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Abstract

We explore the theoretical foundations of a ”twenty questions” approach to pattern

recognition. The object of analysis is the computational process itself rather than prob-

ability distributions (Bayesian inference) or decision boundaries (statistical learning).

Our formulation is motivated by applications to scene interpretation in which there

are a great many possible explanations for the data, one (”background”) is statistically

dominant, and it is imperative to restrict intensive computation to genuinely ambiguous

regions.

The focus here is on detection: Given a large set Y of possible patterns or expla-

nations, narrow down the true one Y to a small (random) subset Ŷ ⊂ Y of “detected”

patterns to be subjected to further, more intense, processing. To this end, we consider a

family of hypothesis tests for Y ∈ A versus the non-specific alternatives Y ∈ Ac. Each

test has null type I error and the candidate sets A ⊂ Y are arranged in a hierarchy

of nested partitions. These tests are then characterized by scope (|A|), power (type II

error) and algorithmic cost.

We consider sequential testing strategies in which decisions are made iteratively,

based on past outcomes, about which test to perform next and when to stop testing.

The set Ŷ is then taken to be the set of patterns that have not been ruled out by the

tests performed. The total cost of a strategy is the sum of the “testing cost” and the

“postprocessing cost” (proportional to |Ŷ |) and the corresponding optimization problem

is analyzed. As might be expected, under mild assumptions good designs for sequential

testing strategies exhibit a steady progression from broad scope coupled with low power

to high power coupled with dedication to specific explanations. In the assumptions

ensuring this property a key role is played by the ratio cost/power. These ideas are

illustrated in the context of detecting rectangles amidst clutter.
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1 Introduction

Motivated by problems in machine perception, specifically scene interpretation, we investi-

gate the theoretical foundations of an approach to pattern recognition based on adaptive

sequential testing. The basic scenario is familiar to everybody – identify one “pattern”

(or “explanation”) from among many by posing a sequence of subset questions. In other

words, play a game of “twenty questions.” Intuitively, we should ask more and more precise

questions, progressing from general ones which “cover” many explanations, but are there-

fore not very discriminating, to those which are highly dedicated and decisive. Although

the efficiency of coarse-to-fine (CTF) search drives the design of codes and many numerical

routines, there has been surprisingly little work of a theoretical nature outside information

theory to understand why this strategy is advantageous. We explore this question within

the framework of sequential hypothesis testing, putting the emphasis on the modeling and

optimization of computational cost: In what sense and under what assumptions are the

strategies which minimize total computation CTF?

Needless to say, in order to have a feasible formulation of the problem one must make

specific assumptions about the structure of the available tests (or “questions”). In this

paper, we will therefore consider a particular structure based on an a priori multiresolution

representation for the individual patterns and a corresponding hierarchy of hypothesis tests.

Other important assumptions concern the statistical distribution of the tests and how cost

varies with scope and power.

Our formulation is influenced by applications to pattern recognition, although we believe

it remains sensible for other complex search tasks and we would argue that computational

efficiency and CTF search are linked in a fundamental way. In both natural and artificial

systems, many tasks do not require immediate, complete explanations of the input data.

Nonetheless, the usual approach to machine perception is static: Intermediate results, when

they exist, generally do not provide clear and useful provisional explanations. In contrast,

we consider a sequence of increasingly precise interpretations (subsets of patterns), noting

that experiments in biological vision (e.g., studies on “pop-out”) report evidence for graded

interpretations, e.g., very fast identification of visual categories (Thorpe, Fize & Marlot

1996) and “regions of interest” (Desimone, Miller, Chelazzi & Lueschow 1995) (“visual

selection”).

Our formulation is also influenced by what we perceive to be some fundamental limi-

tations in purely learning-based methods in pattern recognition in spite of recent advances

(e.g., multiple classifiers, boosting and theoretical bounds on generalization error). We

do not believe that very complex problems in machine perception, such as full-scale scene
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interpretation, will yield directly to improved methods of statistical learning. Some organi-

zational framework is needed to confront the sheer number of explanations and complexity

of the data. (See e.g. the discussion in (Geman, Bienenstock & Doursat 1992).) In our

approach learning comes into play in actually constructing the individual hypothesis tests

from training data; in other words, one learns the individual components of an overall

design.

The hypothesis-testing framework is as follows. Consider many patterns (or pattern

classes) y ∈ Y as well as a special, dominating class 0 which represents “background.”

There is one true state Y ∈ {0}∪Y. In the highlighted applications, Y refers to a semantic

explanation of image data, for instance the names and poses (geometrical presentations) of

members belonging to a repertoire of actual objects appearing in an image. The explanation

Y = 0 represents “no pattern of interest” and is exceedingly more likely a priori; class 0

is also exceedingly more varied. Ultimately, we want to determine Y (classification or

identification). Ideally, this task would be accomplished rapidly and without error.

However, in machine perception, and many other domains, near-perfect classification

is often very difficult, even with sizeable computational resources, and virtually impossible

without resorting to a “contextual analysis” of competing explanations. In other words,

we eventually need to test precise hypotheses Y ∈ A against precise alternatives Y ∈ B,

where A,B ⊂ Y (“Is it an apple or a pear?”). In view of the large number of possible

explanations, it is not computationally feasible to anticipate all such scenarios. This argues

for starting, and going as far as one can, with a “noncontextual analysis,” meaning testing

the hypothesis Y ∈ A against the nonspecific alternative, Y /∈ A (or, what is often almost

the same, against the background alternative, Y = 0) for a distinguished family of subsets

A ⊂ Y. Of course this only makes sense if there are natural groupings of explanations, which

is certainly the case for pattern recognition (e.g., involving real objects and their spatial

presentations).

Let XA denote the result of such a test, with XA = 1 (resp. XA = 0) indicating

acceptance (resp. rejection). Indeed, it then makes sense to construct a family X of such

tests in advance, say of order O(|Y|). Throughout the paper, we assume that the family

A of sets A ⊂ Y for which (noncontextual) tests are built has a hierarchical, nested cell

structure. These sets will be called attributes, their depth in the cell hierarchy referred to

as their resolution level and their cardinality as their scope. In this scheme, the contextual

analysis – testing against specific alternatives – begins only after the number of candidate

explanations is greatly reduced, at which point tests may be created on-line to address the

specific ambiguities encountered.
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To pin thing down, consider a toy example: Suppose Y = {A,P,O}, standing for Apple,

Pear, Other, and the most likely explanation is Y = O. Suppose also there are four “tests”:

• XA,P for testing Y ∈ {A,P} vs. Y = O (something like “Is it a fruit ?”);

• XA (resp., XP ) for testing Y = A vs. Y = O (resp., Y = P vs. Y = O);

• XAvP for testing Y = A vs. Y = P .

Tests XA,P ,XA,XP are “noncontextual”; XAvP is “contextual”. Suppose all noncontextual

tests have null false negative error. The type of CTF strategy that typically emerges from

minimizing the “cost” of determining Y under natural assumptions about how cost, scope

and error are balanced is the intuitively obvious one: Perform XA,P first; then, if the result

is positive (XA,P = 1), perform XA and XP ; finally, perform XAvP if both the previous

results are again positive.

In this paper we consider efficient designs for the noncontextual phase only; the full

problem, including contextual disambiguation, will be analyzed elsewhere. However, we an-

ticipate the complexity of this contextual analysis by incorporating into our measurement of

computation a “post-processing” penalty which is proportional to the number of remaining

explanations.

Our objective, then, is efficient pattern “detection”. The reduced set of explanations,

denoted by Ŷ and called the set of detected patterns, is a random subset of Y that also

depends on the chosen strategy, i.e. the sequence of tests chosen to be performed. The tests

are performed sequentially, and the choice of the next test to perform (or the decision to

stop the search) depends on the outcomes of the past tests and is prescribed by the strategy.

If strategy T has performed the tests XA1
, . . . ,XAk

before terminating (note that k and

A2, . . . , Ak are themselves random variables), then set of detected patterns is determined

in a simple way from the outcomes of the tests: Ŷ (T ) consists of all patterns y ∈ Y which

are “accepted” by every test XAi
for which y ∈ Ai, 1 ≤ i ≤ k. In other words, a pattern is

said to be detected if it is not ruled out by one of the tests performed.

The fundamental constraint is no missed detections:

P (Y ∈ Ŷ ∪ {0}) = 1.

This condition is satisfied if each individual test XA has zero type I error, and we make this

assumption about every test XA, recognizing that we must pay for it in terms of cost and

power (or equivalently type II error). Although we shall not be explicitly concerned with

standard estimators such as

ŶMLE(X ) = arg max
y

P (X|Y = y) and ŶMAP (X ) = arg max
y

P (Y = y|X ),
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or even formulate a prior distribution for Y , it then follows that

P (ŶMLE ∈ Ŷ ∪ {0}) = P (ŶMAP ∈ Ŷ ∪ {0}) = 1.

Tests XA ∈ X are then characterized by their scope (|A|), power (type II error) and

computational cost, and certain fundamental tradeoffs are assumed to hold among these

quantities. A fundamental assumption is that mean computation is well-approximated by

conditioning on Y = 0, and that, in this case, the tests are conditionally independent.

In order to accommodate differing applications and establish general principles, we will

consider several scenarios, including both “fixed” and “variable” powers and two models –

“power-based” and “usage-based” – for how the cost of a test is determined. Except for

a concluding illustration, we do not consider how these hypothesis tests XA are actually

constructed, i.e., depend functionally on the raw data In the applications cited in §4 this

typically involves statistical learning, for instance inducing a decision tree or support vector

machine from positive (Y ∈ A) and negative (Y /∈ A) examples. We are designing the

specifications rather than the tests themselves, and modeling the computational process rather

than learning decision boundaries for classification. Presumably standard techniques can

be used to build tests to the desired specifications if the tradeoffs are reasonable. In Section

10 we will provide one recipe in an image analysis framework.

Although we will assume throughout that the true Y is a single pattern belonging to

{0} ∪ Y, our analysis would remain valid if we allowed Y to be an entire subset of patterns

Y ⊂ Y (with Y = ∅ representing “no pattern of interest” or “background”). In this case, XA

would test the hypothesis Y ∩A 6= ∅ against Y ∩A = ∅, or against the nonspecific alternative

Y = ∅. This setting might be more useful in some applications, such as scene interpretation,

although in the end these subsets are simply more complex individual explanations.

Finally, besides pattern detection, two natural subtasks are:

• Background-Pattern Separation: Determine if Y 6= 0;

• Single-Pattern Recognition: Determine if Y = y∗ for some distinguished y∗ ∈ Y.

(We separate these due to the special role of the background class.) Again, we only en-

tertain testing non-specific alternatives, leading to an analogous Ŷ . What distinguishes

these tasks from pattern detection is the postprocessing cost: For pattern detection, it will

be taken proportional to the cardinality of Ŷ , whereas for background-pattern separation

(resp. single-pattern recognition), it is a fixed constant if Ŷ 6= ∅ (resp. y∗ ∈ Ŷ ) and zero

otherwise. In each case, strategies are ranked according to the amount of total computation.

Background-pattern separation will not be analyzed in this paper since it has been studied
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elsewhere in a very similar framework. In contrast, detecting a single pattern of interest

will often serve as a first step before turning to the detection of all possible patterns.

2 Organization of the Paper

In §3 we provide a non-technical overview of the results obtained in the paper, and in §4
we review some previous work on related problems, including a few previous applications of

this methodology to scene interpretation in order to see how all this plays out in practice.

The precise mathematical setup is presented in §5, which ends with a summary of our

notation. Our principal results appear in §6-9. In most of these sections, we deal first with

detecting a special pattern of interest and then with the general problem of detecting any

pattern. In §6, we consider the simplest case: There is one single test XA of fixed power

and cost for each attribute A ∈ A, and we present a fairly general sufficient condition under

which CTF strategies are optimal. The “extended hierarchy” is examined in §7, namely a

whole family of tests (XA,β) for each attribute A ∈ A indexed by their power β. Assuming

the cost of a test depends in a natural way on its scope and power, we study testing

strategies under the restriction that each attribute can only be tested once. We first give

general results concerning optimal choice of powers and properties of the CTF strategies.

We also demonstrate the optimality of the CTF procedure for a particular form of the cost

function. As these results are decidedly not comprehensive, we attempt to strengthen the

case for the “optimality” of CTF search with a variety of simulations at the end of §7.
In §8-9, we present analytical results for a substantially different cost model. We again

consider a fixed-power hierarchy, but the cost of a test is not fixed in advance; instead, it

depends on the resources devoted to this test, which can be chosen in accordance with the

strategy employed but subject to a global resource limit. As a consequence, the cost of a

test then depends on the frequency with which it is used. In §9, we argue that it makes

sense in this latter framework to consider an extended scenario where repeated search tasks

are undertaken for different sets of target patterns, whereas the resources are distributed in

advance among all tests.

In order to illustrate in a controlled setting the quantities which figure in our analysis,

especially how computation is measured, we sketch an algorithm in §10 for a synthetic

example of detecting rectangles in images against a background of “clutter”. Finally, in

§11, discuss the results obtained, and some conclusions and directions for future research.
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3 Overview of Results

To keep things simple, and consistent with our main results, we shall focus here on detecting

any pattern; similar results hold for a single pattern of interest.

A strategy T can be represented as a binary tree with a test X ∈ X at each internal node

and a subset Ŷ (t) at each external node or leaf t. The computation due to testing, Ctest(T ),

is a random variable – the sum of the costs of the tests performed before Ŷ is determined.

The mean cost is then the average over all tests X ∈ X of the cost of X weighted by the

probability that X is performed in T ; these quantities will be defined more carefully in §5.
In anticipation of resolving the ambiguities in Ŷ in order to determine Y , we add to

the mean testing cost a quantity which reflects the postprocessing cost, taken simply as

Cpost(Ŷ (T )) = c∗|Ŷ (T )|, where c∗ is a constant called the unit postprocessing cost. This

charge may also be (formally) interpreted as the cost of performing perfect, albeit costly,

tests for each individual non-background explanation in Ŷ in order to remove any remaining

error under the background hypothesis (i.e., render P (Ŷ = ∅|Y = 0) = 1). The constant c∗

then represents the cost of a perfect individual test. Again, all tests have null false negative

error, so “perfect” refers to full power.

The natural optimization question is then to find the strategy T ∗ which minimizes the

mean total computation:

T ∗ = arg min
T

EC(T ), C(T ) = Ctest(T ) + Cpost(Ŷ (T )).

We are particularly interested in determining when T ∗ is CTF in scope (meaning scope is

decreasing along any root-to-leaf branch) and CTF in power (meaning power increases as

scope decreases). Informally, the assumptions we impose are:

• A multiresolution, nested cell representation: The family of attributes A has the

structure of a tree (see e.g. Figure 3, below).

• Background domination: Mean computation EC(T ) and power P (XA = 0|Y /∈ A)

are well-approximated by taking P = P0 = P (.|Y = 0).

• Conditional independence: Under P0 families of tests over distinct attributes are in-

dependent. This is the strongest assumption and the one most likely to be violated

in practice.

In the case of a fixed-powers hierarchy considered in §6, we assume that the test for

attribute A has cost c(A) and power β(A). We show that the ratios c(A)/β(A) play a
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crucial role in the analysis of the optimization problem, and give the following general

sufficient condition: CTF optimality holds whenever, for any attribute A, the ratio of cost

to power is less than the sum of the corresponding ratios over all direct children of A in the

test hierarchy (including if necessary the perfect tests representing the postprocessing cost,

having cost c∗ and power 1).

In the case of an extended hierarchy (§7), we consider a multiplicative model for the

cost of XA,β:

c(XA,β) = Γ(|A|) × Ψ(β),

where Γ is subadditive and Ψ is convex. We prove that the CTF strategies always perform

a specific test with the same power and that this power does not depend of the particular

CTF strategy. A rigorous result about CTF optimality is only obtained for one particular

Ψ, but simulations strongly indicate that the observed behavior is more widely true. In

summary, CTF strategies seem to be optimal for a wide range of situations.

In §8-9, we study a somewhat different framework; we consider only the case of a fixed-

powers hierarchy, but the cost of a test depends of the “resource” allocated to it (through a

negative exponential function) and there is a global resource constraint. In this framework

the optimal resource allocation gives rise to a usage-based cost; the cheapest tests are the

ones used the most often in a given strategy. No postprocessing cost is taken into account,

but we suppose that Ŷ results in the minimum postprocessing burden, namely the set of

detected patterns that would be obtained if all of the tests were performed at once. In §8
we prove that for a dyadic hierarchy for which the powers are increasing with the resolution

level, the CTF strategy is optimal if we assume that all tests have power greater than some

constant β1 = 7/8.

In §9, we propose an extended scenario that is especially relevant with usage-based cost,

namely repeated detection tasks for which Y changes from task to task but the attribute

tests are reusable. The patterns are identified with conjunctions of abstract attributes at

different resolution levels, taken from a possibly very large pool. Whereas the analysis in the

fixed-cost model remains unchanged, there is a significant difference under usage-based cost

since we must distribute the resources over a larger number of tests. In order to simplify

the analysis, we suppose the set of target patterns Y is randomized and again present some

fairly mild sufficient conditions (about the dependence of power on resolution and the size

of the attribute pools) ensuring the optimality of CTF strategies.
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4 Previous Work

Our work is a natural outgrowth of an ongoing project on scene analysis, especially ob-

ject recognition and largely of an algorithmic nature (see e.g., (Amit & Geman 1999)).

The current objective is to explore a suitable mathematical foundation. This was begun in

(Fleuret 2000) and (Fleuret & Geman 2001) where the computational complexity of travers-

ing abstract hierarchies was analyzed in the context of purely power-based cost – assuming

that cost is an increasing, convex function of power. (The model here is more realistic

because cost depends on scope as well as power.) It was continued in (Jung 2001), in which

the optimality of depth-first CTF search for background/pattern separation (checking if

Ŷ = ∅) was established under the same model.

4.1 Decision trees

Of course “twenty questions,” and the search strategies T discussed in the introduction for a

fixed family X of binary tests, invoke decision (or classification) trees – adaptive procedures

for discriminating amongst hypotheses based on sequential testing.

Early work was inspired by applications to fault-testing and medical diagnosis and in-

volves errorless binary questions of varying costs; see e.g. (Garey 1972) and the references

therein. Collectively, the tests determine the true hypothesis and vice-versa (i.e., the tests

are conditionally degenerate). The goal then is to find the minimal-cost tree for identifying

the true hypothesis, a very diffuclt combinatorial optimization problem.

Most of the literature on decision trees is about an inductive framework with nonperfect

tests. Trees are induced from a training set of i.i.d. samples of (X, Y ), where X is a

measurement or “feature” vector and the binary tests result from comparing one component

of X to a threshold. A tree Tloc is built in a top-down, greedy, recursive fashion based on

some splitting criterion, usually entropy reduction (Breiman, Friedman, Olshen & Stone

1984): First the root is assigned a test, then each child of the root, and so forth until

a stopping rule is enforced. The construction is then data-driven and locally optimized,

guided by uncertainty reduction. There is a large literature on application of decision trees

to pattern recognition which is outside the scope of this paper; see (Amit 2002). In (Amit &

Geman 1999), faces were detected using multiple decision trees and a version of our division

into “noncontextual” and “contextual” was proposed.

Generally, efficient (online) execution is not a criterion for construction or performance;

for instance, the CART algorithm doesn’t account for mean path length, let alone “costs”

for the tests. Not surprisingly, recursive greedy designs are often globally inefficient, for
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instance in terms of the mean depth necessary to reach a given classification rate. A rarely

studied alternative is to begin with an explicit statistical model for (X, Y ) and compute a

tree Tglo according to a global criterion involving both accuracy and (online) computation.

The construction is then model-driven and globally optimized. Our approach to calculating

Ŷ is of this general nature. Such a framework can also be found in (Trouvé & Yu 2002),

motivated by query-driven retrieval algorithms for very large databases, where the number of

queries performed is the quantity to be minimized under the constraint of exact retrieval. In

(Jung 2001), the depth-first CTF strategy for background/pattern separation was compared

with vanilla CART, i.e., recursive splitting driven by uncertainty reduction. In general, the

strategy resulting from CART is not CTF; in particular doing the coarsest test first may

result in a poor entropy drop and the cost of the CART tree is naturally far from optimal.

Despite well-known, if scattered, evidence about the superiority of global strategies,

calculating Tglo is simply computationally prohibitive, whether model-driven or data-driven,

and the literature is correspondingly sparse. A notable (if unrealistic) exception is when i)

the tests conditionally independent given Y ; ii) the cost of a tree is a linear combination

of the average terminal entropy and the average depth; and iii) the tests are “repeatable”

– there is an unlimited number of independent “copies” of each test and hence the same

one (in distribution) may appear several times along the same branch of T . Computing

Tglo is then sometimes feasible (although intensive) because the optimal test to perform

at any (interior) node is entirely determined by the depth of the node and the conditional

distribution of Y at the node. In other words, the posterior distribution on Y is a “sufficient

statistic” for the node history. Consequently, Tglo can then be constructed from dynamic

programming and variants thereof for “small problems.” But backwards recursion fails

without repeatability, an assumption which is at best very dubious in practice.

Some of these observations can be traced back to (DeGroot 1970), where the setting

is precisely i)-iii) above, sitting at the intersection of sequential statistics (Chernoff 1972),

game theory (Blackwell & Girschick 1954) and adaptive control processes (Bellman 1961).

Usually, the emphasis is on asymptotic results, for instance as mean tree depth grows. In

(Geman & Jedynak 2001), some comparisons in accuracy (resp. mean depth) between Tloc

and Tglo are given at a fixed mean depth (resp. accuracy), revealing an enormous difference

in favor of Tglo, especially with skewed priors, i.e., when a priori some classes are much

more likely than others.
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Figure 1: Left: a “natural” image. Right: group photograph used in an experiment of face

detection.

4.2 Pattern recognition

Consider the scenes in Figure 1. The semantic interpretation of the left image (town, shops,

pedestrians, etc.) is effortless for humans but far beyond what any artificial system can do.

For the image on the right, the goal might be more modest – detect and localize the faces.

Enriching the description with information about the precise pose (scale, orientation, etc.),

identities or expressions would be more ambitious. Many methods have been proposed

for face detection, including artificial neural networks (Rowley, Baluja & Kanade 1998),

Gaussian models (Sung & Poggio 1998), support vector machines (Osuna, Freund & Girosi

1997), Bayesian inference (Cootes & Taylor 1996) and deformable templates (Yuille, Cohen

& Hallinan 1992).

To relate these tasks to the framework of this paper, imagine attempting to characterize

a (randomly selected) subimage containing at most one object from a predetermined reper-

toire. (The whole scene can then be searched by a divide-and-conquer strategy; see §10
and (Dietterich 2000).) The dominating explanation Y = 0 corresponds to “background”

or “clutter” and each of the others, Y ∈ Y, to the instantiation of an object wholly visible

in the subimage. Even with only one (generic) object class, the number of possible instan-

tiations is very large, i.e., there is still considerable within-class variability. For instance,

detecting a face at a fixed position, scale and orientation might not be terribly difficult,

even given variations in lighting and nonlinear variations due to expressions; it can be

accomplished with standard learning algorithms such as multilayer perceptrons, decision

trees and support vector machines. However, the amount of computation required to do
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this separately for every possible pose is prohibitive. Instead, we propose to search simul-

taneously for many instantiations, say over a range of locations, scales and orientations. In

our simplified mathematical analysis, that range of poses is A = Y, which is the “scope” of

our coarsest test XA. (It may not be practical to envision a totally invariant test, in which

case there are multiple hierarchies.)

This approach to scene interpretation has been shown to be highly effective in practice.

A version involving successive partitions of object/pose pairings, rank-based tests for the

corresponding (classes of) hypotheses and breadth-first CTF search appears in (Geman,

Manbeck & McClure 1995). The detection results shown in Figure 2 were obtained by an

algorithm (Fleuret & Geman 2001) based on the strategy proposed here – traversing a mul-

tiresolution hierarchy of X binary hypothesis tests {XA, A ∈ A}, where each A represents

a family of shapes with some common properties and XA is an image functional designed

to detect shapes in this family. In the face detection experiments, A is a subset of affine

poses and XA is based on checking for special local features (e.g., edges) which are likely

to be present for faces with poses in A. In fact, XA can be interpreted as a likelihood ratio

test (Amit & Geman 2003). Recently, researchers in the computer vision community have

started using similar methods for similar problems; see for example (Socolinsky, Neuheisel,

Priebe, De Vinney & Marchette 2002) and (Viola & Jones 2001). Ideas related to CTF

processing have also been proposed by (Frisch & Finke 1998) in a Bayesian classification

framework where a hierarchy of estimators is built for the posterior of recursively clustered

classes.

In Figure 2, the efficiency of sequential testing is illustrated for the group photo by

counting, for each pixel, the amount of computation performed in its vicinity; clearly the

spatial “density of work” is highly skewed. The corresponding density would be flat for

nearly all other methods, e.g., those based on multilayer perceptrons or support vector

machines.

Finally, a more or less exact implementation of the methodology here is provided in §10
in the context of a synthetic example introduced in (Jung 2001) for detecting rectangles

against background clutter. A modification of that algorithm has been used to detect

the roofs of buildings in aerial photographs in order to partially automate cartography

(Jung 2002).
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Figure 2: The detections (left) and “density of work” (right) for the group photo.

5 Problem Formulation

In this section we formulate efficient pattern detection as an appropriate optimization prob-

lem. In particular, we define the fundamental quantities which appear in this formulation,

including attributes, tests and strategies, and how cost is measured both for individual tests

and for testing designs. We also state our main assumptions about the test statistics and

the relationships among cost, power and invariance which drive the optimization results in

§§6-9.

5.1 Goals

The background probability space Ω represents the raw data – collections of numerical

measurements – and Y denotes a set of patterns (or classes or explanations). We imagine

the patterns y ∈ Y to be rather precise interpretations of the data and consequently |Y| to

be very large. There is also a special explanation called background, denoted by 0, which

represents “no pattern of interest” and is typically the most prevalent explanation by far.

We suppose there is a true state Y which takes values in {0}∪Y and which, for simplicity,

is determined by the raw data. In other words, we regard Y as a random variable on Ω.

Most of what follows could be generalized to the case in which Y ⊂ Y and Y = ∅ represents

background.

Example: In the context of machine perception, the raw data represent signals or images

and the explanations represent the presentations of special entities, such as words in acous-

tical signals or physical objects in images (e.g., face instantiations or printed characters at
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a particular font and pose). The level of specificity of the explanations is problem-specific.

However, we do assume that the data have in fact a unique interpretation at the level of

precision of Y . Clearly this assumption eventually breaks down in the case of highly detailed

semantic descriptions – at some point the subjectivity of the observer cannot be ignored.

The ultimate goal is pattern identification: Determine Y . However, for the reasons

stated earlier, we shall focus instead on

Pattern Detection: Reduce the set of possible explanations to a relatively small, data-

driven subset Ŷ ⊂ Y such that Y ∈ Ŷ ∪ {0} with probability (almost) one.

We shall also consider the special case of detecting one single, fixed pattern y∗. A related

problem of interest, studied in (Fleuret 2000), (Fleuret & Geman 2001) and (Jung 2001),

is Background Filtering: Determine whether or not Y = 0.

As discussed earlier, the rationale behind pattern detection is that requiring that Y ∈
Ŷ ∪{0} ensures, by definition, that no pattern is missed. Hence, the ensuing analysis, which

is aimed at determining Y with high precision and is likely to be computationally intensive,

can be limited to Ŷ . Additional computation might involve a contextual analysis, such as

constructing hypothesis tests on the fly for distinguishing between competing alternatives

belonging to Ŷ . This “postprocessing stage” will not be analyzed in this paper, except that

we shall explicitly anticipate additional computation in the form of a penalty for unfinished

business: We impose a “postprocessing cost” Cpost(Ŷ ) proportional to the size of Ŷ . The

goal then is to find an optimal tradeoff between the costs of “testing” and “postprocessing.”

5.2 Attributes and attribute tests

Any subset of patterns A ⊂ Y can be regarded as an “interpretation” of the data and we

assume there are certain “natural groupings” of this nature (for instance, “writer” in a

“Guess Who” version of twenty questions, “noun” in speech recognition and “character” in

visual recognition). We call these distinguished subsets attributes and we denote the family

of attributes by A ⊂ P(Y) and suppose |A| is of order O(|Y|). For every y ∈ Y, we will

assume that

{y} =
⋂

A∋y

A. (1)

One of our main assumptions is that A has a multiresolution, hierarchical structure with
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Figure 3: Example of a (non-regular) tree-structured hierarchy of attributes.

attributes at varying levels of precision. Formally, we assume that

∀A,A′ ∈ A, A ∩ A′ 6= ∅ ⇒ (A′ ⊂ A) or (A ⊂ A′).

Note that the set of attributes thus has a tree structure (see Figure 3 for an example).

Furthermore, assumption (1) implies that the set of leaves of the corresponding tree is

exactly the set of all singleton attributes.

For every attribute A ∈ A we can build one or more binary tests X - the result of

testing the hypothesis Y ∈ A against either1 Y /∈ A or Y = 0; the value X = 1 corresponds

to choosing Y ∈ A and X = 0 to choosing the alternative. Due to the domination of the

background class, at least at the beginning of the search, and due to the simplification

afforded by measuring total computation cost under P0 = P (.|Y = 0), the alternative

hypothesis will hereafter be Y = 0 and we define the power of the test accordingly:

β(X) = P (X = 0|Y = 0).

In order to make the notation more informative, we shall write either XA to indicate

the attribute being tested or XA,β to signal both the attribute and the power.

The first main assumption we will make about these tests is that their false negative

rate is negligible. In other words, if a pattern (i.e., non-background explanation) is present

then any attribute test which covers this pattern must respond positively:

P (XA = 1|Y ∈ A) = 1, ∀A ∈ A. (2)

For this reason, and due to the origins of this work in visual object recognition, we sometimes

refer to the size of A as the level of invariance of XA,β, but usually just as the scope or level

1Which alternative is more appropriate is application-dependent. For example, in inductive learning, the

two cases correspond to the nature of the “negative” examples in the training set - whether they represent

a random sample under Y ∈ Ac or under “background”. In the applications cited earlier, the tests are

constructed based entirely on the statistical properties of the patterns in A; neither alternative is explicitly

represented.
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of resolution. In general, however,

P (XA = 1|Y = y) > 0, ∀y ∈ {0} ∪ Y \ A.

In other words, the tests are usually not perfect or two-sided invariants.

Formally, assumption (2) is not necessary for the mathematical results in the coming

sections to hold, because we will only make computations under the “background proba-

bility” (when Y = 0); see §5.4. However, this assumption is necessary for our formulation

of pattern identification to make sense; indeed, it implies that if one has performed tests

XA1
, . . . ,XAk

, then necessarily

Y ∈ Y \
⋃

k:XAk
=0

Ak.

We will refer to the patterns above as “compatible” with tests XA1
, . . . ,XAk

and focus on

sequential testing designs for which the chosen Ŷ is the set of patterns compatible with all

the tests actually performed. This choice coheres with our requirement that Y ∈ Ŷ ∪ {0}
with probability one, while at the same time ensuring that Ŷ is of minimum size given

the available information. Ŷ – the set of remaining compatible patterns at the end of the

testing stage – is called the set of detected patterns (relative to the testing strategy used).

Finally, each test XA,β has a cost or complexity c(XA,β) which represents the amount of

online computation (or time) necessary to evaluate XA,β. In §5.6 we shall consider different

cost models, one in which costs are predetermined quantities related to power and scope,

and the other in which cost is “usage-based”.

5.3 Test hierarchies

We consider two types of families of tests, one with exactly one test (at some fixed power)

per attribute and referred to as a fixed test hierarchy, and one with a one-parameter family

of tests {XA,β , 0 ≤ β ≤ 1} for each A ∈ A indexed by power and referred to as an extended

test hierarchy.

5.3.1 Fixed hierarchy

We will denote such a hierarchy by X = {XA, A ∈ A} and write β(A) for the power of

XA and c(A) for its cost. Optimal testing strategies for fixed hierarchies is the subject of

§6,§8 and §9 for two different cost models. In the analysis in those sections a central role is

played by the (random) set Ŷ (X ) of patterns which are compatible with all the tests in X ,

i.e., those patterns which are verified at all levels of resolution. More precisely:

Ŷ (X ) = Y \
⋃

{A ∈ A|XA = 0}.
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Recall that under our constraint on the false negative error, we necessarily have P [Y ∈
{0} ∪ Ŷ (X )] = 1. Clearly, Ŷ (X ) leads to a smaller postprocessing cost than any Ŷ based

on only some of the tests in the hierarchy, but, of course, requires more computation to

evaluate in general.

5.3.2 Extended hierarchy

The extended test hierarchy is

X̃ = {XA,β|A ∈ A, β ∈ [0, 1]}.

In §7 we will consider testing strategies in which, at each step in a sequential procedure, both

an attribute and a power may be selected. This clearly leads to a more complex optimization

problem and our results in this direction are correspondingly far less complete than those

in the case of a fixed hierarchy. From another point of view, extracting a subset of tests

from an extended hierarchy (e.g., specifiying a testing strategy) is a type of model selection

problem.

5.4 The probabilistic model

In order for the upcoming optimization problems to be well-defined, we need to specify the

joint distribution of the random variables in X̃ .

The first hypothesis we make is that we are going to measure mean computation relative

to P0(.) = P (.|Y = 0) – the “background distribution.” This is justified by the assumption

that, a priori, the probability of the explanation Y = 0 is far greater than the compound

alternative Y 6= 0 let alone any single, nonbackground explanation. For instance, in visual

processing, a randomly selected subimage is very unlikely to support a precise explanation

in terms of visible patterns; in other words, most of the time all we observe is clutter.

The second hypothesis we make is that, under P0, any family of tests XA1,β1
, . . . ,XAk ,βk

for distinct attributes A1, . . . , Ak are independent. This is probably the strongest assump-

tion in this paper but is not altogether unreasonable under P0 in view of the structure of

A since two distinct tests are either testing for disjoint attributes (if they are at the same

level of resolution) or testing for attributes at different levels of resolution. In §6 we shall

briefly consider simulations for a non-trivial dependency structure – a Markov hierarchy.

No assumptions are made about the dependency structure among tests for the same

attribute but at different powers. Instead, the assumption to be made in the following

section that no attribute can be tested twice in the same procedure allows us to compare

the cost of testing strategies regardless of this dependency structure.
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5.5 Testing strategies and their cost

We consider sequential testing processes, where tests are performed one after another and

the choice of the next test to be performed (or the decision to stop the testing process) can

depend on the outcomes of the previously performed tests. We will make the important

assumption that in any sequence of tests, a given attribute can only be tested once.

Definition 1 (Testing Strategy). A strategy is a finite labeled binary tree T where each

internal node t ∈ T ◦ is labeled by a test X(t) = XA(t),β(t) and where A(t) 6= A(s) for any

two nodes t, s along the same branch. At each internal node t the right branch corresponds

to X(t) = 1 and the left branch to X(t) = 0.

The restriction to at most one test per attribute A along any given branch, whereas of

course automatically satisfied in the case of a fixed hierarchy (§§6,8,9), does limit the set of

possible strategies for an extended hierarchy since tests XA,β of varying power are available

for each attribute A. In that case the purpose of this assumption is essentially to simplify

the analysis by guaranteeing that all the tests actually performed are independent.

The leaves (terminal nodes) of T will be labeled in accordance with the answers to the

tests: Every leaf of T is labeled by the subset Ŷ ⊂ Y of compatible patterns that have not

been ruled out by the tests performed by the strategy (along the branch leading to this

leaf). In other words, for any strategy T and leaf s of T , if X (s) denotes the set of tests

along the branch leading to s, we put

Ŷ (s) = Y \
⋃

{X ∈ X (s)|X = 0}.

The random set Ŷ (T ) is then defined by interpreting T as a function of the tests which takes

values among its leaves. However, how the leaves are labeled is irrelevant for the purposes

of defining the testing cost, Ctest(T ), of a strategy; it will only influence the postprocessing

cost Cpost(Ŷ ).

5.5.1 Cost of testing

There are several equivalent definitions of the testing cost of T , another random variable.

One is

Ctest(T ) =
∑

t∈T ◦

c(X(t))1Ht

where Ht is the history of node t - the event that t is reached. This is clearly the same

as aggregating the costs over the branch traversed or adding the costs of all tests per-

formed. Given a probability distribution P on Ω, and in particular P = P0, two equivalent
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expressions for the mean cost are then:

E0Ctest(T ) =
∑

t∈T ◦

c(X(t))P0(Ht)

=
∑

X

c(X)qX(T ) (3)

where

qX(T ) = P0(X performed in T )

=
∑

t∈T ◦

1{X(t)=X}P0(Ht).

Expression (3) is particularly useful in proving some of our results; in §6 we will transform

it into yet another expression that will anchor the analysis there.

5.5.2 Cost of postprocessing

It is natural to define the postprocessing cost in the following, goal-dependent manner:

• Detecting a Special Pattern: Cpost(Ŷ (T )) = c∗1{y∗∈bY (T )} where y∗ is the target pat-

tern;

• Detecting Any Pattern: Cpost(Ŷ (T )) = c∗|Ŷ (T )|.

Here, c∗ is some constant called the unit postprocessing cost.

In the case of a single target pattern, note that this choice of postprocessing cost nat-

urally leads us to disregard any attribute not containing the target y∗ as those tests are

irrelevant to the goal at hand and can only augment the total cost. Consequently, the set of

relevant attributes reduces to a “vine” A1 ⊃ A2 ⊃ . . . ⊃ AL. In this case, choosing a testing

strategy boils down to choosing a subset of these relevant attributes and an order in which

to test for them. If a test returns a null answer the search terminates with the outcome

y∗ 6∈ Ŷ and there is no postprocessing charge; on the other hand, if all the selected tests

respond positively, then y∗ ∈ Ŷ is declared (which still may not be true) and the charge is

c∗. In particular, the testing strategy T itself has in this case the structure of a vine (see

Figure 4). In contrast, in the case of general pattern detection the testing strategies are of

course tree-structured.
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Figure 4: Left: A vine-structured hierarchy of attributes for detecting one pattern. Right: An

example of a vine-structured testing strategy for this hierarchy.

5.5.3 Optimization problem

The total computational cost for the task at hand is Ctest(T ) + Cpost(Ŷ (T )). The corre-

sponding optimization problem, our central focus, is then to find a strategy attaining

min
T∈T

(
E0Ctest(T ) + E0Cpost(Ŷ (T ))

)
(4)

where T is the family of all strategies. We emphasize that in the case of extended hierarchies

we are therefore optimizing over both power and resolution.

5.5.4 Equivalent model with perfect tests

There is an equivalent way to interpret the postprocessing cost which is technically more

convenient. We can think of c∗ as the cost of performing a perfect test (i.e. without errors

under P0) for any individual pattern. Therefore, the postprocessing cost model is formally

equivalent to supposing there is no postprocessing stage, but that no errors (under P0) are

allowed at the end of the procedure, enforced by performing, as needed, some additional,

perfect tests at the end of the search. Since we have assumed that no attribute, and in

particular no singleton {y}, cannot be tested at two different powers along the same branch,

we can incorporate perfect testing into the previous framework simply by adding a final

layer to the original hierarchy A which copies the original leaves, thereby accommodating

a battery of perfect singleton tests having cost c∗. (Conditional independence is actually

maintained since the new tests are deterministic under P0.) We denote by A the resulting
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augmented hierarchy. This formal2 construction allows us include the postprocessing cost

in the testing framework. Furthermore, in the augmented model it is not difficult to show

that for any strategy T there exists a strategy T ′ performing exactly the same tests, but

with the perfect tests performed at the end only, so that the optimization problem is in

fact unchanged by allowing the perfect tests to be performed at any time. In summary,

the equivalent optimization problem is to minimize the amount of computation necessary to

achieve no error under P0 based on the augmented hierarchy.

5.6 Cost of a test

Two models are considered, one in which the costs of the tests are fixed a priori and, in

particular, do not depend on the testing strategy, and one in which the costs can adapt to

the frequency of utilization. In the former case, there are certain natural tradeoffs among

cost, power and invariance:

• At a given cost, power should be a decreasing function of invariance;

• At a given power, cost should be an increasing function of invariance;

• At a given invariance, cost should be an increasing function of power.

5.6.1 Power-based cost

In §6, we will first deal with a generic setting where the test associated to a given attribute

A has power β(A) and cost c(A). In §7 we will use a more specific model reflecting the

tradeoffs among cost, power and invariance mentioned above:

c(XA,β) = Γ(|A|) × Ψ(β) (5)

where the complexity function Γ is sub-additive and the power function Ψ is convex. Con-

sequently, we evaluate the cost of a test much like the merit of a dive in the Olympics:

at any given level of difficulty (Γ), a score (Ψ) is assigned based on performance alone.

For normalization, we can assume that Γ(1) = 1. Then, with the equivalent model where

the postprocessing cost is replaced by “perfect” tests in mind, it is consistent to assume

c∗ = Ψ(1). This multiplicative model is supported (at least roughly) by what is observed

in actual experiments (see section §10).
2Due to this construction there is a slight abuse of notation when identifying an attribute with a subset

of Y, since in the augmented hierarchy we would like (in order to be entirely consistent) to consider some

attributes as distinct although they correspond to the same set {y}. However we will stick to the notation

introduced before to avoid cumbersome changes.
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One special case, treated in §7, is Γ(n) = n, i.e., the complexity is simply the level of

invariance. This case is the least favorable to CTF strategies since, in effect, no “credit”

is given for shared properties among two disjoint attributes A,B ∈ A. If, for instance,

|A| = |B| with A,B disjoint, a test for A ∪ B at a given power β has the same cost as

testing separately for both A or B at power β.

A particular case, treated in (Fleuret 2000) and (Jung 2001), in the setting of a fixed

hierarchy, is to assume c(XA,βA
) = Ψ(βA) for some function Ψ. The model considered here

is more general.

5.6.2 Usage-based cost

In §8-9 we consider a different cost model in which cost of a test can be chosen arbitrarily

depending on the testing strategy and subject to a global resource constraint. The basic

idea is that in some circumstances it might not be efficient to fix the costs of the tests

in advance, regardless of their inherent complexity. It may be more efficient to allow the

utilization of computing resources to be partitioned in accordance with the frequency with

which certain routines are performed, and that frequency will depend on the order in which

the tests are evaluated.

Suppose we have a fixed amount of resources R ≤ 1 to be distributed among the tests

in accordance with a testing strategy T . Let r(X) denote the allocation to test X. We

suppose the cost c(X) of test X is given by c(X) = − log(r(X)). From (3), The cost of

testing is then

E0Ctest(T ) = −
∑

X

log(r(X))qX(T )

subject to the constraint: ∑

X

r(X) ≤ R.

From standard arguments it is clear that for a fixed strategy T , the optimal choice for the

allocation of resources to the tests (i.e., the choice leading to the minimal average testing

cost) is given by choosing r(X) to satisfy

r(X)

R
=

qX(T )

Q(T )
(6)

where

Q(T ) =
∑

X

qX(T ).

Notice that Q(T ) ≥ 1 (if T is not empty) and Q(T ) represents the average number of tests

performed.
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Substituting c(X) = − log(r(X)) = − log((qX(T )R/Q(T ))) into the cost of testing, we

obtain

E0Ctest(T ) = −
∑

X

qX(T ) log(qX(T )) + Q(T ) log(Q(T )/R). (7)

In §8-9, to make the analysis easier we will restrain the optimization of the cost to those

strategies T satisfying the constraint that Ŷ (T ) = Ŷ (X ) (these will be called “complete

strategies” below), thereby allowing one to disregard the postprocessing cost. In that case

the functional to be minimized over the considered strategies is just (7) above.

5.7 Special strategies

In the following sections our main goal will be to determine under what additional hypothe-

ses the optimal strategies are “coarse-to-fine” (CTF).

Definition 2 (Coarse-to-Fine). A strategy T ∈ T is CTF in resolution or just CTF, if

an attribute is tested if and only if each of its ancestors has already been tested and returned

a positive answer. A strategy T ∈ T is CTF in power if, for any two nodes s, t along the

same branch, β(s) ≥ β(t) whenever A(s) ⊂ A(t).

In the case of detecting a single pattern, this simply means that a CTF strategy performs

all the relevant tests in the order of increasing resolution, i.e. XA1
, . . . ,XAL

. For pattern

detection, several different strategies have the CTF property, for instance “breadth-first”

and “depth-first” search. In Figure 5 these two CTF strategies are illustrated in the case of

a hierarchy of depth L = 5 and test outcomes such that Ŷ (Tctf ) = ∅, i.e., no patterns are

verified at all resolutions due to the “null covering” {X3,1 = 0,X4,3 = 0,X4,4 = 0,X4,5 =

0,X4,6 = 0,X3,4 = 0} (writing Xl,k for the k-th test at depth l). Notice that the breadth-

first CTF strategy has the nice feature that the tests are always performed in the order of

nondecreasing depth.

For a fixed hierarchy, all CTF strategies for pattern detection perform exactly the same

tests (although perhaps not in the same order). Whatever the order chosen, in the end,

along any branch of the attribute hierarchy, every test has been performed starting from

the root until the first null answer encountered on this branch. It is therefore possible to

speak of “the” CTF strategy, it being understood that the precise order in which the tests

are performed does not affect the mean cost.

Note: Whereas we do not consider the problem of separating patterns from background

in and of itself (as in (Jung 2001)), it is interesting to observe that the situation is more
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Figure 5: Example of typical CTF strategies. Left: breadth-first; Right: depth-first.

complex in that case since all CTF strategies are not equivalent. Indeed, in any optimal

strategy, testing stops as soon as any complete “1-chain” is found and, consequently, depth-

first CTF strategies are generally optimal, as shown in (Jung 2001).

The probability of performing a test XA in a CTF strategy has a simple expression:

qA(T ) = P0(XA performed in T )

= P0(XB = 1, B ⊃ A,B 6= A)

=
∏

B⊃A

(1 − βB)

Moreover, under the CTF strategy, Ŷ minimizes Cpost(Ŷ (T )), and, in fact,

Ŷ (Tctf ) = Ŷ (X ) a.s. (8)

the set of all “1-chains” in the hierarchy. It follows that the total mean cost of the CTF

strategy is then given by

E0C(Tctf ) =
∑

A∈A

cA

∏

B⊃A

(1 − βB) + E0|Ŷ (X )|.

Still in the case of a fixed hierarchy, it will be useful to delineate all strategies with

property (8).

Definition 3 (Complete Strategies). A strategy T ∈ T is complete if Ŷ (T ) = Ŷ (X ).

The family of complete strategies is denoted by T .

When dealing with the usage-based cost model in §§8,9, in order to simplify the anal-

ysis, we will restrict the set of considered strategies to complete ones; in that case the

postprocessing cost does not have an influence over the optimization problem, and will be
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disregarded.

Remark: Under the hypotheses we have made, for a complete strategy it is possible to

compute explicitly the probability of error under the null hypothesis before the postpro-

cessing step, i.e., to calculate P0(Ŷ 6= ∅). (This is the probability that at least one non-null

pattern is detected when only background clutter is actually observed.) For single-pattern

detection, it is just the probability under P0 that all the tests along the vine respond posi-

tively: P0(Ŷ 6= ∅) =
∏L

k=1(1 − βk) (where βk = P (XAk
= 0)); for detection of all possible

patterns, it is exactly the probability that there exists a “path of ones” leading from the

root of the attribute tree to one of its leaves; given the independence assumption on the

tests under P0, this in turn is exactly the probability of non-extinction of an inhomogeneous

branching process at generation L, which can be computed explicitly once the branching

probabilities (i.e. β(A), A ∈ A) are known.

Finally, for an extended hierarchy X̃ , there are many different, non-cost-equivalent, CTF

strategies depending on the powers chosen for the tests along each branch. Nonetheless,

surprisingly, the optimal CTF strategy can sometimes be precisely characterized, being

CTF in power with, in fact, a unique power assigned to each attribute (see §7).
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INDEX OF NOTATION

Objects:

Y: set of all possible objects or explanations

Y ⊂ Y: true (data-dependent) set of objects

Y = ∅: background explanation

P0(.) = P (.|Y = ∅): the background distribution

Attributes:

A: a grouping of objects (a.k.a. attribute)

A: hierarchy of attributes

A: “augmented” hierachy of attributes (see §5.5.4)
Z(A): coverings of A: ∪A∈Z = Y for all Z ∈ Z(A)

Al, l = 1, ..., L: attributes at level l in tree-structured case

A1: coarsest attribute(s); the root in the tree-structured case: {A1} = A1

Tests:

X: binary random variable

σ(X) ∈ A: scope of X

β(X) ∈ [0, 1]: power of X

c(X) ∈ [0,∞): cost of X

c(X) = Γ(σ(X)) × Ψ(β(X)): power-based cost

Γ: increasing, subadditive complexity function

Ψ: increasing, convex power function: Ψ(0) = 0,Ψ(1) = 1

XA,β: test with scope A and power β

X (A): family of tests indexed by A; “fixed hierarchy”

β(A): power of XA

c(A): cost of XA

Strategies:

T : labeled binary tree

A(s): scope of the test at interior node s of T

β(s): power of the test at s

Ŷ (t): surviving explanations at exterior node t of T

Ŷ (T ): detected set of objects (surviving explanations) after testing

qX(T ): probability of performing X in T under P0

C(T ) = Ctest(T ) + Cpost(T ): total cost:

Ctest(T ): sum of the costs of the tests perfomred in T

Cpost(T ): postprocessing cost c∗|Ŷ (T )|
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6 Optimal Strategies for Fixed Costs and Powers

Throughout this section we assume a fixed test hierarchy X = {XA, A ∈ A} and we write

c(A), β(A) for the cost and power, respectively, of XA. We will then refer to “testing an

attribute A” or “attaching an attribute” to a node of T without ambiguity. Our goal is to

identify conditions (tradeoffs) involving {c(A), β(A), A ∈ A} under which optimal strategies

may be characterized.

For parts of this section it will be easier to actually consider the equivalent model with

perfect tests en lieu of the postprocessing cost, as described in §5.5.4. From here on, A
will denote the augmented hierarchy, and the considered strategies T for A will satisfy the

no-error constraint. In other words, in the augmented model, when the strategy ends, all

patterns y ∈ Y must have been covered by at least one test which has been performed and

returned 0 (again, it may be one of the perfect, artificial tests representing postprocessing).

We start this section with a fundamental formula for the average cost E0C(T ) that will

useful for all of the results to follow.

6.1 Reformulation of the cost

As just pointed out, in the augmented hierarchy model, strategies must find a way to “cover”

all patterns with attributes whose associated test is negative. Therefore the notion of

covering will play a central role in the analysis to come, motivating the following definitions:

Definition 4 (Covering). A set of attributes Z ⊂ A is a covering if

⋃
{A,A ∈ Z} = Y.

The set of coverings for the augmented hierarchy A is denoted Z(A).

Definition 5 (Tested Attributes). For a given strategy T , denote by X (T ) the (random)

set of attributes tested by T , and by X0(T ) the set of attributes in X (T ) for which the

corresponding test returned the answer 0, called the zero set of T .

Of course, the no-error constraint for a strategy T now reads simply: X0(T ) is (a.s.) a

covering. We now turn to an important formula:

Lemma 1 (Cost Reformulation). For any (no-error) strategy T for the augmented hi-

erarchy A:

E0C(T ) =
∑

Z∈Z(A)

(
P0(X0(T ) = Z)

∑

A∈Z

c(A)

β(A)

)
. (9)
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Proof. For any attribute A ∈ A, let λA(T ) = P0(A ∈ X0(T )) and let qA(T ) = P0(XA performed by T ).

Note that we have two useful expressions for λA(T ):

λA(T ) =
∑

Z∈Z(A),
Z∋A

P0(X0(T ) = Z); (10)

and

λA(T ) = P0(A ∈ X (T ),XA = 0) = P0(A ∈ X (T ))P0(XA = 0) = qA(T )β(A), (11)

where the second equality comes from the fact that the event that A is performed by T

only depends on the values of tests for other attributes, and is thus independent of XA by

the independence assumption.

Now recalling expression (3) we have

E0C(T ) =
∑

A∈A

c(A)qA(T )

=
∑

A∈A

c(A)

β(A)
qA(T )β(A)

=
∑

A∈A

c(A)

β(A)
λA(T )

=
∑

A∈A

c(A)

β(A)

∑

Z∈Z(A),
Z∋A

P0(X0(T ) = Z)

=
∑

Z∈Z(A)

(
P0(X0(T ) = Z)

∑

A∈Z

c(A)

β(A)

)
.

This lemma combines two straightforward observations. First, the cost “generated” by

a specific attribute A using strategy T can be written as

c(A)P0(A ∈ X (T )) =
c(A)

β(A)
P0(A ∈ X (T ))P0(XA = 0) =

c(A)

β(A)
P0(A ∈ X0(T )). (12)

Second, the sum over attributes of the last expression can be reformulated as a sum over

coverings (using the no-error property). Note in particular that (12) above has the following

interpretation: As far as average cost is concerned, it is equivalent to i) pay the cost c(A)

every time test XA is performed or ii) pay the cost c(A)/β(A) when XA is performed and

and returns the answer 0 but pay nothing otherwise.

Note also that the lemma implies that the average cost E0C(T ) is therefore a convex

combination of the quantities
∑

A∈Z
c(A)
β(A) for Z ∈ Z(A).
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6.2 Detecting one special pattern

Recall this corresponds to the case where the set of attributes has the structure of a vine

(see Figure 4). We can imagine two broad scenarios: In one case, there is really only one

pattern of interest, and hence no issue of invariance other than guaranteeing that every test

is positive whenever Y = y∗. Imagine, for example, constructing a sequence of increasingly

precise “templates” for a given shape, in which case both power and cost would typically

increase with precision. In another scenario, one could imagine utilizing a hierarchy of tests

originally constructed for multiple patterns in order to check for the presence of a single

pattern y∗. Clearly, only one particular branch of the hierarchy is then relevant, namely

the branch along which all the attributes contain y∗. Obviously, such tests would typically

be less dedicated to y∗ than in the first scenario, except at the final level. In either case the

natural framework is a sequence of tests, say Xℓ for attributes Aℓ, with costs cℓ and powers

βℓ for ℓ = 1, ..., L, and the natural background measure is conditional on Y 6= y∗. Also, it

is simpler here to consider the augmented hierarchy setting, so that we assume that there

is a test at level L + 1 with βL+1 = 1, cL+1 = c∗.

The important quantity is the cost normalized by the power: { cℓ

βℓ
}. Let n(ℓ), ℓ =

1, ..., L + 1, denote the ordering of these ratios:

cn(1)

βn(1)
≤

cn(2)

βn(2)
≤ · · · ≤

cn(L+1)

βn(L+1)
. (13)

Since we are in the setting of the augmented hierarchy, there exists a distinguished index

ℓ∗ corresponding to the perfect test, for which cn(ℓ∗) = c∗, βn(ℓ∗) = 1.

Theorem 1. The optimal strategy for detecting a single target pattern is to order the

tests in accordance with (n(1), n(2), ..., n(ℓ∗)), i.e., perform Xn(1) first, then Xn(2) whenever

Xn(1) = 1, etc., and stop with Xn(ℓ∗). The tests Xn(k) for k > ℓ∗ are never performed.

Note that the last test, Xn(ℓ∗), is the perfect one, and always returns the answer 0 under

P0. Reinterpreted in the original model, this would mean that if Xn(ℓ∗−1) is reached in

the strategy and returns answer 1, then the testing procedure ends and the postprocessing

stage is performed.

This theorem is a consequence of a straightforward recursion (proof omitted) applied to

the following lemma:

Lemma 2. There exists an optimal strategy for which the first test performed is Xn(1).

Proof. Let T be some strategy performing the tests in the order n′(1), n′(2), . . . , n′(k∗) (for

some k∗ ≤ L + 1, with n′(k∗) = n(ℓ∗) = L + 1). Assume n′(1) 6= n(1) and consider strategy
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T0 obtained by “switching” Xn(1) to the first position, i.e. performing Xn(1) first, and

then whenever Xn(1) = 1 continuing through strategy T normally except if an index i is

encountered for which n′(i) = n(1), in which case Xn(1) is not performed again, but just

skipped.

Compare the costs of T and T0 using equation (12): clearly the mean cost of these

strategies is a convex combination of the (cℓ/βℓ), ℓ = 1, . . . , L + 1, since
∑L+1

ℓ=1 P (Aℓ ∈
X0(T )) = 1 in the single pattern case. More explicitly,

P (Ak ∈ X0(T )) = βk

∏

ℓ:n′(ℓ)<n′(k)

(1 − βℓ)

with the corresponding formula for T0. From this formula it is clear that the weight for the

ratio cn(1)/βn(1) is higher in T0 than in T , while all the other weights either are smaller or

stay the same (depending whether the corresponding tests were placed before or after Xn(1)

in T ). Since cn(1)/βn(1) is the smallest of the ratios, the average cost of T0 is lower than the

cost of T .

6.3 Detecting any pattern

Our goal is to determine conditions under which (4) is minimized by the CTF strategy.

First, we consider a simple sufficient condition which guarantees that the optimal strategy

is complete, meaning T ∈ T . (Recall that T ∈ T if Ŷ (T ) = Ŷ (X ); in other words, testing

is halted if and only if all “1-chains” in X are determined.) This condition is by no means

necessary since we will prove the optimality of the CTF strategy (which belongs to T ) under

a much weaker condition, but is however informative.

Proposition 1. If for any attribute A ∈ A,
cA

βA
≤ c∗, then the optimal strategy must belong

to T .

Proof. Let T be an optimal strategy and let s denote a leaf of T . Recall that X (s) is the

set of tests along the branch terminating in s and Ŷ (s) = Y \⋃{XA ∈ X (s)|XA = 0}. The

expected cost of T is then of the form

E0C(T ) = C + psc
∗|Ŷ (s)|, (14)

where ps is the probability of reaching s and the second term is the contribution to the mean

postprocessing cost at leaf s. In general Ŷ (X ) ⊂ Ŷ (s), and if these sets do not coincide

(possibly empty in the case of a null covering), then, by definition, there must be a test
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XA /∈ X (s) for which A ∩ Ŷ (s) 6= ∅. Consider the strategy T ′ obtained by adding this test

to T at node s. Then

E0C(T ′) = C + ps

[
cA + βAc∗|Ŷ (s) \ A| + (1 − βA)c∗|Ŷ (s)|

]
(15)

Since |Ŷ (s)| − |Ŷ (s) \ A| ≥ 1 it follows easily from the hypothesis, (14) and (15) that

E0C(T ) − E0C(T ′) > 0 which contradicts the optimality of T .

We now turn to the problem of optimality of CTF strategies. The method of proof

used in §6.1, although very simple in that case, will still serve as a template for most of

the results to come. More precisely, under different assumptions about the models, we will

always try to first establish the following property denoted (CF) for “coarsest first”:

Definition 6 ((CF) Property). There exists an optimal strategy for which the first test

performed is the coarsest one.

In most cases, we will establish the optimality of Tctf as a consequence of (CF) for the

various models considered. The current model – fixed, power-based cost – is the simplest

and allows us to present the main ideas behind the arguments based on the (CF) property

– a recursion based on “subhierarchies” and the concept of a “conditional strategy”. As

always, A is a nested hierarchy of attributes.

Definition 7 (Subhierarchy). We call B ⊂ A a subhierarchy of A if there exists an

attribute B0 ∈ A such that

B = {A ∈ A|A ⊆ B0} .

More specifically, we call B the subhierarchy rooted in B0 and we refer to B0 as the set of

patterns spanned by B, also denoted YB.

Definition 8 (Conditional strategy). Let A1 be the root of A and B be the subhierarchy

of A rooted in one of the children of A1. Then A can be written as a disjoint union

A = {A1}
·∪ B ·∪ B. Let xB be a set of numbers in {0, 1} indexed by B. Consider a testing

strategy T for A. The conditional strategy TB(xB) on subhierarchy B is defined as follows:

For every internal node t of T ,

• If X(t) is a test for an attribute B ∈ B, leave it unchanged;

• If X(t) = XA1
, cut the strategy subtree rooted at t and replace it by the right subtree

of t;
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• If X(t) is a test for an attribute A ∈ B, cut the strategy subtree rooted at t and replace

it by the right subtree of t if xA = 1, and by the left subtree of t if xA = 0.

Finally, relabel every remaining leaf s by Ŷ (s) ∩ YB.

This rather involved definition simply says that TB(xB) is the testing strategy on sub-

hierarchy B obtained from T when XA1
= 1 and the answers to XB = {XB , B ∈ B} are

fixed to be xB, and T is pruned accordingly. An obvious but nevertheless crucial observa-

tion is that TB(xB) is indeed a valid testing strategy for the subset of attributes B and the

corresponding subset of patterns YB.

Theorem 2. If property (CF) holds for any subhierarchy B of A (including A itself), then

the CTF strategy is optimal.

Proof. The proof is based on a simple recursion. Let L be the depth of A. The case L = 1

is obvious from the (CF) property. Suppose the theorem is valid for any L < L0 with

L0 ≥ 2. Now consider the case L = L0.

Let T be an optimal testing strategy. From the (CF) property, we can assume that

the test at the root of T is XA1
, the attribute at the root of A. Denote by B1, . . . ,Bk

the subhierarchies rooted at the children of A1, which are of depth at most L0 − 1. Since

A = {A1}
·∪ B1

·∪ . . .
·∪ Bk (a disjoint union), we can partition the cost of T as follows:

E0C(T ) =
∑

A∈A

qA(T )cA + E0c
∗|Ŷ (T )|

= qA1
(T )cA1

+
∑

A∈B1

qA(T )cA + E0c
∗|Ŷ (T ) ∩ YB1

| + . . .

+
∑

A∈Bk

qA(T )cA + E0c
∗|Ŷ (T ) ∩ YBk

|. (16)

Let us focus on the first sum. Consider the conditional strategy T (1) = TB1
(xB1

) and

let qA(T (1);xB1
) be the probability (under P0) of performing the test for A ∈ B1 using

T (1). The tests {XA, A ∈ B1} are conditionally independent given {XB1
= xB1

,XA1
= 1},

with powers {βA, A ∈ B1}. By the recurrence hypothesis, we can apply the theorem to

subhierarchy B1 and conclude that the cost of strategy T (1) satisfies,

E0

[
C(T (1))|XB1

= xB1

]
=
∑

A∈B1

cAqA(T (1);xB1
) + E0

[
c∗|Ŷ (T ) ∩ YB1

|
∣∣∣XB1

= xB1
,XA1

= 1
]

≥ E0C(T
(1)
ctf ), (17)
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where T
(1)
ctf is the CTF strategy for hierarchy B1. Now, by construction of the conditional

strategy, and denoting β1 the power of test XA1
,

∀A ∈ B1, E0qA(T (1);xB1
) = P0[XA performed by T |XA1

= 1] = qA(T )(1 − β1)
−1,

where of course the expectation is over the possible values of xB1
, and the last equality

holds beccause XA1
is the first test to be performed in T . Similarly, we have

E0

[
E0

[
c∗|Ŷ (T ) ∩ YB1

|
∣∣∣XB1

,XA1
= 1
]∣∣∣XA1

= 1
]

= E0

[
c∗|Ŷ (T ) ∩ YB1

|
∣∣∣XA1

= 1
]

= E0

[
c∗|Ŷ (T ) ∩ YB1

|
]
(1 − β1)

−1.

Therefore, taking expectations in (17) we obtain

E0[C(TB1
(XB1

))] = (1 − β1)
−1



∑

A∈B1

cAqA(T ) + E0c
∗|Ŷ (T ) ∩ YB1

|


 ≥ E0C(T

(1)
ctf ).

Applying the same reasoning to the other terms of (16), we now obtain

E0C(T ) ≥ cA1
qA1

(T ) + (1 − β1)E0

[
C(T

(1)
ctf ) + . . . + C(T

(k)
ctf )

]
.

Finally, the righthand side is precisely the total cost of the CTF strategy for A. Therefore

the CTF strategy is optimal.

We now give a sufficient condition ensuring the (CF) property:

Theorem 3. Let A1 be the coarsest test. Then the (CF) property holds under the following

condition:
c(A1)

β(A1)
≤ inf

Z∈Z(A)

∑

A∈Z

c(A)

β(A)
.

Corollary 1. Consider the augmented hierarchy A as a tree structure (the original hierarchy

A can then be seen as the set of internal nodes of A). For any A ∈ A, let C(A) be the set

of direct children of A in A. Then the CTF strategy is optimal if the following condition is

satisfied:

∀A ∈ A,
c(A)

β(A)
≤

∑

B∈C(A)

c(B)

β(B)
. (18)

Proof of the theorem. For this proof, it is easier to work with the “augmented” model put

forward in section 5.5.4. Let T be a testing strategy for A such that the first attribute to be

tested is not the coarsest attribute A1. From T , construct the strategy T0 by “switching”
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test XA1
to the root, i.e., perform XA1

first, and when the result is 1, proceed normally

through strategy T , except when test XA1
is encountered in T , in which case it is not

performed again and one jumps directly to its right child (corresponding to XA1
= 1 in the

original T ).

Now compare the means cost of T and T0 using formula (9). Similarly to the proof

of Lemma 2, we will prove that in the convex combination defining the cost in (9), the

weight of the term c(A1)/β(A1) is higher in T0 than in T , while the weights of all the other

terms of the form (
∑

A∈Z c(A)/β(A)) are smaller or stay unchanged for all other coverings

Z ∈ Z(A). This together with the hypothesis of the theorem establishes property (CF).

To verify the above statements about the weights of the different coverings, first call

the “covering support” CS(T ) of a strategy T the set of coverings Z ∈ Z(A) such that

P0(X0(T ) = Z) 6= 0. It is clear from the construction of T0 that CS(T0) ⊂ CS(T )∪{{A1}}.
Therefore we can restrict the analysis to the coverings in Z0 = CS(T ) ∪ {{A1}}.

Note that CS(T ) is in one-to-one correspondence with the set of leaves of T having

non-zero probability to be reached; for any Z ∈ CS(T ), P (X0(T ) = Z) is precisely the

probability to reach the leaf sT (Z) of T associated with the covering Z. Along the branch

leading to this leaf one finds all the events {XA = 0} for A ∈ Z, along with a number of

other events {XA = 1} for A in a certain set X1(sT (Z)). Therefore this probability is of the

form

P0(X0(T ) = Z) = P0(sT (Z) is reached ) =
∏

A∈Z

βA

∏

A′∈X1(sT (Z))

(1 − β(A′)).

Now with this formula in mind, any Z ∈ Z0 falls into one of the following cases:

• Z = {A1}, in which case obviously P0(X0(T0) = Z) ≥ P0(X0(T ) = Z);

• A1 ∈ Z but Z 6= {A1}, in which case P0(X0(T0) = Z) = 0;

• A1 6∈ Z and A1 6∈ X1(sT (Z)), in which case P0(X0(T0) = Z) = (1−β1)P0(X0(T ) = Z);

• A1 6∈ Z and A1 ∈ X1(sT (Z)), in which case P0(X0(T0) = Z) = P0(X0(T ) = Z).

Together, these different cases prove the desired property: {A1} is the only covering having

higher weight in the cost of T0 than in the cost of T .

Corollary 1 follows immediately: Its hypothesis clearly implies that the hypothesis of

Theorem 3 is satisfied for any subhierarchy of A and the conclusion then follows from

Theorem 2.
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Note that, in contrast to what happened in the case of single target detection, con-

dition (18) falls short of being a necessary condition for ensuring the optimality of CTF

strategies. To obtain a counterexample, consider the case of a depth 2 hierarchy with a

coarsest attribute A1 and two children B1, B2, and suppose that c∗ is large enough so that

the condition of Proposition 1 is satisfied, so that we may restrict our attention to complete

strategies. Then one can show (by explicitly listing all possible strategies) that the CTF

strategy is optimal iff

c(A1)

β(A1)
≤ inf

(
c(B1)

β(B1)β(B2)
+

c(B2)

β(B2)
,
c(B1)

β(B1)
+

c(B2)

β(B1)β(B2)

)
.

Clearly this condition is weaker than (18).

Application to the power-based cost model: We can now look at the consequences of

these results if we assume the cost model given by (5), in which case the following Corollary

is straightforward:

Corollary 2. Assume the cost of the attribute tests obeys the model given by (5), with Γ

subadditive and Ψ(x)/x is increasing. Then the CTF strategy is optimal for any hierarchy

A for which β(A) ≤ β(B) whenever B ⊂ A. In that case, the optimal strategy is CTF in

both resolution and power.

Similarly, in the case of detecting a single pattern of interest, if we assume Γ ≡ 1, the

CTF strategy is optimal when Ψ(x)/x is increasing, a result that was already proved in

(Fleuret 2000).

6.4 Simulations with an elementary dependency model

We also performed limited simulations in the case where the tests are not independent

under P0 but obey a very simple Markov dependency structure. Suppose the power of

the coarsest test is β0; the powers of subsequent tests follow a first-order Markov model

depending on their direct ancestor. More precisely, the probability that a test returns 0 is

γ (resp. λ) given that his father returned 0, (resp. 1) with γ ≥ λ. The cost model used is

the multiplicative cost model given c(XA,β) in (5), with β the average power of the test.

We performed experiments for a set of 4 patterns and a corresponding depth 3 dyadic

hierarchy, comparing the cost of the CTF strategy to the best cost among a set of 5000

randomly sampled strategies. In our experience, due to the restrained size of the problem,

when there are in fact strategies better than CTF one, then this is usually detected in the

simulation.
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What we found was that, for a given value of γ and λ, the CTF strategy is generally

optimal when β1 ≤ λ (for various choices of the power function Ψ). However, when β1

becomes too large, then the CTF strategy is not any longer optimal. Heuristically, this

is because the coarse questions are then more powerful but also much too costly. The

limiting value of β1 for which CTF is optimal does not appear to be equal to the value

β∗ = λ/(1 + λ− γ), the invariant probability for the Markov model. In particular there are

cases where λ < β1 ≤ β∗, (meaning that the average powers are increasing with depth) and

yet CTF is not optimal.

To conclude, these very limited simulations seem to suggest that, even though the op-

timization problem is already somewhat complex even with a simple dependency structure

and leads to challenging questions, still the optimality of CTF strategies can be expected

to persist over a fairly wide range of models.

7 Optimal Strategies for Power-Based Cost and Variable Pow-

ers

7.1 Model and motivations

In this section we only consider searching for all possible patterns. The previous section

dealt with a fixed hierarchy – a single test XA at a given power β(A) for each A ∈ A . Now

suppose we can have, for each A ∈ A, tests of varying power; of course, a more powerful test

at the same level of invariance will be more expensive. (In §10 we illustrate this tradeoff for

a particular data-driven construction.) In fact, for each attribute A ∈ A, we suppose there

is a test for every possible power, whose cost is determined as follows:

Cost Model: Let Ψ : [0, 1] → [0, 1] be convex and strictly increasing with Ψ(0) = 0

and Ψ(1) = 1 and let Γ : N
∗ → R+ be sub-additive, with Γ(1) = 1. We suppose

c(XA,β) = c(A, β) = c × Γ(|A|) × Ψ(β). (19)

Recall that the total cost of a strategy T is given by

Ctest(T ) + c∗|Ŷ (T )|.

The constant c in (19) represents the cost of a P0-perfect test for a single pattern and the

constant c∗ represents the cost per pattern of disambiguating among the patterns remaining

after detection. Evidently, only the ratio c/c∗ matters. We are going to assume that c∗ =
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c = Ψ(1) = 1; note that this choice coheres with the formal interpretation of postprocessing

cost as the cost of “errorless testing” put forward in §5.5.4.
For the rest of this section, we will implicitly adopt this point of view, i.e. replacing

effective postprocessing cost by formal perfect tests corresponding to an additional layer

of formal attributes copying the original leaves (this formal doubling of the leaf attributes

allows to keep untouched the rule that no attribute can be tested twice). For these special

tests only, the power cannot be chosen arbitrarily and is fixed to 1; and the strategies

considered must make no errors, enforced by performing at the end of the search some of

these perfect tests if needed.

We are going to focus primarily on the case Γ(k) = k. Consequently,

c(XA∪B,β) = c(XA,β) + c(XB,β), when A ∩ B = ∅. (20)

This is, in effect, the choice of Γ least favorable to CTF strategies since there is no savings in

cost due to shared properties among disjoint attributes. For instance, in practice, it should

not be twice as costly to build a test at power β for the explanation {E,F} as for {E} or

{F} separately at power β, since (upon registration) these shapes share many “features”

(e.g., edges; see §10). Nonetheless, with this choice of Γ the convexity assumption can now

be justified as follows:

Motivation for Convexity: As usual, two tests for disjoint attributes are independent

under P0. Consider the following situation: For A and B disjoint, first test A with power

β1 and stop if the answer is positive (XA = 1); otherwise, test B with power β2 and stop.

This produces a randomized, composite test for A ∪ B with power β1β2 and (mean) cost

|A|Ψ(β1) + β1|B|Ψ(β2).

Contrast this with directly testing A ∪ B with power β1β2, which should not have greater

cost than the composite test since, presumably, we have already selected the “best” tests

at any given power and invariance; see §10 for an illustration. Under our cost model, this

implies

(|A| + |B|)Ψ(β1β2) ≤ |A|Ψ(β1) + β1|B|Ψ(β2). (21)

Demanding (21) for any two attributes implies (by letting |A|/|B| → 0) that we should have

Ψ(β1β2) ≤ β1Ψ(β2). (22)

(Conversely, it is easy to see that if (22) is satisfied, then (21) holds for any |A|, |B|.) Since

we want (22) to hold for any β1, β2 ∈ [0, 1] we see (after dividing by β1β2) that (22) implies
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that Ψ(x)/x is an increasing function. In our model, we make the stronger hypothesis that

Ψ is convex in order to simplify the analysis.

Remark on Independence: It would be irrealistic to assume the independence of all

the tests in the extended hierarchy X̃ were independent, rather than for families corre-

sponding to different attributes. If it were the case, then near-perfect detection would be

possible in the sense of obtaining arbitrarily low cost and error by performing enough cheap

tests of high invariance. This is easy to see in the case in which Ψ′(0) = 0:

Example: Let A = Y, the coarsest attribute, and suppose {XA,βj
, j = 1, 2, ...} are inde-

pendent with βj ց δ. Consider the vine-structured testing strategy Tn which successively

executes XA,βj
, j = 1, 2, ...n, stopping (with label Ŷ (Tn) = ∅) as soon as a null response is

found and otherwise yielding Ŷ (T ) = Y. Then

P0(Ŷ (Tn) = Y) =

n∏

j=1

(1 − βj) ≤ (1 − δ)n

and

E0Ctest(Tn) = c(XA,β1
) + (1 − β1)c(XA,β2

) + · · · +
n−1∏

j=1

(1 − βj)c(XA,βn
)

≤ c(XA,β1
)


1 +

n−1∑

i=1

i∏

j=1

(1 − βj)




≤ |Y|Ψ(β1)

[
1 +

n−1∑

i=1

(1 − δ)i

]

≤ |Y|Ψ(β1)

δ
.

Since Ψ(δ)/δ → 0, given ǫ > 0, we can choose n such that P0(Ŷ (Tn) 6= ∅) < ǫ and

E0C(Tn) = E0Ctest(Tn) + E0|Ŷ (Tn)| < ǫ.

7.2 Basic results

In the sequel, Ψ∗ will denote the Legendre transform of Ψ:

Ψ∗(x) = sup
β∈[0,1]

(xβ − Ψ(β))

40



In addition, for any a > 0, define:

Ψ∗
a(x) = aΨ∗

(x

a

)
;

Φa(x) = x − Ψ∗
a(x).

7.2.1 Optimal power selection

Consider partially specificing a strategy T by fixing the attribute A to be tested at each

(internal) node but not the power. What assignment of powers (to the non-perfect) tests

minimizes the average cost of T ? As with dynamic programming, it is easily seen that the

answer is given as follows: Start by optimizing the powers of the last, non-perfect tests

performed along each branch (since the left and right subtrees of such a node have fixed,

known cost), and then climb recursively up each branch of the tree, optimizing the power

of the parent at each step. The actual optimization at each step is a simple calculation,

summed up by the following lemma:

Lemma 3. Consider a (sub)strategy T consisting of a test XA,β at the root, a left subtree

TL of average cost x and a right subtree TR of average cost y. Let Γ(|A|) = a. Then, under

the cost model (19), the average cost of T using the optimal choice of β is given by

E0C(T ) = y − Ψ∗
a(y − x) = x + Φa(y − x). (23)

In particular, if TL is empty, then x = 0 and E0C(T ) = Φa(y). If Ψ is differentiable, the

optimal choice of β is:

β∗ =





(Ψ′)−1((y − x)/a) if (y − x)/a ∈ Ψ′([0, 1]);

0 if (y − x)/a < Ψ′(0);

1 if (y − x)/a > Ψ′(1).

More generally, Ψ admits (y − x)/a as a subgradient at point β∗.

Proof. Let T (β) denote the strategy using power β, and calculate the average cost of T (β)

as a function of β, x, y, a:

E0C(T (β)) = c(XA,β) + βx + (1 − β)y

= aΨ(β) + β(x − y) + y

= y − a

((
y − x

a

)
β − Ψ(β)

)
.

Now minimizing over β leads directly to (23), and the formulae for β∗, using the definitions

of Ψ∗ and Ψ∗
a.
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7.2.2 Properties of the CTF strategy

In previous sections, with fixed powers, all variations on CTF exploration (e.g., depth-first

and breadth-first) had the same average cost, and hence we spoke of “the” CTF strategy.

With variable powers the situation might appear different: The bottom-up optimization

process in §7.2.1 for assigning the powers may lead to different mean costs for different

CTF strategies. More specifically, recall that A(s), β(s) denote the attribute and power

assigned to an internal node s in a tree T . For CTF trees, it may be that β∗(s), the optimal

power at s, may depend on the position of s within T as well as A(s).

The following theorem states that, in fact, as in the fixed powers case, among CTF

strategies, the order of testing is irrelevant when the powers are optimally chosen. More

precisely, the optimal power of a test depends only on the attribute being tested, specifi-

cally on the structure of the subhierarchy rooted at the attribute. Consequently, in CTF

strategies, a given attribute will always be tested at the same power, which means that CTF

designs can be implemented by constructing only one test per attribute – a considerable

practical advantage.

Theorem 4. For any CTF strategy T , and for any two nodes s, t in T with A(s) = A(t), the

optimal choices of powers are identical: β∗(s) = β∗(t). In fact, the unique power assigned

to an attribute A ∈ A depends only on the structure of subhierarchy B(A) rooted in A. As

a consequence, all CTF strategies have the same average cost.

Whereas the principle of the proof is simple (a recursion on the size of A), it does require

some auxiliary notation, and hence we postpone it to the appendix.

Turning to the cost of the CTF strategy, it can easily be computed recursively for regular

attribute hierarchies and the simple complexity function Γ(k) = k. More precisely we have

the following proposition for dyadic hierarchies, in which β∗
ℓ (L) denotes the optimal power

for the 2ℓ−1 attributes at level ℓ = 1, ..., L for a hierachy of total depth L:

Theorem 5. Let CL denote the average CTF cost of a regular, complete dyadic hierarchy

of depth L. Then:

CL+1 = Φ2L (2CL) (24)

with (formally) C0 = Ψ(1)/2. Furthermore,

CL/2L−1 ց Ψ′(0), L → ∞

and

β∗
1(L) ց 0, L → ∞. (25)
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Finally,

β∗
ℓ (L) = β∗

1(L − ℓ + 1), ℓ = 1, ..., L, (26)

from which it follows that the CTF strategy is CTF in power, i.e., power increases with

depth.

Proof. Consider a (complete, dyadic) hierarchy of depth L + 1. The coarsest attribute

has cardinality |A1| = 2L and the (optimized, breadth-first) CTF strategy starts with the

corresponding test. If XA1
= 0, the search is over; if not, it is necessary to pay the mean

cost for the two subhierarchies of depth L. We thus apply formula (23) with x = 0, y = 2CL

to obtain (24). When L = 1 (one pattern), it is easy to check that we retrieve the right

value of C1 from formula (24) with C0 = Ψ(1)/2 by noting that, in this case, y = Ψ(1),

which is the cost of a perfect test.

Let UL = CL/2L−1. Then (24) can be rewritten as

UL+1 = Φ1(UL),

which allows us to study the asymptotic behavior of UL when L is large based on the

function Φ1(x) = x − Ψ∗(x). Since Ψ is convex, it follows that Ψ(β)
β

is increasing, and

hence xβ − Ψ(β) ≤ 0 for all 0 ≤ β ≤ 1 (with equality at β = 0) whenever 0 ≤ x ≤ Ψ′(0).

Consequently, Ψ∗(x) = 0 and Φ1(x) = x for x ∈ [0,Ψ′(0)]. Similarly, Φ1(x) < x for

x > Ψ′(0). We have U0 = Ψ(1) ≥ Ψ′(0) because Ψ is convex, and hence since Φ1 is

concave, UL ց Ψ′(0) as L → ∞. Finally, from Lemma 3 we can also conclude that

β∗
1(L) = (Ψ′)−1(UL ∧ Ψ′(1)). The last assertion (26) of the theorem follows directly from

theorem 4.

Remarks:

• We deduce from the above results that if Ψ′(0) = δ > 0, we have CL ∼ δ2L−1. If,

on the other hand, Ψ′(0) = 0, then CL = o(2L−1). This should be compared to the

strategy of performing only (all) the perfect tests, which costs 2L−1.

• Since the optimal powers are increasing with depth, if we now consider them as fixed

we are in the framework of Corollary 2 ensuring that, for these choices of powers, the

CTF strategy is indeed optimal.

• Finally, note that the cost of individual tests (with optimal powers) may not vary

monotonically with their depth; however, the cumulated cost of all tests at a given

depth is increasing with depth.
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T1

Cost: x

0

T2

Cost: y

0

T1

Cost: x

T2

Cost: y

0XA XA

XB XA

XB1 1

1

Figure 6: The context of the switching property. Attribute A1 is the coarsest attribute in the

hierarchy; hence Γ(|B|) = b < Γ(|A1|) = a.

7.3 Is the CTF strategy optimal?

We have not able to prove the optimality of the CTF strategy under general conditions on

Ψ, but rather only for one specific example. This is disappointing because the simulations

presented later in this section strongly indicate a more general phenomenon.

If we try to follow our usual method for proving optimality, it turns out that the most

difficult step is actually to prove the (CF) property. Under the (CF) property, the optimality

of CTF would readily follow – it suffices to follow the lines of the proof of theorem 2 with

minor adaptations, mainly replacing families (XA)A∈B by (XA,β)A∈B,β∈[0,1].

One way to prove the (CF) property is to proceed iteratively, repeatedly applying the

“switching property”:

Definition 9 (Switching property). A power function Ψ has the switching property if

any (sub)tree T of the form shown on the lefthand side of Figure 6, with any powers, has a

larger mean cost than the tree obtained by switching the two first tests of T (shown on the

righthand side of Figure 6), with optimal powers. Using Lemma 3, this inequality may be

expressed as follows:

∀y ≥ x ≥ 0,∀a ≥ b ≥ 0, Φa(x + Φb(y − x)) ≤ Φa(x) + Φb(Φa(y) − Φa(x)). (27)

We then have the following lemma:

Lemma 4. The (CF) property is implied by the switching property.

Proof. Note first that we can assume that XA1
, the coarsest test, is performed at some

point (at some power) along every branch of any T . If this is not the case, it can simply
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be added, with zero power, at the end of any branch where it does not appear without

changing the cost. Now let T be a strategy such that XA1
is not performed first. Apply the

switching lemma to any subtree of T of the form shown on the lefthand side of Figure 6. In

this way, XA1
is pushed up in the tree while reducing the cost. This can be done repeatedly

until no such subtree exists, i.e., the situation depicted in Figure 6 does not occur anywhere

in T . But then the resulting tree must have XA1
at the root. Otherwise, let k be the

maximum depth in T were XA1
appears, and let s the corresponding node. Let s′ be the

direct sibling of s, which exists since k > 1. Consider a branch b containing s′. Since XA1

is performed along any branch, it must be performed somewhere in b, say at node t. But t

cannot be an ancestor of s′, since otherwise XA1
would be performed twice along branch b,

a contradiction. Nor can t be a descendant of s′, since that would contradict the definition

of k. Therefore XA1
is performed at s′, which contradicts the assumption that there is no

subtree of the form shown on the left of Figure 6. This concludes the proof.

From numerical experiments, we know however that the switching property is not sat-

isfied for an arbitrary (convex) power function Ψ. Whereas we believe that it should be

possible to prove the switching lemma under some additional conditions on Ψ, we have so

far only been able to prove it for one case we refer to as the “harmonic” cost function:

Ψ(x) = 2 − 2
√

1 − x − x (28)

which we now investigate.

7.4 CTF optimality for the harmonic cost function

Throughout this section Ψ is given by (28). This function has the following properties:

• Ψ is convex and increasing;

• Ψ(0) = Ψ′(0) = 0 and Ψ(1) = 1, Ψ′(1) = ∞;

• Ψ∗(x) = x − x
x+1 ; Φa(x) = ax

x+a
= (x−1 + a−1)−1.

Note that x and a have symmetric roles in Φa, and that Φa(x) is the “harmonic sum” of x

and a.

We first study the switching lemma in the case of an empty left subtree TL.

Lemma 5. Consider two tests XA and XB with Γ(|A|) = a and Γ(|B|) = b. Let TAB be

the tree shown on the righthand side of Figure 6 with T1 = ∅ and let TBA have the same

structure with XA and XB reversed. Then, with the optimal assignment of powers to XA

and XB, both TAB and TBA have the same cost.
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Proof. By applying Lemma 3 (with x = 0) twice, the cost of TAB is Φa ◦Φb(y) and the cost

of TBA is Φb ◦ Φa(y). It is then easy to check that

Φa ◦ Φb(y) = Φb ◦ Φa(y) =
aby

ay + by + ab
= (a−1 + b−1 + y−1)−1.

Note: Clearly, Φa ◦ Φb(x) is the harmonic sum of x, a and b. More generally, consider any

“right vine” T consisting of at most one test per level of resolution. Then, under Ψ, the

average cost of T is independent of the order in which the tests are performed; moreover,

this average cost is simply the harmonic mean of the values Γ(|Ai|) for the tests performed.

In particular, this result is totally independent of the choice of the complexity function Γ.

We now return to the “full” switching lemma:

Theorem 6. The switching property – and hence the optimality of the CTF strategy – holds

for the harmonic power function with any complexity function Γ.

Proof. See Appendix.

Analogy with Resistor Networks: We conclude this section with a curious connection:

Consider a hierarchy of depth L with coarsest attribute A1 and a1 = Γ(|A1|). Let C1 be

the average cost of the CTF strategy when A1 is removed. From lemma 3, with x = 0 and

y = C1:

E0(C(Tctf )) = Φa1
(C1) =

a1C1

a1 + C1
=

(
1

a1
+

1

C1

)−1

.

This is exactly the conductance of an electrical circuit composed of two serial resistors

of conductances C1 and a1. Continuing, C1 is the sum of the (CTF) costs over the two

subhierarchies of depth L−1; if C ′
1 denotes the cost of these hierarchies, the cost C1 can be

interpreted as the conductance of an electrical circuit formed from two parallel resistors, each

of conductance C ′
1. By an immediate recurrence that the global cost of the CTF strategy is

therefore equal to the conductance of the tree-structured resistor network depicted on figure

7 (wherein a row of resistors is added at the bottom of the tree in order to represent the

cost of the postprocessing, or, equivalently, perfect testing). We observe that nothing would

be changed in the case of a non-symmetric, tree-structured hierarchy, even with attributes

of varying complexities at the same level.
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R   =  1/a2 2

R   =  1/a3 3

*R   = Ψ(1)   = 1−1

R   =  1/a1 1

R   =  14

Figure 7: Tree-structured resistor network identified with the attribute hierarchy, where al = Γ(|Al|)
is the complexity of attributes of level l and Rl = 1/al is the associated resistance; note that a4 = 1

by convention for the bottom attributes. The last row of resistors represents the postprocessing

stage. The conductance of this circuit is exactly the CTF testing cost of the attribute hierarchy

when Ψ is the harmonic power function.
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Number Ψ Φ1

1 x(1 −
√

1 − x) x − (1 − (1 − x + 1
9

√
(1 − x)2 + 3)2)(2

3 (x − 1) + 1
3

√
(1 − x)2 + 3)

2 x2/2





x − x2/2 if x < 1

1
2 otherwise

3 1 −
√

1 − x2 1 + x −
√

x2 + 1

4 exp(λx) − 1





x if x < λ

x − 1 − x
λ

(
log
(

x
λ

)
− 1
)

if λ ≤ x ≤ λeλ

x − eλ + 1 if x > λeλ

5 2 − x − 2
√

1 − x x/(1 + x)

6 1 −
√

1 − x





x if x < 1
2

1 − 1
4x

otherwise

7 exp(µx) − 1 − µx





x
(
1 + 1

µ

)
−
(
1 + x

µ

)
log
(
1 + x

µ

)
if x < µ(eµ − 1)

eµ − 1 − µ otherwise

Table 1: Convex power functions used in our simulations. Note that Ψ5 is the harmonic

function.

7.5 Simulations

In this section we investigate the optimality of CTF search by way of simulations involving

several different power functions Ψ. In every case we take Γ(k) = k. The various choices

of Ψ, and corresponding functions Φ1(x) = x − Ψ∗(x), are presented in Table 1; obviously

we have chosen functions with closed-form Legendre transforms. We took λ = 1 for Ψ4 and

µ = 8 for Ψ7. The graphs of the different functions Ψ and Φ1 are plotted in Figure 8.

First, we investigated the switching property, which we know to be sufficient for the

optimality of Tctf . To this end, we plotted the difference ∆(a, b, x, y) between the lefthand

side and the righthand side of the key inequality (27). Without loss of generality, we put

a = 1. Shown in Figure 9 are the plots of ∆(1, b, x, y) for the particular choice b = 2. (The

harmonic function is not shown as we already know it has the switching property.) The

switching property is satisfied if the surface lies below the xy − plane. One can readily

see that some of these surfaces (corresponding to Ψ2,Ψ4,Ψ6) clearly do not, whereas the

others appear to satisfy this inequality (at least all sampled values are negative). In other

experiments with other values of b for Ψ1 and Ψ3, we always found ∆ ≤ 0. However we
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Figure 8: Graphs of the power functions Ψ and associated Φ1-transforms used in the sim-

ulations (see Table 1) normalized so that Ψ(1) = 1. The bold curve corresponds to the

harmonic function.

found regions with ∆ > 0 for Ψ7 for higher values of b, and hence this cost function does

not satisfy the switching property.

From these plots it is tempting to speculate that only power functions Ψ such that

Ψ′(0) = 0 and Ψ′(1) = +∞ can satisfy the full switching property; however these condi-

tions are very likely not sufficient. Note that Ψ′(0) = 0 means that, at any given level of

invariance, one can have an arbitrarily small cost-to-power ratios and Ψ′(1) = +∞ means

that very high powers are likely not worth the increased cost. Intuitively, both of these

properties favor CTF strategies.

The second type of simulation was more direct. Strategies were sampled at random by

the simplest method possible: we sampled purely attribute-based strategies T by recursively

visiting nodes and choosing an attribute A ∈ A at random subject to the two obvious

constraints: i) no attribute is repeated along the same branch and ii) no “useless” attribute is

chosen, meaning that A consists entirely of patterns already ruled out by the previous tests.

Then, for each such T , powers were individually assigned to the tests at each node in order to

minimize the cost, which was compared with that of the CTF strategy. This procedure was

repeated for various choices of Ψ (with Γ(k) = k) for regular, dyadic hierarchies for |Y| = 4

patterns (i.e., L = 3) and for |Y| = 8 patterns (i.e., L = 4). For each Ψ, we sampled several

tens of thousands of trees T . (Of course the sheer number of possible strategies (modulo

power assignments) in the case L = 4 is several orders of magnitude larger.) Summarizing
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Figure 9: Empirical investigation of the switching property for six of the functions in Table

1. The surfaces represent the difference of the lefthand and righthand sides of (27) as a

function of x, y for a = 1 and b = 2. Left-to-right, top-to- bottom: Ψ1 to Ψ7 without Ψ5.

The surfaces corresponding to Ψ2,Ψ4,Ψ6 are not everywhere negative, and hence these do

not satisfy the switching property.
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our observations:

• In all cases, the CTF strategy had lower cost than any other strategy sampled;

• Upon visual inspection, the best sampled strategies seemed close to the CTF strategy

in the sense of only differing at relatively deep nodes.

In conclusion, and bearing in mind the limited scope of both types of simulations, we

believe the following conclusions are reasonable:

1. The switching property is quite likely valid for cost models other than the harmonic

function; however, it requires hypotheses in addition to convexity;

2. The optimality of the CTF strategy probably holds for a very wide range of cost models,

including those which do not satisfy the switching property (for all values of a, b, x, y).

As a result, requiring the switching property is likely too restrictive and, more gener-

ally, arguments based on the (CF) property may not be the most efficacious.

8 Optimal Strategies for Usage-Based Cost

Recall from §5 that with the usage-based model the cost of a test may adapt to the strategy,

subject to an overall constraint on the total amount of (computational) resources distributed

among the tests. We assume that c(X) = − log(r(X)), where r(X) is the allocation to X,

and that
∑

X r(X) ≤ R ≤ 1. Minimizing cost subject to this constraint leads to the solution

r(X)/R = qX(T )/Q(T ), where Q(T ) =
∑

X qX(T ) and (7) for the mean cost of T .

Our goal in this section is mainly to illustrate this cost model. Consequently, our analysis

will be less comprehensive than in the case of power-based cost. In particular, we will make

the following simplifcations:

• A fixed, tree-structured hierarchy. In this case, (7) reduces to

E0Ctest(T ) = −
∑

A∈A

qA(T ) log(qA(T )) + Q(T ) log(Q(T )/R) (29)

• All tests at the same resolution have the same power:

P0(XA = 0) ≡ βl, ∀A ∈ Al, l = 1, ..., L

• Power is increasing with resolution:

(H1) β1 ≤ β2 ≤ · · · ≤ βL
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• Finally, the post-processing cost c∗ per pattern is so large that only complete strategies

are feasible, i.e., minimize the overall cost. (Notice that, in any event, the previous,

equivalent construction with perfect tests is not consistent with the usage-based cost.)

Writing q = (qA)A∈A for a collection of real numbers in [0, 1] indexed by A, let

H(q, R) =
∑

A∈A

− log(qA)qA + |q| log(|q|/R), (30)

where |q| =
∑

A∈A qA. Hence

E0Ctest(T ) = H(q(T ), R).

The following elementary proposition will be useful:

Proposition 2. The function H satisfies:

(i) It is decreasing in R.

(ii) It is homogeneous and concave in q.

(iii) If q,q′ have disjoint supports, then, for any R,R′,

H(q + q′, R + R′) ≤ H (q, R) + H
(
q′, R′

)

with equality iff R = |q|
|q′|R

′.

Proof. Property (i) is immediate. For (ii), it is easily checked that H(λq, R) = λH(q, R)

for any λ ≥ 0 and concavity results from the characterization

H(q, R) = inf
{c(A),A∈A}

∑

A∈A

cAqA(T )

subject to the constraint ∑

A∈A

exp(−cA) ≤ R

as the infimum of concave (actually linear) functionals. Finally, (iii) is straightforward from

equation (30), using the convexity of the function x log(x).

8.1 Detecting one special pattern

In this case it is easy to see that, under (H1), the optimal strategy is in fact fine-to-coarse.

Since there is no issue of invariance, the best allocation of resources is evidently to render the

most powerful tests the least expensive. Clearly any test which is simultaneously cheaper

and more discriminating than another is performed earlier.
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In §9 we shall consider a more realistic scenario in which detecting a single pattern is to

be carried out repeatedly for many different targets and we seek the fixed strategy which

minimizes the average testing cost over all targets (without redistributing the resources for

each new search). One is therefore obliged to distribute resources to all attribute tests,

in which case (see §9), coarse-to-fine is generically optimal. This analysis there involves

randomized procedures both for choosing the target patterns and for how the data are

generated, and hence how the background model P0 is determined.

8.2 Detecting any pattern

The scenario is the same one we considered in §6: There is a fixed nested hierarchy of

attributes A and we wish to minimize E0Ctest(T ), as given by (29), over all strategies. If

all the tests are sufficiently powerful, then the CTF strategy is again optimal. The proof

again utilizes the (CF) property and a recursion.

Lemma 6. Under hypothesis (H1) and for the usage-based cost model, the (CF) property

holds whenever:

(i) The hierarchy A is tree-structured and at least dyadic;

(ii) β(A1) ≥ 7/8.

The condition that the power of the coarsest test must exceed 7/8 could likely be relaxed

somewhat since the bounds used in the proof are rather crude.

Proof. We can suppose that the hierarchy has depth at least two; otherwise the lemma is

trivial. Let T be an optimal strategy such that the first test performed is not the coarsest

one, XA1
. Then T must perform at least two tests before reaching a terminal node: Since

A1 has at least two children, the only way to finish – to determine Ŷ (X ) – with one test

would be to perform XA1
first and obtain a negative answer. In all other cases at least two

tests are required. As a result, Q(T ) ≥ 2 and, consequently, H(q(T ), R) ≥ 2 log(2/R).

On the other hand, we can compute explicitly the cost of Tctf and show it is at most

2 log(2/R). In Tctf , test XA, A ∈ Al, is performed if and only if all the tests corresponding

to his ancestors in the hierarchy are positive. Therefore, with pi = 1 − βi,

A ∈ Al ⇒ P0(XA performed by Tctf ) = p1 . . . pl−1;

so that

H(q(Tctf ), R) = −2p1 log(p1) − 4p1p2 log(p1p2) − . . . − 2L−1p1 . . . pL−1 log(p1 . . . pL−1)

+Q(Tctf ) log(Q(Tctf )) − Q(Tctf ) log(R),
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where

Q(Tctf ) = 1 + 2p1 + . . . + 2L−1p1 . . . pL−1.

Using the fact that the pi’s are decreasing, that p1 ≤ 1/8 and that the function −x log(x)

is increasing for x ≤ 1/e we have:

−
L−1∑

i=1

2ip1 . . . pi log(p1 . . . pi) ≤ −
∑

i≥1

(2p1)
ii log(p1) = − log(p1)

2p1

(1 − 2p1)2

and

Q(Tctf ) ≤
∑

i≥0

(2p1)
i =

1

1 − 2p1
,

so that

H(q(Tctf ), R) ≤ − log(p1)
2p1

(1 − 2p1)2
− log(1 − 2p1)

1 − 2p1
− 1

1 − 2p1
log(R) (31)

≤ 2 log(2) − 2 log(R) ≤ H(q(T ), R). (32)

The last bound (32) is due to the fact the first two terms of (31) are decreasing in p1 and

since p1 ≤ 1/8, it suffices to check e.g. numerically that the inequality holds for p1 = 1/8.

Hence T cannot be an optimal strategy, which concludes the proof.

We then have the following main theorem:

Theorem 7. Under hypothesis (H1) and the assumptions (i) and (ii) of Lemma 6, the

CTF strategy is optimal:

∀R ≤ 1, ∀T, H(q(Tctf ), R) ≤ H(q(T ), R).

Proof. As in the proof of Theorem 2 in §6, we proceed by recurrence on the depth L of the

attribute hierarchy A. The result is trivial for L = 1; suppose it has been established for

L < L0 and consider a hierarchy of depth L0.

Let T be an optimal strategy. From Lemma 6, the first test to be performed has to be

XA1
. Let us denote by B1, . . . ,Bk the subhierarchies of attributes rooted at the children of

A1, which are of depth at most L0 − 1, so that A = {A1}
·∪ B1

·∪ . . .
·∪ Bk.

Consider the conditional strategy T (1) = TB1
(XB1

). Let qA(T (1);XB1
) be the probability

of performing test A ∈ A using strategy T (1). Let R1 denote the amount of resources spent

in T (1), i.e., the sum of the resources allocated to the tests for attributes in B1 under T :

R1
·
= R

∑
A∈B1

qA(T )

Q(T )
≤ 1.
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Since the tests are independent, the joint distribution of {XA, A ∈ B1} remains un-

changed conditional on (XB1
,XA1

= 1). Therefore hypotheses (H1), (i) and (ii) are satis-

fied for subhierarchy B1 and we can apply the hypothesis of recurrence to this subhierarchy,

with available resource R1, and thereby obtain, for any XB1
,

H(q(T (1);XB1
), R1) ≥ H(q(T

(1)
ctf ), R1), (33)

where T
(1)
ctf is the CTF strategy for subhierarchy B1.

Now, let q(1) = (q
(1)
A )A∈A where

q
(1)
A =





qA(T ) if A ∈ B1,

0 otherwise.

Note that, by definition, we have q(1) = (1 − β1)E0[qA(T (1);XB1
)], where the expectation

is over the possible values of the tests XB1
.

By concavity of H in q, we then have

H(q(1), R1) = H((1 − β1)E0[q(T (1);XB1
)], R1) ≥ E0

[
H((1 − β1)q(T (1);XB1

), R1)
]

≥ H((1 − β1)q(T
(1)
ctf ), R1).

Now the same reasoning can be applied to each of the projections TBi
(XBi

), 1 ≤ i ≤ k

of strategy T on subhierarchies Bi with resources Ri, so that

H(q(i), Ri) ≥ H((1 − β1)q(T
(i)
ctf ), Ri).

Denote by q(0) the collection of reals indexed by A such that q
(0)
A1

= qA1
(T ), and q

(0)
A = 0

for A 6= A1, and put R0 = R qA1
(T )/Q(T ). The cost of strategy T can then be written as

E0Ctest(T ) = H(q(T ), R)

= H(q(0) + q(1) + . . . + q(k), R0 + R1 + . . . + Rk)

= H(q(0), R0) + H(q(1), R1) + . . . + H(q(k), Rk)

≥ H(q(0), R0) + H((1 − β1)q(T
(1)
ctf ), R1) + . . . + H((1 − β1)q(T

(k)
ctf ), Rk)

≥ H(q(0) + (1 − β1)(q(T
(1)
ctf ) + . . . + q(T

(k)
ctf )), R0 + R1 + . . . + Rk),

where the third equality and the last inequality hold by property (iii) of Proposition 2.

Finally, since q0 + (1 − β1)(q(T
(1)
ctf ) + . . . + q(T

(k)
ctf )) is the vector of probabilities corre-

sponding to the CTF strategy on A, the proof is finished.
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9 Extended Scenario: Multiple Searches

Previously, Y represented a particular family of patterns (or explanations) and A was the

corresponding family of attributes (or partial explanations). In this section we consider

strategies which are optimal when mean computation is itself averaged over many detection

experiments corresponding to different subsets Y with hierarchies A = A(Y). In fact,

to make the averaging tractable, we will select hierarchies at random from a very large

pool representing all attributes of interest for all patterns. In terms of optimal strategies,

nothing changes in the case of power-based cost because those results are valid hierarchy

by hierarchy. However, for the usage-based cost, assuming the chosen strategy does not

depend on the specific hierarchy (i.e., we are not going to “rewire” the system for each new

search – see the discussion in §9.3), the results for fixed hierarchies are different from those

for random ones because the resources must be distributed over a larger number of tests.

Let Ỹ represent a very large family of patterns and let Ã be a very large pool of attributes

divided into disjoint levels of resolution

Ã = Ã1
·∪ . . .

·∪ ÃL.

With Nl = |Ãl|, l = 1, ..., L, we suppose that N1 ≤ · · · ≤ NL and that Nl ≥ 2l−1. The

attributes in Ã1 are the coarsest in the sense of being the most commonly observed and

belonging to the greatest number of patterns. We write Ã instead of A to emphasize that

Ã is much larger: It represents all the attributes (natural groupings) for all conceivable

patterns of interest (or perhaps the union of attribute hierarchies A over many different

subfamilies Y) whereas, previously, A represented natural groupings for some particular

subfamily Y ⊂ Ỹ of patterns.

Parts and Clutter: In visual recognition, it is not uncommon to conceive of patterns

as constructed from “parts” which are “reusable” in the sense of being common to many

different objects. Regarding each A ∈ Ã as such a “part” (or “feature”) is basically the

“dual” outlook of the previous sections: Rather than beginning with abstract patterns and

defining attributes as distinguished subsets, we start instead with abstract attributes and

generate patterns by randomly joining attributes. In other words, patterns are distinguished

conjunctions of attributes. In this setting, one can imagine tens of thousands of patterns

of interest (such as couples {physical object, pose} ) constructed from some thousands of

attributes.

Similarly, one can conceive of “clutter” as constructed from the same components as

patterns. This provides an “alternative hypothesis” to the existence of patterns which is
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more realistic than, for instance, white noise models. It is unrealistically easy to separate

patterns from white noise, and much more difficult to separate them from highly structured

noise in the sense of parts of patterns arranged in a non-distinguished manner.

9.1 Background model

As before, there is a binary test XA for each attribute A ∈ Ã. Let X denote this family of

tests, which we can think of as replacing the data themselves. A backround model refers to

the distribution of X under the assumption that Y = ∅; or that Y = ∅ for a subfamily of

patterns, allowing patterns outside Y to be present.

We imagine background data as generated from randomized selections of attributes:

For each l = 1, ..., L, each attribute A ∈ Ãl has probability 1 − βl to appear. As in §8, we

suppose that (H1) holds: β1 ≤ β2 ≤ · · · ≤ βL. Moreover, under Y = ∅, the appearence of

an attribute is independent of that of all other attributes in the system. Thus,

P0(XA = xA, A ∈ Ã) =
L∏

l=1

∏

A∈ eAl

β1−xA

l (1 − βl)
xA . (34)

9.2 Hierarchies

In general, one should expect that |Ỹ | ≪ N1 · · ·NL; that is, the number of “interesting”

patterns is far smaller than the number of ways in which attributes can be combined across

levels into conjunctions. A hierarchy of attributes A will refer to tree-structured subset:

Exactly one attribute, A1, is selected from Ã1, then exactly ν attributes are selected from

Ã2, and so forth where at each step ν attributes are selected from Ãl+1 for each attribute

previously chosen from Ãl. The hierarchy reduces to a vine when ν = 1. As usual, we

imagine these hierarchies to be very special in the sense of representing coherent partial

explanations for a particular family Y of patterns; therefore we still identify each complete

chain with the detection of a pattern. Of course if the corresponding pattern is present,

then all the tests in the chain must be positive, but not conversely: a chain of positive test

results does not imply the existence of the pattern and, indeed, there may be many such

positive chains with positive P0 probability.
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9.3 Optimal testing strategies: usage-based cost

9.3.1 Randomized patterns

First consider detecting a single pattern. If the resources are allocated to exclusively to

the corresponding attributes we then have already observed in §8.1 that the fine-to-coarse

strategy is optimal. This scenario is not interesting because we want a strategy which in

some sense is optimal over many repetitions with many different patterns. In principle, one

could fix a set of patterns Ỹ and average over choices of the target. However, this would be

difficult to analyze mathematically because the results might depend on the particular Ỹ .

As a result, we will identify choosing a pattern at random with (uniformly) sampling

exactly one attribute from each level Ãl, l = 1, ..., L. While this contradicts the fact that

the set of possible patterns Ỹ should in fact be much smaller than the set of all possible

combinations of attributes accross resolution levels, this should serve as a reasonable first

approximation to first selecting one large family Ỹ and averaging computation only over the

corresponding detections. Now resources must be allocated in advance to the entire pool of

attributes tests. Of course we still want to minimize the average cost (7), assuming that the

same strategy is applied at each round, independently of the selected pattern. If we assume

that (Nl) is rapidly increasing with l, it is no longer obvious what is the optimal strategy

since more powerful tests are also more numerous, and hence it is less of an advantage

to devote resources to them. The following theorem tells us that if (Nl) increases quickly

enough, the optimal strategy is in fact CTF.

In the remainder of §9 pl = 1 − βl, l = 1, ..., L.

Theorem 8. Assume that hypothesis (H1) is satisfied (p1 ≥ · · · ≥ pL). Then, if R denotes

the available resources, the following condition is sufficient for the optimality of the CTF

strategy:

∀l : 1 ≤ l ≤ L − 1,

log

(
Nl+1

Nl

)
≥ 1

1 − pl

{
max

l≤k≤L−1
pk log(Nk+1) −

pl log(pl)

1 − pl

+pl

(
1 + log(2) − log(R) +

l−1∑

k=1

(pk − log pk)

)}
.

(35)

Proof. Again, we start with the (CF) property; see the Appendix.

The condition of the Theorem, although involved, can be easily checked for given se-

quences (Nl) and (pl). If we suppose (Nl) grows exponentially, the condition is satisfied,
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for example, for Nl = 2l−1, pl = 1/(8l1.1), and for Nl = 3l−1, pl = 1/(6l1.1). More generally,

if pl = C/lα, with α > 1, and the N ′
ls have at most an exponential growth, then the right-

hand side of (35) converges to zero as l → ∞, and therefore a sub-exponential growth of

the sequence (Nl) is actually sufficient.

Special Case: A “Check Who” Game: As a particular instance of the randomized

target model in this section, consider a “Check Who” game played as follows: Two “tar-

gets” y∗ and y are chosen independently and at random by picking one of the Nl attributes

at random from each level l. The player is given y∗ (the “template”) and must determine,

with minimum average cost, whether or not y = y∗ by sequentially asking checking for

the attributes which characterize y∗; of course the answers are provided by y. The cost of

the questions follows the usage-based model. It is readily seen that this is a special case

of the above framework with pl = 1 − βl = 1/Nl. There is actually a small difference in

that here the “tests” XA are not independent at a given level of resolution (since there

is exactly one positive test at each level), although independence among levels still holds,

which is actually sufficient. In other words, it is straightforward to see that the optimality

results above remain unchanged. The hypothesis of the theorem is, for instance, satisfied

for Nl = 24⌈1.5l⌉.

9.3.2 Randomized hierarchies

The situation is entirely analogous to the previous case of a single target, except that now

there are many hierarchies and we desire the best strategy an average sense. Consequently,

we shall suppose that the selection procedure for a hierarchy A that was described in §9.2
is randomized. We consider only binary trees. Thus we draw 2l−1 attributes at random

from Ãl for each l = 1, ..., L and form a corresponding binary tree. Of course the set of

patterns for this iteration is identified with the set of branches of the resulting labeled

binary tree. The goal is then to determine Ŷ as usual – the set of all patterns confirmed

at every resolution. The strategy must not depend on the specific attributes drawn and

performance is measured, as usual, by the mean of Ctest(T ) relative to the background law

P0 described in §9.2.
In this case again we prove the optimality of the CTF strategy under mild conditions

on the behavior of the sequences (Nl) and (βl).

Let D denote a complete binary tree of depth L. For any node s of D, denote by A(s)

the attribute attached to s at the current round; hence A(s) is a random variable since A
is randomly selected. For simplification, we will denote by Xs the test XA(s). Note that
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the family (Xs)s∈D are (still) independent random variables under P0 (because we assumed

that the powers of all tests at the same level of resolution have the same power). This is

really the only hypothesis that is needed.

Theorem 9. For any resource R ≤ 1, the CTF strategy is optimal if (H1) and the following

assumptions are satisfied:

(i)∀1 ≤ l ≤ L − 1,

log

(
4
Nl+1

Nl

)
≥ 2

1 − 2pl

(
max

l≤k≤L−1
pk log(Nk+1) +

− log(2pl)pl

1 − 2pl

;−1

2
log(1 − 2pl)

)

(ii)p1 ≤ 1/(2
√

e).

The proof is slightly more complex that of Theorem 8 (due to the randomization pro-

cess), but uses some of the same tools, including a recursion based on (CF), conditional

strategies and the concavity of H; it appears in the Appendix. Again, the conditions of the

Theorem are mild enough; an example of sequences satisfying them is Nl = 2l, pl = 0.15/l.

10 Application: Rectangle Detection

In order to illustrate numerically the quantities appearing in our analysis, and to check

whether the cost model is reasonable in at least one concrete setting, we outline an algo-

rithm for detecting rectangles amidst clutter due to Franck Jung and based on the framework

in this paper. (It was developed in order to automate cartography by detecting buildings in

aerial photographs (Jung 2002).) Only those aspects which shed light on the mathematical

analysis are described, and hence many details are omitted. The interested reader can con-

sult Jung 2001 for some additional information about scene synthesis and test construction,

and a complete accounting will appear elsewhere.

The goal is to find and localize rectangles in a “scene” of the type shown in Figure 10.

There are many ways to do this (automatically). For instance one could imagine a Bayesian

approach based on two distributions: a prior on interpretations (e.g., a generative model

involving marked point processes) and a data model for the observed pixel intensities given

an interpretation (e.g., allowing for clutter and imperfect, “noisy” rectangles). Or one could

train a multilayer perceptron or support vector machine based on labeled subimages. For

the artificial problem illustrated in Figure 10, with limited noise and clutter, it would not

be surprising to obtain a decent solution with standard methods. Our intention is only

to demonstrate how this might be done in an especially efficient manner with a sequential

testing design.
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Figure 10: Example of a scene with clutter.

10.1 Problem formulation

It is clearly impossible to find common but localized attributes of two rectangles with

significantly different (geometric) poses, say far apart in the scene. Consequently, we divide

the whole scene into non-overlapping 5×5 regions and apply a simple, “divide-and-conquer”

strategy based on location. Each 5 × 5 region R is visited in order to determine if there is

a rectangle in the scene whose distinguished point (say the center) lies in R; depending on

its scale, the rectangle itself will enclose some portion the of scene surrounding R. We can

assume that the scale of the rectangle (defined below) is restricted to a given range whose

lower end represents the smallest rectangles we attempt to find. Larger rectangles are found

by repeatedly downsampling the image and parsing the scene in the same way; this is how

the faces in Figure 2 were detected. Similarly, the orientation of the rectangle is restricted

to a given range of angles; other orientations could be found by repeating the process with

suitably transformed detectors.

The loop over regions R is the “parallel component” of the algorithm and not of interest

here. The serial component is a CTF search to determine if there is a rectangle whose

center lies in a fixed region R. This the heart of the algorithm and the real source of

efficient computation.

The “pose” θ of a rectangle is characterized by four parameters: orientation (φ), center
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Figure 11: Each rectangle is characterized by its location, height, length and orientation.

(U), height (H) and length (L); see Figure 11. Actually, the scenes are generated in the

continuum (high resolution) and a “pixel” simply represents a small square; this explains

the fractions of pixels appearing in the discussion below.

Relative to a fixed, reference region R0, the pose space Θ = {φ,U,H,L} is restricted as

follows:

φ ∈ [−π

8
,
π

8
], U ∈ R0, H,L ∈ [10, 14]. (36)

The hypothesis Y = 0 stands for “no rectangle with these parameters” and is evidently a

complex mixture of configurations due to clutter, larger rectangles and nearby ones.

Scenes are synthesized as follows: First, rectangles are inserted by randomly choosing

a location, scale and orientation. A rectangle at a given pose is a high resolution silhou-

ette. The rectangles are degraded by dividing the silhouette into small pieces (“edges”)

and independently removing each one with probability 0.15. Noise is added by randomly

selecting locations and orientations at which to add an edge (see below). Finally, “clutter”

(structured noise, a first-order obstacle in visual recognition) is introduced by removing

entire sides of rectangles with probability 0.2, in which case the resulting structure is con-

sidered part of the background (although achieving robustness to occlusion would argue for

maintaining the pattern label).

10.2 Patterns and attributes

In order to define the set of explanations Y, we partition the pose space Θ into small

subsets. A “pattern” or “explanation” y ∈ Y is then a subset of poses at approximately

the resolution of the pixel lattice. In fact, these subsets are, by definition, the cells at

the finest layer of the attribute hierarchy - a recursive partitioning of Θ of the type used
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throughout the paper, yielding Θ = {Al,k}. In this case Y represents the true pose at the

pixel resolution.

There are L = 6 levels which corresponds to five splits: two (binary) on orientation, one

(quaternary) on position and two (binary) on scale (one on height and one on length). In

particular there are |Y| = 64 finest cells, each with resolution 1.25 pixels in location, two

pixels in length and height, and π/16 radians in tilt. Let ηl = |A|, A ∈ Al. The quaternary

split happens to be the second one, and hence (η1, ..., η6) = (64, 32, 8, 4, 2, 1).

10.3 Tests

As in the references cited in §4, the tests XA are extremely simple image functionals based on

local features called “spread edges.” Starting with virtually any standard “edge detector”

(a local operator which identifies the position and orientation of “significant” intensity

transitions), and given a position U , an orientation φ and a “spread” σ ∈ {1, 2, ...}, the

“spread edge” ξ indexed by (U, φ, σ) is the binary image functional which takes the value

“1” if there is an edge of orientation φ anywhere along a strip of pixels of length σ orthogonal

to φ and centered at U . This situation is depicted in Figure 12 in the case of a vertical

orientation. In this case ξ = 1 since indeed the (horizontal) strip does cross a vertical

boundary (shown at low resolution). The parameter σ adapts the spread edge to any

given level of affine invariance – the larger σ, the greater the number of possible boundary

segments detected by ξ, of course at the expense of precision and sensitivity to clutter.

Each test XA is based on a threshold τ and a collection S of spread edges with a common

spread σ but varying positions and orientations:

XA =

{
1 if

∑
ξ∈S ξ ≥ τ

0 otherwise

Thus, evaluating XA consists of checking for at least τ spread edges among a special ensem-

ble dedicated to A. The parameter σ is adjusted to achieve the desired level of invariance.

Recall our basic constraint: P (XA = 1|Y ∈ A) = 1 for every test XA. In particular, we

demand that XA = 1 when the image data surrounding R0 contains a rectangle whose pose

belongs to A. (Obviously a region R is checked for the center of a rectangle by translating the

tests accordingly and processing the surrounding image data.) Of course the test may also

respond positively in the absence of such a rectangle, due to clutter and nearby rectangles;

the likelihood of this happening is precisely 1 − βA = P (XA = 1|Y = 0). Intuitively, we

expect that high power will only be possible at low invariance (specific poses). The power

βA is estimated from large samples of randomly selected background subimages.
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Figure 12: Example of a rectangle boundary “detected” by a spread edge.

Actually, we build many tests of varying powers for each A ∈ A, each one corresponding

to a different collection S of spread edges. Identifying S and τ is a problem in statistical

learning. We use a fairly simple procedure, briefly summarized here; the details may be

found in (Jung 2002). Fix A ∈ A and make a training set of subimages, each containing

a rectangle with a pose in A; for example, this can be done by first making large scenes

and then extracting appropriate subimages. The corresponding estimate of P (D|Y ∈ A)

for an event D is denoted P̂ (D|Y ∈ A). Assemble a very large family of spread edges ξ

for which P̂ (ξ = 1|Y ∈ A) is reasonably large, say at least 0.5. Now subsample this family

to produce a set S (say, 100 spread edges) and choose τ to be the maximum threshold for

which P̂ (XA = 1|Y ∈ A) = 1; thus, for every training subimage, at least τ of the spread

edges in S respond positively. Selecting S can be done recursively, adding one ξ at a time,

guided by maximizing the current threshold to preserve invariance. Repeating this process,

we can make a whole family {XA,β, β ∈ B(A)} of tests for attribute A of varying powers.

The cost c(XA) is defined as the number of pixels involved in evaluating XA, which is

the number of pixels which participate in the definition of any ξ ∈ S(XA). Assuming no

preprocessing other than extracting and storing all the edges in the scene (and no other

shortcuts in evaluating a test), this is roughly proportional to the actual algorithmic cost

in CPU terms.

In Figure 13 we plot cost vs. power for the family of all tests generated for the root cell,

A0, referred to as “cell 1”, and one of its two daughter cells, referred to as “cell 2”. Thus

each point is a pair (β, c(XA,β)). For the root cell we cannot make tests with arbitrarily

large power, at least not with such simple functionals. Figure 14 shows all the “best tests”

for the depth two cell in Figure 13 – those which are not strictly dominated by another test

with respect to both cost and power. Plots for cells at other depths are very similar, and
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Figure 13: Cost vs power curve for attributes of depth one and two.

the convexity assumption made in §6 and §7 seems to be roughly satisfied.

Finally, one can ask whether the functional form of our global cost model, namely

c(XA,β) = Γ(|A|) × Ψ(β), is consistent with the data. This means an additive model for

the log of the cost. In Figure 15 we plot the (base 2) logarithm of cost against the (base

2) logarithm of ηl for five selected powers. Each point is one test – the one with lowest

cost among those with power very close to a selected value. The fact that the curves are

roughly translations of each other is consistent with the additive model for the log-cost.

The roughly linear dependence of the log cost with respect to log Γ(|A|) suggests a power

dependence as a first approximation (Ψ(x) ∝ xα for some α ∈ [0, 1]).

10.4 Detection results

We use the framework of §6 – power-based cost for a fixed hierarchy. More specifically,

from all the “best tests” created, we extracted one for each cell A ∈ A such that all the

powers and costs are (approximately) the same at each level, which yields one sequence

(βl, cl), l = 1, ..., 6 which is increasing in both components and plotted in Figure 16 (left).

Since the powers are increasing, the conditions of Corollary 2 are satisfied under the cost

model. However, we needn’t assume that the cost model is valid; we can directly check

whether (βl, cl) satisfies the hypotheses of Corollary 1. In Figure 16 (right) we show, level

by level, the (logarithms of the) values representing the two sides of (18). Clearly the

conditions of Corollary 1 are easily satisfied.
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Figure 14: Best tests for a depth two cell.

Figure 15: Log cost vs. log invariance for various powers.
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Figure 16: Left: The pairs (βl, cl) for the fixed hierarchy used in the experiments. Right,

top curve: l → log(Cl × (cl+1/βl+1)) where Cl is the the number of children of a node at

level l. Bottom curve: l → log(cl/βl). The conditions of Corollary 1 are clearly satisfied.

Figure 17: Example of a detection result; the small squares indicate the detected locations.

Left: CTF detection only. Notice there are scattered false positives. Right: CTF search

followed by template-matching. Nearly all the false positives are removed with virtually no

increase in computation.
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The detection results for one scene is shown in Figure 17. In order to estimate total

computation, we processed a 858 × 626 scene 100 times. The average time is 3.25s on a

Pentium 1.5GHz. For comparison, we can perform ideal hypothesis test for each fine cell

(Y ∈ A6,k, k = 1, ..., 64) based on simply counting all the edges in the region generated by

the union of silhouettes over the poses in A6,k (a form of template-matching) and setting a

threshold to obtain no false negatives. (This is a more discriminating test than XA for a

fine cell A because the latter uses only some of the edges.) The average processing time for

this brute force approach is far larger (2338s) but the results are virtually perfect. Finally,

we can perform a two-stage analysis, first executing the CTF search and then doing the

template-matching only at the detected poses. The processing time is virtually the same as

for the CTF search (about 3s) but most of the false positives removed; see Figure 17.

11 Discussion and Conclusion

There are many problems in machine learning and perception which come down to differen-

tiating among an enormous number of competing explanations, some very similar to each

other and far too many to examine one-by-one. In these cases, efficient representations may

be as important as statistical learning (Geman et al. 1992), and thinking about computation

at the start of the day may be essential. It then seems prudent to model the computational

process itself and hierarchical designs are a natural way to do this. Moreover, there is plenty

of evidence that this works in practice. On the mathematical side, the questions that nat-

urally arise from thinking about CTF representations and CTF search are of interest in

themselves. We have provided one possible formulation; others could be envisioned.

Within our formulation there are some unanswered but fundamental mathematical ques-

tions and a few dubious assumptions. To begin with, we have divided the whole classifica-

tion problem into two distinct and successive phases, first non-contextual (testing against

non-specific alternatives) and second contextual (testing one subset of explanations against

another). We have shown that CTF search is effective, even optimal, in the first phase

and preliminary results (not reported here) indicate the same is true of the second phase.

However, whereas sensible, this division was artificially imposed; in particular, we have not

shown that it emerges naturally from a global formulation of the problem. One might, for

example, expand the family X = {XA, A ∈ A} into a much larger family of hypothesis

tests for testing Y ∈ A vs. Y ∈ B for various subsets A,B and levels of error, and then

attempt to prove that it is in fact computationally efficient to start with B = Ac under

some distributional assumptions, and reasonable tradeoffs among scope, error and cost.
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Whereas our results on fixed-cost hierarchies are fairly comprehensive, the results on

extended hierarchies are evidently not. What is special, if anything, about the “harmonic

cost function”? Simulations suggest that the CTF is generically optimal but we have not

been able to prove this in general.

On the other hand, several of our model assumptions can be considered as too simplis-

tic. Perhaps the cost model should be revisited; in simulations high power is not always

attainable at high invariance (regardless of cost), at least for relatively simple tests (re-

call Figure 13). As pointed out earlier, supposing conditional independence under P0 is

disputable. Ideally, one should examine non-trivial dependency structures for X , one ap-

pealing model being a first-order Markov structure of the tests as already depicted in the

simulations of section 6.4. Also, measuring computation under P0 only is suspect. At some

point in the computational process, as evidence accumulates from positive test results for

the presence of a pattern of interest, the background hypothesis ceases to be dominant and

all the class-conditional distributions must enter the story.

More ambitiously, an even more general optimization problem could be considered:

Design the entire system including the subsets to be tested (not requiring a hierarchical

structure a priori) as well as the levels of discrimination. This would likely involve a

dependency structure for overlapping tests. Some of these questions are currently being

investigated.

Appendix

A Proofs for Section 7

Proof of Theorem 4. Consider a given tree-structured hierarchy A. In this proof, we are

mainly interested in the graph structure of A. Here again it will be easier to consider

the equivalent “augmented” model A (see section 5.5.4), thereby assuming the original

A has been extended one level by adding a single child to each original leaf (in order to

accommodate the perfect tests X{y},1 which are performed at the end of the search for all

y ∈ Ŷ ). Except for the power-one constraint for the final, singleton tests: For any node s

in a strategy tree, the assigned power β(s) may be freely chosen independently of how it

is chosen when the corresponding attribute A(s) appears at other nodes. Of course there

must be no errors under P0, but this is automatically satisfied by definition for any CTF

strategy.

To prove the theorem we will proceed by recurrence over the size of subhierarchies of

A. We actually need slightly more general objects than conventional subhierarchies (i.e.,
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subtrees). We will call H a generalized subhierarchy if H is a finite union of subhierarchies

of A. The cardinality of H is defined as the number of its nodes (internal or leaves). A CTF

strategy for H satisfies the usual hypothesis that an attribute is tested if and only if all of

its ancestors in H have been tested and returned a positive answer. Finally, for a node B

of A, denote by HB the generalized subhierarchy composed of all strict descendents of B,

in other words the union of all the subhierarchies rooted in direct children of B.

Now we prove by recurrence on the size c of generalized subhierarchies which have the

following property:

(P(c)) For any generalized subhierarchy H of A of cardinality at most c, every CTF

strategy with optimal choice of powers has the same cost Cctf (H). Furthermore, for any

node B ∈ H, the test XB is always performed in such a CTF strategy with the same power

βB, and this value depends only on HB, being therefore independent of the CTF strategy

considered. Finally, if H is the union of several disjoint subhierarchies of A, then the CTF

cost of H is the sum of the CTF costs of these subhierarchies.

For c = 1, any generalized subhierarchy H must be a single node (attribute) correspond-

ing to a perfect test, in which case the property is trivial.

Suppose P(c) is true and consider a generalized subhierarchy H of cardinality c+1. Let

T be a CTF strategy for H with optimally chosen powers and let B be the attribute which

is tested at the root of T ; necessarily B has no ancestors in H. Write HB for the generalized

subhierarchy H \ ({B} ∪ HB).

If B is a leaf, then, by construction, its power is fixed to 1 and HB = ∅. Hence, after B

is tested with power 1 (thus returning a null answer under P0), the remaining part of T is

a CTF strategy for subhierarchy HB , and therefore, by the hypothesis of recurrence,

E0C(T ) = Ψ(1) + Cctf (HB). (37)

Suppose now that B is not a leaf. If the test XB = 0, the subsequent part of strategy

T must be a CTF exploration, with optimal powers, of the subhierarchy HB . Similarly, if

XB = 1, the subsequent part of T is a CTF strategy for HB ∪ HB, a disjoint union. By

Lemma 3 and the recurrence hypothesis concerning cost additivity over disjoint subhierar-

chies, we therefore have

E0C(T ) = Cctf (HB) + ΦΓ(|B|)(Cctf (HB

·∪ HB) − Cctf (HB))

= Cctf (HB) + ΦΓ(|B|)(Cctf (HB)). (38)

Furthermore, the second part of Lemma 3 shows that the optimal power chosen for XB

only depends on Cctf (HB).
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Property P(c+1) now an immediate consequence of (37) and (38), which concludes the

proof.

Proof of Theorem 6. Recall the situation of Figure 6: let A1 be the coarsest attribute, of

complexity Γ(|A1|) = a, B is some other attribute, of complexity Γ(|B|) = b, and we wish

to show that doing A1 before B has lower cost. Let TL (respectively, TR) be the tree on

the lefthand side (resp. righthand side) of Figure 6. Recall that x (respectively, y) is the

mean cost of the tree encountered when XA1
= 1,XB = 0 (resp., XA1

= 1,XB = 1). We

can assume y ≥ x (otherwise XB has optimal power 0 and the result is trivial).

From Lemma 3, we know that the mean cost of TL with optimal choices of powers for

XA1
and XB is given by

CL(y;x) = Φa(x) + Φb(Φa(y) − Φa(x)),

and the mean cost of TR with optimal powers is

CR(y;x) = Φa(x + Φb(y − x)).

We wish to show that, for any a, b:

CL(y;x) ≥ CR(y;x), y ≥ x.

This is obviously satisfied when x = y (for any choice of a and b). We will show that

∂CL(y;x)

∂y
≥ ∂CR(y;x)

∂y
, y ≥ x. (39)

Taking derivatives, (39) becomes

Φ′
b(Φa(y) − Φa(x))Φ′

a(y) ≥ Φ′
a(x + Φb(y − x))Φ′

b(y − x). (40)

Now,

Φ′
b(x) =

(
b

x + b

)2

and, since all the quantities involved are positive, it is therefore equivalent to take square

roots in (40). Since

Φa(y) − Φa(x) =
ay

a + y
− ax

a + x
=

a2(y − x)

(x + a)(y + a)
,

the square root of the lefthand side of (40) is given by

ab(x + a)

a2(y − x) + b(x + a)(y + a)
.
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Similarly, the square root of the righthand side of (40) is

ab

(a + b + x)(y − x) + b(x + a)
.

so that (40) is equivalent to

x + a

a2(y − x) + b(y + a)(x + a)
≥ 1

(a + b + x)(y − x) + b(x + a)

which, after some algebra, is in turn equivalent to

(y − x)[(x + a)2 − a2] ≥ 0

which is true since y ≥ x. This concludes the proof.

B Proofs for Section 9

For the proof of Theorem 8, we will first establish the following lemma:

Lemma 7. Assume that hypothesis (H1) is satisfied and that for some constant R0 ≤ 1:

log

(
N2

N1

)
≥ 1

1 − p1

(
max

1≤i≤L−1
pi log(Ni+1) −

p1 log(p1)

1 − p1
+ p1(1 + log(2) − log(R0))

)
.

Then if R ≥ R0, the first attribute tested in the optimal strategy must belong to the coarsest

level.

Proof. First observe that the assumed condition implies that p1 < 1/2 since it implies that

log (N2) ≥
1

1 − p1

(
p1 log(N2) −

p1 log(p1)

1 − p1
+ p1(1 + log(2))

)
,

and therefore that

(1 − 2p1) log (N2) ≥ −p1 log(p1)

1 − p1
+ p1(1 + log(2)).

It is easy to see that the righthand side of the last inequality is increasing in p1 and strictly

positive for 1/2 ≤ p1 ≤ 1, whereas the lefthand side is negative on this interval, which

implies p1 < 1/2.

Next, we calculate the cost of the strategy T which performs the tests in the order

i1, i2, ..., iL. Each test at level i1 has probability 1/Ni1 of being performed; then each test at
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level i2 has probability pi1/Ni2 of being performed (since it is performed only if it is chosen

and the answer to the first test is positive); and so forth. Consequently,

E0Ctest(T ) = H(q(T ), R) = log(Ni1) + pi1 log(Ni2/pi1) + . . .

+pi1 . . . piL−1
log(NiL/pi1 . . . piL−1

)

+|q(T )| log |q(T )| − |q(T )| log R,

where

|q(T )| = Q(T ) = 1 + pi1 + pi1pi2 + . . . + pi1 . . . piL−1
. (41)

Let Tctf be the CTF strategy, which performs the tests in the order 1, 2, . . . , L. Suppose i1 6=
1. Then we want to prove that, under the hypotheses made, H(q(T ), R) ≥ H(q(Tctf ), R).

By dropping the term

pi1 log(Ni2/pi1) + . . . + pi1 . . . piL−1
log(NiL/pi1 . . . piL−1

)

in the expression for H(q(T ), R) we have

H(q(T ), R) − H(q(Tctf ), R) ≥ log

(
Ni1

N1

)
− p1 log

(
N2

p1

)
− . . .

−p1 . . . pL−1 log

(
NL

p1 . . . pL−1

)
+ Q(T ) log(Q(T ))

−Q(Tctf ) log(Q(Tctf )) − (Q(T ) − Q(Tctf )) log R.

We can bound the various terms as follows: Since (Nl) is nondecreasing,

log

(
Ni1

N1

)
≥ log

(
N2

N1

)
. (42)

Putting γ = max1≤i≤L−1 pi log(Ni+1), and using the fact that the pi’s are decreasing, we

have:

p1 log(N2) + p1p2 log(N3) + . . . + p1 . . . pL−1 log(NL) =

L∑

i=2

p1 . . . pi−2(pi−1 log(Ni))

≤
∑

j≥0

pj
1γ

=
1

1 − p1
γ. (43)
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Using pl ց again, together with p1 ≤ 1/2 and the fact that −x log(x) is increasing for

x ≤ 1/e we obtain:

−p1 log(p1) − . . . − p1 . . . pL−1 log(p1 . . . pL−1) ≤ −
L−1∑

i=1

pi
1 log(pi

1)

≤ − log(p1)
∑

i≥1

ipi
1

= − log(p1)
p1

(1 − p1)2
. (44)

Now, from (41), since p1 ≤ 1/2, for any strategy T , Q(T ) ∈ [1, 2]. Since the function

x log(x) is Lipschitz in [1, 2] with constant (1 + log(2)), we have

|Q(T ) log(Q(T )) − Q(Tctf ) log(Q(Tctf ))| ≤ (1 + log(2)|)|Q(T ) − Q(Tctf )|.

Moreover,

Q(Tctf ) − Q(T ) ≤ p1 + . . . + p1 . . . pL−1 ≤
∑

i≥1

pi
1 =

p1

1 − p1
.

Therefore

Q(T ) log(Q(T )) − Q(Tctf ) log(Q(Tctf )) ≥ −(1 + log(2))p1

1 − p1
(45)

and

−(Q(T ) − Q(Tctf )) log(R) ≥
(

p1

1 − p1

)
log(R). (46)

Finally, putting inequalities (42)-(46) into the expression for the cost difference, we obtain

H(q(T ), R) − H(q(Tctf ), R) ≥ log

(
N2

N1

)

− 1

1 − p1

(
γ − p1 log(p1)

1 − p1
+ p1(1 + log(2) − log(R))

)

≥ 0,

by the assumptions of the lemma (since R0 ≤ R).

Proof of Theorem 8. We proceed by recurrence. The case L = 1 is obvious. Suppose the

theorem is proved for any L < L0 with L0 ≥ 2. Now consider the case L = L0. Suppose

T is an optimal strategy. Using the hypotheses of Theorem 8 and Lemma 7, we conclude

that the first attribute tested in T must belong to the coarsest level. If the response of

this test is positive, by independence of the levels, the remaining part of strategy T should
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be optimal for the problem with L0 − 1 levels of sizes N2, . . . , NL0
and remaining available

resource

R′ = R −
∑

A∈ eA1

r(A) = R − N1

(
R

N1Q(T )

)
= R

(
1 − 1

Q(T )

)
.

(Recall that r(A) = RqA(T )/Q(T ) and qA(T ) = 1/N1 for A ∈ Ã1.) Now since the first

attribute tested belongs to Ã1, necessarily Q(T ) ≥ 1 + p1 so that R′ ≥ Rp1/(p1 + 1), and

− log(R′) ≤ − log(R) − log(p1) + p1.

As a consequence, we can apply the hypothesis of recurrence (with resource R′), since the

hypothesis of the theorem carries over thanks to the above computation.

In preparation for the proof of Theorem 9 we need:

Lemma 8. Suppose (H1) and the following conditions are satisfied:

(i) log

(
4
N2

N1

)
≥ 2

1 − 2p1

(
max

1≤l≤L−1
pl log(Nl+1) +

− log(2p1)p1

1 − 2p1
− 1

2
log(1 − 2p1)

)

(ii)p1 ≤ 1/(2
√

e)

Then the first test performed by the optimal strategy must belong to the coarsest level.

Proof of Lemma 8. First write down the cost of the CTF strategy Tctf . Let Al ∈ Ãl be

some attribute. The probability that its associated test XAl
is performed is

P (XAl
performed) = P (XAl

performed|Al ∈ D)P (Al ∈ D),

where “Al ∈ D” denotes the event that Al has been attached to some node of the tree D:

{Al ∈ D} = ∪s∈D{A(s) = A}.

Now P (Al ∈ D) = 2l−1/Nl, and a test in the hierarchy is performed by the CTF strategy

if and only if all of its ancestors in the hierarchy are positive. Therefore, since the random

variables (Xs)s∈D are independent,

P (XAl
performed by Tctf |Al ∈ D) = p1 . . . pl−1,

so that finally

H(q(Tctf ), R) = log(N1) + 2p1 log

(
N2

2p1

)
+ . . . + 2L−1p1 . . . pL−1 log

(
NL

2L−1p1 . . . pL−1

)

+ Q(Tctf ) log Q(Tctf ) − Q(Tctf ) log R,
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where

Q(Tctf ) = 1 + 2p1 + . . . + 2L−1p1 . . . pL−1.

Now suppose we are given a strategy T , with first test XAi
∈ Ai and i 6= 1. So we have

H(q(T ), R) − H(q(Tctf ), R) ≥ log

(
Ni

N1

)
− 2p1 log

(
N2

2p1

)
− . . .

−2L−1p1 . . . pL−1 log

(
NL

2L−1p1 . . . pL−1

)
+ Q(T ) log(Q(T ))

−Q(Tctf ) log(Q(Tctf )) − (Q(T ) − Q(Tctf )) log R. (47)

Now using the hypotheses we bound the different terms. Since the Ni’s are increasing

we have

log

(
Ni

N1

)
≥ log

(
N2

N1

)
. (48)

Denoting γ = max1≤i≤L−1 pi log(Ni+1) and using the fact that the pi’s are decreasing

we have:

2p1 log(N2) + 4p1p2 log(N3) + . . . + 2L−1p1 . . . pL−1 log(NL) =

L∑

i=2

2i−1p1 . . . pi−2(pi−1 log(Ni))

≤2
∑

j≥0

(2p1)
jγ

=
2

1 − 2p1
γ. (49)

Using the fact that the pi’s are decreasing, that p1 ≤ 1/(2
√

e) and that the function

x log(x) is decreasing for x ≤ 1/e we have:

−2p1 log (2p1) − . . . − 2L−1p1 . . . pL−1 log−
(
2L−1p1 . . . pL−1

)
= −

L−1∑

i=1

(2p1)
i log

(
2ipi

1

)

≤ − log (2p1)
∑

i≥1

i2ipi
1

= − log (2p1)
2p1

(1 − 2p1)2
.

(50)

Now, 1 ≤ Q(Tctf ) ≤∑i≥0(2p1)
i ≤ 1/(1 − 2p1), and on the other hand Q(T ) ≥ 2 (since

any strategy that does not begin with the coarsest test must perform at least 2 tests in any

case), so Q(T ) > Q(Tctf ) and

−Q(T ) log(Q(T ))+Q(Tctf ) log(Q(Tctf ))+(Q(T )−Q(Tctf )) log R ≤ − log(1 − 2p1)

1 − 2p1
−2 log(2).

(51)
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Finally, putting together inequalities (48)-(51) into (47), we obtain

H(q(T ), R) − H(q(Tctf ), R) ≥ log

(
N2

N1

)
+ log(4)

− 2

1 − 2p1

(
γ +

− log(2p1)p1

1 − 2p1
− 1

2
log(1 − 2p1)

)
≥ 0,

using hypothesis (i).

Proof of Theorem 9. As usual, we proceed by recurrence on the depth L of the hierarchy

D. The case L = 1 is obvious. Suppose the theorem is true for any L < L0 with L0 ≥ 2

and consider the case L = L0.

Suppose T is an optimal strategy. By Lemma 8, we conclude that the first test to be

performed at each round is for the attribute attached to the root s0 of D, Xs0
.

Let D1,D2 be the two subtrees rooted at the children of s0 which are of depth at most

L0−1, so that, if a tree is identified with the set of its nodes, we have D = {s0}
·∪ D1

·∪ D2.

For an attribute A, and with some abuse of notation, write A ∈ D1 for the event “attribute

A is attached to one of the nodes of D1”.

For A ∈ Ã2 ∪ . . . ∪ ÃL, define the quantity

q
(1)
A = P (XA is performed by strategy T,A ∈ D1),

and define q
(2)
A in the same way, replacing D1 by D2; finally, define the family q(0) by

q
(0)
A = qA(T ) if A ∈ A1 and q

(0)
A = 0 otherwise. Thus, q(T ) = q(0) + q(1) + q(2) (where, as

usual, bold letters indicate collections of variables indexed by D).

By concavity of H, for any R′ ≤ 1,

H

(
1

2
(q(1) + q(2)), R′

)
≥ 1

2

(
H(q(1), R′) + H(q(2), R′)

)
.

Multiplying by 2 and using the fact that H is homogeneous in its first argument we conclude

that

H(q(1) + q(2), R′) ≥ H(q(1), R′) + H(q(2), R′). (52)

Consider now the conditional strategy S = TD1
(XD2

), where XD2
is the set of tests cor-

responding to the attributes attached to subhierarchy D2. Let qA(S;XD2
) be the probability

of performing test XA using strategy S. By definition we have

q(1) = (1 − β1)E0[q(S;XD2
)].

Now note that, since all attribute tests at the same resolution level ℓ are assumed to have

the same power βℓ and are independent, by a symmetry argument, conditional on XD2
(the
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response values of the attribute tests attached to hierarchy D2 – but without the information

of which tests are attached to D2), the probability distribution of the variables (XD1
) and

of the events (A ∈ D1) remains the same as without conditioning.

Therefore, conditional on XD2
, we can apply the hypothesis of recurrence to sub-

hierarchy D1 if conditions (i) and (ii) are satisfied. Obviously, (i) is still valid; and hypothesis

(ii) carries over because the sequence (pl) is decreasing (hypothesis (H1)).

We therefore conclude that, for any R′ ≤ 1,

H(q(S;XD2
), R′) ≥ H(q(T

(1)
ctf ), R′),

where q(T
(1)
ctf ) denotes the vector of probabilities (of performing tests indexed by A) for the

CTF strategy applied to subhierarchy D1. By concavity of the cost function,

H(q(1), R′) = H
(
(1 − β1)E0[q(S;XD2

)], R′
)

≥ E0

[
H((1 − β1)q(S;XD2

), R′)
]

≥ H((1 − β1)q(T
(1)
ctf ), R′).

Applying the same reasoning to subhierarchy D2 and using (52),

H(q(1) + q(2), R′) ≥ H((1 − β1)q(T
(1)
ctf ), R′) + H((1 − β1)q(T

(2)
ctf ), R′)

(where T
(2)
ctf denotes the CTF strategy applied to hierarchy D2).

Now, due to the randomized construction of the hierarchies, and to the symmetry be-

tween D1 and D2, we have q(T
(1)
ctf ) = q(T

(2)
ctf ). Using again the homogeneity of the cost

function, we then have

H(q(1) + q(2), R′) ≥ H((1 − β1)(q(T
(1)
ctf ) + q(T

(2)
ctf )), R′).

Finally, let R0 be the total amount of resources distributed among the tests for attributes

in A1 and let R′ = R − R0. Then

E0Ctest(T ) = H(q(T ), R) = H(q(0) + q(1) + . . . + q(k), R0 + R′)

= H(q(0), R0) + H(q(1) + q(2), R′)

≥ H(q(0), R0) + H((1 − β1)(q(T
(1)
ctf ) + q(T

(2)
ctf )), R′)

≥ H(q(0) + (1 − β1)(q(T
(1)
ctf ) + q(T

(2)
ctf )), R)

where the third equality and the last inequality hold by Proposition 2-(iii). But q(0) + (1−
β1)(q(T

(1)
ctf )+q(T

(2)
ctf )) is precisely the probability vector corresponding to the CTF strategy,

which means this strategy is optimal.
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