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ABSTRACT: The estimation of the annual solar resource at a given location is a crucial part of the financing of new 

photovoltaic power plants. The standard practice is to use satellite-derived databases of ground irradiance estimations. 
Although these databases have a long-term history that properly captures the climatological variations of a given site, 

they are not calibrated with ground measurements and therefore may suffer from significant biases. In this paper, we 
focus on Western Europe and propose to use ground measurements of global horizontal irradiation (GHI) combined 

with a Kernel Density Mapping algorithm to calibrate several satellite databases (Solargis, HelioClim-3 and CAMS 
Radiation); we then show that their biases can be reduced from roughly ±3 % down to 0.5 %. More importantly, we 
perform a sensitivity analysis on the minimal amount of ground measurements required to perform a proper calibration 
and show that 12 months is the perfect duration to achieve optimal calibration performance. Additionally, we compare 

the calibration performance on several different satellite databases and show that a combination of several databases 
can lead to lower overall uncertainty. 
Keywords: GHI calibration, site-adaptation, Kernel Density Mapping, Quantile Mapping, Solargis, HelioClim-3, 
CAMS Radiation, bias removal, convergence, campaign duration 

 
 
Table I: Notations 

 

𝐶𝐷𝐹        : Cumulative Distribution Function 

𝐶𝑆             : when indexed, refers to clear-sky 

𝐺𝐻𝐼          : Global Horizontal Irradiation 

𝐼              : interpolation interval of the 𝐶𝐷𝐹 
KDE       : Kernel Density Estimator 
KDM       : Kernel Density Mapping 

KSI : Kolmogorov-Smirnov Integral 

𝐿𝑇           : when indexed, refers to the long-term 

𝑚𝑒𝑎𝑠      : when indexed, refers to the ground 
measurements 

MBE : Mean Bias Error 

𝑃𝐷𝐹        : Probability Density Function 

RMSE : Root Mean Square Error 

𝑠𝑎𝑡           : when indexed, refers to the satellite 
database 

𝑆𝑇           : when indexed, refers to the short-term 

measurement campaign 
�̃�              : uncalibrated satellite point of data 

𝑥              : calibrated satellite point of data 

 
 
1 INTRODUCTION 

 
 The profitability of photovoltaic (PV) projects as well 
as the financial structuring strongly rely on the global 
performance of the PV plant which is commonly estimated 

with percentiles 50 % (also known as P50 in the industry) 
and 10 % (P90) of the yearly energy yields during its future 
multi-decadal lifetime. The uncertainty over such decisive 
assessments mainly comes from the imperfect knowledge 

of the local long-term irradiation (typically the Global 
Horizontal Irradiation – GHI). [1] The best practice for 
deriving typical (P50) or conservative (P90) 

meteorological year at a given location now consists in 

using satellite-based databases because of their long-term 
history (typically 15+ years). However, the uncertainty in 
the satellite GHI estimation still jeopardizes the 
development of large-scale PV projects for which feed-in 

tariffs get closer to network parity.  
 

 As for wind industry in the last decades, site-

adaptation techniques are now emerging in the PV 

industry for correcting the GHI assessment and more 
precisely for removing the Mean Bias Error (MBE) of the 
satellite-based estimation, which is experienced whatever 
the modeling time step. Such a local calibration process 

requires local measurements of the GHI over a short-term 
period of several months, which in turn requires the setup 

of a measurement campaign at the early phase of the 
project. The collected data are then coupled to calibration 

algorithms that compare the satellite data with the 
measurements to model the errors. The resulting 
correction, in the form of a filter function, is propagated to 
the long-term satellite derived GHI time series. 

 Numerous types of calibration filters have been 
explored in the scientific literature. [2] Almost all these 
methods are mainly grouped around two mathematical 
procedures, namely multi-parameter regression and 

Quantile Mapping. The former consists in modeling the 
measured time-series by a combination of several relevant 
parameters from the satellite dataset or solar-position 
retrieval algorithms. Such regression can be linear or non-

linear and makes use of every available data representing 
the instantaneous atmospheric and solar configuration of 
the measurement point, such as solar elevation, clearness 
index, etc. However, no consensus has been reached over 

the best combination of variables. Regression also proves 
to be geographically inconsistent and to strongly rely on 
local fluctuations of environmental parameters with post-
calibration biases drastically fluctuating around zero. As 

for Quantile Mapping, it is rather based on a blind 
matching of probabilistic distributions of both satellite and 
measured time-series. The Cumulative Distribution 
Function (CDF) of the satellite irradiance data is 

transformed into that of the measurements covering the 
same time period. The mathematical transformation, 
taking the form of the filter, is then applied to the long-
term. The benefit of this approach is that it does not depend 
on the geography or meteorology of the studied site. It is 

mathematically constructed to remove any distribution 
errors in the satellite data and should cancel the MBE 
between the long-term and the short-term without making 



use of any spatial or temporal parameter other than the one 
it intends to correct. 

 While comparative studies confronting different 
algorithms are already available, this study intends to 
stress and assess the behavior of Quantile Mapping-based 
processes from a practical perspective. It is notably in line 

with the related activity of the Task 16 of the International 
Energy Agency program PVPS and the corresponding 
papers from Polo et al. [3] The main objective is to 
characterize the performances of the Kernel Density 

Mapping (KDM) method, derived from Quantile Mapping 
and commonly used for site-adaptation, with an innovative 
focus on both convergence (campaign duration) and 

robustness (choice of the database and spatial 

homogeneity). Developing an operational calibration 
solution raises indeed practical issues. Notably, addressing 
the problem of measurement campaign duration as well as 
selecting the best suited satellite database is mandatory 

prior to any site-adaptation procedure. The variability in 
performance caused by these choices is addressed in this 

paper.  
 To identify the performance indicators on the long-

term calibration and draw reliable conclusions, 
experiments were conducted on sites where historical 
irradiance measurement data are available and with good 
quality. Their goal is to evidence convergence visually and 

numerically through a statistical approach for a number of 
test conditions. 
 
 

2 SITE-ADAPTATION USING KDM 
METHODOLOGY 
 

 Providing an unbiased estimation of the GHI is the 

major challenge for the “solar resource” community as the 
size of the PV projects drastically increases (100+, even 
1000 MWp) while the corresponding business plans are 

getting tighter. Addressing the problematic of site-

adaptation is therefore mandatory to reduce uncertainty of 
the planned energy yield and therefore its financial risk. 

The depicted calibration method consists in correcting 
long-term satellite-database GHI time-series using short-

term horizontal pyranometer measurements. For each of 
the reference sites, a large number of “virtual” 
measurement campaigns of variable duration (ranging 
from one to 24 months) are simulated. Each measurement 

campaign leads to a specific performance (i.e., long-term 

GHI measurement vs. calibrated GHI time-series) which 
is then used to study the sensitivity of the calibration 
process.  

 A calibration method highly adapted to the elimination 
of the MBE for a given site is KDM. Quantile Mapping 
removes systematic errors between two datasets by 
matching the CDF of the modeled time-series on its 

corresponding truth data counterpart. For every estimated 
point of data �̃� (in this case the GHI estimation from the 
satellite model to be calibrated), the associated calibrated 

value 𝑥 is the one that should have the same image when 
applying the measured dataset CDF function: 

 

∀�̃� ∈ 𝐼𝑆𝑇𝑚𝑒𝑎𝑠 ∩ 𝐼𝑆𝑇𝑠𝑎𝑡, 𝑥 = 𝐶𝐷𝐹𝑆𝑇𝑚𝑒𝑎𝑠
−1 ∘ 𝐶𝐷𝐹𝑆𝑇𝑠𝑎𝑡(�̃�) 

 
 Where 𝐼𝑆𝑇𝑚𝑒𝑎𝑠 and 𝐼𝑆𝑇𝑠𝑎𝑡 are the respective intervals 

modeling the observed ranges of 𝐶𝐷𝐹𝑆𝑇𝑚𝑒𝑎𝑠  and 

𝐶𝐷𝐹𝑆𝑇𝑠𝑎𝑡 . Index ST refers to the short term, i.e., the 

measurement period. 

 
 The construction of the CDF is proving to be a 

significant issue. As the support interval of possible GHI 
values is indeed continuous, that the associated CDF also 
is. Time-series being discrete, the easiest way to 
interpolate a CDF using a finite ensemble of draws is to 

empirically build a step function. The dataset is sorted, and 
the function is incremented with a constant step at each 
new value of GHI. Such piecewise constant function can 

raise inversion issues when applying 𝐶𝐷𝐹𝑆𝑇𝑚𝑒𝑎𝑠
−1

 to 

subintervals where GHI points of data are scarce. In 
particular, the extreme high values of irradiance may thus 
be subject to "vertical bar" phenomena due to the non-

strict monotonicity of 𝐶𝐷𝐹𝑆𝑇𝑚𝑒𝑎𝑠
−1

. KDM methodology 

aims at countering these purely mathematical issues. It 
uses a Kernel Density Estimator (KDE) to propagate the 
distribution of the finite dataset of discrete GHI values in 

a continuous space (over the ensemble of real numbers). 
Instead of being considered as a probabilistic Dirac, the 

presence density, i.e., the Probability Density Function 
(PDF) of each new irradiance occurrence is expanded over 

ℝ. In the case under study, the shape of the selected kernel 
is a centered reduced Gaussian normalized by the number 

of samples 𝑁. 

∀𝑠 ∈ ℝ,
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 Where ℎ is the bandwidth of the gaussian kernel. The 
higher ℎ, the smoother the PDF. Yet the bandwidth needs 
to be low enough to maintain sufficient curve details. In 

these works, ℎ = 3 proved to be the best balance between 
smoothness and a good level of details. 
 It is then possible to fall back into a finite interval by 

truncating the CDF while removing its intercept and 
dividing it by the difference between the maximum and 

minimum value. The most relevant interval can be 𝐼′ =
[0,max(𝐺𝐻𝐼𝐿𝑇𝑠𝑎𝑡)], where LT refers to the long term 

satellite period, but it still leads to vertical bar phenomena 
if the maxima of the long-term satellite time-series and the 
measured maxima are too far apart (𝐶𝐷𝐹𝐿𝑇 𝑠𝑎𝑡 or its real 

counterpart that would have originated from the long-term 
pyranometer measurement campaign will reach the 
horizontal asymptote 1 too quickly before the other). 
𝐶𝐷𝐹𝑆𝑇𝑚𝑒𝑎𝑠  and 𝐶𝐷𝐹𝑆𝑇𝑠𝑎𝑡  are therefore interpolated on 

interval 𝐼: 
𝐼 = [0, min{𝑎𝑟𝑔𝑚𝑖𝑛(|𝐶𝐷𝐹𝑆𝑇𝑚𝑒𝑎𝑠 −

0.99|),𝑎𝑟𝑔𝑚𝑖𝑛(|𝐶𝐷𝐹𝑆𝑇𝑠𝑎𝑡− 0.99|)}]. 

It must be noted that the value 0.99 has been proposed as 

it generates the expected effect. 
 

 The KDM methodology can be visualized as the 
function modifying every date point of a time-series so that 

the curve of its KDE estimated CDF matches the wanted 
one: 

 



 
Figure 1: Visualization of the Kernel Density Mapping 
of a GHI time-series 
 
 It should be noted that KDM can be applied whatever 

the duration of the short-term or long-term time-series 
and whatever the database used.  
 
 

 

 

3 EXPERIMENTAL PROCESS 
 

3.1 Ground data 
 These works make use of seven ground-based stations 
located in Western Europe and belonging to the BSRN 
network (Baseline Surface Radiation Network) which 

added value mainly consists in the high-quality of the 
available data. [4] The one-minute GHI measurements 
from the ground stations over a ~12-year period (2007+) 
are considered as the long-term reference to be reached. 

 

 
 

Figure 2: Location & names of the seven BSRN ground-

based stations in Western Europe 

 
Table II: Useful details for every station used. GHILT meas is the average perceived 15-min GHI observed over the entire time 

series during periods when the sun is above the horizon 
 

Name Country Lat(°) Lon(°) Elev(m) 
Long-term 

period 
used 

Climate 
GHILT meas 

(Wh/m²) 

Cabauw Netherlands 51.9711 4.9267 0.0 2007-2018 Oceanic 72.1 

Camborne UK 50.2167 -5.3167 88.0 2007-2017 Oceanic 77.3 

Carpentras France 44.0830 5.0590 100.0 2007-2018 Mediterranean 109.3 

Cener Spain 42.8160 -1.6010 471.0 2009-2019 Oceanic 97.7 

Lindenberg Germany 52.2100 14.1220 125.0 2007-2017 Continental 76.1 

Palaiseau France 48.7130 2.2080 156.0 2007-2018 Continental 85.5 

Payerne Switzerland 46.8150 6.9440 491.0 2007-2013 Continental 84.7 

 
 The heterogeneity in the seven ground-based stations, 

in term of climate and latitude, allows gaining confidence 
in the results and conclusions when addressing projects in 
Western Europe. Though, pyranometers are operated 
independently from one site to another. To equalize the 

data and remove any inconsistent measurement point, a 
quality check was applied [5]. This filtering has the effect 
of discarding corrupted, unmeasured, or unrepresentative 
pieces of data. 

 
3.2 Satellite databases 
 Three satellite-based databases were used as the long-
term GHI estimation to be calibrated: Solargis [6], 

HelioClim-3 (version 5 – HC3v5) [7] and CAMS 
Radiation (Copernicus Atmosphere Monitoring Service) 

[8]. The two first ones are commercial products commonly 
used by the PV actors while the third one is freely provided 

by the EU-funded Copernicus Service.  
 As mentioned later, the errors made post-calibration 
for a given site seem to be relatively variable depending 
on the year of measurement, even for an identical database. 

Thus, it appeared to be coherent to cross-calibrate time 

series from the same campaign but from different 
databases to compensate for some of the respective biases. 
For that purpose, an experimental Hybrid database was 
also built using a regression of Solargis and HC3v5. It 

aims to find the best combination of several databases to 
enhance correlation with the short-term measurement 
campaign when the calibration function is mapped.  
 

3.3 Monte-Carlo based assessment 
 The BSRN stations provide enough historical data to 
allow for experimentation based on statistical draws. To 
characterize the robustness of the described methodology 

on plausible data, it has been proposed a Monte-Carlo 
based variability assessment of the short-term 

measurement campaigns. For each of the seven sites, one 
iteration of the process can be summed up as follows: 

• A starting date is randomly chosen. 

• The corresponding short-term campaign with a 

specified duration in months is extracted from the 



measured dataset; quality check and shadow 

removal are applied. 

• All CDF needed are computed using the described 

KDM methodology. 

• The Quantile Mapping function is interpolated on 𝐼 

and applied to the satellite long-term. 

• Statistical errors are retrieved by comparing with the 

measurement long-term. MBE, Root Mean Square 

Error (RMSE) and Kolmogorov-Smirnov Integral 

(KSI) were chosen to assess the performance of the 

calibration process with respect to the target which 
is the actual long-term BSRN data. 

This algorithm was run for 𝑛 starting dates. For each of 
them, campaign durations were selected between one and 
24 months. The statistical analysis of errors provides 
information on the random distribution as well as the 

observed median value of indicators with respect to the 
number of months used.  

𝑛 = 100 was found to be enough iterations. Going over 
this number was not considered relevant as additional data 
would have great chance to overlap already existing 
results, bringing no further details. The experiment was 
conducted on the three chosen satellite databases as well 

as the Hybrid and respective performances were 
compared. Visual convergence was demonstrated using 
boxplot (i.e., statistical box) representation. This 
representation allows to easily see the distribution of the 

results of the n experiments for each campaign duration in 
months. 
 
 

4 RESULTS 
 
 When experimenting the Monte-Carlo process, 
boxplots perfectly illustrate the expected behavior of 

increased confidence when working with longer 
measurement campaigns. Several statistical errors were 
monitored, the most essential being MBE followed by 
KSI. Since the aim of the calibration is to estimate 

accurately the yearly sum of irradiation, it is essential than 
the calibrated data is unbiased. Measures of the accuracy 
of the calibrated time series compared to the raw 
measurements (such as RMSE or MAE) are less important. 

These indicators provide an exhaustive view of the 
representativeness of the calibrated time-series obtained 

by demonstrating the systematic deviation and the 
discrepancy in terms of CDF post-calibration. RMSE is 

also shown in order to control that the dispersion of 

random errors does not increase substantially while 
calibrating. 
 

 

Figure 3: MBE convergence (in percent with respect to 
the long-term reference, Y-axis) after calibration of 

HC3v5 at Cener, Spain. Duration of the measurement 
campaign is expressed in months (X-axis). Horizontal blue 
line is the raw error of the satellite-based database (i.e. 
without calibration) while the boxplots depict the MBE 

spread after the calibration using campaigns with same 
duration (median in red, percentiles P10 and P90 – thus 80 
% of the samples – as blue rectangle). 
 

 
Figure 4: KSI convergence after calibration of HC3v5 at 
Cener, Spain. This KSI test is used to compare two 
statistical samples, i.e., to measure the distance between 
two CDF. It is possible to normalize this parameter to 

obtain a relative value of KSI; a value greater than 100 % 
indicates a significant difference between the two CDFs 
with a confidence level of 95 %. 
 

 
Figure 5: RMSE convergence (for 15-min time-step) after 
calibration of HC3v5 at Cener, Spain. 

 
 Results show that running a 12-month measurement 
campaign allows capturing the whole seasonal information 

for an efficient long-term calibration. Using more than 
twelve months does not bring much added value as 
depicted in Figures 2 and 3 (one specific site, one specific 
database, 100 campaigns) where MBE and KSI drastically 

decrease along with the campaign duration up to 12 
months, then reach a plateau. A bounce-back effect can 
even be observed for campaigns lasting between one and 

two years, reflecting the fact that some seasonal effects are 

doubled while others are not. To reach a performance at 
least better than for 12 months, measuring for twice as long 
is a minimum, which is incompatible with the time 

constraints of most PV project developments.  

 Table 2 depicts for each of the seven locations the raw 
performances of the satellite-based databases along with 
the median of the MBE, KSI and RMSE (bold) resulting 
from 12-month measurement campaigns with random 

starting dates (100 draws). P25 and P75 are also shown 



and were preferred to P10 and P90 because they are less 
impacted by exceptional results. Such a convergence can 

be observed whatever the site and the database, with 
different rate and convergence point. However, when 
focusing on the MBE, running the adapted KDM with a 

Hybrid database systematically improves the 
performances as depicted in Figure 6 where the 

performances for 12-month measurement campaigns are 
compared depending on the database. 

 

Table III: Raw MBE, KSI and RMSE (no calibration, in bold) and median (P50) MBE, KSI and RMSE (one hundred 
measurement campaigns of twelve months) for the seven BSRN stations and for the three satellite-based databases (plus 
Hybrid). P25 and P75 are also shown to illustrate confidence.  
 

BSRN Database 

MBE [%] KSI [%] RMSE [%] 

Raw Calib. Raw Calib. Raw Calib. 

 P25 P50 P75  P25 P50 P75  P25 P50 P75 

CAB 

Sol. -2.5 -0.1 0.4 0.9 355 96 125 160 25.1 27.9 28.0 28.1 
HC3v5 -0.9 -1.3 0.5 2.2 316 122 160 201 27.8 27.9 28.1 28.3 
CAMS 6.1 -1.4 0.2 1.4 665 112 143 189 31.1 31.2 31.3 31.4 

Hybr.  -0.8 -0.3 0.2  241 255 270  24.2 24.3 24.3 

CAM 

Sol. -2.6 0.2 0.4 1.0 244 73 80 99 26.6 26.9 27.0 27.0 
HC3v5 3.9 -0.8 -0.6 0.3 291 56 63 69 26.8 28.2 28.3 28.5 
CAMS 4.2 -1.1 -0.1 1.5 365 56 100 131 37.6 35.1 35.2 35.3 
Hybr.  -0.8 -0.4 0.0  169 191 212  25.6 25.7 25.7 

CAR 

Sol. 0.4 -0.2 0.3 0.9 89 71 88 123 15.0 15.0 15.0 15.1 
HC3v5 3.4 0.2 0.7 1.2 392 84 121 153 15.5 15.2 15.3 15.3 
CAMS 1.5 -0.4 0.9 1.5 324 111 132 199 19.8 17.9 18.0 18.1 
Hybr.  -0.2 0.0 0.4  122 140 181  14.6 14.6 14.6 

CEN 

Sol. 0.8 -0.3 0.1 0.4 275 75 94 118 20.7 20.8 20.9 21 

HC3v5 5.4 -0.4 -0.1 0.4 506 62 75 94 21.5 20.7 20.8 20.8 
CAMS 2.3 -1.5 0.0 1.3 395 78 143 189 26.1 26.1 26.2 26.2 
Hybr.  -0.5 -0.3 0.0  220 242 275  19.9 19.9 20.0 

LIN 

Sol. -2.8 -0.5 0.0 0.5 302 79 92 110 25.3 25.3 25.4 25.5 
HC3v5 -0.6 -0.8 0.0 0.9 259 88 97 124 26.3 26.5 26.5 26.7 

CAMS 2.1 -0.4 0.9 1.9 359 96 136 179 34.7 32.4 32.5 32.6 
Hybr.  -0.8 -0.4 -0.1  214 235 282  24.2 24.3 24.3 

PAL 

Sol. -2.9 -0.3 0.3 0.8 324 80 115 131 23.5 23.5 23.6 23.6 
HC3v5 3.6 -0.4 0.5 0.9 449 76 87 103 23.3 23.3 23.3 23.3 

CAMS 4.3 -0.9 0.6 1.6 547 113 146 185 29.2 29.5 29.6 29.6 
Hybr.  -0.3 0.0 0.3  223 250 282  22.1 22.1 22.2 

PAY 

Sol. 1.1 -0.7 -0.4 0.3 139 65 82 96 22.2 23.3 23.4 23.5 
HC3v5 -0.4 -0.8 -0.3 0.2 201 64 76 94 25.4 26.4 26.5 26.6 
CAMS 5.5 -0.6 -0.1 0.3 384 54 73 104 29.8 28.1 28.3 28.4 

Hybr.  -0.6 -0.4 -0.0  163 211 249  22.5 22.5 22.6 
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Figure 6: Comparative performances for 12-month measurement campaigns at seven BSRN locations. The black point is raw 
error of the satellite-based database (i.e., without calibration) while the boxplots depict indicator spread after calibration (P25 
& P75). 

 
  



 It is then possible to see the overall behavior of each 
database by aggregating the data from the seven sites. 

 

 
Figure 7: Overall performances for 12-month 

measurement campaigns at seven BSRN locations. The 

black points are the seven raw error of the satellite-based 
database (i.e., without calibration) while the boxplots 
depict MBE spread after calibration for the 7*100 

compiled calibration processes. 

 
 The median results for the seven locations show that a 
12-month measurement campaign systematically reduces 
the MBE when compared to the initial performance (i.e., 

without calibration) when the initial bias is not already 

close to zero. Moreover, the median of the MBE 
systematically remains between -0.6 % and 0.9 % for all 
databases. Finally, the Hybrid solution systematically 

shows better performances with 50 % of the MBE (P25-
P75 interval) remaining between -0.6 % and 0.1 % and 
80% (P10-P90 interval) between -1% and 0.4%. It is 
however slightly negatively biased by -0.2% but this 

behavior can either be considered negligible or be 
corrected as almost constant on every given site.  
 When looking at Solargis results, the satellite time-
series already has extremely low bias before calibration for 

two instances (Carpentras and Cener). Quantile Mapping 
displays a bias distribution which might look then worst. 
This cannot be considered as an issue as Solargis or Hybrid 
time-series systematically output very low residual post-

calibration bias. In a real situation where nor raw nor 
calibrated bias can be computed, the use of site-adaptation 

guarantees to obtain reasonable remanent bias value while 
the uncorrected can typically range anywhere between -

3.5% and 3.5% in Europe (as mentioned in both Solargis 
and HC3 validation reports). It is fair to state that most of 

calibration processes conducted in Western Europe using 
Solargis on any measurement campaign will lead to a 

global systematic error inferior to 1%. This is less true 
when making use of HC3v5 which can be calibrated 
extremely well in some cases (Cener) but poorly in other 
instances (Cabauw). CAMS is for its part not suitable for 

KDM calibration, showing too much fluctuation. No 

investigation has been conducted here to understand these 
differences between the databases. The respective models 
used are not visible in the resulting time-series which thus 

take the form of black box dataframes. 
 Other indicators demonstrate notable behaviors post-
calibration. KSI is systematically reduced to reach values 

around 100% when using Solargis, HC3v5 and CAMS. 

This level of performance indicates that both satellite and 
measured CDFs are close together throughout all the 
interval: the two time-series are drawn from comparable 
random variables. Hybrid displays higher KSI on every 

BSRN station and is the least performing database for this 
one statistical error. Regarding the RMSE, it is however 

the one that shows the best results with levels consistently 
below the other three.  

 It is worth noticing that KDM does not have drastic 
impact on RMSE. This indicator indeed only highlights 
random errors committed by the satellite database, totally 
undetectable for Quantile mapping. Its monitoring still 

gives evidence that the method does not disperse the data, 
but only distorts its overall distribution keeping its original 
precision. Mathematically, Quantile Mapping only distorts 
the point cloud in the satellite vs true data scatterplot so 

that there is a symmetrical distribution of points around the 
bisector line 𝑦 = 𝑥. 
 

 
5 CONCLUSIONS 
 
 Raw bias analysis on high quality historical BSRN 

data proves that top-tier satellite-based databases may 
have systematic errors which significantly jeopardize the 
reliability of a yield assessment. Assuming that the 

systematic bias is temporally stationary, long-term 

satellite time-series can theoretically be perfectly 
compensated using calibration on short-term in-situ 
measurements. Yet experiments show that the 
performance fluctuates depending on several input 

features.  

 An effective benchmark of possible configurations 
allows the characterization of the calibration parameters to 
be favored by the surveyor in order to maximize the 

representativeness of the corrected irradiance data. Once 
the method has been set, the three main parameters that 
can affect site adaptation are the start date of the campaign, 
its duration, and the choice of the satellite database. While 

the first is rarely adjustable in a professional context, the 
other two must be considered to effectively lower the 
uncertainty compared to raw data. The study carried out 
makes it possible to rule statistically on the latter. The 

three major conclusions are: 

• 12 months of measurement is the optimal duration. 

This is the minimum period to capture all seasonal 

effects. It is also found that an extension between 12 

and 24 months does not bring any improvement and 

may even degrade the level of performance. 

• Satellite databases are not equally suitable for 

calibration. Among the three tested, Solargis seems 

to be the most consistent due to systematically less 

distributed post-calibration biases on various 

locations. Using HelioClim-3v5 or CAMS seem to 

lead to higher uncertainty. 

• Satellite databases can be combined after being 

independently calibrated in order to benefit from 

fluctuating performances, thus leading to better 

performances. 

 As previously pictured, a good choice of parameters 
can drastically decrease uncertainty on remanent bias and 
lead to a much higher level of confidence: calibrated time-
series biases typically range between -0.5% to 0.5% while 

raw values range between -4% and 4%. Consequences are 
double: P50 yields are more representative and prone to 
better bankability; gap between P90 and P50 can be 
drastically reduced since uncertainty on the satellite 

database is dropped from 3% (as suggested by validation 
reports) to somewhere around 0.5%. PV developers could 
then benefit from a slightly higher debt leverage due to a 
P90 being closer to P50.  



 As a perspective, it would be interesting to extend this 
analysis to other calibration methods and to have a better 

understanding of why some campaigns work better than 
others. 
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