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Delayed buckling of spherical shells due to viscoelastic knockdown of the critical load

Lucia Stein-Montalvo,1, ∗ Douglas P. Holmes,1, † and Gwennou Coupier2, ‡

1Department of Mechanical Engineering, Boston University, Boston, MA, 02215.
2Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France.

We performed dynamic pressure buckling experiments on defect-seeded spherical shells made of a
common silicone elastomer. Unlike in quasi-static experiments, shells buckled at ostensibly subcrit-
ical pressures (i.e. below the experimentally-determined load at which buckling occurs elastically),
often following a significant time delay. While emphasizing the close connections to elastic shell
buckling, we rely on viscoelasticity to explain our observations. In particular, we demonstrate that
the lower critical load may be determined from the material properties, which is rationalized by
a simple analogy to elastic spherical shell buckling. We then introduce a model centered on em-
pirical quantities to show that viscoelastic creep deformation lowers the critical load in the same
predictable, quantifiable way that a growing defect would in an elastic shell. This allows us to
capture how both the critical deflection and the delay time depend on the applied pressure, material
properties, and defect geometry. These quantities are straightforward to measure in experiments.
Thus, our work not only provides intuition for viscoelastic behavior from an elastic shell buckling
perspective, but also offers an accessible pathway to introduce tunable, time-controlled actuation to
existing mechanical actuators, e.g. pneumatic grippers.

I. INTRODUCTION

Shell structures are lightweight and flexible. Largely owing to their curvature, they offer considerable strength with
little material. As a result, shells are abundant in nature (e.g. eggshells and blood vessels) and design (e.g. fuel
tanks and soda cans). However, slenderness also brings susceptibility to abrupt and often catastrophic deformations.
Clearly, understanding how a thin, curved structure will lose stability – and in particular at what load value this will
occur – is crucial.

We restrict our attention to spherical shells in the present work. The first-known quantitative prediction for the
critical load Pc in a perfect, spherical, elastic shell subjected to uniform pressure was produced by Zoelly in 1915 via
linear eigenvalue analysis, and is given as:

Pc =
2E√

3(1− ν2)
η−2 (1)

for a shell with Young’s modulus E, Poisson’s ratio ν, and radius (R) to thickness (h) ratio η ≡ R/h.
Although this result is still widely accepted today, it severely overpredicts the buckling load observed in experiments.

Recognizing this disrepancy, which is due to the extreme sensitivity to imperfections inherent to thin shells, scientists
at the space agency NASA and collaborators introduced the knockdown factor (kd) in 1930. The quantity is defined
as the ratio of the observed critical load P ec , to that predicted by the theory, i.e. kd ≡ P ec /Pc. Based on surveyed
experimental results [1, 2], engineers at NASA settled for the extremely conservative design code of kd ≈ 0.2 for
spherical shell structures [3].

Over the decades that followed, extensive work was dedicated to correcting the persistent overprediction of the
critical pressure. This involved studies of the post-buckling behavior [4, 5], and the imperfection sensitivity [6–11] of
thin spherical shells. Yet, marked success arrived only recently, after Lee et al. developed a new fabrication technique
for polymeric spherical caps [12]. The authors used this method to create dominant dimple-like defects (larger than
those naturally occurring in the shell) with systematic size variations [1]. These experiments, validated with finite
element modeling (FEM) and numerical analysis, quantitatively showed for the first time how the imperfection depth
lowers the critical load.

Other contributions followed, including studies on spheres with similar dimple defects and sinusoidal equatorial
undulations [13], large-amplitude dimples [14], through-thickness defects [15] (a notable predecessor is Ref. [16]), dent
defects [17], and probing force imperfections [18], which collectively clarify the effect of the type of defect on the
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knockdown factor for spherical shells. More broadly, this long-awaited breakthrough provoked a new surge of progress
in spherical shell theory (see e.g. Refs. [13, 19–21]). These developments afford engineers the opportunity to design
sturdy structures with more specific – and permissive [2] – lower bounds on the load carrying capacity. This was
the initial goal. In more recent years, though, a community of researchers has adopted, in a sense, the opposite
goal: to design structures that buckle and snap on command [22, 23] for functions like colloidal self-assembly [24],
encapsulation [25], inflatable snapping actuation [26, 27], and artificial muscle actuation [28].

The new understanding of defect sensitivity in a different light demonstrates the tunability of spherical shell buckling,
and thus serves this “buckliphilic” [23] community equally. In particular, the geometry and placement of a dominant
defect prescribe, respectively, the buckling strength and the spot where an instability localizes. Recent extensions of
this concept couple geometric defects with differentially swelling [29] or magneto-responsive [30] materials to modify
the knockdown factor over time. Relatedly, a more general study showed how a homogenous natural curvature –
which can be a proxy for nonmechanical stimuli like thermal expansion, changes in pH, or differential growth – acts
to raise or lower the knockdown factor in spherical shells [31].

Besides control over when instability occurs – which depends on geometry, loading, and mechanics – mechanical
actuators generally rely on reversibility. Repeatable actuation calls for robust, elastic materials, and silicone rubbers
like polydimethylsiloxane (PDMS) and vinyl polysiloxane (VPS) have answered this call in mechanics research [32].
In addition to their elastic behavior, these elastomers are readily accessible and allow for fast, easy fabrication [12].

Recently, Djellouli, et al. combined these ingredients to produce a mechanical swimmer [33]. Quasi-static pressure
cycles drove the device, a defect-seeded spherical shell made of the elastomer Dragon SkinTM 30, to propel forward
through a viscous fluid by buckling and unbuckling controllably. The authors propose that maintaining dimensionless
quantities constant would allow for miniturization, with implications for drug delivery. A natural extension of this
work, and the motivation for the present study, is to seek control over the speed of swimming by adjusting the frequency
and/or amplitude of pressure cycles. Largely because shell and fluid motion are highly coupled in swimming, and
because of possible resonance with postbucking oscillations [34], we expect this phase space to be complex. Thus, we
set out to first isolate the shell buckling response, independent of fluid motion, to dynamic loading at pressures in the
vicinity of the critical load.

We fabricated imperfect spherical shells like those in Ref. [33], and fixed them in place surrounded by air. A small
nozzle allows for internal pressure control, through which we step-load the shells – that is, we abruptly apply, and then
maintain, a pressure load. Explicitly, we reduce the pressure inside the shell cavity, creating a negative inside-outside
differential pressure. For simplicity, we will refer to this pressure difference in terms of its magnitude. These straight-
forward experiments produced surprisingly rich results. Even for loads below the experimentally measured elastic
critical pressure (which we loosely call “subcritical” herein), we consistently observe buckling. Further, this buckling
at subcritical loads occurs abruptly, often after an extended period of very slow deformation perhaps mistakeable for
stability. We observe singular thresholds and a delay time which increases monotonically as pressure decreases – this
contrasts the findings of a recent numerical study on dynamic step loading of spherical shells which are much thinner
than our own [35].

As discussed, geometric imperfections can lead to buckling at lower-than-expected loads. In this case, though,
the shell defects are already accounted for. Devoid of any plausible geometric explanation for this strange buckling
behavior, our results require a closer examination of the materials. Although silicone elastomers are selected precisely
because they behave elastically in most settings, they are in fact prone to time-dependent molecular rearrangement,
and hence are viscoelastic [36–38]. Thus, they behave differently depending on how fast they are loaded, and exhibit
both stress-relaxation (softening when subjected to a constant strain) and creep (deformation over time under constant
stress).

In the present work, we rely on this viscoelasticity to account for our observations, while emphasizing the close
connections to elastic spherical shell buckling. The structure is as follows: First, we introduce key aspects of our
experiments in Sect. II. Specifically, we report the viscoelastic material properties, describe the geometry of our
imperfect spherical shells, and briefly introduce our experimental setup. In Sect. III, we present an overview of our
findings. We address the critical pressure conundrum in Sect. IV by defining two pressure thresholds: the elastic
critical pressure, and the lower viscoelastic critical pressure, which can be related through the limiting material
properties. These thresholds separate three regimes: immediate buckling, delayed buckling, and no buckling (stable).
In Sect. V, we introduce an analogy wherein viscoelastic creep deformation lowers the critical load in the same way
that a growing dimple-like defect would in an elastic shell. This provides insight about the pre-buckling deformation
(Sect.V A), and reveals how the delay time preceding buckling depends on the imposed pressure, shell geometry and
material properties (Sect.V B). Finally, we offer concluding remarks in Sect. VI.
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II. MATERIALS, GEOMETRY AND METHODS

We have performed dynamic, step-loaded pressure buckling experiments on soft, viscoelastic spherical shells. Here,
we briefly summarize the material properties, shell fabrication and geometry, and dynamic loading methods.

A. Material characterization

The shells used in our experiments are made of the elastomer Dragon SkinTM 30 (manufactured by Smooth-On;
Poisson’s ratio ν = 0.5 [33]). We assume that our viscoelastic material can be described by the Standard Linear
Solid (SLS) model, the simplest linear model that captures both stress-relaxation (the decreasing stress response over
time for a structure subjected to a constant strain) and creep (deformation under a prolonged constant stress) [39].
The SLS model describes limited creep behavior, i.e. creep deformation does not progress indefinitely, nor does the
modulus eventually go to zero.

According to the SLS model, the modulus relaxes over time according to:

E(t) ≡ σ(t)

ε
= E∞ + E1e

−t/τσ (2)

where σ(t) is the time-varying stress, ε the constant strain, and τσ the relaxation time. The parameter E1 ≡ E0−E∞
quantifies the total stiffness lost as the elastic modulus E0 decreases to the long-term (equilibrium) modulus E∞,
where E0 ≥ E∞. The function (2) is known as the relaxation modulus. It is related by Laplace transform to the
creep compliance function, which describes the temporally increasing strain ε(t) of the SLS element under imposed
constant stress σ [40]:

J(t) ≡ ε(t)

σ
= J0 + J1

(
1− e−t/τε

)
(3)

where J0 = E−1
0 , J1 ≡ J∞ − J0 with J∞ = E−1

∞ ≥ J0, and τε is the retardation time.
We performed uniaxial tension and stress-relaxation tests using the tensile testing machine Instron 5943 to identify

the parameters in Eq. (2) (details are provided in Sect. VII A.) We found the relaxation time to be τσ = 0.78± 0.49
s. As for the moduli, we determined E0 = 0.59± 0.04 MPa and E∞ = 0.54± 0.08 MPa. Reported errors throughout
the text correspond to one standard deviation unless otherwise noted1. The resulting ratio of the mean long-term
modulus to the mean instantaneous one is Ē ≡ E∞/E0 = 0.91, which is central to the analysis beginning in Sect. IV.

Since our materials have a relatively low relaxation strength, defined as ∆ = E1/E∞ [40], Eq. (2) and the inverse
of Eq. (3) differ negligibly, i.e. J−1(t) ≈ E(t) (see Sect. VII A, Fig. 7). While creep is the relevant process in our
experiments, our primary aim is to draw connections to elastic shell theory, which relies on the modulus E. Thus, we
will use this convenient fact to interchange the representation of these two mechanisms in our analysis.

B. Shell geometry

Spherical shells were fabricated following the bi-molding method from Ref. [33], which is detailed in Sect. VII B.
The shells, made of two hemispheres seamed with a thin layer of diluted polymer, all have an outer radius of Ro =
R+ h/2 = 25 mm. The thickness h ∈ [1 mm, 5 mm], such that η ∈ {24.5, 12.0, 6.6, 4.5}.

To control the location and direction of buckling, each shell is seeded with an imperfection, where the thickness is
reduced by an amount δ ∈ [0.40, 0.81] mm, such that δ̄ ≡ δ/h ∈ [0.08, 0.76] in a circular region spanning a half-angle
of β0 ≈ π/24 radians. The shell parameters are shown schematically in Fig. 1, and the effect of this defect is discussed
further in Sect. VII C.

Following e.g. Ref. [1], we also introduce the parameter λ, defined as

λ =
(
12(1− ν2)

)1/4
η1/2β0, (4)

which describes the defect geometry in the context of spherical caps [41, 42]. For our shells in order of increasing
thickness, λ ∈ {1.038, 0.716, 0.612, 0.492}.

1 For quantities with few measurements, the approximate standard deviation is reported as one-fourth of the error range.
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R δ
β0

h

Pin

Patm

FIG. 1. Schematic of the clamped shell with an inlet for pressure control. The flexible tube connects at its other end to a
vacuum tank so that when the line is open, Pin < Patm (or P ≡ |Pin − Patm| > 0). The relevant parameters are labeled: the
nominal thickness h and midline radius R, imperfection depth δ, and half-angular width of the imperfection β0.

C. Step loading

A flexible tube was connected on one end to the inside of the shell, and on the other to a vacuum tank. An
electrovalve interrupting this channel allowed us to abruptly remove air from the inner volume of the shell, creating a
pressure difference of magnitude P ∈ [0.3 kPa, 46.5 kPa] (see Fig. 1), which we monitor with a pressure sensor. The
pressure load is maintained for either the time it takes the shell to buckle, or thold ∈ [5s, 360s]. For details on the
experimental setup, see Sect. VII D.

III. THREE REGIMES

For each of our shells, the immediate response to any non-negligible pressure load was qualitatively the same: The
shell compresses as soon as the pressure is felt, and deformation quickly localizes at the unclamped pole (in the vicinity
of the imperfection), forming a dimple-like depression with a deflection depth w (see Fig. 2 a.) Beyond this early
behavior, which occurs in approximately the first 0.05 seconds, three regimes were evident from our experiments.

20mm

t = 0 s 0.05 s 0.07 s 0.075 s 0.085 s 0.095 s 0.25 s

t = 0 s 0.05 s 1.255 s 1.26 s 1.265 s 1.275 s 1.50 s

t = 0s 0.05s 2s 4s 10s 15s 20s

10−2 10−1

10−1

100

Normalized pole deflection w̄

10−2 10−1 100

10−1

100

10−2 10−1 100 101

10−1

100

t (s)

a. b.i.

ii.

iii.

i.

ii.

iii.

P̄

w = wc

P̄ = 1.02

P̄ = 0.93

P̄ = 0.90

FIG. 2. (a.) Selected high-speed camera images and (b.) corresponding plots of the pole deflection normalized by the shell
thickness, i.e. w̄ = w/h, show the typical response of a shell (η = 6.6) to step loading at relatively i. high (supercritical), ii.
moderate (subcritical), and iii. low pressures. The pole deflection w is measured from the initial state, marked in a,i. by the
upper dashed gray line. At or above the elastic buckling pressure (e.g. P̄ ≡ P/P ec = 1.02), the shell quickly buckles (tc ≈ 0.07
s). The corresponding critical pole deflection wc is indicated in a,i. Even at subcritical pressures, e.g. P̄ = 0.93, the shell
eventually buckles (tc ≈ 1.26 s). This collapse follows a deceleration in the pole deformation at t ≈ 0.05 s, and a subsequent
period of slow, constant-rate deformation. For pressures below a second threshold, e.g. P̄ = 0.90, the shell does not buckle.
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If the imposed pressure is high, the initial fast rate of pole deformation is maintained, and the shell quickly buckles
– that is, the pole inverts, driving global collapse (Fig. 2, i). In postbuckling, which we do not study in detail here,
the pole region is completely inverted and oscillations occur before stability is reached again when w ≈ 2R. We refer
to this regime, wherein the shell behaves elastically throughout deformation, as the immediate buckling regime. The
lowest pressure at which we observe this buckling behavior defines the experimental elastic critical load P ec . Due to
the seeded defects and the non-negligible thickness of our shells, the experimentally-determined value P ec differs from
the theoretical critical pressure Pc (Eq. (1)) for thin, perfect elastic shells. For details, see Sect. VII C.

At slightly lower pressures, the deformation rate slows considerably following the fast response to loading, at a
transition time (t ≈ 0.05 s). The dimple slowly deepens (i.e. w increases; See Fig. 2, ii), before an abrupt acceleration
after some time tc ∈ [0.09 s, 17.09 s] signifies buckling. We define this intermediate regime as the delayed buckling
regime. At still-lower pressures, slow pole motion eventually stops, and the shell settles into indefinite stability for as
long as the load is maintained. We call this third regime the stable regime (Fig. 2, iii).

The value of the pressure which separates the delayed buckling and stable regimes, and hence marks the boundary
of whether collapse will occur, is clearly of interest. This lower pressure threshold was more or less constant for all
of our shells when normalized by the elastic load. In other words, the reduced critical pressure is independent of
geometry. With this nudge toward the materials, we proceed to rationalize these findings.

IV. PRESSURE THRESHOLDS VIA MODULUS RATIO

Since we know our materials are viscoelastic, we can presume that the slow pole deformation under constant pressure
is an exhibition of creep. This would situate our observations in the terrain of creep buckling. Creep buckling was
introduced in the literature in 1951 [43]. The bulk of the work in this field was developed in the thirty or so years
that followed, and was aimed at understanding creep collapse that occured on timescales of hours or even days in
metallic, mono-resin materials, and reinforced concrete. However, general theories emerged, which are illuminating
when applied to our elastomer shells. In particular, Hayman [44, 45] and others [46, 47] proposed that a viscoelastic
structure that buckles due to creep may be treated as an equivalent elastic structure with a lower critical load. The
main result is that the lower threshold – which we will henceforth refer to as the viscoelastic critical pressure P vc – is
directly related to the long-term modulus. For spherical shells, the lower critical pressure P vc may be found by simply
replacing Young’s elastic modulus E with E∞ in calculating the elastic critical load (Eq. (1)). Denoting normalization
by the experimentally measured elastic critical pressure P ec with an overbar, i.e. P̄ ≡ P/P ec and P̄ vc ≡ P vc /P ec , that is:

P̄ vc = Ē. (5)

In Fig. 3, we show that (5) agrees with our experimental data very well, solidifying the notion that viscoelasticity
is indeed the cause for the subcritical buckling we observe. The dashed line marks the theoretical lower limit where
creep bucking may be observed, P̄ vc = Ē, which for our materials (see Sect.II A & Sect. VII A) is 0.91.

Explicitly, Eq. (5) ignores the actual mechanism that leads to instability, creep deformation, in favor of a straightfor-
ward way to determine the minimum buckling pressure for creep-limited materials, which is perhaps the most crucial
information for any design goal. Given the elastic (viscoelastic) critical pressure and the experimentally-determined
instantaneous and long-term moduli, the ratio in Eq. (5) readily predicts the viscoelastic (elastic) critical pressure.

This view is effective and completely general with respect to geometry and material properties. However, it
provides no information about deformation or the time delay that preceeds buckling. Besides that these features
are of fundamental interest, understanding this delay mechanism will offer a route to including controllable delays in
elastomer device design. We address these open questions in the following section.

V. CREEP DEFORMATION AS AN EVOLVING DEFECT

As we have seen, the efficient, modulus-based approach in Sect. IV connects the limiting critical pressure of a
viscoelastic shell to that of the equivalent elastic shell. It leaves questions, however, about the time it takes a
subcritically-loaded shell to buckle, and the underlying pre-buckling deformation. Traditional analytical approaches
to capture the critical time and/or deflection for creep buckling involve incorporating calculated quantities for stress
and strain into the constitutive model (in our case Eq. 3). Instability may be identified by solving the eigenvalue
problem of the governing differential equations, or by the quasi-static “critical strain approach” [48] wherein the
critical strain must be known or assumed a priori, and the corresponding time is directly solved for [49]. These
methods require precise representations of the stresses and strains throughout deformation, and have met moderate
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1.00
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Delayed

Stable

Ē

η

P̄

FIG. 3. Phase plot depicting the three regimes, separated by two pressure thresholds. The elastic critical pressure (thin
dotted line, P̄ = 1) was experimentally determined as the minimum pressure at which a slowdown of dynamics does not preceed
buckling. We expect “immediate” (elastic) buckling for an imposed pressure P̄ ≥ 1, which corresponds to the green region.
The theoretical viscoelastic critical pressure P̄ vc = Ē (thick dashed line) is determined from (5) using the material parameters
measured independently in stress-relaxation tests (see Sect. II A). Between P̄ = 1 and P̄ vc (yellow region), viscoelastic creep
can explain delayed instability at subcritical pressures. Below P̄ = Ē (red region), limited creep for our material is insufficient
to cause buckling, so we expect indefinite stability. Green triangles, yellow circles, and blue squares represent, respectively,
experiments which buckled elastically, buckled after a time delay, and did not buckle. Error bars represent one standard
deviation.

success in capturing experimental behavior for simple structures like columns [50, 51], trusses and arches [52], plates
and even cylinders [48]. (See Ref. [49] for a review of the relatively recent work on creep buckling of shell structures,
or Ref. [46] for an earlier review on creep buckling of plates and shells.)

A clear problem with these approaches is that it is generally assumed that a shell undergoing creep will lose stability
at the same strain as its elastic counterpart [53, 54]. However, it has been noted that this assumption often leads
to underprediction of the critical displacement and time [55]. Indeed, although the immediate and delayed buckling
regimes appear qualitatively very similar in terms of deformation in our experiments (see Fig. 2, i. & ii.), we observe
that shells which creep for longer sustain more deformation before buckling.

Complex geometries like imperfect spherical shells and their nonlinear deformations introduce significant analytical
difficulties of their own. Creep buckling in spherical caps and complete spherical shells has primarily been studied with
numerical analyses [56–60], which do not produce closed-form solutions for when instability occurs. Few experiments
exist for comparison to these results, and attempts to replicate limited experimental creep buckling behavior for
spherical shells have largely been unsuccessful [57, 61].

A more enlightening approach relies on the observation that the pre-buckling deformation approximately amplifies
the initial defect (see Fig. 4a). This suggests that we may be able to draw an analogy between creep deformation
and a growing imperfection in an elastic shell. This concept was proposed by Hayman in 1981, but the author
conjectured that while his “locus of critical points” approach offered intuition, it lacked predictive power for all but
simple, statically determinate structures [45]. To our knowledge, the approach has not been implemented besides in
the original work, when it was validated against a small number of experiments on concrete three-pin arches.

One key challenge was that the effect of the defect must be quantifiable. Indeed, as discussed in Sect. I, the
imperfection sensitivity of shell structures has only recently become experimentally tractable. In what follows, we
rely on the work of Lee and collaborators [1], and center our analysis upon quantities that are readily determined
through experiments, to derive a practical and predictive model for creep buckling in our shells.

Knowing that an imperfection “knocks down” the critical load in an elastic structure, in this view quasi-static
creep deformation has the same effect. In other words, creep deformation behaves like an evolving imperfection by
progressively knocking down the critical load. It follows that creep collapse occurs when the critical load associated
with the “imperfect” creep-deformed structure falls to the value of the applied load. Conversely, the imperfection size
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associated with a given applied load should correspond to the critical deformation at which creep buckling occurs. It is
important to note that this was buried but implied in the approach of Sect. IV; the two arguments are complementary.

To make this analogy quantitative, we turn to the recent literature on geometric imperfections in elastic spherical
shells. The true defects in our shells are characterized by a local reduction in thickness as in Ref. [15] (see Sect.
VII C). The pole deflection generated during creep, however, is qualitatively more similar to a dimple-like imperfection
where the thickness does not change, but the curvature of the shell midline does. Because the midline curvature of
our shells is unaffected by the thickness reduction except at the discontinuity at either edge of the defect profile, we
consider our shells initially “perfect” in the dimple sense. For the present analysis, we rely on the findings of Lee et
al. [1], which are in agreement with Refs. [8, 13, 14].

FIG. 4. Pre-buckling pole deformation (w ≤ wc) is qualitatively similar to a geometric defect of increasing depth δ. (a.) i.
Schematic of dimple-like defect in an elastic spherical shell, after e.g. Ref. [1]. ii. Edge contours from high-speed images at
t = 0, 0.07, 0.14, 0.21, 0.28 s and tc = 0.35 s (darkening blue corresponds to increasing time) for η = 4.5 and P̄ ≈ 0.97. After
initial compression, deformation localizes to the pole and progresses. (b.) Our fitting parameter a ≈ f(λ) = 1.08− 0.44λ.

The key finding of their work, for our purposes, is that the knockdown factor for a given shell kd = P ec /Pc is
a function of δ̄ = δ/h which initially decreases for increasing δ̄, then reaches a plateau. The authors present an
empirically-determined function describing the lower bounding envelope over the range of λ they study, which takes
the form kd = a+ b/(c+ δ̄). We find that this functional form describes their individual curves sufficiently well.

Primarily because λ for our thick shells is below the range studied in Ref. [1], we cannot directly extract the results
relevant to our work. Instead, we expect that these general trends will hold. We assume that we can simply replace
the imperfection depth δ with the pole deflection w. Because we only consider the additional knockdown due to creep
deformation, and not that due to the inital defect, we take the reference pressure as the experimental critical pressure
P ec that corresponds to the initially imperfect shell. Then we define a general viscoelastic knockdown function

kvd(w) = P̄c(w̄) = a+
b

c+ w̄
, (6)

where w̄ = w/h, and a, b, and c are yet unknown.
Since w increases according to the creep strain rate, an alternative form of Eq. (6) specifies the time dependence.

Approximating the magnitude of the circumferential strain to first order as ε ≈ w/R, we can say w̄ ≈ ηε(t). From
Eq. (3) this means w̄ ≈ ησJ(t), which is approximately ησ/E(t) since the creep compliance function J(t) and the
inverse of the relaxation modulus 1/E(t) are nearly indistinguishable for our material. At early times the shell behaves
elastically, so we assume Hooke’s Law applies, i.e. σ ≈ E0ε(tt) at a transition time tt between the elastic and creep
stages of deformation. Further, we assume ε(tt) ≈ εec, where εec ≈ wec/R is the critical strain corresponding to P̄ = 1,
when the shell buckles immediately following elastic deformation. Then by Eq. (2), the normalized pole deflection
increases with time following the relation

w̄(t) ≈ E0 w̄
e
c

E∞ + E1e−t/τσ
. (7)

Note that due to our simplified representations of stresses and strains in Eq. (7), all relations that follow are ap-
proximations, despite that we present them as equalities for simplicity. Substituting Eq. (7) in Eq. (6), gives a
time-dependent version of the generalized viscoelastic knockdown function:

kvd(t) = P̄c(t) = a+
b

c+
E0 w̄ec

E∞+E1e−t/τσ

. (8)

It remains to determine the three unknown quantities, which should explain how sensitive the critical pressure is to
deformation (Eq. (6)) and how quickly the critical pressure decreases (Eq. (8)) for each shell. To do so, we constrain
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the functions, enforcing what we know about the limiting behavior. The critical deflection required for buckling at the
elastic limit where P̄ = 1 is an experimentally-determined value, wec , which differs for each shell based on geometry.
Since for buckling to occur, Pc(w) = P , from Eq. (6) this condition is stated as:

1 = a+
b

c+ w̄ec
. (9)

We also know from Eq. (5) that buckling will not occur below kd = P̄ vc = Ē. Taking the limit of the right hand
side of Eq. (8) as t approaches infinity gives a second constraint:

Ē = a+
b

c+
w̄ec
Ē

. (10)

Solving Eqs. (9) & (10) simultaneously gives

b =
(a− 1)(a− Ē)w̄ec

Ē
(11)

and

c =
−aw̄ec
Ē

, (12)

which we insert into Eq. (6) to arrive at:

P̄c(w) = a+
(1− a)(Ē − a)w̄ec

Ēw̄ − aw̄ec
(13)

which describes the critical pressure for a given degree of pole deflection. If w̄ is large enough that P̄c is lowered to
the imposed dimensionless pressure P̄ , in theory buckling will occur.

Similarly, inserting the expressions for b and c in Eq. (8) gives

P̄c(t) = a+ (a− 1)(a− Ē)

(
E0Ē

E∞ + E1e
− t
τσ

− a
)−1

(14)

which specifies the time-dependence, according to the SLS model, of the knockdown to the critical pressure that
occurs as the pole deflection progresses. Again, if t is such that P̄c = P̄ , we expect collapse to occur.

Note that from Eq. (14), it is clear that any explicit dependence on geometry is contained in a. When a is left as
a fitting parameter for the curves defined by Eq. (16) (see Fig. 6a), we find that it is a decreasing function of the
geometric defect parameter λ, which is in general agreement2 with Ref. [1]. In particular, we determine a ≈ 1.08−0.44λ
(Fig. 4b) for our shells. We refer to this linear function henceforth as f(λ), and substitute it accordingly for a to
emphasize the deduced connection between our fitting parameter and the defect geometry.

The deflection (Eq. (13)) and time (Eq. (14)) forms of the viscoelastic knockdown relations lead to expectations for
how the critical displacement and critical time should depend on the material properties, geometry and the imposed
pressure. We assess both in the following subsections.

A. Critical deflection

Evaluating Eq. (13) at P = Pc(w̄c), replacing a with f(λ), and solving for w̄c/w̄
e
c gives the following expression for

the dimensionless critical deflection:

wc
wec

=
f(λ)(1 + Ē − P̄ )− Ē

Ē(f(λ)− P̄ )
(15)

which is valid when creep occurs (P̄ vc = Ē < P̄ < 1, where the first equality refers to Eq. (5)) and tells us the pole
deflection we should expect at (or, that is required for) buckling. Eq. (15) is plotted against our data in Fig. 5,

2 We fit a function of the form kd = a+ b/(c+ δ̄) to the numerical data over λ ∈ [1, 5] in Fig. 6b of Ref. [1], and found a ≈ 0.5− 0.14λ.
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FIG. 5. The critical pole deflection wc depends on P , the material properties, and the geometry through a = f(λ) and P ec :
when creep occurs (delayed buckling, yellow region, to the left of the dotted line at 1 on the horizontal axis which marks
P̄ = 1), the shell must deform more than wec = wc(P

e
c ) to “knock down” the critical pressure until it coincides with the

imposed pressure P , and stability is lost. This is represented by the diagonal line (Eq. (15)), which matches our data well
until the lower pressure limit for buckling is approached. This asymptote is marked by the loosely dotted line with abscissa
1/Ē, which corresponds to P̄ = Ē = P vc /P

e
c (Eq. (5)). Open symbols in the red (stable) region represent the maximum

(equilibrium) w/wec for experiments that did not buckle. As expected, these points fall below the theoretical line, which
projects the deflection necessary for buckling. Our model does not extend to the immediate buckling regime (green region).
Error bars are approximately one standard deviation.

showing good agreement until P̄ ≈ P̄ vc . Near this asymptote, marked by the loosely dotted line, the critical deflection
observed in experiments exceeds the predicted value. We discuss this deviation further in Sect. V B.

The results in Fig. 5 are consistent with the trend observed in the creep buckling literature, where it is suggested that
a shell undergoing creep prior to buckling sustains more deformation before collapse than its counterpart that buckles
elastically. The explanation is that as the imposed pressure decreases, more deformation is required to sufficiently
“knock down” the critical pressure for buckling to occur.

Creep does not occur before buckling when P̄ ≥ 1 (the green region in Fig. 5), where the shell behaves elastically.
In this region, where Eq. (15) does not apply, we do not observe a clear trend in the critical deflection. Further, for
experimental points that do not buckle, the deformation was insufficient to reduce the critical pressure to the value
of the relatively low applied load. Accordingly, the maximum pole deflection (open symbols in Fig. 5) falls below
theoretical curves when P̄ < P̄ vc (red region in Fig. 5). Taking the limit as t approaches infinity in either Eq. (3)
or Eq. (2) gives εmax = σ/E∞, so wmax ≈ Rσ/E∞. Meanwhile, Hooke’s law provides an estimate for the critical
deflection if P̄ = 1 is imposed: wec = Rσe/E0. Then in theory, if P̄ < P̄ vc , wmax/w

e
c ≈ σ/(Ēσe) ∼ P̄/Ē. We do not

attempt to verify this scaling with our sparse data in this region, besides noting that as P̄ approaches P̄ vc , we would
expect wmax/w

e
c to approach 1 (from below). Our data appears to support this conjecture.

B. Critical time

We have seen that the pole deflection is analogous to a dimple-like defect. Incorporating the viscoelastic material
model, in turn, tells us how the critical pressure is expected to decrease over time. This offers a means to explain
the critical buckling time, which increases monotonically for decreasing pressure. To do so, we evaluate Eq. (14) at
P̄ = P̄c(tc) and solve for the dimensionless critical time tc/τσ:

tc
τσ

= ln

(
(Ē − 1)(f(λ)(Ē − P̄ + 1)− Ē)

Ē(f(λ)− 1)(Ē − P̄ )

)
. (16)
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Eq. (16) is plotted against our data in Fig. 6. Like for the critical deflection (Fig. 5), the knockdown theory captures
the critical time well in the intermediate range. At or above the elastic limit P̄ = 1, Eq. (16) predicts nonphysical
critical times of tc ≤ 0. This is because the SLS model assumes that both loading and initial elastic deformation
happens instantaneously, so creep begins at t = 0 s. Of course, in reality elastic instability occurs on a timescale
associated with the elastic wavespeed. Accordingly, the inertial timescale t∗ begins to dominate the viscoelastic one
as P̄ approaches 1. Following e.g. Refs. [35, 62, 63], we expect that the elastic timescale t∗ ∼ (2R)2/(ch), where

c =
√
E0/ρ = 23.37 m/s is the speed of sound within the material and ρ = 1080 kg/m3 is the material density according

to the manufacturer. For our shells in order of increasing thickness, this gives t∗ ∼ {0.1027, 0.0493, 0.0264, 0.0173} s.

We have indicated the elastic snap-through time for an arch τinertial = 2
√

3t∗ [62], with horizontal dashed lines in
Fig. 6a.
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FIG. 6. As the dimensionless applied pressure increases from P̄ vc = 0.91 to the elastic critical pressure P̄ = 1, the buckling time
decreases monotonically according to Eq. (16), which specifies how long it takes for the pole to deform enough to decrease the
critical pressure to the applied one. (a.) Experimental data (markers) and color-corresponding curves from Eq. (16), which
were fit to obtain f(λ) = 0.62, 0.76, 0.81, 0.85 (plotted in Fig. 4b). for η = 4.5, 6.6, 12.0, 24.5, respectively. The densely dotted
vertical line marks P̄ = 1. Near this limit, the inertial (elastic) timescale, indicated by horizontal dashed lines, sets tc for each
shell. The loosely dotted vertical line marks the asymptotic pressure set by Ē = 0.91 = P̄ vc by Eq. (5). (b.) Eq. (16) collapses
the same experimental data plotted in (a.), and captures the critical time for intermediate pressure values. When P̄ decreases
to about 0.94, the theory underpredicts the critical time. Error bars correspond to one standard deviaton in P̄ . Horizontal
dashed lines in a. & b. indicate the elastic snap-through time τinertial, which sets the minimum tc.

When the imposed pressure nears the lower limit P̄ vc , the asymptotic behavior is captured qualitatively (see Fig. 6a).
However, the theory underestimates the critical time in this region. This divergence occurs around P̄ ≈ 0.94, which
corresponds to when the predicted buckling time surpasses τσ. Thus, deformation has slowed considerably prior
to buckling for these experiments and the inertia that was present at early times is no longer available. We have
identified elastic buckling in our experiments as when the deformation rate exceeds that at very early times (when
the shell also behaves elastically). However, it is possible that buckling initiated sooner in reality, but that the shell
needs further perturbation – that is, to deform more, which requires more time – before we detect collapse. This is
reminiscient of critical slowing down phenomena, wherein dynamics slow considerably near instability [63, 64]. Other
possible explanations for the deviation from our model are the simplified representations of stresses and strains, or
the inability of the SLS model to capture the material behavior exactly. Nonetheless, we conclude that despite the
notable simplicity of our assumptions, the knockdown theory explains our observations quite well, and does so while
emphasizing the close connections between elastic and viscoelastic shell buckling.

VI. CONCLUSION

In summary, we subjected thick, spherical, defect-seeded viscoelastic shells to step pressure loading. We observed
three regimes: When the pressure load was at or above the experimentally determined elastic critical load, we observed
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predictible elastic behavior, i.e. prompt buckling. At intermediate loads – below the elastic critical pressure – the
shell buckled, albeit after a time delay during which deformation slowly progressed. At still-lower pressures, the shell
deformed but collapse never occured. Our aim in this work was to rationalize our findings in a way that maintains
close ties to elastic shell buckling, and is readily useable for experiment or design goals. To this end, we demonstrated
that the load thresholds, critical deflection, and critical time may all be captured by a framework that treats creep
deformation like an evolving defect in an elastic shell.

In particular, the ratio of the long-term modulus to the short-term (elastic) one is the same as as the ratio of the
two critical pressures. This result is rooted in elastic shell theory, but practically, the material properties alone can
explain the two pressure thresholds. This finding was suggested in various theoretical works on creep buckling [44–46]
and is independent of geometry, and hence is completely general.

We used this fact and existing work [1] on defects in spherical shells to discern an expression for how deformation
due to creep acts to “knock down” the critical pressure. In this view, the shell loses stability when creep deformation,
which localizes at pole and amplifies the initial imperfection, progresses enough to reduce the critical pressure to the
value of the imposed one. This allowed us to capture the dependence of the critical deflection on the imposed pressure
(normalized by the experimentally-determined elastic critical pressure), the modulus ratio, and the defect geometry
(Eq. (15)). This offers an explanation rooted in elastic shell behavior for a decidedly viscoelastic phenomenon: in the
delayed buckling regime, higher deflection is required for instability as the pressure decreases.

Because deformation occurs on a timescale sufficiently well-described by our chosen viscoelastic material model
(SLS), a time-dependent form of the viscoelastic knockdown function immediately follows. From this we devise an
expression for how the pre-buckling delay time depends on the same quantities: the modulus ratio, the dimensionless
pressure, and the defect geometry (Eq. (16)). The buckling time increases monotonically but non-linearly as the
pressure decreases, which is generally captured by our model. While the modulus ratio Ē was fixed in our experiments,
we expect that our model is valid for any material with relatively low relaxation strength (i.e. the relaxation modulus
and creep compliance functions do not differ significantly). Further, we note that the success of our model does
not depend on the approximation J−1(t) ≈ E(t) that we have employed. Rather, if one were to obtain the creep
compliance function in experiments, using this directly in place of the relaxation modulus would likely improve the
accuracy of predictions.

While viscoelastic shells behave elastically during buckling, viscous effects re-enter in later stages of postbuckling,
as discussed in Ref. [65]. Unbuckling was studied in detail in Ref. [33], as the non-reciprocal nature of the buckling-
unbuckling cycle is the source of motility. We did not examine unbuckling in the present work. However, we could
reasonably expect that another viscoelastic delay phenomenon, termed “pseudo-bistability” [66] (first introduced in
Ref. [67] as “temporary bistability”), could be seen in our shells.

Pseudo-bistability refers to the delayed “snap-back” instability that occurs in the unloaded state, following a loading-
unloading sequence that induces both stress-relaxation and creep [64]. Early works modeled viscoelasticity via an
evolving stiffness, acheiving qualitative agreement with experiments [66, 67]. A recently-proposed metric framework
introduces viscoelasticity as a temporally evolving (fictitious) reference length instead, and among its merits is the
ability to predict delayed snap-back instability [38, 68]. Delayed snap-back instability occurs in the unloaded state,
and in our setting would require maintaining the pressure load for a sufficiently long time while the shell is fully
buckled before unloading. As such, creep instability and pseudo-bistable snap-back can in theory be induced in the
same thick structure, with one or the other surpressed at will.

Our findings highlight the importance of the load rate, and the sensitivity of the shell to pressure variations in the
vicinity of the elastic critical load (when approached from below). These are important considerations for structural
designs using silicone rubber where either stability or elastic behavior is desired. For instance, knowledge of the
critical load thresholds is clearly important when designing an efficient spherical swimmer, or indeed any viscoelastic
structure that should undergo oscillatory instability. If the goal is fast motility, it would likely be desirable to minimize
the time delay before buckling by avoiding the delayed buckling (intermediate pressure) regime altogether.

In other settings, viscoelastic behavior can enhance the functionality of reversibly actuatable structures. This has
been demonstrated recently in designs that rely on pseudo-bistable snap-back, e.g. 3D-printed viscoelastic metas-
tructures whose time-dependent properties are tunable based on temperature [69], with even more flexibility afforded
by using multiple viscoelastic materials [70]. Another study examines the interplay between viscous dissipation and
geometric hysteresis, as a function of the strain rate, for the design of optimal energy dissipating metamaterials [71].
Introducing tunable delays via creep buckling has not yet been explored, but the potential is vast: A switch or capsule
could be loaded subcritically, so that the shell has time to move to a desired location before buckling occurs. Over
time as deformation reduces the critical load and thus the energy barrier [72], a much smaller probing force or other
perturbation could trigger buckling. This could be useful for pneumatic gripping. A mechanical signal of fixed input
frequency (and varying amplitude) could produce a varied output frequency, which has implications for mechanical
computing. Because our analysis relies only on quantities that are straightforward to determine in experiments, our
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findings are especially amenable to accessing such tunability. As we have shown, these possibilities are achievable
with the nearly-elastic materials that are already common and cherished in mechanics research.

In 1956, Gerard wrote about creep buckling that “there are almost more theories than reliable test points which
can be used to check the theories” [53]. While a limited number of experimental contributions have come about since,
to our knowledge our experiments on full spheres are novel to the existing creep buckling literature. Further, we have
demonstrated that some concepts central to general creep buckling theories, which previously were mostly tested on
metallic, mono-resin materials, and reinforced concrete [49], are indeed applicable to soft, rubbery materials. We
expect that the concepts we have studied can be extended to other geometries, other loading methods, and similar
polymers.
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VII. APPENDIX

A. SLS parameters

To determine the material properties of Dragon Skin 30TM, we fabricated 7 dogbone specimens (ASTM D412 Type
C). The molds, cut using the Epilog Helix laser machine, were designed to give each sample a protruding defect –
two thin horizontal lines 500 microns thick and separated by 500 microns – at the middle of the gauge section. These
lines were tracked with a zoom lens attached to a Nikon D610, allowing for accurate strain measurements taken later
in ImageJ. Samples were then tested after 16, 18, 24, 44, 65, and 94 hours at room temperature post-fabrication, as
well as 1 hour after 25 minutes of curing at an elevated temperature of 65◦C. The manufacturer lists the cure time as
16 hours.

The long-term (equilibrium) modulus was determined from tensile stress-relaxation tests using the tensile testing
machine Instron 5943. Displacements, which resulted in strains ε0 ∈ [2%, 20%], were imposed at rates of 150-500
mm/min, then maintained for 120 seconds while the force, which decreases over a timescale t ∼ τσ before plateauing,
was measured. The plateau force was used to calculate σ∞ where we took E∞ ≡ σ∞/ε0. The values for E∞ plotted
in Fig. 7a are calculated as the average of 12 total measurements from 4 tests at varied strain levels and strain rates.

This relatively fast loading resulted in measurement uncertainty at early times, so we did not fit a curve to the
entire range of stress-relaxation data, nor did we extract the elastic modulus from stress-relaxation tests. Instead,
tensile tests on the same samples were conducted at rates of 10 and 20 mm/min up to εmax ∈ [8%, 26%]. This resulted
in linear stress-strain curves, and the slopes were used to calculate E0. Each data point in Fig. 7a represents the
average of 6 measurements from 2 tests for each sample.

Between 16 and 24 hours post-fabrication at room temperature (approximately 20◦C), we observe an increase in
the long-term modulus from 0.20 ± 0.05 MPa to 0.55 ± 0.09 MPa. By 24 hours, the long-term modulus reaches a
plateau. The elastic modulus follows a similar trend: the material stiffens from E0 = 0.48 ± 0.06 MPa at 16 hours
post-fabrication to 0.60± 0.02 MPa at 24 hours, by which time the elastic modulus has plateaued. The plateau value
we measure is in agreement with the 100% modulus value listed by the manufacturer, Smooth-On, of 0.59 MPa. More
or less the same plateau values result from curing the sample in the oven at 65◦C for 25 minutes (E∞ = 0.53± 0.08
MPa, E0 = 0.58± 0.05 MPa).
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FIG. 7. Averaged values for (a.) the elastic and long-term moduli of Dragon Skin 30TM and (b.) the ratio of their mean
values, as determined from tensile stress-relaxation tests. The x-axes indicate the time elapsed since fabrication; The cure time
is listed by the manufacturer as 16 hours post-fabrication. (c.) Plot of the relaxation time from stress-relaxation tests. The
dashed lines in (b.) & (c.) show the averaged values used in our analysis, Ē = E∞/E0 = 0.91 and τσ = 0.78 s, which were
determined from the samples whose ages were relevant to our experiments (24-48 hours cured at room temperature, and 0.4
hours cured at elevated temperature). (d.) SLS relaxation modulus (E(t)) and inverse creep compliance (J−1(t)) functions
constructed from our averaged quantitites. Because the material is nearly elastic, the E(t) ≈ J−1(t) ∀ t > 0. All error bars
represent one standard deviation.

The ratio Ē = E∞/E0 is central to our analysis, and is plotted in Fig. 7b. For the shell-buckling experiments
discussed in the body of this paper, the relevant times are 24 and 44 hours, and the 25 minute oven-cured sample (see
Sect. VII B). Averaging this data gives the value we use throughout our analysis (and the dashed line in Fig. 7b),
Ē = 0.91. Instead including all of the samples whose moduli appear to have saturated (i.e. all except the 16 and 18
hour samples) does not change this averaged value (it only slightly increases the standard deviation, to 0.3 MPa.)

With the functional form of the relaxation modulus in mind, we identified the relaxation time τσ as the time
when the modulus has reduced to E∞ + E1e

−1. The averaged values are shown in Fig. 7c. The overall average was
τσ = 0.78 ± 0.49 s. This corresponds to a retardation time τε ≈ 0.86 s [40]. The relatively large error range on the
characteristic timescale results from initial uncertainty in stress-relaxation curves.

In Sects. IV & V, we blur the lines between the creep compliance and the relaxation modulus: While the active
process is creep, we use not the creep compliance, but the relaxation modulus – which describes stress-relaxation – in
our analysis. This is for two reasons: First, our primary aim is to describe creep buckling in the language of elastic
buckling – which refers to Young’s Modulus E – rather than to provide an exact description of creep in this material.
Second, we found that stress-relaxation (displacement-controlled) tests provided much more reliable data than creep
(force-controlled) tests using Instron 5943.

The relaxation modulus (Eq. (2) in the main text) is related by Laplace transform to the creep compliance (Eq.
(3)). Thus, the limiting values E0 = σ(t = 0)/ε and J0 = ε(t = 0)/σ; E∞ = σ(t = ∞)/ε and J∞ = ε(t = ∞)/σ are
exact inverses.

The relaxation time τσ is less than the retardation time τε. The two are related through the relaxation strength,
defined as ∆ = E1/E∞, according to τε = τσ(1 + ∆), and thus E(t) 6= J−1(t)∀t [40]. However, the difference
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between the two functions is very small, as shown in Fig. 7d. Due to this negligible difference, we conclude that our
approximation in Sect. V is also reasonable.

B. Shell fabrication

i. ii. iii. iv.

v. vi. vii. viii.

FIG. 8. Shell fabrication process. i. Mixed and degassed DragonSkin 30 is poured into two hemispherical aluminum cavities
of Ro = 25 mm. Only one is shown in i.-iv., and several layers of tape have been cut into a circle and adhered to the center
of one of the hollow spheres. ii. After degassing again, the filled cavity is fitted with an alignment sleeve. iii. A half-sphere
of Ri < Ro is inserted. iv. After curing for 25 minutes in the oven, a spherical hemisphere has formed. v. Heptane-diluted
polymer is deposited with a syringe to glue two cured hemispheres. vi.-vii. The edges of the two hemispheres are joined and
aligned by the alignment sleeve. viii. After curing at room temperature for at least 16 hours, a sealed sphere is removed from
the mold.

The process for fabricating polymeric spherical shells, which was developed in [33], is as follows: Custom aluminum
molds consist of female and male components along with alignment sleeves. The female mold is a cylinder of equal ra-
dius and height (30 mm) with a hemispherical cavity, which sets the outer radius of the shells to Ro = 25 mm. The male
component consists of a shouldered half-sphere whose size determines the inner shell radius, Ri = {24, 23, 21.5, 20}
mm. The shoulder (chamfered to 5◦) is 10 mm tall, and its maximum diameter matches that of the female mold as
well as the inside of the guiding sleeve. The latter is a 40 mm tall cylindrical tube, internally chamfered up to a depth
of 10mm to accommodate the male mold.

To control the location of the onset of buckling, shells are seeded with a circular imperfection. This is achieved by
affixing 1-4 layers of adhesive tape cut to Rδ ≈ 6 mm (resulting in imperfection depth of δ ∈ {0.76, 0.81, 0.84, 0.40}
mm, in order for the thinnest to thickest shell) to the center of one of the two female molds used to make each shell.

To make shells, the polymer is prepared according to package instructions, degassed in a vacuum, and poured into
the female molds. After degassing again, each polymer-filled cavity is fitted inside an alignment sleeve, and the male
mold is inserted. The assembly is tightly clamped between the two plates of a simple mechanical press and cured at
65◦C for 25 minutes.

After curing, the alignment sleeve and the male component are removed, revealing two hemispherical shells resting
in the female molds. To join the two halves, a glue is prepared. The viscosity of the liquid polymer is reduced via
dilution with heptane at a 2:1 ratio. This allows for the application of a sufficiently thin layer of glue, deposited with
a syringe around the equator of each hemisphere. Again a sleeve is used to align the two halves, whose contact is
ensured by the mechanical press, and the shell is left to cure at room temperature for 16 hours.

A drill press is used to create a 1 mm diameter hole, into which a small nozzle connected to a tube allows for
internal pressure control. Lastly, a suction cup (2− 3 cm diameter) is glued to the shell surface opposite the buckling
spot with cyanoacrylate (Loctite). During experiments, the shell is fixed in place via a screw attached to the back of
the suction cup.
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C. Knockdown of elastic critical pressure due to through-thickness defects

Unsurprisingly, the classical prediction for the buckling pressure of a perfect elastic spherical shell (Eq. (1)) does
not capture the behavior of our imperfect shells. Recently, predictions for the knockdown factor as a function of the
size of an axisymmetric imperfection have been presented for dimple-like [1, 14] and through-thickness [15] defects.
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FIG. 9. Comparison of the theoretical elastic buckling pressure P ec for thin, shells with through-thickness imperfections with
our experimental value. The experimental value is taken as the minimum pressure at which no slowdown of deformation occurs
before buckling. The theoretical value kdPc is calculated using kd extracted from Fig. 11b in Ref.[15], and Pc from Eq (1).
Error bars correspond to approximately one standard deviation, and are smaller than the markers in most cases.

The reduced-thickness defects in our experiments (see Fig. 1) are like those in the work of Yan et al. [15]. The
authors present data from experiments and FEM simulations on the knockdown factor for varied depth, angular width,
and transition width of the imperfection. We use this data3 to calculate the “knocked-down” theoretical elastic critical
pressure for each of our shells. This theoretical value is plotted against our experimental data in Fig. 9. We have
taken P ec to be the minimum pressure at which a plot of volumetric or pole deformation versus time shows no slope
change until buckling (the rate of deformation is much slower when creep occurs.)

Up to relatively thick shells, the theoretical knockdown predicts our experimentally measured critical pressure
relatively well (η = 24.5, 12.0, 6.6) – perhaps surprsingly so, given that the data in Ref. [15] was collected in quasi-
static experiments on shells of fixed η = 100. However, as η decreases even further from the thin shell limit, the thick
shell withstands higher pressures than predicted. This inapplicability of thin shell knockdown theories is significant
for the thickest shell we tested (η = 4.5). For consistency, then, in all arguments throughout the main text we rely
on an experimentally determined value for the elastic buckling pressure. Thus, we take the experimental value for P ec
to be the minimum pressure difference where elastic buckling occurs.

D. Methods for dynamic pressure loading experiments

Before each experiment, a vacuum pump (Becker U 4.40) is used to reduce the pressure inside a 50 liter tank. A
flexible tube (3 mm inner diameter, 12 cm length) connects the tank to a differential pressure sensor (Freescale Semi-
conductor MPX5100DP, sensitivity 45mV/kPa). Pressure readings were recorded using a microcontroller (Arduino
UNO) every 0.02 s with a resolution of 0.1 kPa.

As this pressure resolution is slightly coarse for the thinner shells, which buckle at pressures on the order of 1
kPa, we account for rounding (and small pressure fluctuations) by reporting the mean and standard deviation of the
pressure values reported at intermediate4 times (after initial elastic deformation and before buckling, should it occur).

3 Knockdown values were extracted from Figure 11b of Ref. [15], and found to be kd = {0.2719±0.007, 0.7423±0.000, 0.8664±0.008, 0.93+
0.070} for η = {24.5, 12.0, 6.4, 4.5}, respectively.

4 For shells subjected to large P which buckle elastically, we simply report the (non-fluctuating) imposed pressure, recorded before the
shell begins to deform, with a default maximum error of ±0.05 kPa.
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Via a T-junction, a second tube (6 cm long) connects the tank to the inside of the shell, by way of an electrovalve
(Matrix Pneumatics Solenoid Valve, MX891.901C224). The response time of the valve is < 1 ms. Based on a back-of-
the-envelope calculation of the amount of gas that needs to travel from the shell to the tank for pressure equilibrium
and the corresponding mass flow rate, we expect that shell-vacuum tank system equilibriates within approximately 4
ms for pressures imposed on the thickest shell (where higher pressure gradients drive faster air flow), to about 40 ms
for the thinnest.

Arduino IDE software enables synchronization of the sudden opening of the valve with the digital recording of the
pressure difference (at a rate of 500 Hz), as well as with the triggering of the high-speed camera (Phantom Miro 310).
Depending on the empirically determined delay time before buckling, images were captured at a rate of 2000-9000
frames per second. Image processing of TIFF stacks was completed using ImageJ and custom Python scripts.

[1] Lee A, Jiménez FL, Marthelot J, Hutchinson JW, Reis PM. 2016 The geometric role of precisely engineered imperfections
on the critical buckling load of spherical elastic shells. Journal of Applied Mechanics 83, 111005.

[2] Wagner H, Hühne C, Zhang J, Tang W. 2020 On the imperfection sensitivity and design of spherical domes under external
pressure. International Journal of Pressure Vessels and Piping 179, 104015.

[3] NASA. 1969 Buckling of thin-walled doubly-curved shells. NASA space vehicle design criteria (structures). NASA SP-8032.
[4] Karman TV, Tsien HS. 1939 The buckling of spherical shells by external pressure. Journal of the Aeronautical Sciences 7,

43–50.
[5] Tsien HS. 1942 A theory for the buckling of thin shells. Journal of the Aeronautical Sciences 9, 373–384.
[6] Koiter WT. 1945 Over de stabiliteit van het elastisch evenwicht. PhD thesis.
[7] Koiter WT. 1969 Proc Kon Ned Ak WetB72, 40–123.
[8] Hutchinson JW. 1967 Imperfection sensitivity of externally pressurized spherical shells. Journal of Applied Mechanics 34,

49–55.
[9] Bushnell D. 1967 Nonlinear axisymmetric behavior of shells of revolution. AIAA Journal 5, 432–439.

[10] Krenzke M, Kiernan T. 1965 The effect of initial imperfections on the collapse strength of deep spherical shells. .
[11] Koga T, Hoff NJ. 1969 The axisymmetric buckling of initially imperfect complete spherical shells. International Journal

of Solids and Structures 5, 679–697.
[12] Lee A, Brun PT, Marthelot J, Balestra G, Gallaire F, Reis PM. 2016 Fabrication of slender elastic shells by the coating of

curved surfaces. Nature Communications 7.
[13] Hutchinson JW. 2016 Buckling of spherical shells revisited. Proceedings of the Royal Society A: Mathematical, Physical

and Engineering Sciences 472, 20160577.
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