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The present investigation revisits the linear stability of Poiseuille channel flow
interacting with compliant walls. The results obtained include the dynamics of Tollmien-
Schlichting (TS) modes as well as flow-induced surface-instability (FSI) modes, in the
form of both traveling-wave flutter (TWF) and divergence modes. The compliant wall
model consists of a spring-backed plate with a viscous substrate deformable in the vertical
direction [C. Davies and P. W. Carpenter, J. Fluid Mech. 352, 205 (1997)]. At the interface
between the fluid and the walls, the continuity of velocities and stresses, including both
viscous and pressure contributions, are taken into account. The FSI modes (both varicose
and sinuous) and TS modes are then reinterpreted in the light of the two principal nondi-
mensional control parameters: the Reynolds number (Re), which characterizes the base
flow, and the reduced velocity (VR), which measures the response of the flexible wall to hy-
drodynamic loading [E. De Langre, La Houille Blanche, 3, 14 (2000)]. The characteristics
of TS and FSI modes are systematically investigated over a large control-parameter space,
including wall dissipation, spring stiffness, and flexural rigidity. We observe that TWF
modes are primarily governed by VR and largely independent of the Reynolds number. It is
found that the instability is generally dominated by the TWF mode of varicose symmetry.
Divergence and TS modes are both affected by VR and Re, confirming that these modes
belong to a different class. The onset of the divergence mode is mainly observed for
the sinuous motion, when increasing the dissipation. To provide physical insight into the
mechanisms driving these instabilities, the perturbative energy equations for both FSI and
TS modes are analyzed for a wide range of wall parameters and wavenumbers.

DOI: 10.1103/PhysRevFluids.7.023903

I. INTRODUCTION

The constant scientific interest to extend the laminar regime for industrial applications has led to
the development of compliant walls since the beginning of the 20th century. In particular, researchers
focused on finding optimum wall properties, aiming to delay the laminar-turbulent transition.

In the biological context, interactions between fluid and elastic forces associated with a de-
formable channel or tube lead to a variety of physiologically significant phenomena. In particular,
deformability plays a prominent role in blood flow as well as peristaltic transport, for example,
through the intestines and the urogenital tract (see [1,2] for a review).

Such interest arose from Gray’s paradox [3]. Gray showed that, to overcome the friction drag of
a swimming dolphin subjected to a turbulent flow around its body, the muscles have to be capable
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of generating a power at least seven times greater than that of other kinds of mammalian muscle.
Hence, Gray has suggested that the dolphin skin is able to delay the laminar-turbulent transition. In
the laminar regime, indeed, the power developed by muscles would still conform to that of other
types of mammalian muscle.

Kramer [4] in the 1950s developed a compliant coating trying to mimic the dolphin’s skin. The
author claimed that he was able to reduce the drag of a torpedolike model by as much as 60%.
Later, the conclusions of both Gray’s hypotheses and Kramer’s experiments were in part questioned.
Russian and American experiments since the 1980s failed to reproduce results provided by Kramer.
In addition, scientists observed that the lower turbulence level around the dolphin’s swimming body
could also be attributed to local pressure gradients. It was also suggested that a reduction in the
friction drag may result from the fact that the dolphin leaps out of the water for breathing (see [5–7]
for reviews).

However, Gaster’s experiments in 1988 [8] gave new hope in using compliant walls to delay
laminar-turbulent transition. He showed that the growth rates of artificially generated Tollmien-
Schlichting (TS) waves are inhibited when using appropriate coatings. These experiments have
given a strong impulse to theoretical developments aiming to tackle this problem.

A major difficulty arises from the design of compliant wall models that are able to couple fluid
and solid dynamics. These models may be separated into two categories: surface based and volume
based (see [7,9] for a review). The first class of models is less computationally demanding and
considers an infinitely thin wall interacting with the fluid through an interface condition. In this
case, the wall is defined as a thin plate mounted on springs and dampers. The wall parameters
are classically the spring stiffness, the tension, the bending stiffness, its mass, and the damping
coefficient.

For the second family of models (i.e., volume based), the wall material is fully described to
include single- or multilayer coatings (see [10] and [9] for recent reviews). However, Duncan [11]
has shown that a surface model can be used to quantitatively describe many aspects of instabilities
and wave propagation on the surface of an elastic and incompressible coating.

Here, the surface-based approach is adopted. Within this approach and following the lead of
Benjamin [12–14], which relies on the theory developed by Miles for water waves [15], Carpenter
and Garrad [16,17] focused on the stability of boundary-layer flows over Kramer-type compliant
walls. They provided some confirmation of the transition-delaying potential of compliant coatings.
According to Carpenter and Garrad [16,17], instability modes can be classified into two categories:
fluid based (TS mode) and solid based (flow-induced surface instabilities, or fluid-structure instabil-
ities, referenced as FSI hereafter). The last category includes both the traveling-wave flutter (TWF)
modes and the (almost static) divergence modes. For the divergence mode, scientists are still arguing
about its precise nature. It is either interpreted as an absolute instability [18] or it may also result
from a modal instability with a nearly vanishing phase velocity when increasing the wall dissipation
[19].

While the surface-based model has been extensively used for external flows such as boundary
layers, very few studies have been conducted on internal flows (see, for instance, the recent review
of Kumaran [9]). Among them, Davies and Carpenter [20,21] investigated linear instability waves
that emerge when a viscous incompressible flow interacts with infinite or finite spring-backed plates
in a plane channel.

Considering only sinuous perturbations, Davies and Carpenter [20] derived a theory for the
motion of the walls and obtained neutral stability curves for both FSI and TS modes and some
values of flexural rigidity of the plate, spring stiffness, and damping. The same year, these authors
investigated the dynamics of TS waves that propagate over a compliant panel of finite length, using
linearized numerical simulations [21]. For low external disturbances, Davies and Carpenter [21]
then suggested that the use of multiple-panel compliant walls could maintain the laminar flow
regime at all Reynolds numbers in a plane channel flow. This seminal work was also limited to
the sinuous symmetry. These prior analyses have been extended to the varicose motion of the walls
for the same case with infinite compliant walls by Nagata and Cole [22]. Despite the fact that this
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investigation focused only on a narrow region of the parameter space to make definite statements,
the authors found that the varicose TWF mode can be amplified prior to its sinuous counterpart. A
similar analysis was recently conducted to address the effect of pulsatile Poiseuille flow through a
compliant channel [23] for modal and nonmodal instabilities. Although the latter extended results
discussed above to pulsatile flows and short-time perturbations, it has not brought new elements
for the asymptotic regime of the steady flow case. Finally, Gajjar and Sibanda [24] investigated a
viscous flow in a channel in which only one wall is compliant. The same spring-plate model is used
by the authors and the nonlinear evolution of disturbances have been obtained in the limit of large
Reynolds numbers within the nonlinear critical layer theory.

The aforementioned analyses address the amplification of FSI and TS modes for compliant
channel flows but it should be noted that the models used above have some limitations. First, these
analyses use the Reynolds number as a control parameter for both FSI and TS modes. This approach
is not entirely satisfactory because a change in the Reynolds number also leads to a change in the
compliant wall characteristics. Therefore, the reduced velocity, defined as the ratio between the
characteristic time of the solid and that of the fluid, has been advocated by de Langre [25] to measure
the strength of the fluid-structure interactions independently of the Reynolds number. Second, a
rigorous treatment of the pressure at the wall is key for a complete analysis of fluid-structure
interaction problems. On one hand, a consistent formulation was indeed derived by Davies and
Carpenter [20] under the form of an Orr-Sommerfeld-like equation accounting for compliant walls.
However, this formulation only applies to perturbations of sinuous symmetry. On the other hand,
Nagata and Cole [22] and Tsigklifis and Lucey [23] used a primitive formulation combined with
a spectral collocation method without any specific treatments for the pressure and the additional
boundary conditions arising from the wall equation. In this case, spurious eigenvalues are likely to
occur [26]. Third, as suggested by Nagata and Cole [22], the varicose symmetry is as important as
the sinuous one for FSI modes. Nevertheless, as far as we know, existing studies of varicose modes
only explore a narrow parameter range. As a consequence, the potential gain in using compliant
walls to delay laminar-turbulent transition in a plane channel flow could be challenged significantly.

The purpose of the present paper is therefore to revisit the instability modes that emerge when
a viscous flow interacts with two parallel spring-backed plates and hope to address the inherent
limitations mentioned above. Thus, we reconsider this problem by using the reduced velocity to
describe FSI modes. A general formulation is implemented, free of spurious modes, suitable for both
sinuous and varicose symmetries, and taking into account the exact hydrodynamic forces acting on
the walls. A wide range of wall parameters has been explored to highlight their influence on both
FSI and TS modes. Only two-dimensional perturbations are considered since the Squire theorem
holds for compliant walls [27].

The paper is organized as follows. Section II presents the model and governing equations used
for the fluid-structure interaction problem. In particular, the dimensionless parameters and linearized
equations will be introduced. After the numerical methods are presented in Sec. III, Sec. IV provides
some physical insight into the influence of wall parameters onto FSI and TS modes for both the
sinuous and varicose symmetries. For that purpose, kinetic energy budgets are also computed.
Conclusions and prospects are given in the last section.

II. PROBLEM FORMULATION

A. Fluid-structure interaction model and interface conditions

In the entire paper, we restrict our analysis to the two-dimensional problem. Using a Cartesian
coordinate system (x, y) with unit vectors (ex, ey), we consider an incompressible Newtonian fluid
with dynamic viscosity μ and density ρ between two spring-backed deformable plates located
at y = ζ±(x, t ), which are allowed to move only in the y direction. A schematic diagram of the
configuration is shown in Fig. 1.
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FIG. 1. Channel flow with infinite spring-backed flexible walls.

The flow between the walls is governed by the Navier-Stokes equations:

∂u
∂t

+ u · ∇u = − 1

ρ
∇p + ν�u,

∇ · u = 0, (1)

where u = (u, v) and p represent the velocity and pressure fields, u (v) denotes the streamwise
(wall-normal) velocity component, and ν ≡ μ/ρ is the kinematic viscosity of the fluid.

The movement of the flexible plates obeys the following equations, derived through Newton’s
second law:

m
∂2ζ±

∂t2
+ d

∂ζ±

∂t
+
(

B
∂4

∂x4
− T

∂2

∂x2
+ K

)
ζ± = f ±. (2)

Here, m denotes the mass per unit area of the plates, d their damping coefficient, B the flexural
rigidity, T the wall tension, K the spring stiffness, and f ± represents the y component of the forces
acting on the plates. These forces are obtained as

f ± = ey · f± with f± = (τ
± − δp±I) · n±. (3)

Here τ
±

denotes the viscous stress tensor at the walls and δp± the transmural surface pressure, i.e.,
the difference between the surface pressure inside and outside of the channel, and n± is the unit
vector normal to the walls pointing towards the fluid.

The viscous stress tensor at the walls has the following expression:

τ
± =

⎛
⎜⎜⎜⎜⎝

2μ
∂u

∂x
μ

(
∂u

∂y
+ ∂v

∂x

)

μ

(
∂u

∂y
+ ∂v

∂x

)
2μ

∂v

∂y

⎞
⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣
y=ζ±

, (4)
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and the normal vectors to the interface n± = (n±
x , n±

y ) are obtained as

n±
x = ±∂ζ±

∂x

1√
1 + (

∂ζ±
∂x

)2
and n±

y = ∓ 1√
1 + (

∂ζ±
∂x

)2
. (5)

Combining Eqs. (3)–(5) yields the y component of the hydrodynamic forces acting on the
compliant walls,

f ± =
[
±μ

(
∂u

∂y

∣∣∣∣
y=ζ±

+ ∂v

∂x

∣∣∣∣
y=ζ±

)
ζ±

x ∓ 2μ
∂v

∂y

∣∣∣∣
y=ζ±

± δp±
]/√

1 +
(

∂ζ±

∂x

)2

, (6)

which governs the wall dynamics (2) since the wall movement is constrained to occur only in the y
direction. Note that in this approach there are no hydrodynamic forces acting on the plate from the
outside, except for a pressure.

Finally, the no-slip conditions on both walls lead to the kinematic conditions prevailing at the
moving boundaries:

u = 0 and v = ∂ζ±

∂t
for y = ζ±. (7)

Thus, the fluid-structure interaction problem is completely determined by the coupling of the fluid
equations (1), the wall equations (2), and boundary conditions (7).

B. Dimensionless control parameters

The present compliant-channel flow configuration is characterized by nine dimensional param-
eters: the volumetric flow rate Q (m3 s−1); the half height h (m) of the channel; the fluid density ρ

(kg m−3); the kinematic viscosity ν (m2 s−1); the mass of the plate per unit area, m (kg m−2); the
damping coefficient of the wall, d (kg m−2 s−1); the bending stiffness of the plate, B (kg m2 s−2);
the wall tension T (kg s−2); and the spring stiffness K (kg m−2 s−2). Hence, this system may
be described by six dimensionless parameters. A useful parameter to characterize fluid-structure
interaction phenomena is the reduced flow velocity VR, defined [25] as the ratio of a characteristic
time of the structure to a characteristic time of the flow. Using time scales based on spring stiffness,

τK =
√

m

K
,

and flow advection,

τQ = 4h2

Q
,

the reduced velocity is obtained as VR = τK/τQ. Other choices based on different characteristic
times would be possible. For VR � 1, the influence of the wall compliance is negligible, while
VR � 1 corresponds to very soft walls. Hence, the resulting six nondimensional control parameters
are ⎧⎪⎪⎨

⎪⎪⎩
Re = Q

ν
, VR = Q

4h2

√
m

K
, 	 = m

ρh
,

d
 = d√
mK

, B
 = B

Kh4
, T
 = T

h2K
.

(8)

Here Re is the Reynolds number based on channel diameter and average flow velocity, and 	 is the
mass ratio between the compliant walls and the fluid. The three nondimensional wall parameters
d
, B
, and T
 are all relative to the spring stiffness K , which serves as reference for the reduced
velocity VR. One may notice that in several previous studies [20,22,28] fluid quantities are used to
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build nondimensional parameters for the wall. As underlined by Domaradzki and Metcalfe [29],
this may correspond to nonphysical situations where at each Reynolds number a different compliant
wall and a different fluid are considered. In the present work, the Reynolds number may be modified
using ν and/or Q without changing the wall properties. Hereafter, the mass ratio is kept constant at
	 = 2 and we only consider walls without tension, T = 0. We fix the three dimensional parameters
at ρ = 1, h = 1, and τQ = 1.

C. Formulation of the linearized model

This entire study considers the dynamics of small-amplitude perturbations, obeying the linearized
version of the governing equations around a steady base state. The unperturbed base configuration
thus consists of a parabolic Poiseuille flow U(y) = (Ub(y), 0) between parallel walls located at
y = ±h [see Fig. 1(a)]. This flow is driven by a pressure Pb(x) = P0 − Gx of constant streamwise
gradient, and we assume a pressure outside the channel walls always equal to Pb(x), so as to
equilibrate the forces acting on both sides of the walls for unperturbed conditions.

The total flow fields are then decomposed as u(x, y, t ) = U(y) + u′(x, y, t ) and p(x, y, t ) =
Pb(x) + p′(x, y, t ). The wall displacement is written as ζ±(x, t ) = ±h + η±(x, t ).

Considering that the perturbation components u′, p′, and η± are of small amplitude, the governing
equations may be linearized about the base state.

Since the base state is steady and homogenous in the streamwise direction, the perturbation to
the velocity fields, pressure fields, and normal displacements are expressed in normal-mode form as

u′(x, y, t ) = û(y)ei(αx−ωt ), p′(x, y, t ) = p̂(y)ei(αx−ωt ), and η±(x, t ) = η̂±ei(αx−ωt ), (9)

with α the streamwise wavenumber and ω the frequency. Hereafter, we adopt a temporal viewpoint
where α ∈ R and ω = ωr + iωi ∈ C, with ωi the temporal amplification rate of the mode and
ωr its circular frequency. Substitution of this decomposition into the Navier-Stokes equations and
linearization about the base flow leads to⎧⎪⎪⎨

⎪⎪⎩
−iωρû + ρiαûUb + ρv̂

dUb

dy
= −iα p̂ + μ

(
d2

dy2
− α2

)
û,

−iωρv̂ + ρiαv̂Ub = −d p̂

dy
+ μ

(
d2

dy2
− α2

)
v̂,

(10)

together with the divergence-free condition

iαû + d v̂

dy
= 0. (11)

Linearization of the wall equations (2) and (6) yields⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ω2mη̂+ − iωd η̂+ + (Bα4 + T α2 + K )η̂+ = +p̂(h) + μ

(
iα

dUb

dy

∣∣∣∣
h

η̂+
)

− 2μ
d v̂

dy

∣∣∣∣
+h

,

−ω2mη̂− − iωd η̂− + (Bα4 + T α2 + K )η̂− = −p̂(−h) − μ

(
iα

dUb

dy

∣∣∣∣
−h

η̂−
)

+ 2μ
d v̂

dy

∣∣∣∣
−h

.

(12)
Following Shankar and Kumaran [30], the boundary conditions at the perturbed interface are

implemented using Taylor series about the base state at y = ±h. At linear order, the flow velocity at
the walls reads

u(x, y = ζ±, t ) = u′(x, y = ±h, t ) + η± dUb

dy

∣∣∣∣
±h

ex. (13)
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Thus, the kinematic boundary conditions (7) become

û(±h) + η̂± dUb

dy

∣∣∣∣
±h

= 0 and v̂(±h) = −iωη̂±. (14)

Then, by using Eqs. (14) and the divergence-free condition, the right-hand side of Eqs. (12) can be
further simplified, leading to⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−ω2mη̂+ − iωd η̂+ + (Bα4 + T α2 + K )η̂+ = +p̂(h) − μ

d v̂

dy

∣∣∣∣
h

,

−ω2mη̂− − iωd η̂− + (Bα4 + T α2 + K )η̂− = −p̂(−h) + μ
d v̂

dy

∣∣∣∣
−h

.

(15)

Equations (10), (11), and (15) completely govern the dynamics of small-amplitude perturbations
and take into account the linearized fluid-structure coupling as derived from the exact hydrodynamic
forces.

III. NUMERICAL METHODS

In this work, we follow the general framework described by Manning et al. [26] for avoiding
spurious eigenvalues. First of all, we rewrite Eqs. (15) using velocity components at the boundaries.
For illustration purposes, only the upper wall is here considered.

Using the condition −iωη̂+ = v̂(h), we obtain

−iωv̂(h) = W1v̂(h) + W2û(h) + 1

m
p(h), (16)

with

W1 = − d

m
− 2

μ

m

d

dy
and W2 = (Bα4 + T α2 + K )

m dUb
dy

∣∣∣∣
h

− μ

m
iα.

The kinematic condition û(h) + η̂+ dUb

dy
|h = 0 is recast as

−iωû(h) + v̂(h)
dUb

dy

∣∣∣∣
h

= 0. (17)

The velocity components and pressure are discretized in the y-direction using a Chebyshev
collocation method. To avoid spurious pressure modes, we consider the so-called PN − PN−2

approximation in which the pressure is approximated with a polynomial of degree N − 2 while the
velocity is discretized with a polynomial of degree N [31]. From this point, we note the vectors con-

taining the unknowns: V = (

VBC︷ ︸︸ ︷
û0, ûN , v̂0, v̂N ,

VI︷ ︸︸ ︷
û1, . . . , ûN−1, v̂1, . . . , v̂N−1) and PI = ( p̂1, . . . , p̂N−1),

where we separate the boundary values (VBC) from the interior points (VI). Hence, the discretized
counterpart of the previous continuous model [Eqs. (10), (15), and (14)] reads

4︷ ︸︸ ︷ 2(N−2)︷ ︸︸ ︷ N−2︷ ︸︸ ︷⎡
⎣ A1 A2 A3

B1 B2 B3
0 C2 0

⎤
⎦
⎡
⎣ VBC

VI
PI

⎤
⎦
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= iω

⎡
⎣ I 0 0

0 I 0
0 0 0

⎤
⎦
⎡
⎣ VBC

VI
PI

⎤
⎦ }4

}2(N − 2)
}N − 2,

(18)

where the divergence-free condition is imposed on the interior points and I denotes the identity
matrix. The derivative matrices based on Chebyshev polynomials are either expressed on the interior
points only (for the pressure) or all the nodes (for the velocity components) [31]. Note that the
boundary equations involve the pressure at y = ±h: these values are readily obtained by polynomial
interpolation with spectral accuracy, corresponding to matrix A3.

The discrete counterpart of the divergence-free condition reads C2VI = 0. Hence, from

0 = C2(iωVI) = C2B1VBC + C2B2VI + C2B3PI,

the vector PI can be expressed as a function of VI and VBC:

PI =
MBC︷ ︸︸ ︷

−(C2B3)−1C2B1 VBC

MI︷ ︸︸ ︷
−(C2B3)−1C2B2 VI.

Thus eliminating the pressure, the system (18) is recast as[
A1 + A3MBC A2 + A3MI
B1 + B3MBC B2 + B3MI

][
VBC
VI

]
= iω

[
I 0
0 I

][
VBC
VI

]
. (19)

System (19) still contains N − 2 null eigenvalues due to the divergence-free constraint. We can
further reduce Eq. (19) by eliminating the streamwise velocity components at the interior points

[26]. Indeed, using VI = (

U︷ ︸︸ ︷
û1, . . . , ˆuN−1,

V︷ ︸︸ ︷
v̂1, . . . , ˆvN−1), the divergence-free condition C2VI = 0

becomes iαU + C2VV = 0. Thus, for α 	= 0, the streamwise velocity U is obtained as a function
of V. This then leads to a discrete version of the Orr-Sommerfeld equation for the fluid-structure
interaction problem of the form[ • •

• •
][

VBC
V

]
= iω

[
VBC

V

]
. (20)

This system may be further reduced [32], by considering perturbations of either sinuous or varicose
symmetry and using only half of the channel together with derivative operators appropriate for the
symmetry of each component of the different flow fields.

Apart from the fact that the above algebraic transformations remove spurious eigenvalues, they
also drastically reduce the computational effort. The system is either solved using the QZ algorithm
from the LAPACK library or an Arnoldi technique provided by the ARPACK software. The numerical
procedure is validated and discussed in the Appendix. The number of collocation points is varied
from 100 to 300 as the Reynolds number is increased.

IV. LINEAR STABILITY RESULTS

After the formulation of the linear fluid-structure interaction problem and the presentation of
the numerical methods, we are now in a position to analyze its dynamics. The different classes of
modes and their dependence on the control parameters are investigated in detail. Specific attention
is devoted to provide physical insight through total energy budget analyses.

A. Spectra and classes of modes

A typical spectrum is shown in Fig. 2, corresponding to a base configuration at Re = 7000, VR =
1, B
 = 4, d
 = 0.2, and perturbations with wavenumber α = 0.6. Since the base state is symmetric
in y, the entire spectrum consists of the same number of modes of either varicose (red symbols)
or sinuous (blue) symmetry. The Orr-Sommerfeld modes (× and +) are essentially due to the base
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FIG. 2. Eigenvalue spectrum for perturbations with α = 0.6 at Re = 7000, VR = 1, B
 = 4, and d
 = 0.2.
Orr-Sommerfeld modes (+, sinuous; ×, varicose) are located on three main branches (A, P, and S) and
dominated by TS mode (circle); four modes (� and �) are due to fluid-structure interactions. Modes of varicose
and sinuous symmetry are shown in red and blue, respectively.

Poiseuille flow and organized in three branches (classically labeled A, P, and S [33]), as for rigid
channels. This part of the spectrum is dominated by the TS mode (indicated by the circle in Fig. 2)
of sinuous symmetry. In the present configuration, the coupling between the fluid and wall equations
leads to four additional eigenvalues (indicated by � and �) and referenced hereafter as FSI modes.
Two of these FSI modes travel upstream (ωr < 0), while the other pair of FSI modes propagates
along the flow direction (ωr > 0); each of these pairs consists of a sinuous and a varicose mode.

To gain a better understanding of these eigenmodes, we monitor changes in the spectrum
resulting from the variation of some control parameters. A few typical scenarios are shown in Fig. 3.

FSI modes strongly depend on the reduced velocity VR, as shown in Fig. 3(a). When VR → 0,
which corresponds to approaching the rigid-walls case, the growth rates of the FSI modes reach
neutrality (ωi → 0) while their phase velocities tend to infinity (ωr → ±∞). For the range of base
state configurations shown here, the upstream propagating FSI modes are always stable, albeit with
a weak decay rate, and their (negative) phase velocities reach very small values as VR is increased:
this behavior is characteristic of divergence modes, as observed for boundary-layer flows along
highly damped walls [19]. On the other hand, the downstream propagating FSI modes are strongly
destabilized as VR is increased; these modes are identified as TWF modes. In contrast with the FSI
mode dynamics, the TS mode only weakly depends on VR since it is mainly driven by the shear flow
[see inset in Fig. 3(a)]. Consistently with the definition of VR, the eigenvalue corresponding to the
TS mode matches the one found for the rigid case when VR → 0. The other Orr-Sommerfeld modes
on the A branch also display only a weak dependence on VR, while those on the P and S branches
appear to be mostly unaffected.

The influence of the wall-damping parameter d
 is shown in Figs. 3(b) and 3(c) for VR = 1 and
VR = 2, respectively. The growth rate ωi of the downstream propagating TWF modes is seen to
significantly decrease with wall dissipation d
. Thus wall damping has a strongly stabilizing effect
on both sinuous and varicose TWF modes. For VR = 1, Fig. 3(b) shows that wall damping has
a similar stabilizing effect on the upstream propagating FSI modes. However, at the larger value
VR = 2 of the reduced velocity [Fig. 3(c)], these FSI modes are nearly stationary divergence modes.
In that regime, an increase in wall damping d
 results in an increase of their negative growth rate,
and the phase velocity is seen to vanish in the limit of large wall damping d
. Here destabilization of

023903-9



LEBBAL, ALIZARD, AND PIER

FIG. 3. Influence of VR and d
 on eigenspectra for α = 0.6 at Re = 7000 and B
 = 4. (a) VR = 0.01, 0.5,
1, 1.5, and 2 (in blue, black, red, green, and brown, respectively) at d
 = 0. (b) d
 = 0, 0.2, 0.5, 1, and 2 (in
black, blue, green, red, and brown, respectively) at VR = 1. (c) d
 = 0, 0.4, 0.8, 1, 2, 4, 6, 10, and 20 (in black,
blue, red, green, orange, light blue, grey, pink, and brown, respectively) at VR = 2. Some mode trajectories are
also represented.

the divergence modes occurs for large values of d
. One may recall that while the sinuous TWF and
divergence modes were investigated numerically by Davies and Carpenter [20], the varicose TWF
and divergence modes have not been explored for the plane channel flow.

Thus, the influence of the various control parameters may be summarized as follows: the TS
mode is temporally damped by an increase of VR, but its temporal amplification rate may be
amplified with an increase in wall damping for a certain range of streamwise wavenumbers. A
different behavior is found when the TWF modes are considered: their growth rate increases with
VR, while it decreases with d
. This is consistent with the mode classification given by Benjamin [14]
(i.e., class A for TS modes and class B for TWF modes). Moreover, the divergence mode is seen to
be amplified for high values of wall-damping parameter. Finally, the effect of the wall compliance
is seen to be negligible for both P and S branches.

To further identify the different types of modes with respect to Benjamin’s classification, the
eigenfunctions of a few selected modes are shown in Fig. 4.
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FIG. 4. Eigenfunctions for Re = 7000 and B
 = 4. (a) TS (sinuous) mode for α = 1, d
 = 4, and VR = 0.5.
(b) Sinuous TWF mode for α = 0.6, d
 = 0, and VR = 1. (c) Varicose TWF mode for α = 0.6, d
 = 0, and
VR = 1. (d) Sinuous divergence mode for α = 0.6, d
 = 20, and VR = 2. (e) Varicose divergence mode for
α = 0.6, d
 = 20, and VR = 2. The phase angles of eigenfunctions are denoted as φu and φv for u′ and v′,
respectively. The eigenfunctions are normalized to the unit kinetic energy norm.

One may recall that the mechanism whereby both TWF modes and TS modes grow involves the
action of the streamwise velocity base flow gradient along the wall-normal position working against
the Reynolds stresses. In the absence of an inflection point, both modes involve a phase shift of the
disturbance velocity at some distance from the wall [34]. However, mechanisms are quite different
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for each of these modes. Within a large-Reynolds-number asymptotic theory, viscous effects are
only present in the vicinity of the viscous wall layer or the critical layer, located at the wall-normal
position yc where Ub(yc) = ωr/α [34]. The inviscid approximation is therefore accurate in the other
regions of the flow. For the TWF mode, the instability mechanism is essentially driven by the wall.
Indeed, the instability is amplified if the work done by the pressure disturbance on the wall is positive
when averaged over one period [12]. As first proven by Miles [15] for water waves, Benjamin [13]
shows for the boundary-layer-flow case that it results from a phase shift between disturbance wall
pressure and wall displacement. In particular, Benjamin [13] proves that the pressure at the wall is
associated with the integrated effect of the velocity perturbations along the wall direction and is a
consequence of a phase shift for velocity components near the critical layer. We note hereafter φu

and φv as the phases of the respective velocity components û and v̂ of the associated eigenfunctions.
For TWF modes [see Figs. 4(b) and 4(c)], the essential phase shift (i.e., φu − φv 	= π/2) occurs
near the critical layer in the limit of large Reynolds numbers (class B modes). For the TS mode
[Fig. 4(a)], the phase shift is rather associated with the viscous wall layer. They belong to class
A modes and are stabilized through a transfer of energy to the wall. Hence it is essential, when
addressing the different classes of modes, to monitor the phases of the perturbation components.
Figure 4(b) shows that the sinuous TWF mode exhibits a clear phase shift near the critical layer
in agreement with class B modes. It is consistent with the theoretical investigation of Davies and
Carpenter [20] for the same flow case. The linear behavior along with the wall-normal position of
û is associated with a displacement of the Poiseuille solution when the walls are shifted with η. It
is easily verified that the small deviation from the Poiseuille solution due to sinuous motion of the
walls is proportional to −2η̂y (see also [35]). Interestingly, the varicose case [Fig. 4(c)], not studied
by Davies and Carpenter [20], also exhibits a phase shift.

Finally, the divergence mode [Figs. 4(d) and 4(e)] exhibits a phase shift in the viscous wall layer.
Nevertheless, due to the low velocity phase, the viscous wall layer and the critical layer are not
well separated. As a consequence, the theoretical framework derived by Davies and Carpenter [20]
cannot be applied for these modes.

For all FSI modes (both TWF and divergence), velocity and pressure fluctuations are concen-
trated near the wall. For the TS mode, as for the rigid case, the streamwise velocity component
peaks at the critical layer.

B. Temporal growth and instability onset

The stability features of compliant channel flow configurations depend on a large number of
parameters. In the previous section we have shown that the reduced velocity VR is the main control
parameter governing fluid-structure interactions, but growth rates of the different classes of modes
may also depend significantly on Reynolds number Re, wall dissipation d
, and flexural rigidity B
.
In the present section, we will map out the stability characteristics by monitoring the dispersion
relation in the (VR, α) plane for selected values of the other relevant control parameters. By
taking advantage of the base flow symmetry, sinuous and varicose perturbations may be efficiently
computed and their properties are here discussed separately. We first consider perturbations of
varicose symmetry, which are generally the modes most amplified by fluid-structure interactions.

Figure 5(a) shows isolines of the temporal growth rate ωi of the leading varicose eigenmode in the
(VR, α) plane at Re = 5000, d
 = 10, and B
 = 4. The neutral curve (ωi = 0) exhibits two distinct
minima at VR ≈ 1.6 and VR ≈ 3.9. Beyond onset, a finite range of wavenumbers α display positive
temporal growth rates. The associated phase speeds ωr/α are given in Fig. 5(b). It is found that near
the first minimum VR ≈ 1.6, modes travel with vanishingly small phase speeds. In contrast, near
the second minimum VR ≈ 3.9, modes travel with phase speeds of the order of the mean base flow
velocity. This behavior is characteristic of divergence and TWF modes, which are thus each found
to dominate the perturbation dynamics in distinct regions of the (VR, α) plane for these parameter
settings. Figure 6 illustrates the influence of wall dissipation d
, for the same values of Re and
B
. It is observed that energy dissipation in the wall only weakly influences the temporal growth
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FIG. 5. Dispersion relation for leading varicose mode in (VR, α) plane for Re = 5000, d
 = 10, and B
 = 4:
contours of (a) growth rate ωi and (b) phase velocity ωr/α.

rate for 0 � d
 � 1, while stronger stabilization occurs for d
 > 1. At these high dissipation rates,
the growth rate and the range of unstable wavenumbers are greatly reduced; however, the critical
value of VR for onset of instability (denoted V c

R hereafter) remains of the same order of magnitude.
Monitoring the neutral curves more precisely reveals that V c

R increases from V c
R  0.45 for d
 = 0

to reach a maximal value of about V c
R  1.6 for d
 = 10 and decreases again for larger values of d


(V c
R  1.0 for d
 = 100). This nonmonotonous effect of wall dissipation on instability onset is due

to a change of the nature of the leading eigenmode: while the instability is dominated by the TWF
mode at low values of d
, the unstable dynamics is governed by the divergence mode for strong
dissipation in the compliant wall as already suggested by Fig. 5.

FIG. 6. Temporal growth rates ωi for the varicose instability at Re = 5000 and B
 = 4 for d
 = 0, 0.6, 1,
10, 60, and 100. The contour levels are 0, 0.1, 0.2, and 0.3.
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FIG. 7. Marginal curves for onset of varicose instability at B
 = 4 for Re = 10000, 40000, 80000, 160000,
and 240000 (in black, blue, red, green, and brown respectively) and (a) d
 = 0, (b) d
 = 10, and (c) d
 = 100.

This observation is further illustrated in Fig. 7, where neutral curves are shown for various
Reynolds numbers and wall dissipations. In particular, for Re = 10000 and d
 = 10 [Fig. 7(b)],
we observe the coexistence of the divergence and TWF modes. The critical reduced velocities V c

R
for the divergence and TWF modes are ≈2 and ≈4, respectively. Neutral curves associated with
the TWF mode [Fig. 7(a)] are seen to be almost independent of the Reynolds number. For the
divergence mode, we observe a destabilizing effect of viscosity [Fig. 7(c)]: the critical value V c

R for
onset of instability is seen to increase with Reynolds number, which is consistent with the fact that
divergence modes are intimately connected to the viscous wall layer. Nevertheless, in the regime
dominated by divergence modes, the temporal amplification rates reach much lower values than
those prevailing for TWF modes at low values of d
 (see Fig. 6).

After the previous extensive discussions of results for varicose perturbations we now focus
on the sinuous symmetry. The linear dynamics of sinuous eigenmodes is very similar to that of
their varicose counterpart, except that the (sinuous) Tollmien-Schlichting modes may also display
positive growth rates.

The growth-rate isolines in the (VR, α) plane of Fig. 8(a) are obtained for Re = 8000, B
 = 4,
and d
 = 10. This Reynolds number (based on channel diameter and mean fluid velocity) is slightly
in excess of the critical value Rec  7696 for Tollmien-Schlichting instability developing in rigid
channel flow. As for the varicose case, the neutral curve exhibits two minima. The first appears near
VR ≈ 0 while the second minimum is close to VR ≈ 2. The associated phase speeds ωr/α given in
Fig. 8(b) indicate that divergence, TWF, and TS modes can be involved in this regime.

Figure 9 shows the evolution of sinuous temporal instability characteristics with the wall dis-
sipation parameter d
. For d
 = 0 and low values of VR, corresponding to near-rigid compliant
walls, there exists a narrow band of unstable wavenumbers near α = 1 associated with unstable
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FIG. 8. Dispersion relation for leading sinuous mode in (VR, α) plane for Re = 8000, d
 = 10, and B
 = 4:
contours of (a) growth rate ωi and (b) phase velocity ωr/α.

Tollmien-Schlichting modes. At larger values of VR, stronger fluid-structure coupling leads to the
destabilization of (sinuous) TWF modes: the temporal growth rates ωi and the range of unstable
wavenumbers rapidly increase with VR. Note that there exists a narrow region near VR = 1 where
both TS and TWF modes are stable. As d
 is increased from 0 to 0.6, it is observed that the regions
corresponding to unstable TS and TWF modes merge, giving rise to the so-called transition mode.

Except for the merging of TS and TWF instabilities, the instability features of sinuous perturba-
tions shown in Fig. 9 are very similar to those observed for varicose perturbations. For d
 > 1,

FIG. 9. Temporal growth rates ωi for the sinuous instability at Re = 8000 and B
 = 4 for d
 = 0, 0.6, 1,
10, 60, and 100. The contour levels are 0, 0.1, 0.2, and 0.3.
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FIG. 10. Marginal curves for onset of sinuous instability at B
 = 4 for Re = 10000, 40000, 80000, 160000,
and 240000 (in black, blue, red, green, and brown respectively) and (a) d
 = 0, (b) d
 = 10, and (c) d
 = 100.

wall dissipation d
 significantly reduces the temporal growth rates and the range of unstable
wavenumbers. For d
 � 10, Fig. 9 shows that divergence and transition modes coexist. In addition,
the critical reduced velocity V c

R for the onset of the divergence mode is only weakly influenced by
the wall dissipation (V c

R ≈ 2). The critical curves shown in Fig. 10 correspond to marginal (ωi = 0)
sinuous instability for a range of Reynolds numbers and d
 = 0, 10, and 100. Due to the fact that, for
Re > 7696, TS instability prevails at low values of VR, down to VR = 0, a critical value of reduced
velocity V c

R cannot be defined for onset of sinuous instability. For the sinuous instability, it may be
hard to distinguish between TS or TWF modes since branch switching occurs as some parameters
are continuously varied. To better illustrate this phenomenon, Fig. 11 shows the dispersion relation
for both branches in the range 0.55 < α < 1.05 for d
 = 0.10, 0.13, and 0.16, at Re = 10000,
B
 = 1, and VR = 1. For α < 0.8, the branches with largest temporal growth rate [upper branches
in Fig. 11(a)] are of TS type while the other branches are always stable in that wavenumber range
and can be identified as TWF modes. For α > 0.8, the unstable branch displays a growth rate ωi

rapidly increasing with α, and is found to correspond to a mode of the TWF type, while the other
branch is strongly stabilized at these wavenumbers. Due to the branch switching that occurs near
α = 0.8 and d
 = 0.13, the unstable TWF branch prevailing for α > 0.8 is continuously connected
to the TS branch when d
 > 0.13 while it is continued as a stable TWF mode for α < 0.8 when
d
 < 0.13. This behavior is further illustrated in Fig. 12. For a small amount of wall dissipation,
the TS mode is seen to be damped as VR is increasing [Fig. 12(a)], for all the Reynolds numbers
considered. In particular, for d
 = 0, the critical reduced velocity of TS mode suppression is varying
from VR ≈ 0.8 for Re = 10000 to VR ≈ 4 for Re = 40000. However, as d
 is increased beyond 0.13,
a transition mode emerges and it is no longer possible to distinguish between TWF and TS modes
[Figs. 12(b)–(d)].

023903-16



REVISITING THE LINEAR INSTABILITIES OF PLANE …

FIG. 11. Dispersion relation for the two leading sinuous modes at Re = 10000, B
 = 1, and VR = 1:
(a) temporal growth rate ωi and (b) frequency ωr . Branch switching occurs near α = 0.8 and d
 = 0.13.

Finally, we present some results for the destabilization of the divergence mode and its dependence
on wall dissipation d
 and Reynolds number Re. We compute the critical value V c

R for onset of
instability in the (VR, α) plane at fixed values of the other control parameters. A Newton-Raphson
search algorithm with an adaptive step has been implemented to automatically identify the start of
the neutral curve in the (VR, α) plane for different values of d
 and Re. The critical value V c

R (and
associated wavenumber αc) for onset of instability is then obtained when dVR

dα
vanishes along the

neutral curve.
Critical curves as functions of d
 for different Re values are plotted in Figs. 13(a) and 13(b),

respectively, for the divergence modes of varicose and sinuous symmetry. Flexural rigidity is kept
constant at B
 = 1. Both sets of curves clearly indicate the stabilizing effect of the Reynolds number
on the divergence mode, for both the varicose and sinuous cases. For the varicose case, unstable
divergence modes only occur at relatively high wall dissipation, d
 > 6 for Re = 5000 and d
 > 9.5
for Re = 80000. For the sinuous case, divergence mode instability already starts for d
 in the range
2–4, with a weaker Reynolds number dependence. In both varicose and sinuous cases, the critical
V c

R appears to asymptote towards a finite limit for large values of d
.
As discussed above, the combined effects of the different wall parameters are conveniently

summarized by monitoring either the variations of the critical reduced velocity V c
R or the critical

Reynolds number Rec depending on whether the FSI or TS mode is considered. First, we focus
on FSI instability modes of varicose symmetry. To that purpose, we consider a high value of the
Reynolds number in order to investigate only the influence of the wall properties.

Results are reported in Fig. 14 for 0 � d
 � 60 and 0.2 � B
 � 10. The inset in the figure
shows that for small values of d
, flexural rigidity has a moderately stabilizing effect on TWF
modes: V c

R increases as B
 is increased for fixed d
. In the range 5 < d
 < 15, onset of instability
is seen to display an almost universal behavior with a linear relationship between V c

R and d
,
almost independent of B
. In this regime, instability always occurs by a TWF mode. For larger
wall dissipation rates, d
 > 20, the dynamics is dominated by the divergence modes, associated
with vanishing phase velocities. In this latter regime, the critical values V c

R weakly depend on
flexural rigidity B
 and decrease with increasing wall dissipation d
. For large values of d
, a limit
value of V c

R  2.85 is asymptotically reached, independently of B
. Note that the crossover from
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FIG. 12. Neutral curves for the TS mode for Re = 10000, 20000, 30000, and 40000 (in black, red, green,
and blue, respectively) and B
 = 1 in the plane (α,VR ). (a) d
 = 0, (b) d
 = 0.5, (c) d
 = 1, and (d) d
 = 10.

the TWF-dominated instabilities (low d
) to the divergence-dominated instabilities (high d
) also
depends on B
.

Finally, we address the influence of the wall properties on the stability of TS modes by monitoring
the critical Rec. We restrict our analysis to the case without wall damping. Results are summarized
in Fig. 15, where the critical Reynolds number for the TS mode is displayed as a function of VR for
B
 = 1, 2, and 4. The figure shows that the TS mode is significantly stabilized with increasing wall
compliance (i.e., increasing VR), and this stabilizing effect is enhanced at low flexural rigidity B
. In

FIG. 13. Divergence mode. Critical reduced velocity distribution V c
R with the wall-damping parameter and

for Re = 5000, 10000, 20000, 40000, and 80000 with B
 = 1: (a) the varicose case and (b) the sinuous case.
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FIG. 14. Evolution of critical reduced velocity V c
R with wall-damping parameter d
, for a range of flexural

rigidity values B
 (from 0.2 to 10). Perturbations of varicose symmetry are considered.

the figure, onset of TWF instability is indicated by the nearly vertical lines; recall that these modes
are almost independent of the Reynolds number. Dotted lines correspond to sinuous TWF modes
while dashed lines have been computed for varicose TWF modes. It is immediately apparent from
the figure that the potential effect of a compliant wall regarding transition delay is clearly limited
by the destabilization of TWF modes. Indeed, the region of the (VR, Re) plane corresponding to
stable configurations is located below the Rec curves for onset of TS instability and delimited at
large values of VR by onset of TWF instability. The results of the present investigation reveal that
the extent of the stable region is drastically reduced by taking into account TWF perturbations of
varicose symmetry, which display growth rates in excess of their sinuous counterparts. For instance,

FIG. 15. The critical Reynolds number associated with TS instability is plotted as a function of VR for B
 =
1, 2, and 4 in solid lines. Nearly vertical lines indicate onset of TWF instability for perturbations of sinuous
(dotted lines) and varicose (dashed lines) symmetry. The colored regions correspond to stable configurations
at B
 = 2, allowing only sinuous perturbations (light red) or all types of perturbations (solid red).
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when only sinuous perturbations are taken into account, the upper right corner of the shaded region
in Fig. 15 indicates that stable configurations would be possible up to Re = 8370, for B
 = 2.
However, when perturbations of all symmetries are allowed, the stable domain is reduced to the
solid red region, with maximal Reynolds number of Re = 7970, only marginally larger than the
critical Reynolds number of Re = 7696 corresponding to the rigid case. Similar conclusions hold
for different values of B
. Moreover, since it has been shown that wall dissipation has a destabilizing
effect on TS waves, it is not expected that using d
 > 0 could increase the extent of the stable
regions in parameter space. Thus it seems impossible to significantly delay instability onset by wall
compliance.

C. Comparison with asymptotic theories for d� = 0

Davies and Carpenter [20] derived an analytical expression for the wall pressure for d
 = 0 in
the limit of small α and high Reynolds numbers, for modes of sinuous symmetry. This pressure,
denoted p̂(α, c,Uref ), is obtained as a function of the wavenumber α, the phase velocity c = ωr/α,
and a reference value for the fluid velocity, Uref = Q/2h, and includes the effects of both the critical
and viscous layers. The wall pressure is obtained as an expansion in α up to α2: p̂ = p0 + α2 p1,
where only the term p1 includes the effect of viscous and critical layers. For the viscous layer, the
approximation is carried out up to O((αRe)−1/2). Neglecting the viscous stress at the wall, they
obtain the dispersion relation:

m
(
c2 − c2

0

) + p̂(α, c,Uref ) + i
( c

α

)
d = 0, (21)

with c0 =
√

1
m (Bα2 + T + K

α2 ) the free wave speed for the wall. Davies and Carpenter [20] express
the onset of instability with the Reynolds number. Here, we suggest that it is more appropriate to
use the reduced velocity VR. The resulting neutral curves are shown in Fig. 16 for B
 = 4. For the
sinuous case, Fig. 16(a) shows a very good agreement between the analytical model and complete
numerical resolution of the full system up to α ≈ 3. In order to remove the Reynolds number effect,
a numerical solution for Re = 1 × 106 has been carried out. For the latter case, the grid mesh is
increased up to N = 300 in order to correctly capture both viscous and critical layers. Figure 16(a)
shows that the departure from the theoretical model is due to the expansion in terms of streamwise
wavenumber up to α2; hence this approximation is no longer valid for α greater than 3.5 (not
shown in [16]). In addition, one observes that neglecting the viscous stress at the wall and in the
analytical expression of the pressure yields an almost perfect approximation of the exact dispersion
relation. In Fig. 16(b), comparisons with varicose cases are shown. While the theoretical model is
derived only for the sinuous symmetry, it is interesting to notice that in the limit of high Reynolds
numbers, the model associated with merely the critical layer gives a quite accurate description of
the varicose symmetry for α varying from 0.8 to 3. For streamwise wavenumbers greater than 4, the
varicose and sinuous neutral curves fall in one single curve for all Reynolds numbers. For α < 0.8,
the varicose case exhibits a more complex Reynolds number dependence. Since the varicose mode
always dominates over the sinuous mode, the critical value V c

R for onset of instability is associated
with a varicose perturbation for all configurations that have been considered in the present study. The
latter observation is also in agreement with results provided by Nagata and Cole [22]. In addition, it
is found that the Reynolds number has a slight stabilizing effect. In Fig. 16, we provide a comparison
with the theoretical model derived by Huang [36] for the varicose symmetry, only based on the
critical layer. The figure shows a good agreement for moderate values of α between the model and
the numerical simulation.

D. Energy budgets

This final section addresses the energy transfer mechanisms between the different components
of the compliant channel flow configurations, in order to shed further light on the dynamics and on
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FIG. 16. Neutral curves for d
 = 0 and B
 = 4. For the full system of equations, the Reynolds numbers are
fixed to Re = 4 × 104, 8 × 104, 2.4 × 105, and 1 × 106. For the analytical dispersion relation Re is fixed to
1 × 106. (a) Sinuous case and (b) sinuous and varicose cases comparison.

the fundamental mechanisms promoting instability. This section is greatly influenced by the work
of Domaradski and Metcalfe [29] and Carpenter and Morris [37].

For the compliant channel flow configuration under consideration, the total energy of the system
is the sum of three components:

Etot = EFK + EW K + EW P, (22)

where EFK represents the fluid kinetic energy, while the wall energy consists of both kinetic and
potential contributions, EW K and EW P, respectively.

The global fluid kinetic energy is obtained by integration over the channel diameter:

EFK =
∫ +h

−h
e(y)dy, (23)

where

e(y) = ρ û(y) · û(y)∗ ≡ ρ[û(y)û(y)∗ + v̂(y)v̂(y)∗] (24)

denotes the local kinetic energy of the flow, averaged over x at a given wall-normal position y, using
the notations introduced in Sec. II C. The temporal variation of the local kinetic energy then follows
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from the governing equation (10) as

2ωi e(y) = −ρ[û(y)v̂(y)∗ + û(y)∗v̂(y)]
dUb(y)

dy︸ ︷︷ ︸
P : Reynolds stress work against the mean shear

− d

dy
[p̂(y)v̂(y)∗ + p̂(y)∗v̂(y)]︸ ︷︷ ︸

�: pressure diffusion

−2μ

[
dû(y)

dy

dû(y)∗

dy
+ d v̂(y)

dy

d v̂(y)∗

dy
+ α2 (û(y)û(y)∗ + v̂(y)v̂(y)∗)

]
︸ ︷︷ ︸

ε: viscous dissipation

+μ
d

dy

[
û(y)

dû(y)∗

dy
+ û(y)∗

dû(y)

dy
+ v̂(y)

d v̂(y)∗

dy
+ v̂(y)∗

d v̂(y)

dy

]
︸ ︷︷ ︸

D:viscous diffusion

(25)

and is the result of four distinct mechanisms as indicated in the above equation. Integration of this
expression over the channel diameter leads to the equivalent equation governing the evolution of the
total fluid kinetic energy:

2ωiEFK = −
∫ +h

−h
ρ[û(y)v̂(y)∗ + û(y)∗v̂(y)]

dUb(y)

dy
dy − [ p̂(y)v̂(y)∗ + p̂(y)∗v̂(y)]+h

−h

−2μ

∫ +h

−h

[
dû(y)

dy

dû(y)∗

dy
+ d v̂(y)

dy

d v̂(y)∗

dy
+ α2(û(y)û(y)∗ + v̂(y)v̂(y)∗)

]
dy

+μ

[
û(y)

dû(y)∗

dy
+ û(y)∗

dû(y)

dy
+ v̂(y)

d v̂(y)∗

dy
+ v̂(y)∗

d v̂(y)

dy

]+h

−h

. (26)

While interaction with the base shear flow and viscous dissipation prevails throughout the channel
cross section, pressure and viscous diffusion only contribute at the boundaries and transfer energy
between the fluid and the compliant walls.

The kinetic and potential energies associated with the walls are obtained as

EW K = m|ω|2(|η̂+|2 + |η̂−|2) and EW P = (Bα4 + T α2 + K )(|η̂+|2 + |η̂−|2), (27)

respectively. Using wall equations (15), together with boundary conditions (14), yields the temporal
variation of the wall energy as

2ωi(EW K + EW P ) = − 2d|ω|2(|η̂+|2 + |η̂−|2)︸ ︷︷ ︸
E0

+ [ p̂(y)v̂(y)∗ + p̂(y)∗v̂(y)]+h
−h︸ ︷︷ ︸

E1

−μ

[
v̂(y)

d v̂(y)∗

dy
+ v̂(y)∗

d v̂(y)

dy

]+h

−h︸ ︷︷ ︸
E2

. (28)

Thus, changes in total wall energy are seen to be the result of either dissipation within the wall (E0)
or energy exchange at the interface between the fluid and the compliant walls: work done by the
pressure force (E1) or the normal viscous stress (E2). Both terms E1 and E2 also appear in Eq. (26)
but with opposite sign; these fluid-structure interaction terms only account for an exchange of energy
between the fluid and the walls but do not modify the total energy of the system.

The temporal variation of the total energy (22) is then obtained by adding (26) and (28), which
leads to the following integrated total energy budget:

2ωiEtot = −
∫ +h

−h
ρ[û(y)v̂(y)∗ + û(y)∗v̂(y)]

dUb(y)

dy
dy︸ ︷︷ ︸

C1: energy exchange with the base flow
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− μ

[(
dû(y)

dy
η̂∗ + dû(y)∗

dy
η̂

)
dUb(y)

dy

]+h

−h︸ ︷︷ ︸
C2: energy exchange with the base flow at the walls

− 2μ

∫ +h

−h

[
dû(y)

dy

dû(y)∗

dy
+ d v̂(y)

dy

d v̂(y)∗

dy
+ α2(û(y)û(y)∗ + v̂(y)v̂(y)∗)

]
dy︸ ︷︷ ︸

C3: viscous dissipation

− 2d|ω|2(|η̂+|2 + |η̂−|2)︸ ︷︷ ︸
C4: wall damping

. (29)

Hence, the only mechanisms that contribute to variations of the total energy are interactions with
the base flow and dissipation (see also [19,35]). Energy transfer from or to the base flow occurs in
the bulk (C1) as well as at the boundaries (C2), and energy dissipation takes place both in the fluid
(C3) and in the compliant walls (C4). Note that the kinematic boundary conditions (14) have been
used to bring to the fore the role of the base flow shear in the exchange term C2. As underlined by
Carpenter and Morris [37], the contribution C2 arises from the interaction of the displaced mean
flow and shear stress. In the literature, the terms C1 and C2 are often labeled as irreversible energy
transfer from the base flow to the perturbation; depending on the signs and phases of the different
components in C1 and C2, they may have a destabilizing or a stabilizing influence.

The energy budget (29) may be used to recover the temporal growth rate as

ωi = Ĉ1 + Ĉ2 + Ĉ3 + Ĉ4︸ ︷︷ ︸
�

, (30)

where the different contributions have been renormalized by the total energy, Ĉi ≡ Ci/(2Etot ).
Now that we have identified the different components that contribute to the variation of the

perturbation energy, we proceed to analyze their role in the dynamics of the different classes of
modes that prevail in the present configuration. In sequence we will address TS, divergence, and
TWF modes and discuss the corresponding total energy budget as well as the spatial structure of the
different contributions.

First we consider the stabilization mechanism of the TS mode as the reduced velocity VR is
increased. To that purpose, we investigate configurations with Re = 10000, B
 = 1, and d
 = 0.
For these typical control parameter values, the TS mode is stable for VR in excess of approximately
0.85, as shown by the black curve in Fig. 12(a). To study the influence of VR on the energy
transfer mechanisms, the most unstable TS mode is considered as VR is varied; i.e., the streamwise
wavenumber α is chosen to maximize the temporal growth rate ωi for each value of VR.

Figure 17(a) plots the components of the total energy budget as VR is increased. The associated
growth rate ωi is also reported in the same figure. The excellent agreement between the curves of ωi,
derived from the eigenvalue problem, and of �, right-hand side of Eq. (30), gives confidence that the
computation of the different energy terms is correctly implemented. The curves in Fig. 17(a) show
that for the range of VR considered here, the major destabilizing contribution is due to the action
of the basic velocity gradient working against the Reynolds stress (Ĉ1). However, as VR is increased,
this production term Ĉ1 is observed to decrease and to be partially balanced by Ĉ2. This suggests
two stabilizing mechanisms associated with the compliant wall: one reducing the bulk production
term Ĉ1 and due to a modification of the perturbation velocity profiles, and another one directly
connected to the wall term Ĉ2 and due to the displaced mean flow that acts as a dissipative term
here. The viscous dissipation (Ĉ3) is seen to weaken as VR is increased, but the overall stabilizing
influence dominates for increasing VR.

The relative importance of the different components of the total energy (22) are displayed in
Fig. 17(b) as VR is varied, using the notation ÊFK = EFK/Etot , ÊW K = EW K/Etot , ÊW P = EW P/Etot ,
and ÊW = ÊW K + ÊW P. This plot shows that, as VR is increased, a small part of the fluid kinetic
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FIG. 17. Energy of most unstable TS mode as VR is increased at Re = 10000, B
 = 1, and d
 = 0.
(a) Evolution of the integrated total energy budget and comparison with temporal growth rate ωi. (b) Different
contributions to the total energy for d
 = 0.

energy is indeed transferred to the wall, mainly as potential energy. This is consistent with a class
A mode.

We now analyze the spatial structure of the fluid kinetic energy budget (25). Figure 18 shows
the wall-normal profiles of the different contributions for the most unstable TS mode computed at
different values of VR and d
. Note that these profiles have been normalized to unit fluid kinetic
energy EFK . Figures 18(a) and 18(b), corresponding to VR = 0 and VR = 0.03 at d
 = 0, show that
the production term P is significantly modified by an increase of VR. In particular, the amplitude of
P decreases with VR and it exhibits a small region of negative production above the critical layer.
In this region, the energy is transferred from the wave to the mean flow leading to a decrease of
the total energy associated with the fluctuation. A similar observation is made by Metcalfe and
Domaradski [29] for the case of a laminar boundary layer stabilized by a compliant membrane.
Comparison of Figs. 18(a) and 18(b) also illustrates the importance of the viscous diffusion term D
in redistributing energy produced by the Reynolds stress as VR is increased, whereas the pressure
diffusion term � has a minor influence. This shows that under the action of the viscous diffusion
term, the energy produced by the work of the Reynolds stress is transferred towards the wall where
it is dissipated by viscosity (ε). Figure 18(a) also reveals that the production term P increases near
the wall with the emergence of a second peak as VR is increased. Due to the pressure diffusion and
viscous diffusion terms, which are negatively correlated with P , this additional production does not
result in a destabilizing effect.

The influence of the dissipation within the compliant wall is illustrated in Figs. 18(b)–(d) for
VR = 1. When d
 is increased from 0 [Fig. 18(b)] to 0.14 [Fig. 18(c)], the TS mode is destabilized
(not shown here for the sake of conciseness). In Fig. 18(c), the pressure-diffusion term � is positive
across the entire channel, which leads to work of the pressure force at the walls; the viscous diffusion
profile D is mostly unchanged, but the peak near the wall of the production term P becomes the
dominant feature. The increase of the dissipation leads to an increase in the production term in
the viscous layer which is consistent with the TS mode (i.e., the phase shift mainly occurs in this
region).

Finally, for a stronger wall damping d
 = 0.2 [Fig. 18(d)], the pressure diffusion term � is almost
identical to the production term P , in contrast with what is observed for d
 = 0.14 and d
 = 0. In
particular, � exhibits positive values near the wall which are associated with work of the pressure at
the wall. This indicates that the mode is then in strong interaction with the wall and could probably
be classified as a TWF mode. In particular, at d
 = 0.15, a branch switching occurs and a collapse
between TS and TWF modes is observed. This behavior is illustrated in Fig. 19. In the figure, α is
chosen to maximize ωi for each value of d
. On one hand, for d
 < 0.15 where the TS mode exists,
the production term Ĉ1 is increasing with the dissipation. It has as a consequence to increase the
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FIG. 18. Fluid kinetic energy budget profiles for most unstable TS mode at Re = 10000, B
 = 1, and
(a) d
 = 0, VR = 0.03, (b) d
 = 0, VR = 1, (c) d
 = 0.14, VR = 1, and (d) d
 = 0.2, VR = 1. The wall-normal
position of the critical layer is shown as a dashed line.

temporal amplification rate of the TS mode in agreement with class A modes. On the other hand,
for d
 > 0.15, the temporal amplification rate is decreasing with the wall dissipation. This further
indicates that beyond d
 = 0.15, the mode is mainly associated with a TWF instability.

After the discussion of the TS modes, we now address the total energy budgets prevailing for
divergence modes, of both sinuous and varicose symmetry. The evolution of the energy transfer
mechanisms is monitored as d
 is varied, since this is the main control parameter influencing
the dynamics of divergence modes. Figure 20 shows data computed over the range 0 < d
 < 10
at Re = 10000, B
 = 1, and VR = 2. The evolution with d
 of the different terms of the energy
budget for sinuous [Fig. 20(a)] and varicose [Fig. 20(c)] modes reveals that the term Ĉ2 dominates
for both symmetries. This term accounts for the energy exchange with the base flow due to wall
displacement, which is therefore identified as the main mechanism promoting instability of the
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FIG. 19. Energy of most unstable sinuous modes. Evolution of the integrated total energy budget with d


for VR = 1. TS mode is shown as solid lines. Sinuous TWF mode is shown in dashed lines. At d∗ ≈ 0.15 modes
collapse.

divergence modes. It also confirms the influence of the Reynolds number onto the divergence mode
as observed in the previous section. The importance of viscous effects for divergence modes has also
been observed by Carpenter and Morris [37] for the boundary-layer flow case. The destabilizing
effect of Ĉ2 is partially balanced by the work of the Reynolds stress against the basic shear Ĉ1,
the viscous dissipation Ĉ3, and the wall dissipation Ĉ4. Hence, it illustrates the dual nature of
viscous effects for the divergence mode. On one hand, it promotes the instability by propagating the

FIG. 20. Energy of most unstable divergence mode as d
 is increased at Re = 10000, B
 = 1, and VR = 2.
(a, c) Evolution of integrated total energy budget and (b, d) breakdown of total energy into its components for
(a, b) sinuous and (c, d) varicose modes.
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FIG. 21. Fluid kinetic energy budget profiles for most unstable divergence mode at Re = 10000, B
 = 1,
and VR = 2 and (a) d
 = 5 sinuous mode, (b) d
 = 5 varicose mode, and (c) d
 = 9 varicose mode.

energy production from the wall displacement into the flow domain, but on the other hand, viscosity
also plays its usual dissipative role. Inspection of the different contributions to the total energy
[Figs. 20(b) and 20(d)] shows that while the fluid energy remains the main factor in both situations,
the varicose modes involve significantly more wall energy than their sinuous counterparts. Due to
the slow dynamics of these modes, the wall energy is almost entirely made up of potential energy
for both symmetries. It should also be mentioned that due to the long wavelengths of the divergence
modes, the main contribution to the wall potential energy EW P [Eq. (27)] is here due to the stiffness
while the flexural rigidity only plays a marginal role.

The cross-channel profiles of the fluid kinetic energy budgets for the divergence modes are shown
in Fig. 21. The figure demonstrates that the production, diffusion, and dissipation contributions
are all localized in the near-wall region. Comparison of Figs. 21(a) and 21(b) reveals a notable
difference between sinuous and varicose modes at d
 = 5: while the production term P is negative
throughout the channel cross section for the varicose mode, the sinuous mode exhibits a small
region near the wall with positive values of the production P . Interestingly, when d
 is further
increased up to d
 = 9, the plots in Fig. 21(c) show that then the varicose production term P also
exhibits a weakly positive region near the wall. This change of sign of the production term appears
to approximately coincide with the onset of divergence instability, i.e., change of sign of the growth
rate ωi plotted in Fig. 20(c). Hence, while the energy budget is dominated by the term Ĉ2, it seems
that the instability is also significantly influenced by P .

Finally we consider TWF modes. For this final class of modes, we restrict our analysis to the
varicose symmetry which has been observed to always dominate over the sinuous symmetry. The
evolution of the total energy budgets with VR is shown in Fig. 22(a) for Re = 10000, B
 = 1, and
d
 = 0. These plots indicate that the budget is driven by the production term Ĉ1, in agreement
with previous analyses [20,29]. However, it is interesting to notice that energy transfer Ĉ2 from the
base flow to the perturbation via the boundaries also promotes the instability. Both contributions
Ĉ1 and Ĉ2 have a destabilizing influence. The distribution of the total energy among its different
components plotted in Fig. 22(b) shows that for small values of VR the wall is the most energetic
component of this fluid-structure system, but for VR > 1.6 the kinetic energy of the fluid overcomes
the wall contribution. Thus, the present scenario appears to be exactly opposite of the situation
prevailing for TS modes: as VR is increased, the ratio EFK/EW decreases for TS modes while it
increases for TWF modes. This is in accordance with the classification of TS modes as class A and
TWF modes as class B modes. Finally, monitoring the potential and kinetic components of the wall
energy (EW P and EW K , respectively) shows that the wall energy is essentially due to the kinematic
contribution for TWF modes, which is in contrast to the situation prevailing for divergence modes.

In Fig. 22(c), the fluid kinetic energy profile is shown across the channel diameter for VR = 3.
The role of viscosity is found to be mainly concentrated in two distinct areas. The viscous diffusion
term D exhibits a first shallow peak around the critical layer (indicated by the dashed line), while
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FIG. 22. Energy of most unstable varicose TWF mode as VR is increased at Re = 10000, B
 = 1, and d
 =
0. (a) Evolution of integrated total energy budget. (b) Distribution of total energy as fluid and wall contributions.
(c) Cross-channel profile of the fluid kinetic energy budget for VR = 3. The wall-normal position of the critical
layer is shown as a dashed line.

a second stronger peak emerges near the wall due to the viscous layer. This is consistent with the
theoretical model developed by Davies and Carpenter [20]. However, the dominant production term
P is associated with the work of the Reynolds stress against the mean shear and does not exhibit a
maximum near the critical layer. Its profile presents rather an inflection point near the critical layer,
which is in contrast with observations by Metcalfe and Domaradski [29] for the flat plate boundary
layer. We also observe that both pressure diffusion � and viscous diffusion D display large positive
values near the wall. Thus the energy production due to the basic shear flow is transferred to the
wall through the action of both diffusion processes.

To conclude this section on energy transfer mechanisms, the influence of wall dissipation d
 is
reported in Fig. 23 for the most unstable varicose TWF modes at Re = 10000, B
 = 1, and VR =
3. The plots in Fig. 23(a) show that for small values of d
 the stabilization of the TWF mode is
essentially due to the increasing energy dissipation Ĉ4 in the compliant walls. For larger values of
d
, both the work of the Reynolds stress against the basic shear Ĉ1 and the wall dissipation Ĉ4 evolve
so as to stabilize the TWF mode. This illustrates that two distinct mechanisms are at play to diminish
the growth rate for the TWF mode. The curves in Fig. 23(b) illustrate the redistribution of the total
energy due to wall dissipation: as d
 is increased, the wall contribution (essentially kinetic energy)
to the total energy decreases almost linearly in favor of the fluid contribution. The effect of the
wall damping on the wall-normal profiles of the fluid kinetic energy is shown in Fig. 23(c). While
these profiles at d
 = 4 are similar to those prevailing without wall dissipation [see Fig. 22(c)], it is
observed that the production P exhibits a lower amplitude than the pressure diffusion term �. As
d
 increases, the energy transfer from the fluid towards the wall is no longer sufficient to balance the
higher wall dissipation and, as a result, the proportion of fluid energy increases in the total energy
of the perturbation.
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FIG. 23. Energy of most unstable varicose TWF mode as d
 is increased at Re = 10000, B
 = 1, and VR =
3. (a) Evolution of integrated total energy budget. (b) Distribution of total energy as fluid and wall contributions.
(c) Cross-channel profile of the fluid kinetic energy budget for d
 = 4. The wall-normal position of the critical
layer is shown as a dashed-line.

V. CONCLUDING REMARKS

In this paper, we have revisited the linear stability problem of a fluid interacting with a compliant
channel. The walls are modeled as spring-backed deformable plates including a damping mecha-
nism. A general numerical method free of spurious modes is derived to tackle this problem. By
taking advantage of the base flow symmetries, varicose and sinuous eigenmodes are computed sep-
arately and efficiently. A dimensional analysis has been carried out to identify the most physically
relevant control parameters. Traveling wave flutter (TWF), divergence, and Tollmien-Schlichting
(TS) modes are then recovered. The main conclusions of the current study are as follows:

(1) TWF waves are mainly driven by the reduced velocity VR which measures the strength of the
coupling between the fluid and the compliant walls. The Reynolds number effect is not significant
for these modes.

(2) For TWF modes, the perturbations of varicose symmetry are observed to be destabilized first
when increasing VR. While a decrease in the flexural rigidity is accompanied by a stabilization of
the TS mode, it enhances the amplification of TWF modes. This is especially true for the varicose
TWF modes. In particular, we show that the compliant wall potential for laminar-turbulent transition
delay is almost negligible when the varicose symmetry is taken into account. This finding extends
the previous linear stability results obtained for the same flow case but either limited to the sinuous
modes [20,21] or focusing on a quite narrow region of parameter space [22].

(3) For the varicose symmetry, a linear relationship is found between the critical reduced
velocity and the wall dissipation, independently of the flexural rigidity. For large values of VR, the
dynamics is eventually dominated by divergence modes for a certain amount of wall dissipation
and for both symmetries. While a stabilizing effect is observed for the divergence mode when
increasing the Reynolds number, sinuous perturbations are amplified at a lower wall dissipation
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than their varicose counterpart. Such a distinction between varicose and sinuous symmetries was
not identified in previous studies.

We have also uncovered physical mechanisms responsible for the amplification of the different
categories of modes. This was accomplished by evaluating total energy budgets. First, for d
 = 0,
kinetic energy budgets indicate that the TS mode is stabilized as VR is increasing under the action
of two mechanisms. On one hand, the work of the Reynolds stress against the mean flow exhibits
a region above the critical layer which is negative. Here, energy is transferred from the wave to
the base flow. The second mechanism is associated with an irreversible energy transfer from the
fluctuation to the mean flow due to the mean flow displacement near the walls. On the other hand,
the vertical distribution of the production term associated with the TWF mode is observed to peak
near the walls and exhibits an inflection point close to the critical layer for both symmetries. Hence,
it shows some differences with results provided by Domaradzki and Metcalfe [29] for the boundary
layer where a peak is observed near the critical layer position. Furthermore, the energy transfer from
the wall to the fluid is mainly attributed to a pressure diffusion term.

Second, the dominant term for divergence modes appears to be associated with an irreversible
energy exchange due to the interaction of the displaced mean flow and shear stress.

Extension of the present study to nonmodal stability analyses can be considered in a future work.
Hœpffner et al. [35] have investigated the same problem for three-dimensional perturbations but
numerical oscillations were observed by the authors when increasing the number of eigenmodes
used to compute transient growth. The formulation adopted here is free of spurious modes and
we believe that the problem can be solved using the numerical procedure developed in the present
analysis. In addition, the role of the reduced velocity has not been investigated by Hœpffner et al.
[35]. Finally, it should also be interesting to extend our study to pulsatile flow [38,39] and the pipe
geometry, which cover more biologically significant phenomena.
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APPENDIX: VALIDATION AND INFLUENCE OF BOUNDARY CONDITIONS

For validation purposes, we adopt choices made by Davies and Carpenter [20] for dimensionless
wall equations. Here, the Reynolds number is based on h, ν, and the centerline velocity. The
dimensionless wall parameters are

	 = m

ρh
, B
 = B

hρν2
, K
 = Kh3

ρν2
, d
 = dh

ρν
.

Davies and Carpenter [20] used an Orr-Sommerfeld equation for solving the fluid-structure interac-
tion problem. The pressure at the lower wall is recovered through

p(−1) = 1

2

(
−iω

∫ 1

−1
v̂ dy + iα

∫ 1

−1
Ubv̂ dy

)
,

where the viscous terms have been neglected. For consistency, the authors have also neglected the
effect of the viscous stress at the wall for the coupling between the fluid and the walls. We recall
that this formulation is correct only for the sinuous configuration. Guaus and Bottaro [28] used a
primitive formulation for the same problem and considered only the pressure at the wall for the force
associated with the fluid acting at the walls. However, the pressure is computed without neglecting
the viscous stress along the wall-normal direction. In the present study, we have not neglected the
effect of the viscous stress on both the pressure and the force acting on the walls. In Fig. 24, we
show the neutral curve for the sinuous TWF mode for K
 = 107, B
 = 4K, d
 = 0, and 	 = 2.
The figure shows an almost perfect agreement between our approach and the one given by Davies
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FIG. 24. Neutral curves. Sinuous configuration. Effects of the boundary conditions. K
 = 107, B
 =
4K
, d
 = 0, and 	 = 2. DC, results extracted from [20]; BC1, the formulation adopted in the present paper;
BC2, the pressure at the wall is expressed as in [20] and we neglect the viscous stress at the walls; BC3,
formulation adopted in [28].

and Carpenter [20]. It supports the hypotheses made by the previous authors. Nevertheless, our
approach is more general because it also allows to deal with the varicose symmetry. In addition, the
system also reduces to an Orr-Sommerfeld problem with only one velocity component. Figure 24
also shows that the formulation made by Guaus and Bottaro [28] is not consistent and leads to
discrepancies near the critical Reynolds number.
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