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Abstract

Investigative Journalism (IJ, in short) is staple of modern, democratic
societies. IJ often necessitates working with large, dynamic sets of heteroge-
neous, schema-less data sources, which can be structured, semi-structured,
or textual, limiting the applicability of classical data integration approaches.
In prior work, we have developed ConnectionLens, a system capable of inte-
grating such sources into a single heterogeneous graph, leveraging Informa-
tion Extraction (IE) techniques; users can then query the graph by means of
keywords, and explore query results and their neighborhood using an inter-
active GUI. Our keyword search problem is complicated by the graph hetero-
geneity, and by the lack of a result score function that would allow to prune
some of the search space.

In this work, we describe an actual IJ application studying conflicts of in-
terest in the biomedical domain, and we show how ConnectionLens supports
it. Then, we present novel techniques addressing the scalability challenges
raised by this application: one allows to reduce the significant IE costs while
building the graph, while the other is a novel, parallel, in-memory keyword
search engine, which achieves orders of magnitude speed-up over our pre-
vious engine. Our experimental study on the real-world IJ application data
confirms the benefits of our contributions.
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1 Introduction

Journalism and the press are a critical ingredient of any modern society. Like many
other industries, such as trade, or entertainment, journalism has benefitted from the
explosion of Web technologies, which enabled instant sharing of their content with
the audience. However, unlike trade, where databases and data warehouses had
taken over daily operations decades before the Web age, many newsrooms discov-
ered the Web and social media, long before building strong information systems
where journalists could store their information and/or ingest data of interest for
them. As a matter of fact, journalists’ desire to protect their confidential infor-
mation may also have played a role in delaying the adoption of data management
infrastructures in newsrooms.

At the same time, highly appreciated journalism work often requires acquiring,
curating, and exploiting large amounts of digital data. Among the authors, S. Horel
co-authored the “Monsanto Papers” series which obtained the European Press Prize
Investigative Reporting Award in 2018 [1]; a similar project is the “Panama Pa-
pers” (later known as “Offshore Leaks”) series of the International Consortium of
Investigative Journalists [2]. In such works, journalists are forced to work with
heterogeneous data, potentially in different data models (structured such as rela-
tions, semistructured such as JSON or XML documents, or graphs, including but
not limited to RDF, as well as unstructured text). We, the authors, are currently col-
laborating on such an Investigative Journalism (IJ, in short) application, focused
on the study of situations potentially leading to conflicts of interest1 (CoIs, in
short) between biomedical experts and various organizations: corporations, indus-
try associations, lobbying organizations or front groups. Information of interest
in this setting comes from: scientific publications (in PDF) where authors declare
e.g., “Dr. X. Y. has received consulting fees from ABC”; semi-structured metadata
(typically XML, used for instance in PubMed), where authors may also specify
such connections; a medical association, say, French cardiology, may build its own
disclosure database which may be relational, while a company may disclose its ties
to specialists in a spreadsheet.

This paper builds upon our recent work [3], where we have identified a set of
requirements (R) and the constraints (C) that need to be addressed to efficiently
support IJ applications. We recall them here for clarity and completeness:
R1. Integral source preservation and provenance: in journalistic work, it is cru-
cial to be able to trace each information item back to the data source from which it
came. This enables adequately sourcing information, an important tenet of quality

1According to the 2011 French transparency law, “A conflict of interest is any situation where a
public interest may interfere with a public or private interest, in such a way that the public interest
may be, or appear to be, unduly influenced.”
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journalism.
R2. Little to no effort required from users: journalists often lack time and re-
sources to set up IT tools or data processing pipelines. Even when they are able
to use a tool supporting one or two data models (e.g., most relational databases
provide some support for JSON data), handling other data models remains chal-
lenging. Thus, the data analysis pipeline needs to be as automatic as possible.
C1. Little-known entities: interesting journalistic datasets feature some extremely
well-known entities (e.g., world leaders in the pharmaceutical industry) next to
others of much smaller notoriety (e.g., an expert consulted by EU institutions,
or a little-known trade association). From a journalistic perspective, such lesser-
known entities may play a crucial role in making interesting connections among
data sources, e.g., the association may be created by the industry leader, and it may
pay the expert honoraries.
C2. Controlled dataset ingestion: the level of confidence in the data required for
journalistic use excludes massive ingestion from uncontrolled data sources, e.g.,
through large-scale Web crawls.
R3. Performance on “off-the-shelf” hardware: The efficiency of our data pro-
cessing pipeline is important; also, the tool should run on general-purpose hard-
ware, available to users like the ones we consider, without expertise or access to
special hardware.

Further, IJ applications’ data analysis needs entail:
R4. Finding connections across heterogeneous datasets is a core need. In partic-
ular, it is important for our approach to be tolerant of inevitable differences in the
organization of data across sources. Heterogeneous data integration works, such
as [4, 5, 6], and recent heterogeneous polystores, e.g., [7, 8, 9] assume that sources
have well-understood schemas; other recent works, e.g., [10, 11, 12] focus on an-
alyzing large sets of Open Data sources, all of which are tabular. IJ data sources
do not fit these hypothesis: data can be semi-structured, structured, or simply text.
Therefore, we opt for integrating all data sources in a heterogeneous graph
(with no integrated schema), and for keyword-based querying where users spec-
ify some terms, and the system returns subtrees of the graph, that connect nodes
matching these terms.
C3. Lack of single, well-behaved answer score: After discussing several journal-
istic scenarios, no unique method (score) for deciding which are the best answers
to a query has been identified. Instead: (i) it appears that “very large” answers (say,
of more than 20 edges) are of limited interest; (ii) connections that “state the obvi-
ous”, e.g., that a French scientist is connected to a French company through their
nationality, are not of interest. Therefore, unlike prior keyword search algorithms,
which fix a score function and exploit it to prune the search, our algorithm must be
orthogonal and work it with any score function.
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Building upon our previous work, and years-long discussions of IJ scenarios,
this paper makes the following contributions:

• We describe the CoI IJ application proposed by S. Horel (Section 2), we
extract its technical requirements and we devise an end-to-end data analysis
pipeline addressing these requirements (Section 3).

• We provide application-driven optimizations, inspired from the CoI scenario
but reusable to other contexts, which speeds up the graph construction pro-
cess (Section 4).

• We introduce a parallel, in-memory version of the keyword search algorithm
described in [13, 3], and we explain our design in both the physical database
layout and the parallel query execution (Section 5).

• We evaluate the performance of our system on synthetic and real-world data,
we demonstrate its scalability, and demonstrate performance improvements
of several orders of magnitude over our prior work, thereby enabling the
journalists to perform interactive exploration of their data (Section 6).

2 Use case: conflicts of interest in the biomedical domain

The topic. Biomedical experts such as health scientists and researchers in life sci-
ences play an important role in society, advising governments and the public on
health issues. They also routinely interact with industry (pharmaceutical, agrifood
etc.), consulting, collaborating on research, or otherwise sharing work and inter-
ests. To trust advice coming from these experts, it is important to ensure the advice
is not unduly influenced by vested interests. Yet, IJ work, e.g. [14, 15, 16], has
shown that disclosure information is often scattered across multiple data sources,
hindering access to this information. We now illustrate the data processing required
to gather and collectively exploit such information.
Sample data. Figure 1 shows a tiny fragment of data that can be used to find
connections between scientists and companies. For now, consider only the nodes
shown as a black dot or as a text label, and the solid, black edges connecting
them; these model directly the data. The others are added by ConnectionLens as
we discuss in Section 3.1. (i) Hundreds of millions of bibliographic notices (in
XML) are published on the PubMed web site; the site also links to research (in
PDF). In recent years, PubMed has included an optional CoIStatement element
where authors can declare (in free text) their possible links with industrial players;
less than 20% of recent papers have this element, and some of those present, are
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Figure 1: Graph data integration in ConnectionLens.

empty (“The authors declare no conflict of interest”). (ii) Within the PDF papers
themselves, paragraphs titled, e.g., “Acknowledgments”, “Disclosure statement”
etc. may contain such information, even if the CoIStatement is absent or empty.
This information is accessible if one converts the PDF in a format such as JSON.
In Figure 1, Alice declares her consulting for ABCPharma in XML, yet the “Ac-
knowledgments” paragraph in her PDF paper mentions HealthStar2. (iii) A (subset
of a) knowledge base (in RDF) such as WikiData describes well-known entities,
e.g., ABCPharma; however, less-known entities of interest in an IJ scenario are
often missing from such KGs, e.g., HealthStar in our example. (iv) Specialized
data sources, such as a trade catalog or a Wiki Web site built by other investiga-
tive journalists, may provide information on some such actors: in our example, the
PharmaLeaks Web site shows that HealthStar is also funded by the industry. Such
a site, established by a trusted source (or colleague), even if it has little or no struc-
ture, is a gold mine to be reused, since it saves days or weeks of tedious IJ work.
In this and many IJ scenarios, sources are highly heterogeneous, while time, skills,
and resources to curate, clean, or structure the data are not available.
Sample query. Our application requires the connections of specialists in lung dis-

2This example is inspired from prior work of S. Horel where she identified (manually inspecting
thousands of documents) an expert supposedly with no industrial ties, yet who authored papers for
which companies had supplied and prepared data.
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eases, working in France, with pharmaceutical companies. In Figure 1, the edges
with green highlight and those with yellow highlight, together, form an answer
connecting Alice to ABCPharma (spanning over the XML and RDF sources); sim-
ilarly, the edges highlighted in green together with those in blue, spanning over
XML, JSON and HTML, connect her to HealthStar.
The potential impact of a CoI database. A database of known relationships
between experts and companies, built by integrating heterogeneous data sources,
would be a valuable asset. In Europe, such a database could be used, e.g., to select,
for a committee advising EU officials on industrial pollutants, experts with few or
no such relationships. In the US, the Sunshine Act [17], just the French 2011 law,
require manufacturers of drugs and medical devices to declare such information,
but this does not extend to companies from other sectors.

3 Investigative journalism pipeline

Figure 2: Investigative Journalism data analysis pipeline.

The pipeline we have built for IJ is outlined in Figure 2. First, we recall Con-
nectionLens graph construction (Section 3.1), which integrates heterogeneous data
into a graph, stored and indexed in PostgreSQL. On this graph, the GAM keyword
search algorithm (recalled in Section 3.2) answers queries such as our motivating
example; these are both detailed in [3]. The modules on yellow background in
Figure 2 are the novelties of this work, and will be introduced below: scenario-
driven performance optimizations to the graph construction (Section 4), and an
in-memory, parallel keyword search algorithm, called P-GAM (Section 5).

3.1 ConnectionLens graph construction

ConnectionLens integrates JSON, XML, RDF, HTML, relational or text data into
a graph, as illustrated in Figure 1. Each source is mapped to the graph as close to
its data model as possible, e.g., XML edges have no labels while internal nodes
all have names, while in JSON conventions are different etc. Next, Connection-
Lens extracts named entities from all text nodes, regardless the data source they
come from, using trained language models. In the figure, blue, green, and orange
nodes denote Organization, Location, and Person entities, respectively. Each such
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Figure 3: Trees built by GAM for our sample query.

entity node is connected to the text node it has been extracted from, by an extrac-
tion edge recording also the confidence of the extraction (dashed in the figure).
Entity nodes are shared across the graph, e.g., Person:Alice has been found in
three data sources, Org:BestPharma in two sources etc. ConnectionLens includes
a disambiguation module which avoids mistakenly unifying entities with the same
labels but different meanings. Finally, nodes with similar labels are compared, and
if their similarity is above a threshold, a sameAs (red) edge is introduced connect-
ing them, labeled with the similarity value.

A sameAs edge with similarity 1.0 is called an equivalence edge. Then, p
equivalent nodes, e.g., the entity ABCPharma and the identical-label RDF literal,
would lead to p(p − 1)/2 equivalence edges. To keep the graph compact, one of
the p nodes is declared the representative of all p nodes, and instead, we only store
the p − 1 equivalence edges adjacent to the representative. Details on the graph
construction steps can be found in [3].

Formally, a ConnectionLens graph is denoted G = (N,E), where nodes can
be of different types (URIs, XML elements, JSON nodes etc., but also extracted
entities) and edges encode: data source structure, entities extracted from text, and
node label similarity.

3.2 The GAM keyword search algorithm

We view our motivating query, on highly heterogeneous content with no a-priori
known structure, as a keyword search query over a graph. Formally, a query
Q = {w1, w2, . . . , wm} is a set of m keywords, and an answer tree (AT, in short)
is a set t of G edges which (i) together, form a tree, and (ii) for each wi, contain at
least one node whose label matches wi. We are interested in minimal answer trees,
that is answer trees which satisfy the following properties: (i) removing an edge
from the tree will make it lack at least one keyword match, and (ii) if more than one
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nodes match a query keyword, then all matching nodes are related through sameAs
links with similarity 1.0. In the literature (see Section 7), a score function is used
to compute the quality of an answer, and only the best k ATs are returned, for a
small integer k. Our problem is harder since: (i) our ATs may span over different
data sources, even of different data models; (ii) they may traverse an edge in its
original or in the opposite direction, e.g., to go from JSON to XML through
Alice; this brings the search space size in O(2|E|), where |E| is the number of
edges; and (iii) no single score function serves all IJ needs since, depending on
the scenario, journalists may favor different (incompatible) properties of an AT,
such as “being characteristic of the dataset” or, on the contrary, “being surprising”.
Thus, we cannot rely on special properties of the score function, to help us
prune unpromising parts of the search space, as done in prior work (see Section 7).
Intuitively, tree size could be used to limit the search: very large answer trees
(say, of more than 100 edges) generally do not represent meaningful connections.
However, in heterogeneous, complex graphs, users find it hard to set a size limit
for the exploration. Nor is a smaller solution always better than a larger one. For
instance, an expert and a company may both have “nationality” edges leading to
“French” (a solution of 2 edges), but that may be less interesting than finding that
the expert has written an article specifying in its CoIStatement funding from the
company (which could span over 5 edges or more).

Our Grow-and-Aggressive-Merge (GAM) algorithm [13, 3] enumerates trees
exhaustively, until a number of answers are found, or a time-out. First, it builds 1-
node trees from the nodes of G which match 1 or more keywords, e.g., t1, t2, t3 in
Figure 3, showing some partial trees built when answering our sample query. The
keyword match in each node label appears in bold. Then, GAM relies on two steps.
Grow adds to the root of a tree one of its adjacent edges in the graph, leading to a
new tree: thus t4 is obtained by Grow on t1, t5 by Grow on t4, and successive Grow
steps lead from t2 to t15. Similarly, from t3, successive Grow’s go from the HTML
to the JSON data source (the HealthStar entity occurs in both), and then to the XML
one, building t20. Second, as soon as a tree is built by Grow, it is Merged with all
the trees already found, rooted in the same node, matching different keywords and
having disjoint edges wrt the given tree. For instance, assuming t15 is built after t5,
they are immediately merged into the tree t16, having the union of their edges. Each
Merge result is then merged again with all qualifying trees (thus the “agressive” in
the algorithm name). For instance, when Grow on t20 builds a tree rooted in the
PubMedArticle node (not shown; call it tA), Merge(t16, tA) is immediately built,
and is exactly the answer highlighted with green and blue in Figure 1.

Together, Grow and Merge are guaranteed to generate all solutions. If m = 2,
Grow alone is sufficient, while m ≥ 3 also requires Merge. GAM may build a tree
in several ways, e.g., the answer above could also be obtained as Merge(Merge(t15,
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Grow(t20)), t5); GAM keeps a history of already explored trees, to avoid repeating
work on them. Importantly, GAM can be used with any score function. Its details
are described in [13, 3].

4 Use case-driven optimization

In this section, we present an optimization we brought to the graph construction
process, guided by our target application.

In the experiments we ran, Named Entity Recognition (NER) took up to 90%
of the time ConnectionLens needs to integrate data sources into a graph. The more
textual the sources are, the more time is spent on NER. Our application data lead
us to observe that:

• Some text nodes, e.g., those found on the path PubMedArticle.Authors.Author.Name,
always correspond to entities of a certain type, in our example, Person. If
this information is given to ConnectionLens, it can create a Person entity
node, like the Alice node in Figure 1, without calling the expensive NER
procedure.

• Other text nodes may be deemed uninteresting for the extraction, journal-
ists think no interesting entities appear there. If ConnectionLens is aware
of this, it can skip the NER call on such text nodes. Observe that the input
data, including all its text nodes, is always preserved; we only avoid extrac-
tion effort deemed useless (but which can still be applied later if application
requirements evolve).

To exploit this insight, we introduced a notion of context, and allow users to
specify (optional) extraction policies. A context is an expression designating a
set of text nodes in one or several data sources. For instance, a context specified
by the rooted path PubMedArticle.Authors.Author.Name designates all the text
values of nodes found on that path in an XML data source; the same mechanism
applies to an HTML or JSON data source. In a relational data source containing
table R with attribute a, a context of the form R.a designates all text nodes in
the ConnectionLens graph obtained from a value of the attribute a in relation R.
Finally, an RDF property p used as context designates all the values o such that a
triple (s, p, o) is ingested in a ConnectionLens graph.

Based on contexts, an extraction policy takes one of the following form: (i)
c force Te where c is a context and Te is an entity type, e.g., Person, states that each
node designated by the context is exactly one instance of Te ; (ii) c skip, to indicate
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that NER should not be performed on the text nodes designated by c; (iii) as syn-
tactic sugar, for hierarchical data models (e.g., XML, JSON etc.), c skipAll allows
stating that NER should not be performed on the text nodes designated by c, nor
on any descendant of their parent. This allows larger-granularity control of NER
on different portions of the data.

Observe that our contexts (thus, our policies) are specified within a data model;
this is because the regularity that allows defining them can only be hoped for within
data sources with identical structure. Policies allow journalists to state what is
obvious to them, and/or what is not interesting, in the interest of graph construction
speed. Force policies may also improve graph quality, by making sure NER does
not miss any entity designated by the context.

5 In-memory parallel keyword search

We now describe the novel keyword search module that is the main technical con-
tribution of this work. A in-memory graph storage model specifically designed
for our graphs and with keyword search in mind (Section 5.1) is leveraged by a
a multi-threaded, paralell algorithm, called P-GAM (Section 5.2), and which is a
parallel extension of our original GAM algorithm, outlined in Section 3.2.

5.1 Physical in-memory database design

The size of the main memory in modern servers has grown significantly over the
past decade. Data management research has by now led to several DB engines run-
ning entirely in main memory, such as Oracle Database In-Memory, SAP HANA,
and Microsoft SQL Server with Hekaton. Moving the data from the hard disk to
the main memory significantly boosts performance, avoiding disk I/O costs. How-
ever, it introduces new challenges on the optimization of the data structures and the
execution model for a different bottleneck: the memory access [18].

We have integrated P-GAM inside a novel in-memory graph database, which
we have built and optimized for P-GAM operations. The physical layout of a graph
database is important, given that graph processing is known to suffer from random
memory accesses [19, 20, 21, 22]. Our design (i) includes all the data needed by
applications as described in Section 2, while also (ii) aiming at high-performance,
parallel query execution in modern scale-up servers, in order to tackle huge search
spaces (Section 3.2).

We start with the scalability requirements. Like GAM, P-GAM also performs
Grow and Merge operations (recall Figure 3). To enumerate possible Grow steps,
P-GAM needs to access all edges adjacent to the root of a tree, as well as the
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Figure 4: Physical graph layout in memory.

representative (Section 3.1) of the root, to enable growing with an equivalence
edge. Further, as we will see, P-GAM (as well as GAM) relies on a simple edge
metric, called specificity, derived from the number of edges with the same label
adjacent to a given node, to decide the best neighbor to Grow to. For instance,
if a node has 1 spouse and 10 friend edges, the edge going to the spouse is more
specific than one going to a friend. A Merge does not need more information than
available in its input trees; instead, it requires specific run-time data structures, as
we describe below.

In our memory layout, we split the data required for search, from the rest,
as the former are critical for performance; we refer to the latter as metadata. Fig-
ure 4 depicts the memory tables that we use. The Node table includes the ID
of the data source where the node comes from, and references to each node’s:
(i) representative, (ii) K neighbors, if they exist (for a fixed K - static allocation),
(iii) metadata, and (iv) other neighbors, if they exist (dynamic allocation). We
separate the allocation of neighbors into static and dynamic, to keep K neighbors
in the main Node structure, while the rest are placed in a separate heap area, stored
in the Node connections table. This way, we can allocate a fixed size to each Node,
efficiently supporting the memory accesses of P-GAM. In our implementation, we
set K = 5; in general, it can be set based on the average degree of the graph ver-
tices. The Node metadata table includes information about the type of each node
(e.g., JSON, HTML, etc.) and its label, comprising the keywords that we use for
searching the graph. The Edge table includes a reference to the source and the tar-
get node of every edge, the edge specificity, and a reference to the edge metadata.
The Edge metadata table includes the type and the label of each edge. Finally, we
use a keywordIndex, which is a hash-based map associating every node with its la-
bels. P-GAM probes the keywordIndex when a query arrives to find the references
to the Node table that match the query keywords and start the search from there.
The labels are encoded in order to achieve a more compact representation, while
also indexed to allow prefix matching, following the work in [23]. Among all the
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Algorithm 1: P-GAM
Input: G = (N,E), query Q={w1, . . ., wm}, maximum number of

solutions M , maximum time limit
Output: Answer trees for Q on G

1 pQueuei← new priority queue of (tree, edge) pairs, 1 ≤ i ≤ nt;
2 NQ ← ∪wi∈Q keywordIndex.lookup(wi);
3 for n ∈ NQ, e edge adjacent to n do
4 push (n, e) on some pQueuej (distribute equally)
5 end
6 launch nt P-GAM Worker (Algorithm 2) threads;
7 return solutions

structures, only Node connections (singled out by a dark background in Figure 4)
is in a dynamically allocated area; all the others are statically allocated.

The above storage is row (node) oriented, even though column storage often
speeds up greatly analytical processing; this is due to the nature of the keyword
search problem, which requires traversing the graph from the nodes matching the
keywords, in BFS style. Since we consider ad-hoc queries (any keyword combina-
tions), there are no guarantees about the order of the nodes P-GAM visits. There-
fore, in our setting, the vertically selective access patterns, which are exploited by
column-stores, do not apply. Instead, the crucial optimization here is to find the
neighbors of every node fast. This is leveraged by our algorithm, as we explain
below.

5.2 P-GAM: parallel keyword query execution

Our P-GAM (Parallel GAM) query algorithm builds a set of data structures, which
are exploited by concurrent workers (threads) to produce query answers. We split
these data structures to shared and private to the workers. We start with the shared
ones. The history data structure holds all trees built during the exploration, while
treesByRoot gives access to all trees rooted in a certain node. As the search space
is huge, history and treesByRoot grow very much. Specfically, for history, P-GAM
first has to make sure that an intermediate AT has not been considered before (i.e.
browse the history) before writing a new entry. Similar, treesByRoot is updated
only when a tree changes its root or if there is a Merge of two trees; however, it is
probed several times for Merge candidates. Therefore, we have implemented these
data structures as lock-free hash-based maps to ensure high concurrency and pri-
oritize read accesses. Observe that, given the high degree of data sharing, keeping
these data structures thread-private would not yield any benefit.
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Moving to the thread-private data structures, each thread, say number i, has a
priority queue pQueuei, in which are pushed (tree, edge) pairs, such that the edge
is adjacent to the root of the tree. Priority in this queue is determined as follows:
we prefer the pairs whose nodes match most query keywords; to break a tie, we
prefer smaller trees; and to break a possible tie among these, we prefer the pair
where the edge has the highest-specificity. This is a simple priority order we chose
empirically; any other priority could be used, with no change to the algorithm.

P-GAM keyword search is outlined in Algorithm 1. It creates the shared struc-
tures, and nt threads (as many as available based on the availability of computing
hardware resources). The search starts by looking up the nodes NQ matching at
least one query keywords (line 2); we create a 1-node tree from each such node, and
push it together with an adjacent edge (line 4), in one of the pQueue’s (distributing
them in round-robin).

Next, nt worker threads run in parallel Algorithm 2, until a global stop con-
dition: time-out, or until the maximum number of solutions has been reached, or
all the queues are empty. Each worker repeatedly picks the highest-priority (tree,
edge) pair on its queue (line 2), and applies Grow on it (line 3), leading to a 1-edge
larger tree (e.g., t5 obtained from t4 in Figure 3). Thus, the stack priority orders
the possible Grow steps at a certain point during the search; it tends to lead to small
solutions being found first, so that users are not surprised by the lack of a connec-
tion they expected (and which usually involves few links). If the Grow result tree
had not been found before (this is determined from the history), the worker tries to
Merge it with all compatible trees, found within treesByRoot (line 6). The Merge
partners (e.g., t5 and t15 in Figure 3) should match different (disjoint) keywords;
this condition ensures minimality of the solution. Merge results are repeatedly
Merge’d again; the thread switches back to Grow only when no new Merge on
the same root is possible. Any newly created tree is checked and, if it matches all
query keywords, added to the solution set (and not pushed in any queue). Finally,
to balance the load among the workers, if one has exhausted his queue, it retrieves
the highest-priority (tree, edge) pair from the queue with most entries, pushing the
possible results in its own queue.

As seen above, the threads intensely compete for access to history and trees-
ByRoot. As we demonstrate in Section 6.3, our design allows excellent scalability
as the number of threads increases.

6 Experimental evaluation

We now present the results of our experimental evaluation. Section 6.1 presents the
hardware and data used in our application. Section 6.2 studies the impact of extrac-
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Algorithm 2: P-GAM Worker (thread number i out of nt)

1 repeat
2 pop (t, e), the highest-priority pair in pQueuei (or, if empty, from the

pQueuej having the most entries);
3 tG ← Grow(t, e);
4 if tG 6∈ history then
5 for all edges e′ adjacent to the root of tG, push (tG, e′) in pQueuei;
6 build all tM ←Merge(tG, t′) where t′ ∈ treesByRoot.get(tG.root)

and t′ matches Q keywords disjoint from those of tG;
7 if tM 6∈ history then
8 recursively merge tM with all suitable partners;
9 add all the (new) Merge trees to history;

10 for each new Merge tree t′′, and edge e′′ adjacent to the root of
t′′, push (t′′, e′′) in pQueuei;

11 end
12 end
13 until time-out or M solutions are found or all pQueuej empty, for

1 ≤ j ≤ nt;

tion policies (Section 4). Section 6.3 analyzes the scalability of P-GAM, focusing
on its interaction with the hardware, and demonstrates its significant gains wrt
GAM. Section 6.4 demonstrates P-GAM scalability on a large, real-world graph
built for our CoI IJ application.

6.1 Hardware and software setup

We used a server with 2x10-core Intel Xeon E5-2640 v4 CPUs clocked at 2.4GHz,
and 192GB of DRAM. We do not use Hyper-Threads, and we bind every CPU
core to a single worker thread. As shown in Figure 2, we use ConnectionLens
(90% Java, 10% Python) to construct a graph out of our data sources, and store
it in PostgreSQL. Following the processing pipeline, we migrate the graph to our
novel in-memory graph engine, which implements P-GAM. The query engine is a
NUMA-aware, multi-threaded C++ application.

6.2 Impact of extraction policies

In this experiment, we loaded a set of 20.000 Pubmed XML bibliographic notices
(38.4 MB on disk). This dataset inspired an extraction policy stating that: the text
content of any PubMedArticle.Authors.Author.Name is a Person entity, and that
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Figure 5: Synthetic graphs: chaink, starp,k

extraction is skipped from the article and journal title, as well as from the article
keywords. NER is still applied on author affiliations (rich with Organization and
Location entities), as well as on the CoIStatement elements of crucial interest in
our context.

By introducing the policy, the extraction time went down from 1199s (no pol-
icy) to 716s, yielding a speed-up of about 40%. The total loading time was reduced
from 1461s to 929s, translating to 34% speed-up. As a point of reference, we
also noted the time to load (and index) the graph nodes and edges in PostgreSQL;
extraction strongly dominates the total time, confirming the practical interest of
application-driven policies.

6.3 Scalability analysis

The scalability analysis is performed on synthetic graphs, whose size and topology
we can fully control. We focus on two aspects that impact scalability: (i) con-
tention in concurrent access to data structures, and (ii) size of the graph (which
impacts the search space). To analyze the behavior of concurrent data structures,
we use chaink graphs, because they yield a big number of intermediate results,
shared across threads, even for a small graph. This way, we can isolate the size
of the graph from the size of the intermediate results. We repeat every experiment
five times, and we report the average query execution time.

We use two shapes of graphs (each with 1 associated query), leading to very
different search space sizes (Figure 5). In both graphs, all the kwdi for 0 ≤ i
are distinct keywords, as well as the labels of the node(s) where the keyword is
shown; no other node label matches these keywords. Chaink has 2k edges; on it,
{kwd0, kwd1} has 2k solutions, since any two neighbor nodes can be connected by
an ai or by a bi edge; further, 2k+1 − 2 partial (non-solution) trees are built, each
containing one keyword plus a path growing toward (but not reaching) the other.
Starp,k has p branches, each of which is a line of length k; at one extremity each
line has a keyword kwdi, 1 ≤ i ≤ p, while at the other extremity, all lines have
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(a) Chain graph scaling (b) Star graph scaling

Figure 6: Synthetic graphs performance

Graph chain12 chain13 chain14 chain15
S 4096 8192 16382 32768
T 1−clean
PGAM 40 92 215 551

T 1−query
PGAM (ms) 3 8 17 46

TPGAM (s) 1 5 17 83
T 1 (ms) 160 203 234 315
T (s) 674 900 900 900

Table 1: Single-thread P-GAM vs. GAM performance on chain graphs.

kwd0. As explained in Section 3.1, these nodes are equivalent, one is designated
their representative (in the Figure, the topmost one), and the others are connected
to it through equivalence edges, shown in red. On this graph, the query {kwd0,
kwd1, . . ., kwdp} has exactly 1 solution which is the complete graph; there are
O(k + 1)2p partial trees.
Single-thread P-GAM vs. GAM. We start by comparing P-GAM, using only 1
thread, with the (single-threaded) Java-based GAM, accessing graph edges from
a PostgreSQL database. We ran the two algorithms on the synthetic graphs and
queries, with a time-out of 15 minutes; both could stop earlier if they exhausted the

Graph star4,1000 star4,2000 star4,3000 star4,4000 star4,5000
S 1 1 1 1 1
T 1−clean
PGAM 34 78 133 196 242

T 1−query
PGAM (ms) 151 693 1957 4711 8592

TPGAM (s) 1 4 11 27 51
T 1 (ms) 4063 12580 36261 67984 108960
T (s) 60 244 900 900 900

Table 2: Single-thread P-GAM vs. GAM performance on star graphs.
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search space. Tables 1 and 2 show: the number of solutions S, the time T 1−clean
PGAM

(ms) until the internal data structures have been cleaned and properly prepared for
queried, the time T 1−query

PGAM (ms) until the first solution is found by P-GAM and its
total running time TPGAM (s) that includes both cleaning and querying for all so-
lutions, as well as the corresponding times T 1 and T for GAM (Java on Postgres).
On these tiny graphs, both algorithms found all the expected solutions, however,
even without parallelism, P-GAM is 10× to more than 100× faster. Further, on
all but the 3 smallest graphs, GAM did not exhaust its search space in 15 minutes.
This experiment demonstrates and validates the expected speed-up of a carefully
designed in-memory implementation, even without parallelism (since we restricted
P-GAM to 1 thread).
Parallel P-GAM. In the following, we omit the time required for cleaning up the
data structures after every iteration, as we want to focus on the scalability of the
algorithm. Nevertheless, the time for the maintenance of internal data structures
takes less than 5% of the query time for large graphs. On the graphs chaink for
12 ≤ k ≤ 15, we report the exhaustive search time (Figure 6a) for query {kwd0,
kwd1} as we increase the number of worker threads from 1 to 20. We see a clear
speedup as the number of threads increases, which is around 13x for the graph sizes
that we report. The speedup is not linear, because as the size of the intermediate
results grows, it exceeds the size of the CPU caches, while threads need to access
them at every iteration. Our profiling revealed that, as several threads access the
shared data structures, they evict content from the CPU cache that would be use-
ful to other threads. Instead, we did not notice overheads from our synchroniza-
tion mechanisms. Therefore, we observe that our parallelization approach using
concurrent data structures is beneficial for parallel processing, while partitioning-
oblivious.

To study the scalability of the algorithm with the graph size, we use star4,k for
k ∈ {1K, 2K, 3K, 4K, 5K} and the query {kwd1, kwd2, kwd3, kwd4}. Figure 6b
shows the exhaustive search time of P-GAM on these graphs of up to 20.000 nodes,
using 1 to 4 threads. We obtain an average speed-up of 3.2× with 4 threads, re-
gardless the size of the graph, which shows that P-GAM scales well for different
graph models and graph sizes. After profiling, we observed that the size of the
intermediate results impacts the performance, similar to the previous case of the
chain graph.

In the above star4,k experiments, we used up to 4 threads since the graph has a
symmetry of 4 (however, threads share the work with no knowledge of the graph
structure). When keyword matches are poorly connected, e.g., at the end of simple
paths, as in our star graphs, P-GAM search starts by exploring these paths, mov-
ing farther away from each keyword; if N nodes match query keywords, up to
N threads can share this work. In contrast, as soon as these explored paths inter-
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Data model |E| |N | |NP | |NO| |NL|
XML 35,318,110 22,204,487 1,561,352 718,434 147,256
JSON 2,800,959 998,013 133,794 147,431 9,822
HTML 232,675 174,849 5,144 4,479 581
Total 38,351,744 23,377,349 1,700,290 870,344 157,659

Table 3: Statistics on Conflict of Interest application graph.

sect, Grow and Merge create many opportunities that can be exploited by different
threads. On chaink, the presence of 2 edges between any adjacent nodes multiplies
the Grow and Merge opportunities, work which can be shared by many threads.
This is why on chaink, we see scalability up to 20 worker threads, which is the
maximum that our server supports.

6.4 P-GAM in Conflict of Interest application

We now describe experiments on actual application data.
The graph. We selected sources based on S. Horel’s expertise and suggestions, as
follows. (i) We loaded more than 450.000 PubMed bibliographic notices (XML),
corresponding to articles from 2019 and 2020; they occupy 934 MB on disk.
We used the same extraction policy as in Section 6.2 to perform only the neces-
sary extraction. (ii) We downloaded almost 42.000 PDF articles corresponding to
these notices (those that were available in Open Access), transformed them into
JSON using an extraction script we developed, and preserved only those para-
graphs starting with a set of keywords (“Disclosure”, “Competing Interest”, “Ac-
knowlegments” etc.) which have been shown [1] to encode potentially interesting
participation of people (other than authors) and organizations in an article. To-
gether, these JSON fragments occupy 340 MB on disk. The JSON and the XML
content from the same paper are connected (at least) through the URI of that pa-
per, as shown in Figure 1. (iii) We crawled 781 HTML Web pages from a set
of Web sites describing people and organizations previously involved in scien-
tific expertise on sensitive topics (such as tobacco or endocrine disruptors), in-
cluding: www.desmogblog.com, tobaccotactics.org, www.wikicorporates.org and
www.sourcewatch.org. These pages total 24 MB. Table 3 shows the numbers of
edges |E|, of nodes |N |, and, respectively, of Person, Organization and Location
entities (|NP |, |NO|, |NL|), split by the data model, and overall.
Querying the graph. Table 4 shows the results of executing 15 queries, until
1000 solutions or for at most 1 minute, using P-GAM. From left to right, the
columns show: the query number, the query keywords, the time T 1 until the first
solution is found, the time T last until the last solution is found, the total running
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# Keywords T 1 T last T S # DS

1 A1, A2 200 4840 4840 1000 1-6, 5
2 A1, H1 130 615 615 1000 1-7, 7
3 A3, I1 1263 20547 60000 13 2-4, 2,3
4 A4, I2 2860 2866 60000 3 2-3, 3
5 A5, A6, I3 2602 4203 60000 15 6,8, 8
6 A7, H2, I2 2385 59131 60000 22 5-9, 6
7 A8, I2, I4 667 51186 60000 63 4-7, 6
8 A9, H3, I2 264 59831 60000 516 3-8, 5
9 H2, I1, P1 1267 60212 60000 148 6-8, 6

10 A5, A10, I2 19077 23160 60000 9 8, 8
11 A11, I1, I2, P2 4791 54477 60000 9 5,7-8, 8
12 A9, I1, I4, I5 6327 55762 60000 38 8-9, 11, 8
13 A7, I1, I6, P1 1857 3057 60000 8 7, 8, 7,8
14 A12, I1, P2, H3 21031 55221 60000 24 7, 7
15 A7, A8, I1, I2, I4 3389 28237 60000 4 7-8,11, 11

Table 4: P-GAM performance on CoI real-world graph.

time T , the number of solutions found, and some statistics on the number of data
sources participating in the solutions found (#DS, see below). All times are in
milliseconds. We have anonymized the keywords that we use, not to single out
individuals or corporations, and since the queries are selected aiming not at them,
but at a large variety of P-GAM behavior. We use the following codes: A for
author, H for hospital, P for country, and I for industry (company). A #DS value
of the form “2-10, 6” means that P-GAM found solutions spanning at least 2 and
at most 10 data sources, while most solutions spanned over 6 sources.

We make several observations based on the results. The stop conditions were
set here based on what we consider as an interactive query response time, and a
number of solutions which allow further exploration by the users (e.g., through
an interactive GUI we developed). Further, solutions span over several datasets,
demonstrating the interest of multi-dataset search enabled, and that P-GAM ex-
ploits this possibility. Finally, we report results after performing queries including
different numbers of keywords and the system remains responsive within the same
time bounds, despite the increasing query complexity.

7 Related Work and Conclusion

In this paper, we presented a complete pipeline for managing heterogeneous data
for IJ applications. This innovates upon recent work [3] where we have addressed
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the problems of integrating such data in a graph and querying it, as follows: (i) we
present a complete data science application with clear societal impact, (ii) we show
how extraction policies improve the graph construction performance, and (iii) we
introduce a parallel search algorithm which scales across different graph models
and sizes. Below, we discuss prior work most relevant wrt the contributions we
made here; more elements of comparison can be found in [3].

Our work falls into the data integration area [4]; our IJ pipeline starts by in-
gesting data into an integrated data repository, deployed in PostgreSQL. The first
platform we proposed to Le Monde journalists was a mediator [24], resembling
polystores, e.g., [7, 25]. However, we found that: (i) their datasets are changing,
text-rich and schema-less, (ii) running a set of data stores (plus a mediator) was not
feasible for them, (iii) knowledge of a schema or the capacity to devise integration
plan was lacking. ConnectionLens’ first iteration [26] lifted (iii) by introducing
keyword search, but it still kept part of the graph virtual, and split keyword queries
into subqueries sent to sources. Consolidating the graph in a single store, and the
centralized GAM algorithm [3] greatly sped up and simplified the tool, whose per-
formance we again improve here. We share the goal of exploring and connecting
data, with data discovery methods [27, 28, 29, 10], which have mostly focused on
tabular data. While our data is heterogeneous, focusing on an IJ application par-
tially eliminates risks of ambiguity, since in our context, one person or organization
name typically denote a single concept.

Keyword search has been studied in XML [30, 31], graphs (from where we
borrowed Grow and Merge operations for GAM) [32, 33], and in particular RDF
graphs [34, 35]. However, our keyword search problem is harder in several aspects:
(i) we make no assumption on the shape and regularity of the graph; (ii) we allow
answer trees to explore edges in both directions; (ii) we make no assumption on
the score function, invalidating Dynamic Programming (DP) methods such as [31]
and other similar prunings. In particular, we show in [13] that edges with a confi-
dence lower than 1, such as similarity and extraction edges in our graphs, compro-
mise, for any “reasonable” score function which reflects these confidences, the op-
timal substructure property at the core of DP. Works on parallel keyword search in
graphs either consider a different setting, returning a certain class of subgraphs in-
stead of trees [36] or standard graph traversal algorithms like BFS [37, 38, 39]. To
the best of our knowledge, GAM is the first keyword search algorithm for the spe-
cific problem that we consider in this paper. Accordingly, in this paper we have par-
allelized GAM, into P-GAM, by drawing inspiration and addressing common chal-
lenges raised in graph processing systems in the literature, in particular concerning
the CPU efficiency while interacting with the main memory [40, 20, 19, 21, 22].
Acknowledgments. The authors thank M. Ferrer and the Décodeurs team (Le
Monde) for introducing us, and for many insightful discussions.
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[6] M. Buron, F. Goasdoué, I. Manolescu, and M. Mugnier, “Obi-wan: Ontology-
based RDF integration of heterogeneous data,” Proc. VLDB Endow., vol. 13,
no. 12, pp. 2933–2936, 2020.

[7] J. Duggan, A. J. Elmore, M. Stonebraker, M. Balazinska, B. Howe, J. Kep-
ner, S. Madden, D. Maier, T. Mattson, and S. B. Zdonik, “The BigDAWG
polystore system,” SIGMOD, 2015.

[8] R. Alotaibi, D. Bursztyn, A. Deutsch, I. Manolescu, and S. Zampetakis, “To-
wards scalable hybrid stores: Constraint-based rewriting to the rescue,” in
SIGMOD, 2019.

[9] A. Quamar, J. Straube, and Y. Tian, “Enabling rich queries over heteroge-
neous data from diverse sources in healthcare,” in CIDR, 2020.

[10] M. Ota, H. Mueller, J. Freire, and D. Srivastava, “Data-driven domain discov-
ery for structured datasets,” Proc. VLDB Endow., vol. 13, no. 7, pp. 953–965,
2020.

[11] C. Christodoulakis, E. Munson, M. Gabel, A. D. Brown, and R. J. Miller,
“Pytheas: Pattern-based table discovery in CSV files,” Proc. VLDB Endow.,
vol. 13, no. 11, pp. 2075–2089, 2020.

[12] F. Nargesian, K. Q. Pu, E. Zhu, B. G. Bashardoost, and R. J. Miller, “Orga-
nizing data lakes for navigation,” in SIGMOD, 2020.

[13] A. G. Anadiotis, M. Y. Haddad, and I. Manolescu, “Graph-based keyword
search in heterogeneous data sources,” in Bases de Données Avancés (infor-
mal publication), 2020.

21

https://www.europeanpressprize.com/article/monsanto-papers
https://offshoreleaks.icij.org/
https://arxiv.org/abs/2012.08830
https://arxiv.org/abs/2012.08830
http://research.cs.wisc.edu/dibook
https://arxiv.org/abs/2009.04283
https://arxiv.org/abs/2009.04283


[14] N. Oreskes and E. Conway, Merchants of Doubt. Bloomsbury Publishing,
2012.

[15] S. Horel, Lobbytomie. La Découverte, 2018. In French.

[16] S. Horel, “Petites ficelles et grandes manoeuvres de l’industrie du tabac pour
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