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Abstract. This paper proposes an approach for robust scheduling on
parallel machines. This approach is based on a combination of robust
mathematical and discrete event systems models which are iteratively
called in order to converge towards a schedule with the required robust-
ness level defined by the decision maker. Experimentations on a small
instance (10 jobs and 2 unrelated machines) and a more complex one
(30 jobs and 6 uniform machines) show that this approach permits to
converge quickly to a robust schedule even if the probability distribu-
tion associated to the uncertainties are not symmetrical. The approach
achieves a better rate of convergence than those of the literature’s meth-
ods.

Keywords: Robust scheduling · robust mixed integer programming
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Introduction

Scheduling under uncertainties is still a present concern in Operation Research
and Decision Aiding. Many researchers are interested in determining a robust
schedule which is rather insensitive to the data uncertainties and which is able
to absorb the perturbations without unreasonably degrading its performances.
However, the concept of robustness is differently defined according to the do-
mains. An approach for robust optimization has been proposed by [1], based on
a Robust Mixed Integer Programming Model. In order to obtain the robustness
level wanted by the decision maker, a vector Ω, which corresponds to the max-
imum allowed deviation of input parameters, has to be fixed. This vector can
be interpreted as a robustness coefficient. The authors have shown that if the
uncertainties on parameters are independent and symmetrically distributed, the
vector Ω can be analytically computed. But, such an hypothesis is not often
verified in real scheduling problems. In [2], a methodology for iteratively and
numerically tuning Ω has been proposed thanks to a combination of a robust
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mathematical programming and Discrete Event Systems models when the prob-
ability distribution associated to the uncertainties are not symmetrical. This
generic method has been applied on a scheduling problem with parallel ma-
chines and the results show that this approach is a good mean for tuning the
Ω parameters. However, the mechanism for updating coefficients Ω from one
iteration to another was simple and naive. Moreover, it did not take into ac-
count the characteristics of the current schedule solution (in particular the load
of the machines). As a result, the convergence of the method toward a solution
with the required robustness level was relatively slow. Our contribution in this
paper is to propose a new mechanism for updating robustness coefficients Ω to
increase the rate of convergence of our method in case of scheduling problem on
parallel machines. The problem is thus denoted as RK||Cmax which consists in
minimizing the makespan (Cmax) on K parallel machines.

The paper is built as follows. The first section presents the robust mixed
integer programming model for scheduling on parallel machines. The second
section presents the methodology and details the mechanism for updating the
robustness coefficientsΩ. The third section discusses the results on two instances:
a simple instance composed of 10 jobs and 2 unrelated machines and a more
complex one composed of 30 jobs and 6 uniform machines. Finally, the last
section deals with the conclusion and the perspectives.

1 Robust Formulation of RK||Cmax

The main assumptions for RK||Cmax are the following:

– all jobs are available at time 0,
– the K machines are always available (no breakdown etc.),
– processing times for the jobs are independent,
– a machine cannot process more than one job at any time and preemption is

not allowed.

Parameters and decision variables of the model are summarized in Table 1.

Table 1: Notations of the model
N : Number of jobs which have to be scheduled
K : Number of parallel machines
tjk : Processing time for job j on the machine k, ∀ (j, k) ∈ {1, . . . , N} × {1, . . . ,K}

xjk :
{

1 if j is executed on machine k
0 otherwise

, ∀ (j, k) ∈ {1, . . . , N} × {1, . . . ,K}

Cmax : is the makespan value

Since processing times are uncertain, we assume that

∀ (j, k) ∈ {1, . . . , N} × {1, . . . ,K} , tjk ∈
[
tmin
jk , tmax

jk

]
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Following the methodology of [1], uncertain processing times are modelled as

tjk = t̄jk + ζjk t̂jk

where

– t̄jk = tmax
jk +tmin

jk

2 and t̂jk = tmax
jk −t

min
jk

2
– ζjk is a random variable which takes its values in [−1, 1]

Thus, the robust model can be formulated as follows:

Minimize Cmax (1)
s.t.
K∑
k=1

xjk = 1 ∀j ∈ {1, . . . , N} (2)

N∑
j=1

t̄jkxjk + max∑N

j=1
|ζjk|≤Ωk

 N∑
j=1

t̂jkζjkxjk

 ≤ Cmax ∀k ∈ {1, . . . ,K}

(3)
xjk ∈ {0, 1} ∀ (j, k) ∈ {1, . . . , N} × {1, . . . ,K} (4)

where Ω = (Ωk)k∈{1,...,K} constrains the maximum deviation of processing times
allowed on each machine k. It can be interpreted as a robustness coefficient : the
larger Ωk is, the more conservative is the constraint (3). We denote as XΩ

an optimal schedule provided by the robust model with the input Ω and as
Cmax

(
XΩ

)
, the associated optimal makespan.

Let C̃max
(
XΩ

)
be defined as the random variable associated to the makespan,

when XΩ is executed in the workshop (with the uncertain values tjk). It is pos-
sible to define a robustness indicator as the probability that C̃max

(
XΩ

)
is lower

than Cmax
(
XΩ

)
. More formally, this indicator is given by the equation (5):

Γ (Cmax
(
XΩ

)
) = P

[
C̃max

(
XΩ

)
≤ Cmax

(
XΩ

)]
(5)

Our goal is to find Ω to guarantee that the scheduling XΩ reaches a certain
level of robustness Γ ref . As [1] have shown that in case of each ζjk is symmet-
rically distributed in [−1, 1], determining such Ω can be done analytically. Next
section provides a methodology which allows to reach this goal in a general case.

2 Our methodology

In this section, we denote as XΩ
k the schedule extracted from XΩ by considering

only the set of jobs processed on machine k, k ∈ {1, . . . ,K}.
Basically, our methodology is based on the following observations:
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1. In a workshop of parallel machines, machines are independent meaning that

Γ (Cmax
(
XΩ

)
) =

K∏
k=1

Γ (Cmax
(
XΩ
k

)
)

2. if Γ (Cmax
(
XΩ

)
) < Γ ref then there exists at least one k ∈ {1, . . . ,K} such

that Γ (Cmax
(
XΩ
k

)
) < K

√
Γ ref which is equivalent to

P
[
C̃max

(
XΩ
k

)
≤ Cmax

(
XΩ
k

)]
<

K
√
Γ ref

Thus, for such a k, we estimate a value d̃
(
XΩ
k

)
> Cmax

(
XΩ
k

)
for which the

following constraint is satisfied.

P
[
C̃max

(
XΩ
k

)
≤ d̃

(
XΩ
k

)]
= K
√
Γ ref (6)

Therefore, to obtain this robustness score for the scheduling XΩ
k , we have to

compute a new robustness coefficient Ωnewk in order to satisfy the constraint (7).

max∑
j∈XΩ

k

|ζjk|≤Ωnewk

 ∑
j∈XΩ

k

t̂jkζjk

 = d̃
(
XΩ
k

)
−
∑
j∈XΩ

k

t̄jk (7)

This constraint is derived from (3) in which we allow the deviation of uncertain-
ties constrained by Ωnewk until we reach d̃

(
XΩ
k

)
.

As we want to be the less conservative as possible (that means, in our case,
that Ωnewk should be as small as possible), the following proposition can be
stated:

Proposition 1. Solving equation (7) is equivalent to solve the following contin-
uous Knapsack problem :

Minimize Ωnewk =
∑
j∈XΩ

k

ζjk (8)

s.t.∑
j∈XΩ

k

t̂jkζjk = d̃
(
XΩ
k

)
−
∑
j∈XΩ

k

t̄jk (9)

ζjk ∈ [0, 1] ∀j ∈ XΩ
k (10)

As the continuous Knapsack problem is known to be polynomial and can be
easily solved by a greedy algorithm, we can use such algorithm to find the value
of Ωnewk that satisfies (7).

A similar reasoning can be applied if Γ (Cmax
(
XΩ

)
) > Γ ref and leads to

the same result.
Based on the previous proposition, our methodology can be summarized into 4
steps :
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Step 1 : For Ω = (Ωk)k∈{1,...,K}, an optimization module based on a linear solver
provides XΩ an optimal schedule according to the robust model presented
in the previous section [1].

Step 2 : Thanks to Discrete Event Systems models and tools, Γ (Cmax
(
XΩ

)
) is then

evaluated. If Γ (Cmax
(
XΩ

)
) ∈ [Γ ref −ε, Γ ref +ε] then the process stops and

XΩ is the required schedule solution, else the third step is engaged. ε is a
parameter that helps to fix the required level of accuracy.

Step 3 : For each k ∈ {1, · · · ,K}, the value of d̃
(
XΩ
k

)
that satisfies constraint (6)

is then determined thanks to another Discrete Event Systems module. Ω is
then updated in the Step 4.

Step 4 : Thanks to Equation (7), ∀k ∈ {1, · · · ,K}, Ωnewk is then computed using the
proposition 1 and we loop back to Step 1 with Ω = (Ωnewk )k∈{1,...,K}.

Steps 2 and 3 use models and tools from discrete event systems (DES) [3].
Discrete event systems (DES) allow to model the behavior of a system by con-
sidering its possible states and the possible events (allowing the evolution from
one state to another). The event is an instantaneous occurrence of an action or a
phenomenon in the system environment. The evolution on the event occurrence
can be deterministic when the behavior is known with certainty or stochastic
when the behavior is uncertain and the evolution can lead to different states. The
works of [4], [5], [6] have shown that DES are particularly relevant for scheduling
evaluation due to their ability to model the behavior of industrial systems and
perturbations. Indeed, DES allow to represent many dynamic features such as
the communication between the elements of the workshop (jobs, resources), the
time and the probabilistic behavior of perturbations. Many stochastic discrete
event system languages allow to model these characteristics: Stochastic Petri
Nets [7], Stochastic automata [8], Stochastic Automata Networks [9].
The method for evaluating the impact of a set of perturbations on a given sched-
ule uses the approach proposed by [4]. The approach models the characteristics
of the workshop (operations, resources), and the probability distribution associ-
ated to the perturbation by a discretization of this one and allows the evaluation
of different elements: the robustness indicator Γ (Cmax

(
XΩ

)
) as in step 2, the

minimal duration d̃
(
XΩ
k

)
as in step 3, . . .

3 Case Studies

3.1 A simple instance

In this first application, 10 jobs are considered. These jobs can be executed on two
unrelated parallel machines (the problem is R2||Cmax). Γ ref is fixed to 90% and
ε is fixed to 1% such that Γ

(
Cmax

(
XΩ

))
has to be in [89%, 91%] for concluding

to the acceptability of the solution XΩ . We applied the two approaches defined
(from [2] and the presented one) by starting with Ω = [0, 0] (meaning that no
uncertainty is considered).
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Iteration i Ω
Solution

Ωnew

XΩ Cmax
(
XΩ
)

0 [0, 0] X1 12 [0.10, 0.18]
...

...
...

...
...

10 [0.53, 0.66] X1 13.98 ∅

Table 2: Obtained iterations for R2||Cmax with the approach from [2]

Iteration i Input Ω Step 1 Step 2 Step 3 Step 4
XΩ Cmax

(
XΩ
)
Γ
(
Cmax

(
XΩ
)) [

d̃
(
XΩk

)]
k∈{1,2}

Ωnew

0 [0, 0] X1 12 0.65 [13, 14] [0.50, 0.66]

1 [0.50, 0.66] X1 14 0.90 ∅ ∅

Table 3: Obtained iterations for the problem R2||Cmax with our approach

The table 2 summarizes the results by giving the extremal iterations of the
combined approach presented in [2]. Two solutions are explored during the dif-
ferent iterations. The solution X1 allocates the first machine to jobs 1, 4, 6, 7,
8 and the second machine to jobs 2, 3, 5, 9, 10. The solution X2 allocates the
first machine to jobs 1, 4, 6, 7, 8, 10 and the second machine to jobs 2, 3, 5, 9.

We can conclude that the improved approach finds the right solution in the
first iteration (as Γ

(
Cmax

(
XΩ

))
= 90%, it is not necessary to update Ω and

to run a new iteration). Thus, the improved method decreases drastically the
number of necessary iterations for converging to a comparable solution.

3.2 A more complex instance

We consider 30 jobs which can be executed on 6 uniform machines (the problems
is Q6||Cmax). The machines are such that the first machine is the fastest and
the sixth is the slowest. Γ ref is fixed to 90% and ε is fixed to 1%.

We applied the two approaches by starting with Ω = [0, 0, 0, 0, 0, 0].
The figure 1 presents the evolution of the average value ofΩ and Γ (Cmax

(
XΩ
k

)
)

according to the iteration when applying the two approaches. First, it can be ob-
served that even after 10 iterations, the targeted performance Γ ref is not reached
when applying the approach of [2] and Γ

(
Cmax

(
XΩ
k

))
remains low. Moreover, Ω

increases very slowly when applying the approach of [2] in comparison with our
approach. We can postulate that a lot of iterations is still necessary for reaching
the target when applying the approach of [2].

The table 4 detailed the iterations when applying our improved approach.
After the first iteration, the obtained value of Γ

(
Cmax

(
XΩ

))
is lightly too high

such that a second iteration for adjusting the values of Ω is necessary. The second
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(a) Evolution of the average value of Ω
with the iterations

(b) Evolution of Γ (Cmax
(
XΩ
k

)
) with

the iterations

Fig. 1: Comparison of the results when applying the two approaches

Iteration i Input Ω Step 1 Step 2 Step 3 Step 4
XΩ Cmax

(
XΩ
)
Γ
(
Cmax

(
XΩ
)) [

d̃
(
XΩk

)]
k∈{1,2}

Ωnew

0 [0, 0, 0,
X0 926 3.6% [968, 969, 974, [2.67, 2.80, 2.50,

0, 0, 0] 971, 976, 979] 2.50, 2.23, 2.18]

1 [2.67, 2.80, 2.50,
X1 973 91.1% [972, 970, 971, [2.67, 2.67, 2.39,

2.50, 2.23, 2.18] 973, 973, 976] 2.50, 2.26, 2.32]

2 [2.67, 2.67, 2.39,
X2 972.72 90.3% ∅ ∅2.50, 2.26, 2.32]

Table 4: Obtained iterations for the problem Q6||Cmax with our approach

iteration allows to reach the targeted performance. If we accept to degrade the
optimal deterministic makespan (Cmax = 926 with the solution X0) of only
5%, then it is possible to guarantee this makespan despite the uncertainties
with a probability of 90% giving a good compromise between optimality (Cmax)
and robustness (Γ ). This confirms globally the results obtained with the simple
instance: the improved approach permits to converge faster to a robust solution.

4 Conclusion and perspectives

We have proposed an approach combining robust mathematical programming
and Discrete Event Systems models for the building of a robust scheduling on
parallel machines. This allows to reach the level of robustness desired by the
decision-maker by finely assessing the degree of robustness of the solutions pro-
vided by the optimization module, regardless of the probability distributions
that follow the uncertainties on the model input data. The probability distribu-
tion associated to the uncertainties are supposed independent but not necessarily
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symmetrical. Experiments on two instances show that our approach permits to
converge quickly to a robust schedule and improves the rate of convergence of
literature’s methods. Several perspectives to this work can be considered. First,
at short term, a more specific distribution of levels of robustness can be con-
sidered, taking into account, for example, the configuration of the production
system, the criticality of certain machines (for instance, requiring greater ro-
bustness for bottleneck machines, . . . ). It would also be interesting to consider
dependent probability distributions associated to the uncertainties. Long term
perspectives will concern the extension of this approach to more complex shop
scheduling problems as flow shop, job shop or hybrid flow shop.
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