(k) = ai0

∣∣∣Y[1:Ns];θ
(∞)
)
. (27)

This quantity may be simply expressed, as a function of the posterior probability
γθ(∞)(k; i, j) of the trellis branch (s(k) = qi, s(k+1) = qj) given the observations
Y[1:Ns] and θ(∞) as:

fθ(∞)

(
u(k) = ai0

∣∣∣Y[1:Ns];θ
(∞)

)
=

∑

i,j∈S(i0)
γθ(∞) (k; i, j), (28)

where S(i0) is the set of all trellis branch values so that xij = [u(k) = ai0 , u(k−
1), . . . , u(k−M)]. Consequently, the EM-based solutions presented in this work
can be further considered as a joint channel estimation and data detection within
a maximum likelihood framework.

4. Semi-blind EM-based estimation

In most communications systems, some training symbols (pilots) are usually
sent periodically within the wireless network frames besides the unknown data.

12



Hence, a Semi-Blind (SB) approach, exploiting pilots, can be adopted in order
to take advantage of this available data and reduce the different difficulties and
issues related to the blind processing. To do so, and without loss of generality,
the transmitted sequences and the received observations are assumed to be com-
posed of Np pilots and Nd data symbols so that S[1:Ns] = [Sp[1:Np] ,Sd[Np+1:Ns]

]

and Y[1:Ns] = [Yp[1:Np]
,Yd[Np+1:Ns]

] where Np + Nd = Ns (indices p and d

stand for pilot and data, respectively). Moreover, since the initialization can
be performed using the available pilot symbols, the constraints on the number
of receive antennas Nr > 2 as well as channel diversity conditions defined in
section 2, are no longer required.

In what follows, we describe the E-step and the M-step for the case of EM-
based semi-blind framework.

4.1. E-step
By considering pilots and data, the auxiliary function, given in equation

(15) for the blind case, has now an additional term corresponding to the pilot
sequence. The new function becomes:

Q(θ,θ(m)) ∝
Np∑

k=1

(
−Nr log(σ2

v)− ‖y(k)−Hūp(k)‖2/σ2
v

)
+

∑

xij∈X

Ns∑

k=Np+1

(
−Nr log(σ2

v)− ‖y(k)−Hx̄ij‖2/σ2
v

)
γθ(m)(k; i, j),

(29)

where ūp(k) = [up(k), . . . , up(k −M), ũp(k), . . . , ũp(k −M)]T , of size 2(M + 1), is
composed of linear and nonlinear terms of the pilot signal.

4.2. M-step
In the case of semi-blind processing, equations (25) and (26) become:

Ryx = RH
xy =

Np∑

k=1

y(k)ūp(k)H +

Ns∑

k=Np+1

∑

xij∈X
y(k)x̄Hijγθ(m)(k; i, j), (30)

Rxx =

Np∑

k=1

ūp(k)ūp(k)H +

Ns∑

k=Np+1

∑

xij∈X
x̄ij x̄

H
ijγθ(m)(k; i, j). (31)

Remark : A normalization of the posterior probability of the data terms might be
performed when considering such semi-blind context. To do so, one can write5:

γθ(m)(k; i, j) =
γθ(m)(k; i, j)∑

xij∈X γθ(m)(k; i, j)
. (32)

5To avoid introducing a new notation, we kept the same expression for the normalized
posterior probability γθ(m) (k; i, j).
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4.3. Extension to Nonlinear MIMO systems
The previous results can be easily extended to the multi-user case (i.e., MIMO

system). To do so, the system model given in equation (1), is re-written as follows:

yr(k) =

Nt∑

i=1

Mi,r,L∑

n=0

hi,r,L(n)ui(k−n)+

Nt∑

i=1

Mi,r,NL∑

n=0

hi,r,NL(n)ũi(k−n)+vr(k), vr(k), (33)

where hi,r,L (resp. hi,r,NL) refers to the linear (resp. nonlinear) channel impulse
response between the i-th user and the r-th receive antenna; while ui(k) represents
the transmitted symbol of the i-th user.

Consequently, the system model given by equation (2) will be based on the fol-
lowing vectors: hr,L = [h1,r,L(0), . . . , h1,r,L(M), . . . , hNt,r,L(M)]T , hr,NL = [h1,r,NL(0),
. . . , h1,r,NL(M), . . . , hNt,r,NL(M)]T , u(k) = [u1(k), . . . , u1(k −M), . . . , uNt(k −M)]T

and ũ(k) = [ũ1(k), . . . , ũ1(k−M), . . . , ũNt(k−M)]T , whereM = maxi,r{Mi,r,L,Mi,r,NL}.
In such a case, the state vector is given by s(k) = [u1(k − 1), . . . , u1(k −M), . . . ,

uNt(k − 1), . . . , uNt(k −M)]T containing NtM symbols, with 2BNtM possible state
values. Whereas, the transition vector is defined by xnm = [u1(k), . . . , u1(k−M), . . . ,
uNt(k), . . . , uNt(k −M)]T of Nt(M + 1) symbols.

By using this new vectors, equations (30), (31), (22) and (23) are still valid, leading
to an EM-based channel estimation for nonlinear MIMO communications systems.

5. Identifiability results and performance bounds

The aim of this section is to corroborate the proposed blind and semi-blind ap-
proaches by providing some results related to the channel identifiability conditions.
Also, in order to get more insight on the proposed solutions performance limits, we
perform the derivation of the deterministic Cramér-Rao Bound (CRB), corresponding
to the adopted nonlinear system model.

5.1. Identifiability results
In the blind context, there exist certain inherent ambiguities with respect to the

identification of the channel parameters. In particular, since we are using the subspace
method for the initialization of our EM algorithm, we are interested in the SOS-based
identifiability. Under the assumption of i.i.d. input symbols considered for the data
model, the power spectral density (PSD) of the observed data is expressed as:

Py(ej2πf ) = [hL(ej2πf ),hNL(ej2πf )]Ru[hL(ej2πf ),hNL(ej2πf )]H + σ2
vI, (34)

where hL(ej2πf ) = [h1,L(ej2πf ), . . . , hM,L(ej2πf )]T (resp. hNL(ej2πf ) = [h1,NL(ej2πf ),
. . . , hM,NL(ej2πf )]T ) is the frequency response of the linear (resp. the nonlinear) chan-
nels, while Ru is the 2× 2 covariance matrix (assumed full rank) of [u(k), ũ(k)]T . As
shown in [28], by considering u(k) and ũ(k) as two different source signals, the SOS
allow us to identify H(z) up to a constant matrix Q. Indeed, the PSD can be rewritten
as

Py(ej2πf ) =
(

[hL(ej2πf ),hNL(ej2πf )]Q
)

Ru,Q

(
[hL(ej2πf ),hNL(ej2πf )]Q

)H
+ σ2

vI

(35)
where Ru,Q = Q−1RuQ

−H . Now, to get rid of this ambiguity, we need to use higher
order information through the nonlinear cost functions in equations (7) and (12). The
latter helps to reduce the ambiguity from a 2×2 matrix factor to a scalar factor under
certain additional assumptions given in the following proposition.
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Proposition 1. For the quadratic nonlinearity case with ũ(k) = u2(k), the minimiza-
tion of the criterion given by equation (7) in the large sample size and noiseless case
leads to the desired input signal (up to a constant factor c), i.e., z1(k) = cu(k), if and
only if the correlation matrix of vector u(k) = [1, u(k), u2(k), u3(k)]T is full rank, i.e.,
E(u(k)u(k)H) > 0.

For the cubic nonlinearity with ũ(k) = |u(k)|2u(k), the minimization of the crite-
rion given by equation (12) in the asymptotic and noiseless case leads to the desired
input signal (up to a constant factor), if and only if the number of possible modulus
values of the input signal, denoted d, satisfies d > 4.

Proof. Consider an instantaneous mixture of u(k) and ũ(k):
[
z1(k)
z2(k)

]
=

[
m11 m12

m21 m22

] [
u(k)
ũ(k)

]
.

For the quadratic nonlinearity case, we would like to prove that criterion given by
equation (7) is minimum (null in the noiseless case) if and only if (iff):

[
m11 m12

m21 m22

]
=

[
c 0
0 c2

]
, (36)

for a given constant c. We have

z2(k) = z21(k) ⇐⇒ u(k)mTu(k) = 0

⇐⇒ mTu(k) = 0 since u(k) 6= 0,

where m = [−m21,m
2
11 − m22, 2m11m12,m

2
12]T . Hence, by taking the mean value,

E(|z2(k)−z21(k)|2) = 0 is equivalent to mTE(u(k)u(k)H)×m∗ = 0. This latter equal-
ity has a unique solution m = 0 under the full-rank condition, i.e., E(u(k)u(k)H) > 0.
Finally, the vector m is null iff equation (36) holds.

For the cubic nonlinearity, we would like to prove that the criterion given by
equation (12) is null (in the noiseless case) iff:

[
m11 m12

m21 m22

]
=

[
c 0
0 |c|2c

]
, (37)

for a given constant c. We have:

z2(k) = |z1(k)|2z1(k) ⇐⇒ u(k)mTu(k) = 0

⇐⇒ mTu(k) = 0 since u(k) 6= 0,

where m = [−m21, (m11|m11|2 − m22), 2m11 Re (m11m
∗
12) + m12|m11|2,m11|m12|2 +

2m12 Re (m11m
∗
12) ,m12|m12|2]T and u(k) = [1, |u(k)|2, |u(k)|4, |u(k)|6, |u(k)|8]T .

Now, the equation system mTu(k) = 0, for all k will have a unique solution m = 0, if
the Vandermonde-like matrix formed by vectors u(k) has a full (row) rank equal to 5.
This is the case iff symbols u(k) have at least d > 4 different modulus values. Finally,
vector m is null iff (37) holds.

For M-QAM modulations, one can easily check that in the case of quadratic nonlin-
earity, the lemma’s condition is met forM > 4. However, for the cubic nonlinearity, the
lemma’s condition is quite restrictive and requires large modulation sizes withM > 64.
In such a case, when the modulation size is small or moderate (i.e. M ≤ 64), the am-
biguity removal requires the use of another criterion such as the alphabet matching
one [31].
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Also, note that when the polynomial degrees of the nonlinear and linear channels
are not the same, i.e., deg(hL(z)) 6= deg(hNL(z)), the subspace method would identify
the channel matrix H(z) up to a certain 2 × 2 polynomial matrix Q(z) (see [28] for
details). In such a case, the proposed ambiguity removal method does not apply and
consequently the EM algorithm’s initialization might be ineffective leading to potential
ill-convergence of the considered blind algorithm. All these issues can be avoided in the
semi-blind context where the knowledge of pilot signals can be exploited to initialize
our EM algorithm but also to remove the previous blind processing indeterminations.
Next, we derive the deterministic6 Cramér Rao Bound (CRB) relative to the SB
context, that will be used later for our algorithm’s performance benchmarking.

5.2. Deterministic Cramér-Rao Bound (CRB)
Given a parametric statistical model, the CRB provides a lower bound of the error

variance for all unbiased estimators of the system’s parameter vector. In particular,
the Gaussian CRB (G-CRB) represents a lower bound within the class of estimators
using only the SOS of the observed data. It is also the least favorable CRB as shown
in [38]. In the sequel, we derive the expression of the deterministic G-CRB for our
system model.

The data model in equation (1) can be rewritten in a more compact way by con-
sidering all data samples Ns and all outputs Nr as:

y = HLuL +HNLuNL + v = ULhL + UNLhNL + v, (38)

where y = [y1(0), . . . , y1(N − 1), . . . , yNr (0), . . . , yNr (N − 1)]T (N = Np + Ns the
total number of transmitted pilot and data symbols), v = [v1(0), . . . , v1(N − 1), . . . ,
vNr (0), . . . , vNr (N − 1)]T , uL = [u(0), . . . , u(N − 1)]T , uNL = [ũ(0), . . . , ũ(N − 1)]T ,
hL = [h1,L(0), . . . , h1,L(M), . . . , hNr,L(0), . . . , hNr,L(M)]T ,
hNL = [h1,NL(0), . . . , h1,NL(M), . . . , hNr,NL(0), . . . , hNr,NL(M)]T ,H‡ = [HT

1,‡, . . . ,H
T
Nr,‡]

T ,
U‡ = I⊗U‡ (‡ = L or NL) where ⊗ denotes the Kronecker product, and Hr,‡ and U‡
are defined as (u‡(k) equals u(k) if ‡ = L or ũ(k) if ‡ = NL):

Hr,‡ =



hr,‡(M) · · · hr,‡(0) 0

. . .
. . .

0 hr,‡(M) · · · hr,‡(0)




N×(N+M)

, (39)

U‡ =




u‡(0) · · · u‡(−M)

. . .
...

... u‡(0)
...

u‡(Ns − 1) · · · u‡(Ns − 1−M)



N×(M+1)

. (40)

Since we assumed a semi-blind approach, we can write u‡ = [uT‡,p,u
T
‡,d]

T where u‡,p
contains pilot-data samples and u‡,d contains unknown-data samples. We consider the
vector of unknown parameters to be θ = [hTL ,h

T
NL,u

T
d ]T (of size 2(M + 1)Nr + Ns)

where ud = uL,d.

6The input symbols are treated as deterministic unknown parameters.
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The unconstrained complex Fisher Information Matrix (FIM) is defined as:

J =

[
Jθθ Jθθ∗

Jθ∗θ Jθ∗θ∗

]
=

[
Jθθ Jθθ∗

(Jθθ∗)
H (Jθθ)∗

]
, (41)

where Jθθ = 1
σ2
v

(
∂µ̃
∂θ

)H ∂µ̃
∂θ
, µ̃ = [µT ,µH ]T , µ = HL,pup + HL,dud + HNL,pũp +

HNL,dũd, and ∂f
∂x

(f ∈ Cm×1,x ∈ Cn×1) denotes the differentiation operator defined

as ∂f
∂x

=




∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fm
∂x1

. . . ∂fm
∂xn


 , where the matrix elements represent Wirtinger’s deriva-

tives [39]. Note from equation (41) that we only need to find Jθθ and Jθθ∗ in order
to find J. After derivation, we find that:

Jθθ =
1

σ2
v



UHL UL UHL UNL UHL Λ
UHNLUL UHNLUNL UHNLΛ
ΛHUL ΛHUNL ΛHΛ + ΓTΓ∗


 , (42)

Jθθ∗ =
1

σ2
v




0 0 UHL Γ
0 0 UHNLΓ

ΓTU∗L ΓTU∗NL ΛHΓ + (ΛHΓ)T


 , (43)

where Λ = HL,d + 2HNL,d diag
(
|ud|2

)
, and Γ = HNL,d diag

(
u2
d

)
for the cubic case.

For the quadratic case, we found Jθθ∗ = 0,Λ = HL,d + 2HNL,d diag (ud), and Γ = 0.
The G-CRB is computed as the inverse7 of equation (41). The G-CRB for the channel
parameters is given by the top left submatrix of the global G-CRB.

6. Generalization and numerical complexity

This section is dedicated to the extension of the proposed methods to other non-
linear models. It provides also details about the computational complexity of the
proposed algorithms.

6.1. Generalization
The proposed semi-blind estimator can be easily generalized to other, finite mem-

ory, nonlinear models, like the one considered in [41]. Indeed, since the initialization
is performed by using the pilots, and the state vector, exploited in the EM procedure,
depends only on the linear terms, the extension remains possible upon certain deriva-
tion adaptations. However, for the blind case, it is feasible only when using ‘another’
appropriate initialization, since the main difficulty comes from the ambiguity removal
of the blind initialization (subspace-based in our case). To do that, one could rely on
some algorithms given in the literature (e.g., [41]). In fact, by assuming a linear-in-
the-parameters model, a known nonlinear function and a finite impulse response, the
proposed techniques can be applied to the following general model (given also in [25]):

yr(k) =

Mr,L∑

n=0

hr,L(n)u(k − n) + vr(k) +

Mr,NL∑

n=0

Mr,NL∑

l=n

h
(2)
r,NL(n, l)u(k − n)u(k − l)

7Note that, in the blind case, the FIM is singular (due to the problem’s ambiguities), in
which case one needs to rely on the constrained CRB [40].
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+
∑

n

∑

l

∑

m

h
(3)
r,NL(n, l,m)u(k − n)u(k − l)u∗(k −m) + · · · (44)

Furthermore, by considering the input-output relation, a block-oriented nonlinear
model (e.g., Hammerstein model) can be expressed (approximated) as in (44) and
hence, treated by the proposed techniques. However in this case, the estimated coeffi-
cients would represent products of the block-oriented linear and nonlinear parameters.

6.2. Algorithms’ complexity discussion
It can be seen that the parameter estimation given by equations (22) and (23)

requires, at each iteration, the calculation of the different conditional expectations
given in equations (25), (26), (30) and (31). Hence, the global complexity of the
proposed techniques is of order O(NiterNs2

BNt(M+1)2Nt(M +1)(4Nt(M +1)+2Nr)),
where Nt is the number of transmitters and Niter is the total number of iterations
needed for convergence.
It can be noticed that the algorithms’ computational complexity is of the same order
as the linear case8. It is worth pointing out that the computational complexity of
our EM-based algorithm is mainly affected by the number of transitions, given by
2BNt(M+1). However, as it will be seen through simulation results, a relatively small
number of pilots, data symbols and iterations are needed for convergence.
On the other hand, to reduce the computational complexity, one can apply some
approximations for the posterior probability (as in [32] and references therein), use
independent symbols through OFDM coding to avoid the forward-backward variables
calculation or exploit some approximation/simplification approaches as proposed in
[42]. Such complexity reduction is left for future work.

7. Performance analysis and discussion

This section provides the performance analysis of the proposed blind and semi-
blind channel estimators for the considered nonlinear systems. For benchmarking, we
consider a ‘full’ training-based (fully-pilot) estimator, as done in many works (e.g., [19,
25]), where all transmitted symbols (pilots and data) are assumed known and used to
estimate the channel parameters. The estimation performance is evaluated in terms
of the Normalized Root-Mean-Square Error (NMSE) given by:

NMSE =
1

Nmc

Nmc∑

mc=1

∥∥∥ĥmc − hexact

∥∥∥
2

‖hexact‖2
, (45)

where Nmc = 500 represents the number of independent Monte-Carlo runs used, ĥmc
is the vector of estimated channel parameters at the mc-th run, and hexact contains
the true (exact) values of the channel coefficients. For data detection, the performance
is evaluated in terms of the Symbol Error Rate (SER), which is the ratio between the
wrongly detected symbols and the total number of transmitted data symbols. The
channel coefficients are generated as i.i.d., unit-power, zero-mean (complex) Gaussian
random variables, whereas the pilots and data symbols are uniformly randomly drawn
from different QAM modulations (specified later for each experiment).

8For our model, there is approximately a factor 2 between the costs of the NL and the L
cases.
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The Signal-to-Noise Ratio (SNR) was defined as SNR = ‖Hu‖2F /‖v‖
2
F , where

‖·‖F is the Frobenius norm, H is defined in equation (3), and u = [u(1), . . . ,u(Ns)] ∈
C2(M+1)×Ns and v = [v(1), . . . ,v(Ns)] ∈ CNr×Ns are formed by stacking all values of
u(k) and v(k) (see equation (3)), respectively.

In the following, different experiments highlighting different aspects of our estima-
tors are presented. Simulation parameters are summarized in Table 1. They are used
for all experiments, unless otherwise specified.

Table 1: Simulation parameters

Parameter Specification

Number of data symbols Ns = 100
Number of pilot symbols Np = 10
Number of receive antennas Nr = 4
Window length for SS Nw = 9
Order of linear and nonlinear channels M = 4

Experiment 1: Effect of neglecting the nonlinear terms (Figures 3–4)
In order to illustrate the effect of ignoring the nonlinear term and considering only a
linear model, the system model given by (1) is rewritten as follows:

yr(k) =

Mr,L∑

n=0

hr,L(n)u(k − n) + α

Mr,NL∑

n=0

hr,NL(n)ũ(k − n) + vr(k), (46)

where α determines the weight of the nonlinear term that exists in the assumed un-
derlying model (e.g., α = 0: the underlying model is linear, α = 1: the weight of the
nonlinear term is equal to the linear one).
Figure 3 illustrates the NMSE vs. SNR behave when there is a nonlinearity (assuming
different weights α indicated in superscript) in the underlying model. One can notice
that, depending on the weight of the nonlinear term, the performance of the linear
EM-based blind and semi-blind estimators could be highly degraded.
Furthermore, Figure 4 illustrates the SER vs. the weight α, for SNR = 5 dB. We
notice a clear gain (especially for high α values) obtained by considering a nonlinear
model (NL-B, NL-SB) as compared to the case where only linear terms are taken into
account (L-B, L-SB).
In the sequel, the nonlinear model will be considered by setting α = 1.
Experiment 2: NMSE vs. SNR (Figures 5– 7)
Figure 5 investigates the performance, in terms of NMSE, of the subspace(SS)-based
estimator (hSS), and the blind and semi-blind EM-based estimators (hEM−B, hEM−SB)
with respect to SNR for the quadratic nonlinearity considering 4-QAM (Figure 5a)
and 16-QAM (Figure 5b) modulations. These estimators are benchmarked against the
semi-blind Gaussian CRB (G-CRBSB) and the fully-pilot-based estimator (hPILOT).
The blind EM-based estimator is initialized by the subspace-based one, whereas the
semi-blind estimator is initialized by some pilots. One can observe that hSS presents
sub-optimal performance compared to hPILOT (to all other estimators as well), whereas
a significant improvement is observed with hEM−B and hEM−SB. Moreover, the ex-
ploitation of the available pilots enhances the performance as hEM−SB outperforms
hEM−B and hugs very tightly hPILOT for moderate and high SNRs. On the other

19



0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

SNR (dB)

N
M
S
E

 

 

h
EM−B
0.1

h
EM−SB
0.1

h
EM−B
0.3

h
EM−SB
0.3

h
EM−B
0.5

h
EM−SB
0.5

Figure 3: NMSE vs. SNR with different values of the weight α (see (46)), indicated in
superscript, for the blind and semi-blind ‘linear’ EM-based estimators, with quadratic model
and 4-QAM modulation
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Figure 4: SER vs. α with SNR = 5 dB for linear blind and semi-blind (L-B, L-SB) EM-
based estimators and for nonlinear (NL-B, NL-SB) ones, with quadratic model and 4-QAM
modulation

hand, the EM-based estimators are found, interestingly, below the G-CRBSB, which
reflects the fact that our channel identification solution outperforms all SOS-based
identification methods. This result strongly supports the effectiveness of the afore-
mentioned estimators for non-Gaussian QAM signals.

Also, a comparison has been performed with a cumulant-based technique [15], as
illustrated in Figure 5a and Figure 5b, where, in the context of our scenarios, poor
performance has been obtained since such a method requires higher number of symbols
for convergence (at least 16000 data symbols as mentioned in [15]).

As mentioned in section 4.3, the proposed estimators can be easily applied to
MIMO systems, where similar performance to the SIMO case is observed (see Figure 6).

From Figure 7a, one can observe that an important spatial diversity (higher number
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of receive antennas, as is the case for massive MIMO systems) improves the perfor-
mance for both hEM−B and hEM−SB at low SNRs.

In Figure 7b, a cubic nonlinear model has been used with a 16-QAM modulated
input signal. One can note similar performance as provided in Figures 5 and 7a; EM-
based estimators outperform the SS-based estimator and all SOS-based estimators
(represented by the G-CRBSB) for moderate to high SNRs, and hEM−SB outperforms
hEM−B as it hugs more tightly the hPILOT curve.

Note that using a 4-QAM signal modulation with our cubic model will render
the model linear, leading to a loss of identifiability. This can be easily seen by writ-
ing the 4-QAM sequence as u(k) =

√
2ej(

π
4
+η(k)π

2
) where η(k) ∼ U{0, 1, 2, 3}, then,

ũ(k) = |u(k)|2u(k) = 2u(k), which is linear.
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Figure 5: NMSE vs. SNR for subspace-based estimator (hSS), blind (hEM−B) and semi-
blind (hEM−SB) EM-based estimators benchmarked against the semi-blind Gaussian CRB
(G-CRBSB), the cumulant-based technique [15] (hcum) and the fully-pilot-based estimator
(hPILOT), in both cases: (a) quadratic model and 4-QAM modulation, and (b) quadratic
model and 16-QAM modulation.

Experiment 3: NMSE vs. SNR with different linear and nonlinear channel orders
(Figure 8)
In many practical situations, the channel order of the linear and nonlinear channels
are different. Figure 8 illustrates the behavior of two different scenarios considered in
Experiment 1 with a channel order MNL = 2 for the nonlinear channel (the last two
channel coefficients out of the previously used five coefficients have been considered
null). On can note, particularly, that for high SNRs hSS performs badly affecting the
performance of hEM−B.
Experiment 4: Speed of convergence (number of iterations vs. SNR, Figure 9)
Figure 9 shows the number of iterations needed for convergence for blind (B) and
semi-blind (SB) EM-based estimators with respect to SNR. Considering 4-QAM and
16-QAM signal modulations and the considered nonlinear models (Quadratic and Cu-
bic), we observe that for low SNRs (0−5 dB), the number of iterations varies according
to the signal’s model and modulation but is still relatively small (less than 30 at 5 dB).
For moderate to high SNRs (> 10 dB), very few iterations (less than 8) are needed.
In fact, for high SNRs (≥ 15 dB) only 2 or 3 iterations are needed independently of
the signal’s model and modulation. Moreover, using a higher number of antennas at
the receiver (e.g., as in massive MIMO systems) leads to further reducing the number
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Figure 6: NMSE vs. SNR for blind (hEM−B) and semi-blind (hEM−SB) EM-based estima-
tors benchmarked against the fully-pilot-based estimator (hPILOT). We consider a quadratic
model, 4-QAM modulation and a MIMO system with Nt = 2, Nr = 4, and M = 2. hinit is
included for reference and refers to a pilot-based estimator using available pilot symbols.
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Figure 7: NMSE vs. SNR for subspace-based estimator (hSS), blind (hEM−B) and semi-
blind (hEM−SB) EM-based estimators benchmarked against the semi-blind Gaussian CRB
(G-CRBSB) and the fully-pilot-based estimator (hPILOT) (a) in the case of a quadratic model,
4-QAM modulation and Nr = 9 receive antennas (b) in the case of a cubic model and 16-QAM
modulation.

of iterations needed for convergence, especially at low SNRs, as can be seen from Fig-
ure 9b.
Experiment 5: NMSE vs. number of iterations at fixed SNR (Figure 10)
Figure 10 illustrates the variation of the NMSE with respect to the number of iterations
needed for convergence of the subspace(SS)-based estimator (hSS), and the blind and
semi-blind EM-based estimators (hEM−B, hEM−SB) at SNR = 10 dB. Note that hEM−B

is initialized by hSS, whereas hEM−SB is initialized by some pilots such that hEM−B
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Figure 8: NMSE vs. SNR with ML = 4 and MNL = 2 for subspace-based estimator (hSS),
blind (hEM−B) and semi-blind (hEM−SB) EM-based estimators benchmarked against the fully-
pilot-based estimator (hPILOT). We consider: (a) quadratic model and 4-QAM modulation,
and (b) cubic model and 16-QAM modulation.
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Figure 9: Number of iterations for convergence vs. SNR for blind (B) and semi-blind (SB)
EM-based estimators (a) considering different nonlinearities and modulations (b) considering
a quadratic model, a 4-QAM modulation, and Nr = 9 receive antennas.

and hEM−SB start from the same initial point (i.e., no iterations yet). We observe that
after two iterations, hEM−SB converges to the solution given by the fully-pilot-based
estimator (hPILOT). We also observe that hEM−B comes very close to hPILOT after
being initialized by hSS. This result illustrates better the use of the word “refinement”
in Figure 1, for the blind EM-based processing and is very interesting with regards to
the computational complexity, especially for the nonlinear case where the number of
channel coefficients is, in general, higher than the linear case.
Experiment 6: NMSE vs. number of pilots Np (Figure 11)
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Figure 10: NMSE vs. number of iterations for subspace-based estimator (hSS), blind (hEM−B)
and semi-blind (hEM−SB) EM-based estimators benchmarked against the fully-pilot-based
estimator (hPILOT), in the case of a quadratic model and 4-QAM modulation at SNR =
10 dB.

We consider the quadratic model and 4-QAM modulation and we investigate the im-
pact of the number of pilots Np on the NMSE of the semi-blind EM-based estimator
hEM−SB, at SNR = 10 dB (Figure 11; hSS and hEM−B are included for reference). We
observe (Figure 11b) that only a slight decrease (around 3 × 10−3) in the NMSE ac-
companies the increase in the number of pilots from 1 to 30, which indicates that only
few pilots are needed to allow a quasi-optimal semi-blind channel estimation within
the EM framework.
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Figure 11: NMSE vs. number of pilots Np for subspace-based estimator (hSS), blind (hEM−B)
and semi-blind (hEM−SB) EM-based estimators benchmarked against the fully-pilot-based
estimator (hPILOT), with a quadratic model and 4-QAM modulation at SNR = 10 dB.

Experiment 7: Symbol Error Rate (SER) vs. SNR (Figure 12)
Figure 12 investigates the performance of the proposed estimators in terms of Symbol
Error Rate (SER) with respect to SNR. For blind and semi-blind EM-based estimators
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(EM-B and EM-SB), a data detection is performed within an EM-based framework
as described in section 3.5. For the subspace (SS) and the fully-pilots approaches, a
zero-forcing is applied using the estimated channel coefficients. It can be noticed that
performing data detection, using a ML-based approach leads to a significant perfor-
mance gain and is part of a joint channel estimation and data detection.
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Figure 12: SER vs. SNR for subspace-based estimator (SS), blind (EM-B) and semi-blind
(EM-SB) EM-based estimators benchmarked against the fully-pilot-based estimator (PILOT),
with a quadratic model and 4-QAM modulation.

8. Conclusion

In this paper, blind and semi-blind Maximum Likelihood (ML) solutions are pro-
posed for the identification of nonlinear multichannel communications systems. The
ML criterion is maximized through the Expectation-Maximization (EM) algorithm. In
the blind case, the EM algorithm is initialized by the subspace method followed by an
original ambiguity removal technique. An identifiability study reveals that the success
of the initialization step requires some stringent conditions that might not be verified
for low order QAM modulations. Thus, an alternative solution is proposed, based on
the semi-blind approach. Besides, theoretical performance bounds and identifiability
results are provided for the considered problem and as well as the extension to a large
class of nonlinear models. Moreover, it is shown that the proposed methods, not only
outperforms the existing solutions in the literature but also, allows to achieve efficient
joint channel estimation and data detection.
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HIGHLIGHTS
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• Nonlinear distortions are important issues in many communications sys-
tems. This work proposes original blind and semi-blind solutions for the
identification of nonlinear, finite alphabet, multichannel systems.

• The proposed solutions rely on the maximum likelihood approach and are
based on the EM-algorithm. The blind one is initialized by a subspace
method combined with an original ambiguity removal technique. They
lead to a significant performance gain as compared to the state-of-the-art.

• We provide theoretical performance bounds and identifiability results for
the considered problem and show how our solutions can be extended to a
large class of nonlinear models.

• Our methods, not only outperform the existing solutions in the literature
but also, allow to achieve channel estimation and data detection simulta-
neously.
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