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Abstract

This paper considers the problem of scheduling a set of time- and energy-constrained preemp-
tive tasks on a discrete time horizon. At each time period, the total energy required by the tasks
that are in process can be provided by two energy sources: a reversible one and a non-reversible
one. The non-reversible energy source can provide an unlimited amount of energy for a given
period but at the expense of a time-dependent piecewise linear cost. The reversible energy source
is a storage resource. The goal is to schedule each task preemptively inside its time window and
to dispatch the required energy to the sources at each time period, while satisfying the reversible
source capacity constraints and minimizing the total cost. We propose a mixed integer linear pro-
gram of pseudo-polynomial size to solve this NP-hard problem. Acknowledging the limits of this
model for problem instances of modest size, we propose an iterative decomposition matheuristic
to compute an upper bound. The method relies on an efficient branch-and-price method or on
a local search procedure to solve the scheduling problem without storage. The energy source
allocation problem for a fixed schedule can in turn be solved efficiently by dynamic programming
as a particular lot-sizing problem. We also propose a lower bound obtained by solving the linear
programming relaxation of a new extended formulation by column generation. Experimental re-
sults show the quality of the bounds compared to the ones obtained using mixed integer linear
program.

Keywords Energy-aware scheduling piecewise linear costs storage resources matheuristic col-
umn generation lot sizing mixed integer programming
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1 Introduction and related work

Scheduling problems under energy constraints and/or objectives receive more and more attention, due
to the societal and economical stakes of efficient and sustainable energy management. Such energy-
aware scheduling problem occurs now in almost every scheduling applications: process industry and
discrete manufacturing [14], real time computer systems [2], data centers [9] and of course smart grid
and energy markets [24]. Inspired by these applications, we consider a scheduling problem involving a
set of time- and energy-constrained preemptive tasks on a discrete time horizon. At each time period,
the total energy required by the tasks that are in process can be provided by two energy sources: a
reversible one and a non-reversible one. The non-reversible energy source can provide an unlimited
amount of energy for a given period but at the expense of a time-dependent piecewise linear cost. The
reversible energy source is a storage resource. The goal is to schedule each task preemptively inside its
time window and to dispatch the required energy to the sources at each time period, while satisfying
the reversible source capacity constraints and minimizing the total cost.
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In [17], a variant of the problem without the reversible source was proposed, as well as an extended
formulation. From the latter, a branch-and-price method was derived. In this paper we introduce the
reversible source, which allows to store and retrieve the energy resource and better adapt the energy
providing system to the demands of the energy-consuming tasks, hence reducing the total energy cost.
An additional level of complexity is added since the non-reversible source can produce more energy
than the demand at certain times and store the excess in the reversible sources to satisfy the demand
of a later time. This also invalidates the proofs of theorems of the problem without reversible energy
sources and the extended formulation presented in [17] no longer applies as is. Furthermore, as the
problem considered in [17] is strongly NP-hard, the problem considered in this paper is also strongly
NP-hard.

In the scheduling literature, there is a significant amount of papers dealing with storage resources
or reservoirs1, with a minimum and a maximum capacity. In the classical model originally proposed
in [16], a task either consumes or produces a given amount of the resource. A consumer task may
start only if the required amount of resource is available in the reservoir given the minimum capacity.
As soon as the task starts, the required amount is removed from the reservoir. Conversely, a producer
activity fills the reservoir with the produced resource amount exactly at its end time if the maximum
capacity is not exceeded. Otherwise, the producer activity cannot be scheduled at this time period.
Based on this model, several approaches have been proposed, such as list scheduling algorithms [8],
mixed-integer programming approaches [11] and constraint programming algorithms [12, 21]. Recog-
nizing that a full consumption at the beginning of the consumer task or a full production at the end
of the producer task is not realistic for some applications, in particular for energy consumption and
production, some authors have defined the concept of continuous filling or emptying of the reservoir,
which was addressed mainly by constraint programming [23, 4]. A quite generic model described in
[6], is to replace the set of tasks by a set of events, such that an event either produces or consumes
the resource. This model allows to make a discrete approximation of the continuous model. Indeed,
a task that continuously consumes/produces the resources can be decomposed into consecutive con-
suming/producing events, each having a one period duration in the discretized horizon. For such
an event scheduling problem, lower bounds were proposed in [7], mixed-integer linear programming
formulations were proposed in [20] and a constraint programming approach using explanations and
lazy clause generation was proposed in [21]. The above-described resources accurately allow to model
energy production, storage and consumption scheduling for a fixed set of producer and/or consumer
events. In the problem considered in the present paper, if the set of tasks could be modeled by con-
sumer events, there is no predefined producer event or, more precisely, there is an optional producer
event per time period. Furthermore, the above model states that producer events can only be used
to fill the reservoir resource, while in our problem they can also directly supply the demand at the
expense of piecewise-linear costs. In summary, in the literature on scheduling with storage resources,
there is no concept of global energy demand per time period that can be supplied either by the storage
resource or by an optional producer event subject to a general cost.

Such an optional activation of production events was addressed in two different areas. Firstly on the
application side, there is an increasing number of papers dealing explicitly with energy management
and scheduling in microgrids. We cite recent surveys on this area [13, 18, 25]. Depending on the
time horizon, special cases of our model correspond to unit commitment problems for day ahead
scheduling or the economic dispatch problem for short term energy dispatching [13]. Mixed integer
linear programming is widely used to model with binary unit commitment variables that activate the
energy sources when setup costs are present. The energy demand satisfaction constraints often include
efficiency functions on the different sources to represent energy losses. However, the energy demand in
such cases is a fixed parameter for each period issued from a forecast. There may be controllable loads
but the associated decision variables are generally continuous. A typical example is studied in [19],
where a continuous variable defined in r0, 1s models for each time period the curtailment or shedding

1In [16], such resources are called cumulative resources
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of the controllable load. In our case, the load is controlled via the schedule of the energy consuming
tasks, in a discrete setting.

Secondly, traditional production planning, and especially lot-sizing, models have been largely and
unfortunately overlooked in the recent energy management literature. The lot-sizing research has
been particularly active since the 90s, see the recent survey [5]. The basic single-item capacitated
lot-sizing setting problem is closely related to a special case of the problem considered in this paper,
in which the load is fixed. There is a fixed demand δt for an item at each time period t of a discrete
horizon of length T , and the demand can be satisfied either by producing the item at the expense of a
production cost or by taking the items from the inventory. In [22], a capacitated Lot-Sizing problem
with capacities on the production and piecewise linear production costs was shown to be NP-hard and
a pseudo polynomial dynamic programming algorithm was provided with a complexity of OpT 2δ̄k̄q,
where δ̄ “ 1

T

ř

tPT δt is the average demand and k̄ “ 1
T

ř

tPT Kt is the average number of breakpoints.
This model does not fit the considered problem, we have an unlimited production capacity but the
storage resource has a limited capacity. This issue was recently addressed in [1], where the algorithm of
[22] is successfully adapted to the case of a storage capacity with the same worst case time complexity.
The only restriction is to have integer breakpoints on each piecewise linear function.

To summarize, in the literature on scheduling with storage resources, the selection of different
sources are generally ignored and period-dependent piecewise linear costs are also absent. In the energy
management literature, standard mixed-integer linear programming approaches are generally used and
the subproblem of scheduling the energy consuming tasks is either ignored or highly simplified. With
regard to the state-of-the-art, the contributions of this paper are the following: (i) we present a
compact formulation, two decomposition schemes and a local search to solve the scheduling problem
with energy sources, (ii) the first decomposition scheme results into a matheuristic, (iii) the second
decomposition scheme results into an extended formulation that we show to theoretically dominate
the compact formulation in terms of linear relaxation and we use column generation and branch-
and-price to compute lower bounds, (iv) we evaluate the different algorithms for solving the various
subproblems on random and adapted instances from the literature. The results show that the proposed
matheuristic significantly outperforms a standard MILP solver on the gap, cpu time and number of
feasible solutions found criteria, while the branch-and-price scheme is competitive with the standard
MILP solver to obtain high quality lower bounds.

The remainder of the paper is organized as follows. In Section 2, the problem is formally defined and
a mixed integer linear program is provided. Section 3 presents the matheuristic developed to compute
upper bounds. Section 4 presents an extended formulation and resulting column generation algorithm
to compute lower bounds. Section 5 presents the computational results before the Conclusion.

2 Problem definition and compact mixed integer linear pro-
gramming formulation

This paper considers the problem of scheduling a set of time- and energy-constrained preemptive
tasks J “ t1, . . . , nu on a discrete time horizon T “ t1, . . . , T u. Each task i P J has a duration
pi P t1, . . . , T u, a release date ri P T and a due date di P T . The release date denotes the first period
at which the task is available for processing and the due date di ě ri denotes the last one. Between
these periods the task must be in process during pi non necessarily consecutive periods. At each of its
active periods, a task i needs to consume bi ě 0 units of an energetic resource. Summing up all energy
demands of tasks in process at a given period gives a total energy demand for the period, which can be
provided by two energy sources: a reversible one and a non-reversible one. The non-reversible energy
source can provide an unlimited amount of energy for a given period but at the expense of a period-
dependent non decreasing piecewise linear cost ftpBq defined on r0,`8r with a set Kt “ t1, . . . ,Ktu

of breakpoints, where t P T is the considered period and B is the total energy demand. Such a
resource typically models the grid and the possibly time varying piecewise-linear electricity costs. A
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breakpoint k P Kt is defined by a consumption bkt and a cost ckt, as illustrated on Figure 2 on page
12. The reversible energy source is a storage resource, such as a battery, and is defined by a limited
capacity Q ą 0, an initial level s0 ě 0 and a target final level s˚. The goal is to schedule each task
preemptively inside its time window and to dispatch the required energy to the sources at each time
period, while satisfying the reversible source capacity constraints and minimizing the total cost. Let
pPq denote this problem which can be formulated by a mixed integer linear program, introducing the
following decision variables. A period-indexed variable xit P t0, 1u indicates if task i P J is in process
at time t P T . A continuous variable wt ě 0 gives the energy amount supplied by the non-reversible
source at period t P T . A continuous variable st ě 0 gives the remaining amount of resource in the
reversible source at the beginning of t P T . The compact mixed integer programming formulation
pCFq of problem pPq can be stated as follows.

pCFq min
ÿ

tPT
ftpwtq (1)

ÿ

tPT
xit ě pi, @i P J (2)

wt ´
ÿ

iPJ
bixit ` st´1 ´ st “ 0, @t P T (3)

st ď Q, @t P T (4)

sT “ s˚ (5)
ÿ

iPJ

ÿ

tPT ztri,...,di´1u

xit “ 0 (6)

xit P t0, 1u, @i P J ,@t P T (7)

st ě 0, @t P T (8)

wt ě 0, @t P T (9)

The objective-function (1) is a sum of piecewise linear functions that gives the total cost of the
non-reversible source usage. Constraints (2) enforce each task i P J to be in process at least during
pi time periods. Note that equality constraints are not necessary because the cost functions are non-
decreasing. Constraints (3) are the inventory balance constraints for the reversible source: the total
tasks energy consumption is either covered by the energy supplied by the non-reversible source or the
reversible source or both. Note that for period t “ 1, the initial amount of stored energy s0 is taken
into account. Constraints (4) prevent the reversible source capacity from being exceeded. Constraints
(5) strictly enforce to reach the final energy level target in the reversible source. Constraint (6)
prevents tasks from being scheduled outside their time window. Constraints (7–9) define the variable
domains.
pCFq can be defined as a compact mixed-integer linear programming formulation if the number

of time periods T is part of the input and if the piecewise-linear function is modeled through sos2
constraints for example. sos2 (special ordered sets of type 2) constraints are defined on an ordered
set of positive variables. An sos2 constraint imposes that the sum of the values assigned to the
variables of the set is equal to one, but only two consecutive variables can be non-zero [3]. To achieve
the piecewise-linear modeling, we first define the continuous variable mkt ě 0, for each time period
t P T and each breakpoint k P Kt such that the list of variables mkt for a fixed t forms a special
ordered set of type 2 (sos2). This means that only two consecutive variables mkt and mk`1,t may
have non zero values. This way, combined with

ř

kPKt
mkt “ 1, the two unique breakpoints for which

mk,t `mk`1,t “ 1 define the total energy consumption at time period t as mktbkt `mk`1,tbk`1,t and
the corresponding cost is equal to mktckt `mk`1,tck`1,t. The resulting formulation is:
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pCFsos2q min
ÿ

tPT

ÿ

kPKt

cktmkt (10)

p2q ´ p9q (11)

SOS2pmktqkPKt
, @t P T (12)

ÿ

kPKt

mkt “ 1, @t P T (13)

wt ´
ÿ

kPKt

bktmkt “ 0, @t P T (14)

mkt ě 0, @t P T ,@k P Kt (15)

In [17], the same problem without the reversible source, obtained here by setting s0 “ s˚ “ Q “ 0,
was considered and proven to be strongly NP-hard. So the problem considered in this paper is also
strongly NP-hard. The following theorem shows that the case with multiple reversible sources and
multiple non-reversible sources can be reduced to the single reversible and single non-reversible source,
which enlarges the scope of the proposed models to applications with several storage resources (e.g.
batteries with different capacities) and several non-reversible sources (e.g. different grid providers,
photovoltäıc sources, etc.).

Theorem 1 For any problem (P) with N ě 1 non-reversible energy sources and R ě 1 multiple
reversible energy sources, there is an equivalent problem with a single non-reversible energy source and
a single reversible energy source

Proof: The proof is based on the fact that (P) with N ą 1, R ą 1 can be formulated as (NR-CF),
then be reformulated as (CF).

pNR ´ CFq min
ÿ

tPT

N
ÿ

n“1

fnt pw
n
t q (16)

ÿ

tPT
xit ě pi, @i P J (17)

N
ÿ

n“1

wnt ´
ÿ

tPT
bixit `

R
ÿ

r“1

srt´1 ´

R
ÿ

r“1

srt “ 0, @t P T (18)

srt ď Qr, @t P T ,@r P t1..Ru (19)

srT “ sr0, @r P t1..Ru (20)
ÿ

iPJ

ÿ

tPT ztri,...,di´1u

xit “ 0 (21)

xit P t0, 1u, @i P J ,@t P T (22)

srt ě 0, @t P T ,@r P t1..Ru (23)

wnt ě 0, @t P T ,@n P t1..Nu (24)

The reformulation from (NR-CF ) to (CF) can be done, by setting st “
ř

rPR s
r
t , Q “

ř

rPRQ
n,

then @x ě 0, ftpxq is defined as the solution cost of the problem:
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pCostxq min
N
ÿ

n“1

fnt pw
n
t q (25)

N
ÿ

n“1

wnt “ x (26)

wnt ě 0, @n P t1..Nu (27)

l

3 A decomposition matheuristic

3.1 General principle

As explained in the literature review, we have at our disposal two reasonably efficient methods:
on the one hand the branch-and-price method proposed in [17] to solve the scheduling subproblem
without reversible sources and on the other hand the dynamic programming algorithm proposed by
[1] for solving the energy dispatch/lot-sizing subproblem with a fixed schedule. A natural heuristic
decomposition of problem pPq is to alternatively solve the scheduling subproblem and the energy
dispatch subproblem, which yields the proposed iterative matheuristic.

At step I of the method, we solve the scheduling subproblem, obtained after removing the reversible
source from pPq. The scheduling subproblem can be modeled with the formulation (CSF) below, where
f 1t is the piecewise linear cost function for period t P T , initially set equal to ftpwtq. The different
methods for solving pCSFq will be described in Section 3.2. Let xpCSFq, wpCSFq be the solution obtained
at the end of step I.

pCSFq min
ÿ

tPT
f 1tpwtq (28)

ÿ

tPT
xit ě pi, @i P J (29)

wt ´
ÿ

iPJ
bixit “ 0, @t P T (30)

xit “ 0, @i P J ,@t P T ztri, . . . , di ´ 1u (31)

xit P t0, 1u, @i P J ,@t P T (32)

wt ě 0 @t P T (33)

At step II, for each period t P T , a demand δt is fixed to the value
ř

iPJ bix
pCSFq
it . The resulting

energy dispatch subproblem, described by formulation pCEFq below is solved to adjust the storage
resource usage to the previously computed schedule. This problem is a lot-sizing problem with inven-
tory bounds and a piecewise linear production cost function. The inventory costs are not considered.
The different methods for solving pCEFq will be described in Section 3.3.

6



pCEFq min
ÿ

tPT
ftpwtq (34)

wt ` st´1 ´ st “ δt, @t P T (35)

st ď Q, @t P T (36)

sT “ s0 (37)

st ě 0, @t P T (38)

wt ě 0, @t P T (39)

Step III of the method consists in integrating the reversible source usage decisions in the scheduling
subproblem. Thanks to the structure of the piecewise-linear cost function, this can be achieved without
altering the combinatorial structure of the scheduling subproblem (CSF), simply by updating the
piecewise-linear cost functions f 1t for each t P T . This will be explained in Section 3.4.

After step III the matheuristic returns to step I. The algorithm stops when no cost variation is
observed at the end of step II in comparison to step I, or if a predefined maximum number of iterations
is reached.

3.2 Step I: solving the scheduling subproblem

As stated in [17], the scheduling subproblem is NP hard. We propose three approaches to solve this
subproblem. The first one is to solve directly formulation pCSFq with a general-purpose MILP solver.
We will use in this case the IBM CPLEX solver and its build-in piecewise linear constraints ilopwl.
The second approach is to use the branch-and-price procedure proposed in [17], which was shown to
have better results than solving pCSFq using a MILP solver on a set of randomly generated problem
instances. The only careful adaptation to consider, is that in [17] ftp0q “ 0 whereas in our case it is
possible to have f 1tp0q ą 0, due to possible backward shifting described in Section 3.4 and illustrated on
Figure 1. Because the scheduling subproblem has to be solved multiple times during the matheuristic,
we also design a two-phase heuristic which constitutes the third approach, described hereafter.

The first phase of the heuristic is a constructive phase. Tasks are first sorted randomly in a list
and the schedule is empty. Then, for each task i taken in the list order, each of its pi units is scheduled
at the time period not already occupied by an occurrence of the task and that leads to a minimal cost
increase. A feasible solution is obtained once all tasks have been scheduled. The process is repeated
nbs number of times to obtain nbs feasible solutions.

The second phase of the heuristic is based on a tabu search algorithm which moves from one
solution to another by selecting a task i P J and changing the time periods to which k of its units are
assigned. At each tabu search iteration the best of all potential moves is applied. It can be computed
efficiently as described hereafter.

Let rxi,t be a feasible solution of pCSFq, let Ti “ tri, ..., di ´ 1u be the time window of task i, let
Di Ă Ti be the subset of Ti where a unit of task i is in process (i.e Di “ tt P Ti : rxi,t “ 1uq, let
Ai “ TizDi and let Jt “ ti P J : t P Tiu be the subset of tasks with a time window that includes
time period t. We use equation (40) to compute the cost variation δi,t induced by the removal or the
addition of a unit of task i at time period t. We denote Ai and Di the sets obtained after sorting
Ai and Di in decreasing order of δi,t. Finally we denote Aipuq and Dipuq the uth elements of Ai

and Di. The relocation of a unit of task i from time period Dipuq to time period Aipuq yields a
solution cost variation of ∆ipuq “ δi,Dipuq´δi,Aipuq. Function ∆i is a decreasing function of u ě 1 and
∆ip0q “ 0. Given a task i, the best number of units to relocate is k˚ “ maxt1, max

∆ipuqě0
uu, to obtain

a cost variation of Γpiq “
řk˚
u“1 ∆ipuq. Therefore each tabu search move consists in identifying the

task i˚ “ arg maxiPJ Γpiq, then relocating its k˚ units scheduled at the time periods Dip1q, ...,Dipk˚q
to the time periods Aip1q, ...,Aipk

˚q. After each move, the update of the sorted sets impacted by the
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move and the identification of the task i˚ for the next move can be done with a worst case complexity
of OpJt K logK ` nKq where K “ maxiPJ tpi, di ´ ri ´ piu and Jt “ maxtPT |Jt|.

δi,t “

#

ftp
ř

jPJt:rxj,t“1 bjq ´ ftp
ř

jPJtztiu:rxj,t“1 bjq if t P Di

ftp
ř

jPJt:rxj,t“1 bjq ´ ftpbi `
ř

jPJt:rxj,t“1 bjq if t P Ai
(40)

A tabu list mechanism has also been implemented. After each move, the task involved is added
at the end of the tabu list. If the size limit tls of the tabu list is exceeded after adding a task, then
the task at the first position is removed from the list. At each iteration, moves that involve tasks that
are in the tabu list are forbidden, except for those that lead to a new best known solution (aspiration
criterion). The tabu list mechanism allows the algorithm to escape from local optima. The list is
emptied when a move improves the current solution, as it is assumed that the algorithm is entering a
new region of the solution space. The stopping criterion of the algorithm is a predefined number of
moves without improvement of the best known solution.

The second phase of the heuristic is applied on each of the nbs initial feasible solutions before
returning the best solution found.

3.3 Step II: solving the energy dispatch subproblem

In order to solve the energy dispatch subproblem, we propose two approaches. The first one consists
in solving the MILP model pCEFq using a general-purpose MILP solver. This is performed by using
the built-in piecewise linear functions (ilopwl) of the IBM CPLEX solver. The second approach
consists in solving the energy dispatch subproblem using a pseudo polynomial dynamic programming
algorithm proposed in [1]. The authors show that the energy dispatch subproblem is weakly NP-Hard.
They also show that an optimal solution is integer if we assume that the parameters are integers.

In the following, we provide the general idea behind this dynamic programming algorithm. The
rationale of the algorithm relies on the same arguments as the one developed by [22] to solve the
capacitated single-item lot-sizing problem. In [22], capacity constraints are imposed on the production
while for our problem, they limit quantities in the inventory.

We define Fkpsq as the optimal value of the energy dispatch subproblem limited to periods k,. . . ,T
when the remaining reversible resource at the beginning of period k is equal to s (sk “ s). The initial
values FT psq of the recursion function for s P t0, . . . , Qu are given by:

FT psq “

"

fT ps
T ` δT ´ sq if 0 ď s ď δT ` s

T

`8 otherwise

The recursion formula is given by:

Ftpsq “ min
0ďs´δt`wtďQ;wtě0

tFt`1ps´ δt ` wtq ` ftpwtqu (41)

The optimal solution of the energy dispatch subproblem is given by F1ps0q. The main limits of
this dynamic programming algorithm are: (i) integer demand values, (ii) continuous time-dependent
piecewise linear functions with integer abscissa of breakpoints, and (iii) reversible source with integer
capacity values. In this case, the complexity of the resulting dynamic programming algorithm is
OpT 2δqq where δ is the average demand and q is the average number of breakpoints.

3.4 Step III: piecewise linear cost function update

After solving the energy dispatch subproblem from the previous step, the energy level variation in the

reversible source is equal to s
pCEFq
t ´ s

pCEFq
t´1 for each time period t P T . If the solution cost observed

after step II differs from the one observed after step I, then each piecewise linear function f 1t is updated
with equation (42) which amounts to consider a fixed reversible source usage.
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f 1tpwtq “ ftpmaxp0, wt ` s
pCEFq
t ´ s

pCEFq
t´1 qq, @t P T (42)

In other words, if s
pCEFq
t ´ s

pCEFq
t´1 ą 0, the piecewise linear cost function is left-shifted by s

pCEFq
t ´

s
pCEFq
t´1 energy units, to represent the fact that even if no task is scheduled by pCEFq at time t,

there will still be a demand of s
pCEFq
t ´ s

pCEFq
t´1 ą 0 to send to the reversible source. On the other

hand, if s
pCEFq
t ´ s

pCEFq
t´1 ă 0, the function is right shifted by s

pCEFq
t´1 ´ s

pCEFq
t energy units, negative

amounts being ignored, to represent the fact that if the tasks scheduled have a total demand lower

or equal to s
pCEFq
t´1 ´ s

pCEFq
t , then the resulting cost on the non-reversible source will be nil. Figure 1

illustrates, for a function f and a period t, a left-shift when s
pCEFq
t´1 ´ s

pCEFq
t “ 2, and right-shift when

s
pCEFq
t´1 ´ s

pCEFq
t “ ´2.

The matheuristic stops if no cost variation is observed between step I and step II, or if the maximum
number of iterations maxit is reached. Otherwise, the matheuristic returns to step I after step III.

Original ftpxq for a period t

Variations of s
pCEFq
t ´ s

pCEFq
t´1

f 1tpxq after adjustment on a period t for s
pCEFq
t ´

s
pCEFq
t´1 “ ´2 and s

pCEFq
t ´ s

pCEFq
t´1 “ 2

Figure 1: Updating the piecewise linear cost function f 1t

4 An extended formulation and a column-generation proce-
dure

To assess the quality of the obtained feasible solutions, a lower bounding scheme is needed. Apart
from the bounds that can be derived from the compact formulations (CF) or (CFsos2), we propose a
new extended formulation for the problem that allows to obtain a lower bound by column generation.

4.1 Extended formulation

The extended formulation is based on the one proposed in [17] for the scheduling subproblem pCSFq,
itself being issued from the formulation by [15] for the resource-constrained project scheduling problem.
We first present the principle of this decomposition before showing how it can be extended to the
presence of the reversible sources. The extended formulation presented in [17] is based on binary
variable ylt representing the simultaneous processing of a set of activities l at a given time period
t. Such a set is called a feasible set. Let Jt Ď J be the set of all tasks that can be processed at
time period t due to the time windows restriction. There are 2|Jt| feasible sets of tasks that can be
processed simultaneously at time period t. Let Ft be the set of all such feasible sets. Let ail be the
indicator of the presence of task i in the feasible set l. The energy consumption of set l is

ř

iPJ ailbi.
Hence if ylt “ 1, the cost to be paid at period t is a constant cl “ ftp

ř

iPJ ailbiq. It follows that
the total cost of a solution of [17] described by variables ylt can be written as the linear expression
ř

tPT
ř

lPFt
clylt. However, in our pCFq problem, knowing which set of tasks is in process at a given
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time period t is not sufficient to derive the cost to be paid, due to the presence of the reversible source.
We show hereafter how the feasible set model can be extended by adding a breakpoint index to the
information carried by the y variables.

A set of tasks Jl ‰ H is called a feasible set if @i P Jl, t P rri, dis. Let Ft “ t0, 1, . . . , |Ft| ´ 1u
denote the set of feasible set of indices for time period t with 0 being the index of the empty set.
For a given time period t, we consider the pairs made of a feasible set and a breakpoint. To each
pair pl P Ft, k P Ktq is assigned a release date rl “ maxiPJl

ri, a due date dl “ miniPJl
di, an energy

demand bl “
ř

iPJl
bi from tasks of Jl, an energy amount bkt ´ bl added to (resp. produced by) the

reversible source if bkt´bl ě 0 (resp. if bkt´bl ď 0), and an energy cost ck on the non-reversible source.
Because ft are non decreasing functions, and because the amount of energy added to or produced by
the reversible source is limited to capacity Q, then the set of breakpoints incompatible with the tasks
set l is composed of the breakpoints k that verify: bk´1 ´ bl ą Q or bk`1 ´ bl ă ´Q.

We now define the continuous variables ylkt, @t P T , @k P Kt, @l P Fkt as the values of mkt if
feasible set l is in process at time period t. The proposed extended formulation is as follows:

pEFsos2q min
ÿ

tPT

ÿ

kPKt

cktmkt (43)

p2q, p4q ´ p5q, p7q ´ p8q, p12q ´ p14q (44)

mkt ´
ÿ

lPFt

ylkt “ 0, @t P T , k P Kt (45)

st ´ st´1 ´
ÿ

kPKt

bktmkt `
ÿ

iPJ
bixit “ 0, @t P T (46)

xit ´
ÿ

lPFt

ÿ

kPKt

ailylkt “ 0, @i P J ,@t P T (47)

ylkt ě 0, @t P T ,@k P Kt,@l P Fkt (48)

Objective-function (43) gives the total cost computed with sos2 variables mkt. Constraints (2),
(4)-(5), (7)-(8), (12)-(14) are the same as in the compact formulation. Constraints (45) link the
mkt variables with the ylkt variables in such a way that, since mkt variables are sos2, we will have
ř

kPKt

ř

lPFkt
ylkt “ 1 and there is also a unique k P Kt such that

ř

lPFkt
ylkt `

ř

lPFkt
yl,k`1,t ą 0.

Constraints (46) are flow conservation constraints. Constraints (47) link the x and y variables. Finally,
variables ylkt must be non negative.

Lemma 1 An optimal solution (x, y, s,m) of MILP (EFsos2 ) provides an optimal solution for prob-
lem (P).

Proof: Proving that an optimal solution px, y, s,mq of MILP (EFsos2) verifying y P t0, 1u|L||K||T |

is also an optimal solution for problem (P) is straightforward. It remains to be shown, however,
that the cases where 0 ă ylkt ă 1 for some l P L, k P K and t P T also correspond to valid and
thus optimal solutions for the original problem. This is achieved by proving that although there are
decision variables ylkt assigned to continuous values, the model ensures that at each time period t only
one activity set l is chosen, combined with either one linear segment or one breakpoint of the piecewise
linear function ft. It is an extension of the proof provided in [17]. Let rS be a feasible solution of
MILP (EFsos2): rxit P t0, 1u

|J ||T |, rylkt P R|L||K||T |, rst P R|T | and rmkt P R|K||T |. Given a time period
t˚ P T , let us denote:

• LKą0 the pairs “activity set,breakpoint” used at instant t˚. In other words LKą0
“ tl P L, k P

K : rylkt˚ ą 0u.

• JLKą0

the subset of activities that appear in at least one set l of LKą0. In other words JLKą0

“

ti : Dpl, kq P LKą0 that verifies ail “ 1u.

10



• LKą0
piq the subset of pairs “activity set,breakpoint” from LKą0 that contain activity i.

Since rylkt˚ ą 0,@pl, kq P LKą0 (by definition) and
ř

pl,kqPLKą0 rylkt˚ “ 1 (from constraints (13) and

(45)), we deduce Proposition 2 which can be proven valid because by definition @i P JLKą0

, rxit˚ “ 1
and therefore constraints (47) imply that:

ÿ

pl,kqPLKą0piq

rylkt˚ “ 1, where LKą0
piq Ď LKą0. (49)

Proposition 2 @ĄLK Ď LKą0, if
ř

pl,kqPĄLK rylkt˚ “ 1 then ĄLK “ LKą0.

Finally, combining Proposition 2 and Constraint (49) we can deduce:

LKą0
piq “ LKą0,@i P JLą0

. (50)

Let Lą0 be the set of activity sets that verify Dk : pl, kq P LKą0, and let Ką0 be the set of
breakpoints that verify Dl : pl, kq P LKą0. Constraints (50) imply that |Lą0| “ 1, and therefore only
one activity set is chosen at each time period t˚. Constraints (12), (13) and (45) imply that either
one breakpoint or two consecutive breakpoints are chosen, with a total weight of 1 at time period t˚.

Thus, solving (EFsos2) produces optimal solutions for the original problem (P). l

Lemma 2 The extended formulation (EFsos2 ) dominates the compact formulation (CFsos2 ), i.e.
the linear relaxation of (EFsos2 ) is stronger than the linear relaxation of (CFsos2 ).

Proof: To prove that the linear relaxation of a formulation (A) is stronger than the linear relaxation
of formulation (B), we can first prove that the linear relaxation of (A) at least as good as the linear
relaxation of (B) by showing that any solution of the linear relaxation of (A) is also a solution of
the linear relaxation of (B). Then we have to find an example for which the optimal solution of
the relaxation of (A) has a strictly better objective function value than the optimal solution of the
relaxation of (B).

Any solution of the linear relaxation of (EF) can be converted into a solution of the linear relaxation

of (CF) by setting x
pCFsos2q
it “ x

pEFsos2q
it , w

pCFsos2q
t “

ř

kPK bkm
pEFsos2q
kt and s

pCFsos2q
t “ s

pEFsos2q
t .

Therefore the linear relaxation of (EFsos2) is at least as strong as the linear relaxation of (CFsos2).
It remains to be proven that there exist solutions of (EFsos2) that are not feasible for (CFsos2), in
order to prove that the two linear relaxations are not just equivalent. To do so, we exhibit hereafter
such a case, with |J | “ 1, |T | “ 1, b1 “ 4, r1 “ 1, d1 “ 2, qmax “ 1.5, qinit “ 0 and the piecewise
linear function f1 illustrated on Figure 2. In this case, for the extended formulation (EFsos2),
only one non-empty feasible set of tasks l “ t1u exists, therefore L “ tH, t1uu. Each column ylkt
corresponds to a pair “set of tasks l, breakpoint k” that verify bk ´ bl ě qmax and bl ´ bk`1 ď qmax.
Therefore only four columns exist in (EFsos2): “l “ 0, k “ 1”, “l “ 0, k “ 2”, “l “ 1, k “ 2” and
“l “ 1, k “ 3”. The resulting linear relaxation is: x1,1 “ 1, y1,2,1 “ y1,3,1 “ m2,1 “ m3,1 “ 0.5 and
y0,1,1 “ y0,2,1 “ m1,1 “ m4,1 “ s1 “ 0. Its costs is equal to 9.5. Meanwhile, the linear relaxation of
(CFsos2) produces the fractional solution x1,1 “ 1, w1 “ 4,m1,1 “ m4,1 “ 0.5 and m2,1 “ m3,1 “ 0,
which has a cost of 7.0, which is lower than the one of (EFsos2).

In conclusion, the linear relaxation of (EFsos2) is stronger than the linear relaxation of (CFsos2).
This also proves that the pricing problem associated with formulation (EFsos2) is NP-hard. l

4.2 Column generation procedure

Formulation (EFsos2) has a polynomial number of constraints, a polynomial number of variables
xit,mkt, st, but an exponential number of variables ylkt. Solving its linear relaxation requires a
column generation approach. The linear relaxation of (EFsos2) serves as the master problem (MP)
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Figure 2: A piecewise linear cost function

of the Dantzig-Wolfe decomposition. Let Y be the set of variables ylkt. At each iteration p of the
column generation procedure we solve a restricted master problem (RMPp) obtained by restricting

Y to a subset rY Ď Y. Then we try to identify one or several variables ylkt P Yz rY having a negative
reduced cost with regards to the dual variables values of the optimal solution of (RMPp). Let αkt
denote the dual variable associated with constraints (45) and let βit denote the dual variable associated
with constraints (47). The dual constraint for variables ykit for the restricted master problem can be
written as

αkt `
ÿ

iPJ
ailβit ě 0, @t P T ,@k P Kt,@l P rFkt (51)

The left-hand-side of inequality (51) is the reduced cost of the corresponding variable ylkt. As a

consequence, the pricing procedure consists in building a feasible task subset rl and identifying a time
period rt and a breakpoint rk that minimize the left-hand-side of inequality (51). If the value found
is strictly negative, then the corresponding variable ylkt is introduced into the model. Otherwise it
can be disregarded and the current optimal solution of (RMPp) is the optimal solution of the current
linear relaxation of (EFsos2).

Let ui P t0, 1u be a binary variable such that ui “ 1 if and only if task i is selected to compose the

set rl. For a fixed t P Fkt and a fixed k P Kt, searching for set rl amounts to checking whether the 0-1
ILP pSPqk,t below has an optimal value strictly lower than ´αkt.

pSPqk,t min
ÿ

iPJ
βitui (52)

ÿ

iPJ
biui ě bk´1,t ´Q (53)

ÿ

iPJ
biui ď bk`1,t `Q (54)

ui “ 0, @i P J ,@t P T ztri, ¨ ¨ ¨ , di ´ 1u (55)

ui P t0, 1u, @i P J (56)

pSPqk,t is an integrated knapsack and covering problem. The constraints aim at eliminating a feasible
set incompatible with breakpoints k and k`1 of ft. Indeed, if

ř

iPJ biui`Q ă bkt, there is no possible
energy taken from reversible source such that the total consumption falls in the corresponding piece.
Similarly if

ř

iPJ biui´Q ą bk`1,t, the smallest possible consumption value falls beyond the considered
piece for any energy level provided to the reversible source.
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We integrate the search for the breakpoint rk in the formulation, by adding variable vk P t0, 1u
that takes value 1 if and only 1 piece k, k ` 1 is selected. We obtain subproblem pSPqt below for
each time period t. The pricing procedure therefore consists in solving pSPqt for each time period
t P T , identifying the solutions with a negative objective-function value, and adding the corresponding
variables y

rlrkt to the restricted master problem.

pSPqt min αktvk `
ÿ

iPJ
βitui (57)

ÿ

iPJ
biui ě

ÿ

kPKt

bk´1,tvk ´Q (58)

ÿ

iPJ
biui ď

ÿ

kPKt

bk`1,tvk `Q (59)

ui “ 0, @i P J ,@t P T ztri, ¨ ¨ ¨ , di ´ 1u (60)

ui P t0, 1u, @i P J (61)

vk P t0, 1u, @k P Kt (62)

4.3 Branch-and-Price

Solving (EFsos2) requires a branch-and-price to ensure the integrity of binary variables xit and the
satisfaction of sos2 constraints. Two variants of column generation or branch-and-price algorithms
can be obtained depending on the column adding policy in the pricing procedure:

• Variant 1: for each time period t, add the activity set rl at breakpoint rk only

• Variant 2: for each time period t, add the activity set rl at all compatible breakpoints

As for the branching strategy, the only binary variables are the xit variables. We let the solver (SCIP)
apply its default branching strategy on these variables and on the SOS2 Constraints.

5 Computational Experiments

In this section, we present computational results 2 for random and adapted instances from the litera-
ture. The general purpose of these experiments is to answer the following questions

• Is it worthwhile to tackle the problem with the decomposition approach that solves iteratively
the scheduling subproblem and the energy dispatch (lot-sizing) subproblem, both in terms of
upper bound quality and computational requirements?

• As a complement, can we provide lower bounding schemes to assess the quality of the upper
bounds and what is the quality of the bound based on the extended formulation, compared to
the one based on the compact formulation?

All experiments were run in a single thread mode on 3 cluster nodes, each with 28 Intel Xeon CPU
E5-2695 v4 2.30GHz cores running Linux Ubuntu 16.04.4.

2Detailed results including lower bounds, upper bounds and cpu times are available at
http://homepages.laas.fr/sungueve/Data/SWRSFullResultsLBUBcpu.csv
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5.1 Lot-sizing solution: dynamic programming vs MILP solver

In this section we analyze the benefits and drawbacks of solving the lot-sizing subproblem (CEF)
with the pseudo-polynomial time dynamic programming algorithm of [1] or with a general-purpose
MILP solver. This analysis aims at selecting the best approach to solve the lot-sizing problem so as
to answer properly our first question on the merits of the decomposition approach. Basically, we are
looking in turn for the answers to two other questions: (i) which of the two is faster? (ii) given that
the application of the dynamic programming requires a preliminary rounding of the input data to the
next higher whole number, how far is its solution in comparison to the optimal (CEF) solution? The
dynamic programming algorithm was coded in C++. The lot-sizing model (CEF) was solved with
IBM CPLEX 12.7.1. We generated two sets of random instances with a maximal demand of 100 and
2000 units, and with the following parameters settings T P t20, 100, 500u, q P t4, 10u, Q P t100, 1000u.
Ten random instances were generated for each combination of parameters, leading to a total of 120
instances per set. Tables 1 and 2 present the results obtained with the following headers: computing
time in seconds (average, minimum, maximum), upper bounds (=solution costs), lower bound (from
the MILP solver), #opt is the number of instances solved to optimality, gap is the average distance
between the costs of solutions provided by the dynamic programming in comparison to the optimal
ones from the MILP solver when available.

Dynamic Programming CPLEX

T q Q Computing time (s) Bound #opt Computing time (s) Bound #opt gap
avg min max upper (/10) avg min max upper lower (/10) (%)

20 4 100 0.0003 0.0002 0.0005 2502.13 10 0.1224 0.0019 0.2710 2483.14 2483.01 10 0.8
20 10 100 0.0007 0.0006 0.0010 2788.15 10 1.6372 0.0232 8.8190 2766.15 2765.94 10 0.8
20 4 1000 0.0019 0.0015 0.0028 2159.08 10 0.2177 0.0015 1.4725 2141.12 2141.1 10 0.9
20 10 1000 0.0039 0.0037 0.0047 2445.73 10 5.8101 0.0016 56.6005 2426.26 2426.19 10 0.8

100 4 100 0.0011 0.0010 0.0019 9730.84 10 271.8140 12.1239 305.8810 9662.17 9396.98 1 0.6
100 10 100 0.0048 0.0025 0.0237 11478.90 10 240.3810 0.2242 300.0970 11366.9 11195.7 2 1.0
100 4 1000 0.0127 0.0073 0.0562 7728.18 10 78.7309 0.0578 300.0000 7651.76 7649.19 8 1.0
100 10 1000 0.0202 0.0193 0.0215 10198.00 10 151.7000 0.0275 300.0200 10086.2 10076.4 5 1.1
500 4 100 0.0071 0.0060 0.0114 61676.30 10 300.0120 300.0000 300.0520 61501.4 60551.3 0 -
500 10 100 0.0140 0.0136 0.0145 56813.10 10 300.0060 300.0000 300.0230 56632.2 55604.1 0 -
500 4 1000 0.0426 0.0379 0.0560 58571.80 10 210.0460 0.0986 300.0150 58057.9 57986 3 0.9
500 10 1000 0.1072 0.0932 0.1997 52692.70 10 270.0890 0.8423 300.0300 52193.8 52087.5 1 0.9

Total 120 60

Table 1: Comparison between dynamic programming and CPLEX (maximal demand = 100)

Dynamic Programming CPLEX

T q Q Computing time (in seconds) Bound #opt Computing time (in seconds) Bound #opt gap
avg min max upper (/10) avg min max upper lower (/10) (%)

20 4 100 0.0002 0.0002 0.0003 46346.4 10 0.0026 0.0010 0.0059 46322.6 46322.6 10 0.1
20 10 100 0.0006 0.0004 0.0007 51630.6 10 0.0032 0.0018 0.0046 51604.3 51604.3 10 0.1
20 4 1000 0.0020 0.0014 0.0024 40991.9 10 0.0406 0.0023 0.3443 40969.9 40969.1 10 0.1
20 10 1000 0.0032 0.0027 0.0049 46945.6 10 0.1269 0.0124 0.2820 46920.4 46917.1 10 0.1

100 4 100 0.0007 0.0007 0.0008 308410 10 0.0086 0.0042 0.0124 308272 308266 10 0.0
100 10 100 0.0017 0.0016 0.0021 274699 10 0.0115 0.0094 0.0138 274566 274564 10 0.0
100 4 1000 0.0060 0.0056 0.0065 273788 10 252.9610 3.9349 300.2350 274049 270483 2 0.1
100 10 1000 0.0164 0.0129 0.0434 244329 10 300.0100 300.0000 300.1040 244269 242273 0 –
500 4 100 0.0042 0.0041 0.0044 1279010 10 0.0471 0.0398 0.0571 1278420 1278410 10 0.0
500 10 100 0.0086 0.0083 0.0089 1350720 10 0.0722 0.0600 0.0964 1350090 1350020 10 0.0
500 4 1000 0.0302 0.0290 0.0310 1124550 10 240.0110 0.0238 300.0580 1127720 1110030 2 0.3
500 10 1000 0.0688 0.0675 0.0723 1231380 10 300.0090 300.0000 300.0350 1234930 1213730 0 –

Total 120 84

Table 2: Comparison between dynamic programming and CPLEX (maximal demand = 2000)

Computational results show that the dynamic programming is orders of magnitudes faster than
CPLEX, with a computing time in general less than a tenth of a second, whereas CPLEX does not solve
to optimality 40% of the instances. Also the gap between optimal dynamic programming solution cost
and optimal MILP solutions costs (when available) is in general lower than 1%. In conclusion, even
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though input data needs to be rounded up as a preprocessing, the lot-sizing subproblem (CEF) is better
solved with the dynamic programming algorithm than with the general-purpose MILP solver. And
because of the negligible computing time of dynamic programming, when used in the matheuristic, the
computing time of steps II become negligible and all of the computing time available can be assigned
to the step I.

5.2 Comparison of the upper bounding procedures

In this section we evaluate the matheuristic in comparison to applying a MILP solver on the formula-
tions (CF) and (CFsos2). The scheduling instances with |J | P t30, 60u and the adapted continuous
piecewise linear cost function for the non-reversible source are from [17]. We consider a reversible
source capacity of Q “ 2 with s0 “ sT “ 0. Among the 288 resulting instances, 181 could be solved to
optimality or within a 1% optimality gap by a general purpose MILP solver applied on compact for-
mulation (CF) in 600 seconds or less. The test bench used in this section is composed of the remaining
107 instances. Algorithms were coded in C++ with the framework SCIP 5.0.1. The compact formula-
tion (CF) was solved with IBM CPLEX 12.7.1 using its build-in piecewise linear functions (ilopwl).
The compact formulation (CFsos2) was solved with IBM CPLEX 12.7.1 and with SCIP 5.0.1. For the
column-generation-based or the branch-and-price-based algorithms, each master problem was solved
with SOPLEX 3.1.1 whereas each subproblem was solved with IBM CPLEX 12.7.1.

A time limit of 600 s was given to all solvers and algorithms. Different variants of the matheuristic
can be obtained, depending on the solution method applied on step I or step II. In the previous
section 5.1 it is shown that dynamic programming outperforms the MILP solver for solving (CEF),
therefore steps II will only be solved with dynamic programming. Since the resulting computation
time for steps II is negligible, then the time limit of 600 s can be assigned directly to solving scheduling
subproblems, therefore a time limit of 600s{maxit is assigned to each individual scheduling subproblem.
The following three main matheuristic variants were applied:

(cpct) Step I solved by applying the MILP solver on (CF) with a time limit and obtaining the best
feasible solution

• 3 options: 10x60 s (i.e maxit “ 10, 60 s time limit per sub-problem); 6x100 s and 3x200 s

(bp) Step I solved by applying the Branch-and-Price from [17]

• 3 options: 10x60 s; 6x100 s and 3x200 s

(h) Step I solved with the tabu search heuristic

• 1 option: 10x60 s, since the heuristic takes less than a second per call

• heuristic parameters used:

– nbs “ 3

– tabu list size: 2 options, short (tls “ 7) or long (tls “ 14). The first time the matheuris-
tic calls upon the heuristic, both options are used and the one that produces the best
solution is selected and will be the only one applied during the remainder of the calls
from the matheuristic.

– stopping criterion: predefined number of movements without improvement of the best
known solution (=200)

Tables 3, 4 and 5 report the computational results of the MILP solver and the matheuristic with

the following headings: (i) UB gap: upper bound gap, equal to 100UB´UB`

UB`
where UB is the upper

bound obtained and UB` is the best known upper bound from any of the algorithms or solvers; (ii)
cpu: average computing time; (iii) #it: average number of iterations performed by the matheuristic;
(iv) #feas: number of feasible solutions obtained (out of the 107 instances of the benchmark).
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5.2.1 Matheuristic vs MILP solver

Table 3 show that the general-purpose MILP solvers are unable to produce feasible solutions on at
least 10% of the instances. It also shows that the quality of the instances obtained is significantly
improved when using the build-in piecewise linear constraints instead of the classical sos2. Previous
studies have already established that sos2 modeling can be greatly improved, for example by valid
inequalities [10].

gap cpu #feas
(/107)

CPLEX with build-in (ilopwl) constraints 2.58 % 600 s 96
with sos2 constraints 76.37 % 600 s 95

SCIP with sos2 constraints 1.98 % 600 s 3

Table 3: Computational results from the MILP solvers applied on (CF) and (CFsos2)

Table 4 shows that the matheuristic outperforms the general-purpose MILP solver on all three
criteria (solution quality, computing time, number of feasible solutions) when the branch-and-price or
the heuristic are used to solve step I. The average number of iterations shows that only a few number
of iterations are needed to converge. Note that no warmstart mechanism has been implemented in
the branch-and-price, which could reduce the computing time further while improving the solutions
quality from one iteration to another. This is however the underlying principle of the incremental
procedure presented in the following section.

gap cpu #it #feas
(/107)

cpct 10 x 60 2.13 % 512 s 8.53 83
3 x 200 2.82 % 582 s 2.91 87
6 x 100 2.31 % 542 s 5.42 84

bp 10 x 60 1.25 % 236 s 4.90 101
3 x 200 1.03 % 391 s 2.89 106
6 x 100 0.83 % 350 s 4.68 103

h 10 x 60 2.20 % 4 s 3.51 107

Table 4: Computational results from the matheuristic

5.2.2 Focus on the matheuristic: tabu-search-based incremental step I solution

The previous subsection 5.2.1 showed that the matheuristic outperforms the MILP solver, in particular
when branch-and-price is used to solve step I. However, the computing times for solving step I are
significant: 350s on average for the best variant. One reason is that each method used for step I
(either cpct, bp or h) is relaunched from scratch at each iteration. To reduce the computing times
while preserving the solution quality, one idea is to favor incrementality by repairing and improving
the solution found after the step III of the previous iteration, instead of relaunching the cpct, bp or
h method. The repair and improvement procedure is based on the tabu search procedure previously
used inside the heuristic and described in Section 3.2. The resulting tabu-search-based variant of the
matheuristic follows the same 3-steps principles described in Section 3.1. Its distinguishing feature
resides in the procedure used to compute the solution of (CSF) in step I. Let q be the current iteration
of the matheuristic and let pxpCSFq, spCEFq, wpCEFqqq´1 be the solution obtained after step III of the
iteration q ´ 1. The step I of the tabu-search-based matheuristic can be summarized as follows:

if q “ 1, then
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solve (CSF) with the dedicated solution method, i.e MILP solver (cpct-ts), branch-and-
price (bp-ts), heuristic (h-ts).

otherwise

1. initialize rx Ð pxpCSFqqq´1, then compute the new cost of rx using the updated piecewise
linear costs functions

2. apply the tabu search on rx and find a new best solution denoted x˚

3. return xpCSFq Ð x˚ as the solution of (CSF) obtained at the end of step I

Results are summarized in Table 5, where it can be observed that the best results are obtained with
the new variant bp-ts in less than 80s. Remarkably, the “pure” heuristic h-ts (without any call to a
general-purpose solver) obtains better results than all standalone MILP solvers on formulations (CF)
and (CFsos2) in only 1 s.

gap cpu #it #feas
(/107)

cpct-ts 10 x 60 29.40 % 61 s 3.76 89
3 x 200 14.80 % 200 s 2.71 90
6 x 100 25.18 % 101 s 3.53 89

bp-ts 10 x 60 1.82 % 48 s 3.23 103
3 x 200 1.57 % 131 s 2.60 107
6 x 100 1.65 % 72 s 2.90 105

h-ts 10 x 60 2.49 % 1 s 2.99 107

Table 5: Computational results from the tabu-search-based matheuristic

5.3 Comparison of the lower bounding procedures: branch-and-price vs
MILP solver

In this section we investigate five lower bounding schemes that can be derived from the compact
formulations (CF), (CFsos2) and from the extended formulation (EFsos2). The goal is to assess the
quality of the upper bounds obtained in Section 5.2 and to identify the best lower bounding scheme
among the following approaches:

• CPLEX ilopwl: the compact formulation (CF) is solved with general-purpose solver IBM
CPLEX 12.7.1, using its build-in piecewise linear functions modeling constraints (ilopwl)

• CPLEX sos2: the compact formulation (CFsos2) is solved with general-purpose solver IBM
CPLEX 12.7.1

• SCIP sos2: the compact formulation (CFsos2) is solved with general-purpose solver SCIP 5.0.1
that uses SOPLEX 3.1.1 as the underlying linear solver.

• Column generation / Branch-and-Price variant 1: the extended formulation (EF) is modeled
and solved with the framework SCIP 5.0.1 where every master problem is solved with SOPLEX
3.1.1 and every subproblem is solved with IBM CPLEX 12.7.1. under the variant 1 of the
Branch-and-Price procedure explained in Section 4.3

• Column generation / Branch-and-Price variant 2: same as variant 1 with variant 2 of the Branch-
and-Price procedure (see Section 4.3).
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The 107 instances that constitute the benchmark are grouped into four classes depending on the
number of tasks and length of the time horizon. These classes contain respectively 27, 27, 19 and
55 instances. A time limit of 600 s was given to all solvers and algorithms. Tables 6 and 7 report
the computational results of the lower bounding schemes with the following headings: (i) LB ratio:
average lower bound ratio, equal to 100 LB

UB`
where LB is the lower bound obtained and UB` is the best

known upper bound from any of the algorithms or solvers from section 5.2.1; (ii) # time out (only for
Table 6): number of instances for which the linear relaxation could not be solved to optimality by the
LP solvers or the column generation algorithms under the time limit. Note that the average LB ratio
is computed over all instances for which a lower bound is produced even if the corresponding linear
relaxation was not solved to optimality; (iii) # bounds: number of instances for which a lower bound
was produced; (iv) # nodes: number of nodes processed by the MILP solvers or branch-and-price.

Table 6 focuses on the solution of the linear relaxations of the formulations. It shows that for
three classes of instances out of four, the column generation algorithm produces on average the best
lower bounds. This behaviour is in line with what was expected since it was proven (Lemma 2) that
formulation (EFsos2) dominates (CFsos2). However, there is one class of instances, |J | “ 60 and
|T | ě 700, for which column generation did not produce the best average lower bound ratio. This is
certainly related to the high number of time out occurrences: less than 45% of instances of that class
could be solved to optimality under the time limit, therefore the lower bounds produced were lower
than what should have been the optimal solution value of the linear relaxation of (EFsos2).

Instances
Results with the linear relaxations

CPLEX SCIP Column generation
Characteristics # ilopwl sos2 sos2 variant 1 variant 2

|J | “ 30 and |T | ď 700 27
LB ratio 92.77 % 91.82 % 93.75 % 96.25 % 96.13 %
# time out 0 0 0 1 1
# bounds 27 27 27 27 27

|J | “ 30 and |T | ě 700 27
LB ratio 91.41 % 87.22 % 93.11 % 94.12 % 93.5 %
# time out 0 0 0 19 19
# bounds 27 27 27 27 27

|J | “ 60 and |T | ď 700 19
LB ratio 93.96 % 92.36 % 93.91 % 96.04 % 96.05 %
# time out 0 0 0 2 3
# bounds 19 19 19 19 19

|J | “ 60 and |T | ě 700 55
LB ratio 92.67 % 89.06 % 92.28 % 91.00 % 91.73 %
# time out 0 0 0 31 30
# bounds 55 55 55 54 52

Table 6: Computational results obtained with the linear relaxations and with 600 s time limit

Table 7 reports the results of the lower bounding schemes with no nodes limits, i.e branch-and-
bound for the MILP solvers and branch-and-price for the (EFsos2) solution method. Three main
observations can be made. First, the extended formulation (EFsos2) solved with SCIP-based branch-
and-price outperforms the compact formulation (CFsos2) solved with the same SCIP solver. Second,
CPLEX sos2 performs better than SCIP sos2, which means that there may be valid inequalities,
preprocessing or more efficient branching schemes in CPLEX in comparison to SCIP. In spite of that
(EFsos2) solved with the SCIP-based branch-and-price outperforms (CFsos2) solved with CPLEX.
Thirdly, the build-in ilopwl-based formulation performs better on instances with a high number of
time periods. Finally, we observe that on average among all instances the ratio is larger than 95%,
which illustrate the quality of the proposed upper bound.
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Instances
Results with a 600 s time limit (no nodes limit)

CPLEX SCIP Branch-and-Price
Characteristics # ilopwl sos2 sos2 variant 1 variant 2

|J | “ 30 and |T | ď 700 27
LB ratio 95.64 % 94.32 % 93.11 % 96.27 % 96.17 %
# nodes 655385 633850 323925 1474 1445
# bounds 27 26 27 27 27

|J | “ 30 and |T | ě 700 27
LB ratio 94.79 % 93.69 % 93.75 % 94.14 % 93.51 %
# nodes 426890 446445 323924 815 799
# bounds 27 23 27 27 27

|J | “ 60 and |T | ď 700 19
LB ratio 95.90 % 94.48 % 94.15 % 96.04 % 96.06 %
# nodes 579335 597733 300378 1205 1160
# bounds 18 19 19 19 19

|J | “ 60 and |T | ě 700 55
LB ratio 95.36 % 93.94 % 92.46 % 91.05 % 91.65 %
# nodes 277454 290565 115629 426 409
# bounds 55 53 55 54 52

Table 7: Computational results obtained with a 600 s time limit and no nodes limit

6 Concluding remarks

This paper presents mathematical models and decomposition schemes for computing upper and lower
bounds for a strongly NP-hard scheduling problem with reversible and non-reversible energy sources
and time-dependent piecewise linear energy costs. The problem allows to represent practical situa-
tions (such as smart buildings, data centers, manufacturing) where the energy load is a consequence
of discrete scheduling decisions and has to be dispatched among external energy sources (such as Pho-
tovoltäıc panels and the grid) with the support of storage resources (such as batteries). The proposed
decomposition matheuristic solves iteratively with dedicated methods a scheduling subproblem with
no storage and a lot-sizing subproblem for energy dispatch. The time-dependent piecewise linear func-
tions used in the scheduling subproblem are updated after each lot-sizing solution. Computational
results, on randomly generated and adapted instances from the literature, show that the matheuristic
produces fastly high quality solution compared to a compact MILP formulation. To assess the quality
of the obtained upper bounds, several lower bounding schemes are designed and compared, among
which various ways of solving the compact MILP formulation and a new extended formulation solved
by column generation and branch-and-price. The LP relaxation of the extended formulation is shown
to strictly dominate the LP relaxation of the compact formulation. On the considered instances, the
lower bounding scheme based on branch-and-price outperforms the one based on the compact formu-
lation with standard sos2 modeling of piecewise linear constraints and is competitive with CPLEX
using the built-in piecewise linear constraints. Finally, the gap between the best lower bound and up-
per bound is less that 5% on average, which validates the interest of solving iteratively the scheduling
subproblem and the energy dispatch problem for practical applications.

Future work will seek on the one hand to integrate more realistic characteristics of the energy
resources or of the scheduling part, mainly considering additional resources such as machines and
manpower. On the other hand, an exact Benders-like decomposition method could be derived from
the matheuristic. The main issue is that the (combinatorial) Benders cut may yield a too hard-to-solve
scheduling problem while the heuristic scheme allowed to pass information only via the modification
of the piecewise linear functions without changing the scheduling subproblem structure. The branch-
and-price approach is also not competitive yet with the compact formulation with built-in piecewise
linear contraints on a significant number of cases. Whether it is feasible to overcome this issue is also
an open research direction.
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