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The present investigation revisits the linear stability of Poiseuille channel flow interacting

with compliant walls. The results obtained include the dynamics of Tollmien–Schlichting

(TS) modes as well as flow-induced surface-instability (FSI) modes, in the form of both

traveling-wave flutter (TWF) and divergence (DIV) modes. The compliant wall model con-

sists of a spring-backed plate with a viscous substrate deformable in the vertical direction

(Davies & Carpenter, J. Fluid Mech. 352, 205–243, 1997). At the interface between the

fluid and the walls, the continuity of velocities and stresses, including both viscous and pres-

sure contributions, are taken into account. The FSI modes (both varicose and sinuous) and

TS modes are then reinterpreted in the light of the two principal nondimensional control

parameters: the Reynolds number (Re), which characterizes the base flow, and the reduced

velocity (VR), which measures the response of the flexible wall to hydrodynamic loading

(De Langre, La Houille Blanche, 3/4, 14–18, 2000). The characteristics of TS and FSI

modes are systematically investigated over a large control-parameter space, including wall

dissipation, spring stiffness and flexural rigidity. We observe that TWF modes are primarily

governed by VR and largely independent of the Reynolds number. It is found that the insta-

bility is generally dominated by the TWF mode of varicose symmetry. DIV and TS modes

are both affected by VR and Re, confirming that these modes belong to a different class.

The onset of the DIV mode is mainly observed for the sinuous motion, when increasing the

dissipation. To provide physical insight into the mechanisms driving these instabilities, the

perturbative energy equations for both FSI and TS modes are analyzed for a wide range of

wall parameters and wavenumbers.
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1. INTRODUCTION

The constant scientific interest to extend the laminar regime for industrial applications has

led to the development of compliant walls since the beginning of the 20th century. In particular,

researchers focused on finding optimum wall properties aiming to delay the laminar–turbulent

transition.

In the biological context, interactions between fluid and elastic forces associated with a de-

formable channel or tube lead to a variety of physiologically significant phenomena. Especially,

deformability plays a prominent role in blood flow as well as peristaltic transport, for example

through the intestines and the urogenital tract (see1,2 for a review).

Such interest arose from the so-called Gray’s paradox3. Indeed, Gray showed that to overcome

the friction drag of a swimming dolphin subjected to a turbulent flow around its body, the muscles

have to be capable of generating a power at least seven times greater than that of other kinds of

mammalian muscle. Hence, Gray has suggested that the dolphin skin is able to delay the laminar–

turbulent transition. In the laminar regime, indeed, the power developed by muscles would still

conform to that of other types of mammalian muscle.

Kramer4 in the 50’s developed a compliant coating trying to mimic the dolphin’s skin. The

author claimed that he was able to reduce the drag of a torpedo-like model by as much as 60%.

Later, the conclusions of both Gray’s hypotheses and Kramer’s experiments were in part questioned.

Russian and American experiments since the 80’s failed to reproduce results provided by Kramer.

In addition, scientists observed that the lower turbulence level around the dolphin swimming body

could also be attributed to local pressure gradients. It was also suggested that a reduction in the

friction drag may result from the fact that the dolphin leaps out of the water for breathing (see5,6

and7 for reviews).

However, Gaster’s experiments in 19888 gave new hope in using compliant walls to delay

laminar–turbulent transition. He showed that the growth rates of artificially generated Tollmien–

Schlichting waves are inhibited when using appropriate coatings. These experiments have given a

strong impulse to theoretical developments based on linear stability analyses aiming to tackle the

fluid–structure interaction problem.

A major difficulty arises from the design of compliant wall models that are able to couple

fluid and solid dynamics. These models may be separated into two categories: surface-based or

volume-based (see7,9 for a review). The first class of models is less computationally demanding and

considers an infinitely thin wall interacting with the fluid through an interface condition. In this
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case, the wall is defined as a thin plate mounted on springs and dampers. The wall parameters are

classically the spring stiffness, the tension, the bending stiffness, its mass and damping coefficient.

For the second family of models (i.e. volume-based), the wall material is fully described to

include single- or multi-layer coatings as well as isotropic or anisotropic behaviours (see the analyses

carried out by Patne & Shankar10 and Kumaran9 for recent reviews). Duncan11 has also shown

that a one-dimensional model can be used to quantitatively describe many aspects of instabilities

and wave propagation on the surface of an elastic and incompressible coating.

In the present investigation we adopt the surface-based approach. Following the lead of

Benjamin12–14 which relies on the theory developed by Miles for water waves15, Carpenter &

Garrad16,17 focused on the stability of boundary-layer flows over Kramer-type compliant walls.

They provided some confirmation of the transition-delaying potential of compliant coatings.

According to Carpenter & Garrad16,17, instability modes can be classified into two categories:

fluid-based (Tollmien–Schlichting mode) and solid-based (flow-induced surface instabilities, or

fluid–structure instabilities, referenced as FSI hereafter). The last category includes both the

traveling-wave flutter (TWF) modes and the (almost static) divergence (DIV) modes. For the

divergence mode, scientists are still arguing about its precise nature. It is either interpreted as an

absolute instability18 or it may also result from a modal instability with a nearly vanishing phase

velocity when increasing the wall dissipation19.

In the same fashion, Davies & Carpenter20 investigated linear instability waves that emerge

from the interaction between a compliant channel with a viscous incompressible flow. Considering

perturbations of sinuous symmetry, these authors derived a theory for the motion of the walls

and obtained neutral stability curves, using wall parameters made dimensionless by quantities

associated with the fluid. While such an approach allows to use the Reynolds number as a control

parameter for both FSI and TS modes, it is not entirely satisfactory because a change in the

Reynolds number also leads to a change in the compliant wall characteristics. A similar study has

been recently attempted to address pulsatile Poiseuille flow21 for modal and nonmodal instabilities.

The purpose of the present paper is to revisit this configuration. Therefore, we reconsider

this problem by introducing the so-called reduced velocity to describe FSI modes. A general

formulation suitable for both sinuous and varicose symmetries and free of spurious pressure modes

is implemented. A wide range of wall parameters has been explored to highlight their influence

onto both FSI and TS modes. Only two-dimensional perturbations are considered since the Squire

theorem holds for compliant walls22.

The paper is organized as follows. Section 2 presents the model and governing equations used
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for the fluid–structure interaction problem. Especially, the dimensionless parameters and linearized

equations will be introduced. Then, section 3 provides some physical insight into the influence of

wall parameters onto FSI and TS modes for both the sinuous and varicose symmetries. For that

purpose, kinetic energy budgets are computed. Conclusions and prospects are given in the last

section.

2. PROBLEM FORMULATION

2.1. Fluid–structure interaction model and interface conditions

In the entire paper, we restrict our analysis to the two-dimensional problem. Using a Cartesian

coordinate system (x, y) with unit vectors (ex, ey), we consider an incompressible, Newtonian fluid

with dynamic viscosity µ and density ρ between two spring-backed deformable plates located at

y = ζ± (x, t), which are allowed to move only in the y-direction. A schematic diagram of the

configuration is shown in figure 1.

The flow between the walls is governed by the Navier–Stokes equations:

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∆u,

∇ · u = 0,
(1)

where u = (u, v) and p represent the velocity and pressure fields, and u (resp. v) denotes the

streamwise (resp. wall-normal) velocity component, and ν ≡ µ/ρ is the kinematic viscosity of the

fluid.

The movement of the flexible plates obeys the following equations, derived through Newton’s

second law:

m
∂2ζ±

∂t2
+ d

∂ζ±

∂t
+

(
B
∂4

∂x4
− T ∂2

∂x2
+K

)
ζ± = f±. (2)

Here, m denotes the mass per unit area of the plates, d their damping coefficient, B the flexural

rigidity, T the wall tension, K the spring stiffness and f± represents the y-component of the

hydrodynamic forces acting on the plates. These forces are obtained as

f± = ey · f± with f± =
(
τ
± − δp±I

)
· n±. (3)

Here τ
±

denotes the viscous stress tensor at the walls and δp± the transmural surface pressure,

i.e., the difference between the surface pressure inside and outside of the channel, and n± is the

unit vector normal to the walls pointing towards the fluid.
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FIG. 1: Channel flow with infinite spring-backed flexible walls.

The viscous stress tensor at the walls has the following expression:

τ
±

=


2µ
∂u

∂x
µ

(
∂u

∂y
+
∂v

∂x

)

µ

(
∂u

∂y
+
∂v

∂x

)
2µ
∂v

∂y



∣∣∣∣∣∣∣∣∣∣∣
y=ζ±

, (4)

and the normal vectors to the interface n± =
(
n±x , n

±
y

)
are obtained as

n±x = ±∂ζ
±

∂x

1√
1 +

(
∂ζ±
∂x

)2
and n±y = ∓ 1√

1 +
(
∂ζ±
∂x

)2
. (5)

Combining (3,4,5) yields the y-component of the hydrodynamic forces acting on the compliant

walls

f± =

[
±µ
(
∂u

∂y

∣∣∣∣
y=ζ±

+
∂v

∂x

∣∣∣∣
y=ζ±

)
ζ±x ∓ 2µ

∂v

∂y

∣∣∣∣
y=ζ±

± δp±
]/√

1 +

(
∂ζ±

∂x

)2

, (6)

which governs the wall dynamics (2) since the wall-movement is constrained to occur only in the

y-direction. Note that in this approach there are no hydrodynamic forces acting on the plate from

the outside, except a pressure.

Finally, the no-slip conditions on both walls lead to the kinematic conditions prevailing at the

moving boundaries:

u = 0 and v =
∂ζ±

∂t
for y = ζ±. (7)
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Thus, the fluid–structure interaction problem is completely determined by the coupling of the fluid

equations (1), the wall equations (2) and boundary conditions (7).

2.2. Dimensionless control parameters

The present compliant-channel flow configuration is characterized by 9 dimensional parameters:

the volumetric flow rate [Q] = m3s−1, the half height [h] = m of the channel, the fluid density [ρ] =

kg m−3, the kinematic viscosity [ν] = m2s−1, the mass of the plate per unit area [m] = kg m−2, the

damping coefficient of the wall [d] = kg m−2s−1, the bending stiffness of the plate [B] = kg m2s−2,

the wall tension [T ] = kg s−2 and the spring stiffness [K] = kg m−2s−2. Hence, this system may

be described by 6 dimensionless parameters. A useful parameter to characterize fluid–structure

interaction phenomena is the reduced flow velocity VR, defined23 as the ratio of a characteristic

time of the structure to a characteristic time of the flow. Using time scales based on spring stiffness

τK =

√
m

K

and flow advection

τQ =
4h2

Q
,

the reduced velocity is obtained as VR = τK/τQ. Other choices based on different characteristic

times would be possible. For VR � 1, the influence of the wall compliance is negligible, while

VR � 1 corresponds to very soft walls. Hence, the resulting 6 nondimensional control parameters

are 
Re =

Q

ν
, VR =

Q

4h2

√
m

K
, Γ =

m

ρh
,

d∗ =
d√
mK

, B∗ =
B

Kh4
, T∗ =

T

h2K
.

(8)

Here Re is the Reynolds number based on channel diameter and average flow velocity, and Γ is the

mass ratio between the compliant walls and the fluid. The three nondimensional wall parameters

d∗, B∗ and T∗ are all relative to the spring stiffness K, which serves as reference for the reduced

velocity VR. One may notice that in several previous studies20,24,25, fluid quantities are used to

build nondimensional parameters for the wall. As underlined by Domaradzki & Metcalfe26, this

may correspond to nonphysical situations where at each Reynolds number a different compliant

wall and a different fluid are considered. In the present work, the Reynolds number may be
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modified using ν and/or Q without changing the wall properties. Hereafter, the mass ratio is kept

constant at Γ = 2 and we only consider walls without tension T = 0. We fix the three dimensional

parameters at ρ = 1, h = 1 and τQ = 1.

2.3. Formulation of the linearized model

This entire study considers the dynamics of small-amplitude perturbations, obeying the lin-

earized version of the governing equations around a steady base state. The unperturbed base

configuration thus consists of a parabolic Poiseuille flow U(y) = (Ub(y), 0) between parallel walls

located at y = ±h (see figure 1a). This flow is driven by a pressure Pb(x) = P0 − Gx of con-

stant streamwise gradient, and we assume a pressure outside the channel membranes always equal

to Pb(x), so as to equilibrate the forces acting on both sides of the membranes for unperturbed

conditions.

The total flow fields are then decomposed as u(x, y, t) = U(y) + u′(x, y, t) and p (x, y, t) =

Pb(x) + p′ (x, y, t). The wall displacement is written as ζ±(x, t) = ±h+ η±(x, t).

Considering that the perturbation components u′, p′ and η± are of small amplitude, the gov-

erning equations may be linearized about the base state.

Since the base state is steady and homogenous in the streamwise direction, the perturbation to

the velocity fields, pressure fields and normal displacements are expressed in normal-mode form as:

u′ (x, y, t) = û(y)ei(αx−ωt), p′ (x, y, t) = p̂(y)ei(αx−ωt) and η± (x, t) = η̂±ei(αx−ωt), (9)

with α the streamwise wavenumber and ω the frequency. Hereafter, we adopt a temporal view

point where α ∈ R and ω = ωr + iωi ∈ C, with ωi the temporal amplification rate of the mode and

ωr its circular frequency. Substitution of this decomposition into the Navier–Stokes equations and

linearization about the base flow leads to:
−iωρû+ ρiαûUb + ρv̂

dUb
dy

= −iαp̂+ µ

(
d2

dy2
− α2

)
û,

−iωρv̂ + ρiαv̂Ub = − dp̂

dy
+ µ

(
d2

dy2
− α2

)
v̂,

(10)

together with the divergence-free condition:

iαû+
dv̂

dy
= 0. (11)
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Linearization of the wall equations (2,6) yields
−ω2mη̂+ − iωdη̂+ +

(
Bα4 + Tα2 +K

)
η̂+ = +p̂ (h)− µ

(
iα
dUb
dy

∣∣∣∣
h

η̂+

)
− 2µ

dv̂

dy

∣∣∣∣
+h

,

−ω2mη̂− − iωdη̂− +
(
Bα4 + Tα2 +K

)
η̂− = −p̂ (−h)− µ

(
iα
dUb
dy

∣∣∣∣
−h
η̂−
)

+ 2µ
dv̂

dy

∣∣∣∣
−h
.

(12)

Following Shankar & Kumaran27, the boundary conditions at the perturbed interface are im-

plemented using Taylor series about the base state at y = ±h. At linear order, the flow velocity

at the walls reads:

u
(
x, y = ζ±, t

)
= u′ (x, y = ±h, t) + η±

dUb
dy

∣∣∣∣
±h

ex. (13)

Thus, the kinematic boundary conditions (7) become

û (±h) + η̂±
dUb
dy

∣∣∣∣
±h

= 0 and v̂ (±h) = −iωη̂±. (14)

Then, by using (14) and the divergence-free condition, the right-hand-side of (12) can be further

simplified, leading to:
−ω2mη̂+ − iωdη̂+ +

(
Bα4 + Tα2 +K

)
η̂+ = +p̂ (h)− µdv̂

dy

∣∣∣∣
h

,

−ω2mη̂− − iωdη̂− +
(
Bα4 + Tα2 +K

)
η̂− = −p̂ (−h) + µ

dv̂

dy

∣∣∣∣
−h
.

(15)

Equations (10), (11) and (15) completely govern the dynamics of small-amplitude perturbations and

take into account the linearized fluid–structure coupling as derived from the exact hydrodynamic

forces.

3. NUMERICAL METHODS

In this work, we follow the general framework described by Manning et al. 28 for avoiding

spurious eigenvalues. First of all, we rewrite (15) using velocity components at the boundaries.

For illustration purposes, only the upper wall is here considered.

Using the condition −iωη̂+ = v̂(h), we obtain

− iωv̂ (h) = W1v̂ (h) +W2û (h) +
1

m
p (h) , (16)

with

W1 = − d

m
− 2

µ

m

d

dy
and W2 =

(
Bα4 + Tα2 +K

)
mdUb

dy

∣∣∣∣
h

+
µ

m
iα.
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The kinematic condition û (h) + η̂+dUb
dy

∣∣∣∣
h

= 0 is recast as

− iωû (h) + v̂ (h)
dUb
dy

∣∣∣∣
h

= 0. (17)

The velocity components and pressure are discretized in the y-direction using a Chebyshev collo-

cation method. To avoid spurious pressure modes, we consider the so-called PN − PN−2 approxi-

mation in which the pressure is approximated with a polynomial of degree N −2 while the velocity

is discretized with a polynomial of degree N29. From this point, we note the vectors containing

the unknowns: V =

 VBC︷ ︸︸ ︷
û0, ûN , v̂0, v̂N ,

VI︷ ︸︸ ︷
û1 ... ûN−1, v̂1 ... v̂N−1

 and PI = (p̂1 ... p̂N−1), where

we separate the boundary values (VBC) from the interior points (VI). Hence, the discretized

counterpart of the previous continuous model (10, 15, 14) reads:

4︷ ︸︸ ︷ 2(N−2)︷ ︸︸ ︷ N−2︷ ︸︸ ︷


A1 A2 A3

B1 B2 B3

0 C2 0





VBC

VI

PI


= iω



I 0 0

0 I 0

0 0 0





VBC

VI

PI



}
4}
2(N − 2)}
N − 2

,

(18)

where the divergence-free condition is imposed on the interior points and I denotes the identity

matrix. The derivative matrices based on Chebyshev polynomials are either expressed on the

interior points only (for the pressure) or all the nodes (for the velocity components)29. Note that

the boundary equations involve the pressure at y = ±h: these values are readily obtained by

polynomial interpolation with spectral accuracy, corresponding to matrix A3.

The discrete counterpart of the divergence-free condition reads C2VI = 0. Hence, from

0 = C2(iωVI) = C2B1VBC + C2B2VI + C2B3PI,

the vector PI can be expressed as a function of VI and VBC:

PI =

MBC︷ ︸︸ ︷
− (C2B3)−1 C2B1VBC

MI︷ ︸︸ ︷
− (C2B3)−1 C2B2VI.

Thus eliminating the pressure, the system (18) is recast as
A1 + A3MBC A2 + A3MI

B1 + B3MBC B2 + B3MI




VBC

VI

 = iω


I 0

0 I




VBC

VI

 . (19)
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The system (19) still contains N − 2 null eigenvalues due to the divergence-free constraint. We

can further reduce (19) by eliminating the streamwise velocity components at the interior points28.

Indeed, using VI =

 U︷ ︸︸ ︷
û1, ... , ˆuN−1,

V︷ ︸︸ ︷
v̂1, ... , ˆvN−1

, the divergence-free condition C2VI = 0

becomes iαU + C2VV = 0. Thus, for α 6= 0, the streamwise velocity U is obtained as a function

of V. This then leads to a discrete version of the Orr–Sommerfeld equation for the fluid–structure

interaction problem of the form:
• •

• •




VBC

V

 = iω


VBC

V

 . (20)

This system may be further reduced30, by considering perturbations of either sinuous or varicose

symmetry and using only half of the channel together with derivative operators appropriate for the

symmetry of each component of the different flow fields.

Apart from the fact that the above algebraic transformations remove spurious eigenvalues, they

also drastically reduce the computational effort. The system is either solved using QZ algorithm

from the Lapack library or an Arnoldi technique provided by the Arpack software. The numerical

procedure is validated and discussed in Appendix 1. The number of collocation points is varied

from 100 to 300 as the Reynolds number is increased.

4. LINEAR STABILITY RESULTS

After the formulation of the linear fluid–structure interaction problem and the presentation of

the numerical methods, we are now in a position to analyze its dynamics. The different classes

of modes and their dependence on the control parameters are investigated in detail. A specific

attention is devoted to provide physical insight through total energy budget analyses.

4.1. Spectra and classes of modes

A typical spectrum is shown in figure 2, corresponding to a base configuration at Re = 7000,

VR = 1, B? = 4, d? = 0.2 and perturbations with wavenumber α = 0.6. Since the base state is

symmetric in y, the entire spectrum consists of the same number of modes of either varicose (red

symbols) or sinuous (blue) symmetry. The Orr–Sommerfeld modes (× and +) are essentially due

to the base Poiseuille flow and organized in three branches (classically labelled A, P and S31), as
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FIG. 2: Eigenvalue spectrum for perturbations with α = 0.6 at Re = 7000, VR = 1, B? = 4 and

d? = 0.2. Orr–Sommerfeld modes (+ sinuous and × varicose) are located on three main branches

(A, P and S) and dominated by TS mode (circle); four modes (C and B) are due to

fluid–structure interactions. Modes of varicose and sinuous symmetry are shown in red and blue

respectively.

for rigid channels. This part of the spectrum is dominated by the Tollmien–Schlichting mode (TS,

indicated by circle in figure 2) of sinuous symmetry. In the present configuration, the coupling

between the fluid and wall equations leads to four additional eigenvalues (indicated by C and B)

and referenced hereafter as fluid–structure interaction (FSI) modes. Two of these FSI modes travel

upstream (ωr < 0), while the other pair of FSI modes propagates along the flow direction (ωr > 0);

each of these pairs consists of a sinuous and a varicose mode.

To gain a better understanding of these eigenmodes, we monitor changes in the spectrum

resulting from the variation of some control parameters. A few typical scenarios are shown in

figure 3.

FSI modes strongly depend on the reduced velocity VR, as shown in figure 3(a). When VR → 0,

which corresponds to approaching the rigid-walls case, the growth rates of the FSI modes reach

neutrality (ωi → 0) while their phase velocities tend to infinity (ωr → ±∞). For the range of base
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state configurations shown here, the upstream propagating FSI modes are always stable, albeit

with a weak decay rate, and their (negative) phase velocities reach very small values as VR is

increased: this behaviour is characteristic of divergence (DIV) modes, as observed for boundary-

layer flows along highly damped walls19. On the other hand, the downstream propagating FSI

modes are strongly destabilized as VR is increased; these modes are identified as traveling-wave

flutter (TWF) modes. In contrast with the FSI mode dynamics, the TS mode only weakly depends

on VR since it is mainly driven by the shear flow, see insert in figure 3(a). Consistently with the

definition of VR, the eigenvalue corresponding to the TS mode matches the one found for the rigid

case when VR → 0. The other Orr–Sommerfeld modes on the A-branch also display only a weak

dependence on VR, while those on the P- and S-branches appear to be mostly unaffected.

The influence of the wall-damping parameter d? is shown in figure 3(b,c) for VR = 1 (b) and

VR = 2 (c). The growth rate ωi of the downstream propagating TWF modes is seen to significantly

decrease with wall dissipation d?. Thus wall damping has a strongly stabilizing effect on both

sinuous and varicose TWF modes. For VR = 1, figure 3(b) shows that wall damping has a similar

stabilizing effect on the upstream propagating FSI modes. However, at the larger value VR = 2 of

the reduced velocity (figure 3c), these FSI modes are nearly stationary divergence modes. In that

regime, an increase in wall damping d? results in an increase of their negative growth rate, and the

phase velocity is seen to vanish in the limit of large wall damping d?. Here destabilisation of the

DIV modes occurs for large values of d?. One may recall that while the sinuous TWF and DIV

modes were investigated numerically by Davies & Carpenter20, the varicose TWF and DIV modes

have not been explored for the plane channel flow.

Thus, the influence of the various control parameters may be summarized as follows: the TS

mode is temporally damped by an increase of VR, but its temporal amplification rate may be

amplified with an increase in wall damping for a certain range of streamwise wave numbers. A

different behavior is found when the TWF modes are considered: their growth rate increases

with VR, while it decreases with d?. This is consistent with the mode classification given by

Benjamin14 (i.e. class A for TS modes and class B for TWF modes). Moreover, the DIV modes

are seen to be amplified for high values of wall damping parameter. Finally, the effect of the wall

compliance is seen to be negligible for both P- and S-branches.

To further identify the different types of modes with respect to Benjamin’s classification, the

eigenfunctions of a few selected modes are shown in figure 4.

One may recall that the mechanism whereby both TWF modes and TS modes grow involves

the action of the streamwise velocity base flow gradient along the wall-normal position working
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FIG. 3: Influence of reduced velocity VR and wall damping d? on frequency eigenspectra for

α = 0.6 at Re = 7000 and B? = 4. (a) Evolution with VR = 2, 1.5, 1, 0.5, 0.01 (in brown, green,

red, black and blue, respectively) at d? = 0. (b) Evolution with d? varying from 0 to 2 for VR = 1

(d? = 0, 0.2, 0.5 1 and 2 in black, blue, green, red and brown, respectively). (c) Evolution with

d? varying from 0 to 20 for VR = 2 (d? = 0, 0.4, 0.8, 1, 2, 4, 6, 10 and 20 in black, blue, red,

green, orange, light blue, grey, pink and brown, respectively). Some mode trajectories are

represented in dashed lines.
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FIG. 4: Eigenfunctions for Re = 7000 and B? = 4. (a) TS (sinuous) mode for α = 1, d? = 4 and

VR = 0.5. (b) Sinuous TWF mode for α = 0.6, d? = 0 and VR = 1. (c) Varicose TWF mode for

α = 0.6, d? = 0 and VR = 1. (d) Sinuous DIV mode for α = 0.6, d? = 20 and VR = 2. (e) Varicose

DIV mode for α = 0.6, d? = 20 and VR = 2. The phase angles of eigenfunctions are denoted as φu

and φv for u′ and v′, respectively. The eigenfunctions are normalized to unit kinetic energy norm.
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against the Reynolds stresses. In the absence of an inflection point, both modes involve a phase

shift of the disturbance velocity at some distance from the wall32. However, mechanisms are quite

different for each of these modes. Within a large-Reynolds-number asymptotic theory, viscous

effects are only present in the vicinity of the viscous wall-layer or the critical layer, located at the

wall-normal position yc where Ub(yc) = ωr/α
32. The inviscid approximation is therefore accurate

in the other regions of the flow. For the TWF mode, the instability mechanism is essentially driven

by the wall. Indeed, the instability is amplified if the work done by the pressure disturbance on

the wall is positive when averaged over one period (Benjamin12). As first proven by Miles15 for

water waves, Benjamin13 shows for the boundary-layer-flow case that it results from a phase shift

between disturbance wall pressure and wall displacement. In particular, Benjamin13 proves that

the pressure at the wall is associated with the integrated effect of the velocity perturbations along

the wall direction and is a consequence of a phase shift for velocity components near the critical

layer. We note hereafter φu and φv the phases of the respective velocity components û and v̂ of

the associated eigenfunctions. For TWF modes (see figures 4b,c), the essential phase shift (i.e.

φu−φv 6= π/2) occurs near the critical layer in the limit of large Reynolds numbers (class B modes).

For the TS mode (figure 4a), the phase shift is rather associated with the viscous wall layer. They

belong to class A modes and are stabilized through a transfer of energy to the wall. Hence it is

essential, when addressing the different classes of modes, to monitor the phases of the perturbation

components. Figure 4(b) shows that the sinuous TWF mode exhibits a clear phase shift near the

critical layer in agreement with class B modes. It is consistent with the theoretical investigation

of Davies & Carpenter20 for the same flow case. The linear behaviour along with the wall normal

position of û is associated with a displacement of the Poiseuille solution when the walls are shifted

with η. It is easily verified that the small deviation from the Poiseuille solution due to sinuous

motion of the walls is proportional to −2η̂y (see also33). Interestingly, the varicose case (figure 4c),

not studied by Davies & Carpenter20, also exhibits a phase shift.

Finally, the divergence mode (figure 4d,e) exhibits a phase shift in the viscous wall layer. Nev-

ertheless, due to the low velocity phase, the viscous wall layer and the critical layer are not well

separated. As a consequence, the theoretical framework derived by Davies & Carpenter20 cannot

be applied for these modes.

For all FSI modes (both TWF and DIV), velocity and pressure fluctuations are concentrated

near the wall. For the TS mode, as for the rigid case, the streamwise velocity component peaks at

the critical layer.
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FIG. 5: Dispersion relation for leading varicose mode in (VR, α)-plane for Re = 5000, d? = 10 and

B? = 4: (a) contours of growth rate ωi and (b) of phase velocity ωr/α.

4.2. Temporal growth and instability onset

The stability features of compliant channel flow configurations depend on a large number of

parameters. In the previous section we have shown that the reduced velocity VR is the main con-

trol parameter governing fluid–structure interactions, but growth rates of the different classes of

modes may also to depend significantly on Reynolds number Re, wall dissipation d? and flexural

rigidity B?. In the present section, we will map out the stability characteristics by monitoring

the dispersion relation in the (VR, α)-plane for selected values of the other relevant control param-

eters. By taking advantage of the base-flow symmetry, sinuous and varicose perturbations may

be efficiently computed and their properties are here discussed separately. We first consider per-

turbations of varicose symmetry, which are generally the modes most amplified by fluid–structure

interactions.

Figure 5(a) shows isolines of the temporal growth rate ωi of the leading varicose eigenmode in

the (VR, α)-plane at Re = 5000, d? = 10 and B? = 4. The neutral curve (ωi = 0) exhibits two

distinct minima at VR ≈ 1.6 and VR ≈ 3.9. Beyond onset, a finite range of wavenumbers α display

positive temporal growth rates. The associated phase-speeds ωr/α are given in Figure 5(b). It is

found that near the first minimum VR ≈ 1.6, modes travel with vanishingly small phase-speeds.

In contrast, near the second minimum VR ≈ 3.9, modes travel with phase-speeds of the order of

the mean base flow velocity. This behaviour is characteristic of DIV and TWF modes, which are

thus each found to dominate the perturbation dynamics in distinct regions of the (VR, α) plane for



17

2 4 6 8 10

2

4

6

VR

α

d ?
=
10
0
d ?
=
60
d ?
=
10

d ?
=
1
d ?
=
0.
6
d ?
=
0

0

0.1

0.2

0.3

ωi

FIG. 6: Temporal growth rates ωi for the varicose instability at Re = 5000 and B? = 4 for d? = 0,

0.6, 1, 10, 60 and 100. The contour levels are 0, 0.1, 0.2 and 0.3.

these parameter settings.

Figure 6 illustrates the influence of wall dissipation d?, for the same values of Re and B?. It

is observed that energy dissipation in the wall only weakly influences the temporal growth rate

for 0 ≤ d? ≤ 1, while stronger stabilization occurs for d? > 1. At these high dissipation rates,

the growth rate and the range of unstable wavenumbers are greatly reduced; however, the critical

value of VR for onset of instability (noted V c
R herafter) remains of the same order of magnitude.

Monitoring the neutral curves more precisely reveals that V c
R increases from V c

R ' 0.45 for d? = 0

to reach a maximal value of about V c
R ' 1.6 for d? = 10 and decreases again for larger values of d?

(V c
R ' 1.0 for d? = 100). This non-monotonous effect of wall-dissipation on instability onset is due

to a change of the nature of the leading eigenmode: while the instability is dominated by the TWF

mode at low values of d?, the unstable dynamics is governed by the divergence mode for strong

dissipation in the compliant wall as already suggested by figure 5.

This observation is further illustrated in figure 7 where neutral curves are shown for various

Reynolds numbers and wall dissipations. Especially, for Re = 10000 and d? = 10 (figure 7b),

we observe the coexistence of the DIV and TWF modes. The critical reduced velocities V c
R for

the divergence and TWF modes are ≈ 2 and ≈ 4, respectively. Neutral curves associated with
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FIG. 7: Marginal curves for onset of varicose instability at B? = 4 for

Re = 10000, 40000, 80000, 160000 and 240000 (in black, blue, red, green and brown

respectively) and (a) d? = 0, (b) d? = 10 and (c) d? = 100.

the TWF mode (fig 7a) are seen to be almost independent of the Reynolds number. For the

divergence mode, we observe a destabilizing effect of viscosity (fig 7c): the critical value V c
R for

onset of instability is seen to increase with Reynolds number, which is consistent with the fact that

divergence modes are intimately connected to the viscous wall layer. Nevertheless, in the regime

dominated by divergence modes, the temporal amplification rates reach much lower values than

those prevailing for TWF modes at low values of d? (see Figure 6).

The combined effects of the different wall parameters are conveniently summarized by monitor-

ing the variations of the critical reduced velocity V c
R. To that purpose, we consider a high value of

the Reynolds number in order to focus on the influence of the wall properties. A Newton–Raphson

search algorithm with an adaptive step has been implemented to identify the start of the neutral

curve in the (VR, α)-plane for different values of d? and B?. The critical value V c
R (and associated

wavenumber αc) for onset of instability is then obtained when dVR
dα vanishes along the neutral curve.
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R with wall damping parameter d?, for a range of

flexural ridigity values B? (from 0.2 to 10). Perturbations of varicose symmetry are considered.

Results are reported in Figure 8 for 0 ≤ d? ≤ 60 and 0.2 ≤ B? ≤ 10. The inset in the figure

shows that for small values of d?, flexural rigidity has a moderately stabilizing effect on TWF

modes: V c
R increases as B? is increased for fixed d?. In the range 5 < d? < 15, onset of instability is

seen to display an almost universal behaviour with a linear relationship between V c
R and d?, almost

independent of B?. In this regime, instability always occurs by a TWF mode. For larger wall

dissipation rates, d? > 20, the dynamics is dominated by the divergence modes, associated with

vanishing phase velocities. In this latter regime, the critical values V c
R weakly depend on flexural

rigidity B? and decrease with increasing wall dissipation d?. For large values of d?, a limit value of

V c
R ' 2.85 is asymptotically reached, independently of B?. Note that the crossover from the TWF

dominated instabilities (low d?) to the DIV dominated instabilities (high d?) also depends on B?.

After the previous extensive discussions of results for varicose perturbations we now focus on

the sinuous symmetry. The linear dynamics of sinuous eigenmodes is very similar to that of

their varicose counterpart, except that the (sinuous) Tollmien–Schlichting modes may also display

positive growth rates. The growth-rate isolines in the (VR, α)-plane of figure 9(a) are obtained

for Re = 8000, B? = 4 and d? = 10. This Reynolds number (based on channel diameter and

mean fluid velocity) is slightly in excess of the critical value Rec ' 7696 for Tollmien–Schlichting

instability developing in rigid channel flow. As for the varicose case, the neutral curve exhibits
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FIG. 9: Dispersion relation for leading sinuous mode in (VR, α)-plane for Re = 8000, d? = 10 and

B? = 4: (a) contours of growth rate ωi and (b) of phase velocity ωr/α.

two minima. The first appears near VR ≈ 0 while the second minimum is close to VR ≈ 2. The

associated phase-speeds ωr/α given in figure 9(b) indicate that DIV, TWF and TS modes can be

involved in this regime.

Figure 10 shows the evolution of sinuous temporal instability characteristics with the wall

dissipation parameter d?. For d? = 0 and low values of VR, corresponding to near-rigid compliant

walls, there exists a narrow band of unstable wavenumbers near α = 1 associated with unstable

Tollmien–Schlichting modes. At larger values of VR, stronger fluid–structure coupling leads to the

destabilization of (sinuous) TWF modes: the temporal growth rates ωi and the range of unstable

wavenumbers rapidly increase with VR. Note that there exists a narrow region near VR = 1 where

both TS and TWF modes are stable. As d? is increased from 0 to 0.6, it is observed that the regions

corresponding to unstable TS and TWF modes merge, giving rise to the so-called transition mode.

Therefore it appears very unlikely to successfully use wall-compliance to stabilise TS modes without

destabilising TWF modes.

Except for the merging of TS and TWF instabilities, the instability features of sinuous per-

turbations shown in figure 10 are very similar to those observed for varicose perturbations. For

d? > 1, wall dissipation d? significantly reduces the temporal growth rates and the range of un-

stable wavenumbers. For d? ≥ 10, figure 10 shows that divergence and transition modes co-exist.

In addition, the critical reduced velocity V c
R for the onset of the divergence mode is only weakly

influenced by the wall dissipation (V c
R ≈ 2).

The critical curves shown in figure 11 correspond to marginal (ωi = 0) sinuous instability for
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FIG. 10: Temporal growth rates ωi for the sinuous instability at Re = 8000 and B? = 4 for

d? = 0, 0.6, 1, 10, 60 and 100. The contour levels are 0, 0.1, 0.2 and 0.3.

a range of Reynolds numbers and d? = 0, 10 and 100. Due to the fact that, for Re > 7696, TS

instability prevails at low values of VR, down to VR = 0, a critical value of reduced velocity V c
R

cannot be defined for onset of sinuous instability.

For the sinuous instability, it may be hard to distinguish between TS or TWF modes since branch

switching occurs as some parameters are continuously varied. To better illustrate this phenomenon,

figure 12 shows the dispersion relation for both branches in the range 0.55 < α < 1.05 for d? = 0.10,

0.13 and 0.16, at Re = 1000, B? = 1 and VR = 1 For α < 0.8, the branches with largest temporal

growth rate (upper branches in figure 12a) are of TS-type while the other branches are always

stable in that wavenumber range and can be identified as TWF modes. For α > 0.8, the unstable

branch displays a growth rate ωi rapidly increasing with α, and is found to correspond to a mode

of the TWF type, while the other branch is strongly stabilised at these wavenumbers. Due to the

branch switching that occurs near α = 0.8 and d? = 0.13, the unstable TWF branch prevailing

for α > 0.8 is continuously connected to the TS branch when d? > 0.13 while it is continued as a

stable TWF mode for α < 0.8 when d? < 0.13.

This behaviour is further illustrated in figure 13 where a Newton–Raphson search algorithm

is used to compute neutral curves associated with either TS mode or transition mode for various
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FIG. 11: Marginal curves for onset of sinous instability at B? = 4 for

Re = 10000, 40000, 80000, 160000 and 240000 (in black, blue, red, green and brown

respectively) and (a) d? = 0, (b) d? = 10 and (c) d? = 100.

Reynolds numbers and wall dissipations. For a small amount of wall dissipation, the TS mode

is seen to be damped as VR is increasing (figure 13a), for all the Reynolds numbers considered.

In particular, for d? = 0, the critical reduced velocity of TS mode suppression is varying from

VR ≈ 0.8 for Re = 10000 to VR ≈ 4 for Re = 40000. However, as d? is increased beyond 0.13, a

transition mode emerges and it is no longer possible to distinguish between TWF and TS modes

(figures 13b–d).

Finally, we present some results for the destabilization of the divergence mode and its depen-

dence on wall dissipation d? and Reynolds number Re. We proceed as previously be computing

the critical value V c
R for onset of instability in the (VR, α)-plane at fixed values of the other control

parameters. Critical curves as functions of d? for different Re values are plotted in Figure 14(a)

and (b), respectively for the divergence modes of varicose and sinuous symmetry. Flexural rigidity

is kept constant at B? = 1. Both sets of curves clearly indicate the stabilizing effect of the Reynolds
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FIG. 12: Dispersion relation for the two leading sinuous modes at Re = 10000, B? = 1 and

VR = 1. (a) Temporal growth rate ωi and (b) frequency ωr. Branch switching occurs near α = 0.8

and d? = 0.13.

number on the divergence mode, for both the varicose and sinuous cases. For the varicose case,

unstable divergence modes only occur at relatively high wall dissipation, d? > 6 for Re = 5000 and

d? > 9.5 for Re = 80000. For the sinuous case, divergence mode instability already starts for d? in

the range 2–4, with a weaker Reynolds number dependence. In both varicose and sinuous cases,

the critical V c
R appears to asymptote towards a finite limit for large values of d?.

4.3. Comparison with asymptotic theories for d? = 0

Davies & Carpenter20 derived an analytical expression for the wall pressure for d? = 0 in the

limit of small α and high Reynolds numbers, for modes of sinuous symmetry. This pressure, noted

p̂ (α, c, Uref ) is obtained as a function of the wavenumber α, the phase velocity c = ω/α and a

reference value for the fluid velocity Uref = Q/2h, and includes the effects of both the critical and

viscous layers. Moreover, the wall pressure is obtained as an expansion in streamwise wavenumber

up to α2: p̂ = p0+α2p1, where only the term p1 includes the effect of viscous and critical layers. For

the viscous layer, the approximation is carried out up to O
(

(αRe)−1/2
)

. Neglecting the viscous

stress at the wall, they obtain the dispersion relation:

m
(
c2 − c2

0

)
+ p̂ (α, c, Uref ) + i

( c
α

)
d = 0, (21)
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FIG. 13: Neutral curves for the TS mode for Re = 10000, 20000, 30000, 40000 (in black, red,

green, blue, respectively) and B? = 1 in the plane (α, VR). (a) d? = 0, (b) d? = 0.5, (c) d? = 1

and (d) d? = 10.
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FIG. 14: Divergence mode. Critical reduced velocity distribution V c
R with the wall damping

parameter and for Re = 5000, 10000, 20000, 40000 and 80000 with B? = 1. (a) the varicose case,

(b) the sinuous case.
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with c0 =

√
1

m

(
Bα2 + T +

K

α2

)
the free wave speed for the wall. Davies & Carpenter20 express

the onset of instability with the Reynolds number. Here, we suggest that it is more appropriate

to use the reduced velocity VR. The resulting critical curves are shown in figure 15, without wall

damping and for B? = 4. For the sinuous case, panel (a) shows a very good agreement between

the analytical model and complete numerical resolution of the full system up to α ≈ 3. In order

to remove the Reynolds number effect, a numerical solution for Re = 106 has been carried out.

For the latter case, the grid mesh is increased up to N = 300 in order to correctly capture both

viscous and critical layers. Figure 15(a) shows that the departure from the theoretical model is

due to the expansion in terms of streamwise wave number up to α2, hence this approximation is no

longer valid for α greater than 3.5 (not shown in16). In addition, one observes that neglecting the

viscous stress at the wall and in the analytical expression of the pressure yields an almost perfect

approximation of the exact dispersion relation.

In figure 15(b), comparisons with varicose cases are shown. While the theoretical model is

derived only for the sinuous symmetry, it is interesting to notice that in the limit of high Reynolds

numbers, the model associated with merely the critical layer gives a quite accurate description of

the varicose symmetry for α varying from 0.8 to 3. For streamwise wave numbers greater than 4, the

varicose and sinuous neutral curves fall in one single curve for all Reynolds numbers. For α < 0.8,

the varicose case exhibits a more complex Reynolds number dependence. Since the varicose mode

always dominates over the sinuous mode, the critical value V c
R for onset of instability is associated

with a varicose perturbation for all configurations that have been considered in the present study.

The latter observation is also in agreement with results provided by Nagata24. In addition, it is

found that the Reynolds number also has a slight stabilizing effect. In figure 15, we also provide a

comparison with the theoretical model derived by Huang34 for the varicose symmetry, only based

on the critical layer. The figure also shows a good agreement for moderate values of α between the

model and the numerical simulation.
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FIG. 15: Neutral curves for d? = 0 and B? = 4. For the full system of equations, the Reynolds

numbers are fixed to Re = 4× 104, 8× 104, 2.4× 105 and 106. For the analytical dispersion

relation including the viscous layer effect, the Reynolds number is fixed to 106. (a) Sinuous case,

(b) Sinuous and varicose cases comparison.

4.4. Energy budgets

This final section addresses the energy transfer mechanisms between the different components

of the compliant channel flow configurations, in order to shed further light on the dynamics and

on the fundamental mechanisms promoting instability. We are greatly influenced by the work of

Domaradski and Metcalfe26 who carried out a similar investigation for perturbations developing

in the boundary-layer flow over spring-backed membranes. A similar study was also considered by

Carpenter and Morris35 when accounting for the effect of anisotropic wall compliance on boundary

layer instabilities.
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For the compliant channel flow configuration under consideration, the total energy of the system

is the sum of three components:

Etot = EFK + EWK + EWP , (22)

where EFK represents the fluid kinetic energy, while the wall energy consists of both kinetic and

potential contributions, EWK and EWP respectively.

The global fluid kinetic energy is obtained by integration over the channel diameter

EFK =

∫ +h

−h
e(y)dy, (23)

where

e(y) = ρ û(y) · û(y)∗ ≡ ρ [û(y)û(y)∗ + v̂(y)v̂(y)∗] (24)

denotes the local kinetic energy of the flow, averaged over x at a given wall-normal position y,

using the notations introduced in §2.3. The temporal variation of the local kinetic energy then

follows from the governing equation (10) as

2ωi e(y) = −ρ [û(y)v̂(y)∗ + û(y)∗v̂(y)]
dUb(y)

dy︸ ︷︷ ︸
P: Reynolds stress work against the mean shear

− d

dy
[p̂(y)v̂(y)∗ + p̂(y)∗v̂(y)]︸ ︷︷ ︸
Π: Pressure diffusion

−2µ

[
dû(y)

dy

dû(y)∗

dy
+
dv̂(y)

dy

dv̂(y)∗

dy
+ α2 (û(y)û(y)∗ + v̂(y)v̂(y)∗)

]
︸ ︷︷ ︸

ε: Viscous dissipation

+µ
d

dy

[
û(y)

dû(y)∗

dy
+ û(y)∗

dû(y)

dy
+ v̂(y)

dv̂(y)∗

dy
+ v̂(y)∗

dv̂(y)

dy

]
︸ ︷︷ ︸

D: Viscous diffusion

(25)

and is the result of four distinct mechanisms as indicated in the above equation. Integration of

this expression over the channel diameter leads to the equivalent equation governing the evolution

of the total fluid kinetic energy,

2ωiEFK = −
∫ +h

−h
ρ[û(y)v̂(y)∗ + û(y)∗v̂(y)]

dUb(y)

dy
dy −

[
p̂(y)v̂(y)∗ + p̂(y)∗v̂(y)

]+h

−h

−2µ

∫ +h

−h

[
dû(y)

dy

dû(y)∗

dy
+
dv̂(y)

dy

dv̂(y)∗

dy
+ α2

(
û(y)û(y)∗ + v̂(y)v̂(y)∗

)]
dy

+µ

[
û(y)

dû(y)∗

dy
+ û(y)∗

dû(y)

dy
+ v̂(y)

dv̂(y)∗

dy
+ v̂(y)∗

dv̂(y)

dy

]+h

−h
. (26)

While interaction with the base shear flow and viscous dissipation prevails throughout the channel

cross-section, pressure and viscous diffusion only contribute at the boundaries and transfer energy

between the fluid and the compliant walls.
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The kinetic and potential energies associated with the walls are obtained as

EWK = m|ω|2
(
|η̂+|2 + |η̂−|2

)
and EWP = (Bα4 + Tα2 +K)

(
|η̂+|2 + |η̂−|2

)
, (27)

respectively. Using the wall equations (15), together with the boundary conditions (14), yields the

temporal variation of the wall energy as

2ωi(EWK + EWP ) = − 2d|ω|2
(
|η̂+|2 + |η̂−|2

)︸ ︷︷ ︸
E0

+

[
p̂(y)v̂(y)∗ + p̂(y)∗v̂(y)

]+h

−h︸ ︷︷ ︸
E1

−µ
[
v̂(y)

dv̂(y)∗

dy
+ v̂(y)∗

dv̂(y)

dy

]+h

−h︸ ︷︷ ︸
E2

. (28)

Thus, changes in total wall energy are seen to be the result of either dissipation within the wall (E0)

or energy exchange at the interface between the fluid and the compliant walls: work done by the

pressure force (E1) or the normal viscous stress (E2). Both terms E1 and E2 also appear in (26)

but with opposite sign; these fluid–structure interaction terms only account for an exchange of

energy between the fluid and the walls but do not modify the total energy of the system.

The temporal variation of the total energy (22) is then obtained by adding (26) and (28), which

leads to the following integrated total energy budget:

2ωiEtot = −
∫ +h

−h
ρ [û(y)v̂(y)∗ + û(y)∗v̂(y)]

dUb(y)

dy
dy︸ ︷︷ ︸

C1: Energy exchange with the base flow

− µ
[(

dû(y)

dy
η̂∗ +

dû(y)∗

dy
η̂

)
dUb(y)

dy

]+h

−h︸ ︷︷ ︸
C2: Energy exchange with the base flow at the walls

− 2µ

∫ +h

−h

[
dû(y)

dy

dû(y)∗

dy
+
dv̂(y)

dy

dv̂(y)∗

dy
+ α2 (û(y)û(y)∗ + v̂(y)v̂(y)∗)

]
dy︸ ︷︷ ︸

C3: Viscous dissipation

− 2d|ω|2
(
|η̂+|2 + |η̂−|2

)︸ ︷︷ ︸
C4: Wall damping

. (29)

Hence, the only mechanisms that contribute to variations of the total energy are interactions with

the base flow and dissipation (see also19,33). Energy transfer from or to the base flow occurs in the

bulk (C1) as well as at the boundaries (C2), and energy disspation takes place both in the fluid (C3)

and in the compliant walls (C4). Note that the kinematic boundary conditions (14) have been used

to bring to the fore the role of the base flow shear in the exchange term C2. As underlined by

Carpenter & Morris35, the contribution C2 arises from the interaction of the displaced mean flow
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and shear stress. In the literature, the terms C1 and C2 are often labelled as irreversible energy

transfer from the base flow to the perturbation; depending on the signs and phases of the different

components in C1 and C2, they may have a destabilizing or a stabilizing influence.

The energy budget (29) may be used to recover the temporal growth rate as

ωi = Ĉ1 + Ĉ2 + Ĉ3 + Ĉ4︸ ︷︷ ︸
Σ

, (30)

where the different contributions have been renormalized by the total energy, Ĉi ≡ Ci/(2Etot).

Apart from physical insight into the role of the dissipation and exchange terms of the total en-

ergy, the equation (30) also provides a check of the accuracy and consistency of the numerical

computations.

Now that we have identified the different components that contribute to the variation of the

perturbation energy, we proceed to analyze their role in the dynamics of the different classes of

modes that prevail in the present configuration. In sequence we will address TS, DIV and TWF

modes and discuss the corresponding total energy budget as well as the spatial structure of the

different contributions.

First we consider the stabilization mechanism of the TS mode as the reduced velocity VR is

increased. To that purpose, we investigate configurations with Re = 10000, B? = 1 and d? = 0.

For these typical control parameter values, the TS mode is stable for VR in excess of approximately

0.85, as shown by the black curve in figure 13(a). To study the influence of VR on the energy

transfer mechanisms, the most unstable TS mode is considered as VR is varied, i.e., the streamwise

wavenumber α is chosen to maximise the temporal growth rate ωi for each value of VR.

Figure 16(a) plots the components of the total energy budget as VR is increased. The associated

growth rate ωi is also reported in the same figure. The excellent agreement between the curves

of ωi, derived from the eigenvalue problem, and of Σ, right-hand-side of equation (30), gives

confidence that the computation of the different energy terms is correctly implemented. The curves

in figure 16(a) show that for the range of VR considered here, the major destabilizing contribution is

due to the action of the basic velocity gradient working against the Reynolds stress (Ĉ1). However,

as VR is increased, this production term Ĉ1 is observed to decrease and to be partially balanced

by Ĉ2. This suggests two stabilizing mechanisms associated with the compliant wall: one reducing

the bulk production term Ĉ1 and due to a modification of the perturbation velocity profiles, and

another one directly connected to the wall term Ĉ2 and due to the displaced mean flow that acts

as a dissipative term here. The viscous dissipation (Ĉ3) is seen to weaken as VR is increased, but

the overall stabilizing influence dominates for increasing VR.
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FIG. 16: Energy of most unstable TS mode as VR is increased at Re = 10000, B? = 1 and d? = 0.

(a) Evolution of the integrated total energy budget and comparison with temporal growth

rate ωi. (b) Different contributions to the total energy for d? = 0.

The relative importance of the different components of the total energy (22) are displayed in

figure 16(b) as VR is varied, using the notation ÊFK = EFK/Etot, ÊWK = EWK/Etot, ÊWP =

EWP /Etot, and ÊW = ÊWK + ÊWP . This plot shows that, as VR is increased, a small part of the

fluid kinetic energy is indeed transferred to the wall, mainly as potential energy. This is consistent

with a class A mode.

Following the work of Metcalfe & Domaradski26, we now analyze the spatial structure of the fluid

kinetic energy budget (25). Figure 17 shows the wall-normal profiles of the different contributions

for the most unstable TS mode computed at different values of VR and d?. Note that these profiles

have been normalized to unit total fluid kinetic energy EFK . Figures 17(a) and (b), corresponding

to VR = 0 and VR = 0.03 at d? = 0, show that the production term P is significantly modified

by an increase of VR. In particular, the amplitude of P decreases with VR and it exhibits a small

region of negative production above the critical layer. In this region, the energy is transferred from

the wave to the mean flow leading to a decrease of the total energy associated with the fluctuation.

A similar observation is made by Metcalfe & Domaradski26 for the case of a laminar boundary

layer stabilized by a compliant membrane. Comparison of figures 17(a) and (b) also illustrates the

importance of the viscous diffusion term D in redistributing energy produced by the Reynolds stress

as VR is increased, whereas the pressure diffusion term Π has a minor influence. This shows that

under the action of the viscous diffusion term, the energy produced by the work of the Reynolds

stress is transferred towards the wall where it is dissipated by viscosity (ε). Figure 17(a) also

reveals that the production term P increases near the wall with the emergence of a second peak
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FIG. 17: Fluid kinetic energy budget profiles for most unstable TS mode at Re = 10000, B? = 1

and (a) d? = 0, VR = 0.03, (b) d? = 0, VR = 1, (c) d? = 0.14, VR = 1 and (d) d? = 0.2, VR = 1.

The wall-normal position of the critical layer is shown in dashed line.

as VR is increased. Due to the pressure diffusion and viscous diffusion terms, which are negatively

correlated with P, this additional production does not result in a destabilizing effect.

The influence of the dissipation within the compliant wall is illustrated in figures 17(b–d)

for VR = 1. When d? is increased from 0 (b) to 0.14 (c), the TS mode is destabilized (not shown
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FIG. 18: Energy of most unstable sinuous modes. Evolution of the integrated total energy budget

with d? for VR = 1. TS mode is shown in full line. Sinuous TWF mode is shown in dashed lines.

At d∗ ≈ 0.15 modes collapse.

here for the sake of conciseness). In figure 17(c), the pressure-diffusion term Π is positive across the

entire channel, which leads to work of the pressure force at the walls; the viscous diffusion profile D
is mostly unchanged, but the peak near the wall of the production term P becomes the dominant

feature. The increase of the dissipation leads to increase the production term in the viscous layer

which is consistent with the TS mode (i.e. the phase shift mainly occurs in this region).

Finally, for a stronger wall damping d? = 0.2 (figure 17d), the pressure diffusion term Π is almost

identical to the production term P, in contrast with what is observed for d? = 0.14 and d? = 0. In

particular, Π exhibits positive values near the wall which are associated with work of the pressure

at the wall. This indicates that the mode is then in strong interaction with the wall and could

probably be classified as a TWF mode. In particular, at d? = 0.15, a branch switching occurs and a

collapse between TS and TWF mode is observed. This behaviour is illustrated in figure 18. In the

figure, α is chosen to maximise ωi for each value of d?. On one hand, for d? < 0.15 where TS mode

exists, the production term Ĉ1 is increasing with the dissipation. It has for consequence to increase

the temporal amplification rate of the TS mode in agreement with class A modes. On the other

hand, for d? > 0.15, the temporal amplification rate is decreasing with the wall dissipation. This

further indicates that beyond d? = 0.15, the mode is mainly associated with a TWF instability.

After the discussion of the TS modes, we now address the total energy budgets prevailing

for DIV modes, of both sinuous and varicose symmetry. The evolution of the energy transfer

mechanisms is monitored as d? is varied, since this is the main control parameter influencing
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the dynamics of DIV modes. Figure 19 shows data computed over the range 0 < d? < 10 at

Re = 10000, B? = 1 and VR = 2. The evolution with d? of the different terms of the energy

budget for sinuous (figure 19a) and varicose (figure 19c) modes reveals that the term Ĉ2 dominates

for both symmetries. This term accounts for the energy exchange with the base flow due to wall

displacement, which is therefore identified as the main mechanism promoting instability of the

DIV modes. It also confirms the influence of the Reynolds number onto the divergence mode

as observed in the previous section. The importance of viscous effects for divergence modes has

also been observed by Carpenter & Morris35 for the case of a boundary-layer interacting with a

compliant wall. The destabilizing effect of Ĉ2 is partially balanced by the work of the Reynolds

stress against the basic shear Ĉ1, the viscous dissipation Ĉ3 and the wall dissipation Ĉ4. Hence,

it illustrates the dual nature of viscous effects for the divergence mode. On one hand, it promotes

the instability by propagating the energy production from the wall displacement into the flow

domain, but on the other hand, viscosity also plays its usual dissipative role. Inspection of the

different contributions to the total energy (figure 19b,d) shows that while the fluid energy remains

the main factor in both situations, the varicose modes involve significantly more wall energy than

their sinuous counterparts. Due to the slow dynamics of these modes, the wall energy is almost

entirely made up of potential energy for both symmetries. It should also be mentioned that due to

the long wavelengths of the DIV modes, the main contribution to the wall potential energy EWP

(27) is here due to the stiffness while the flexural rigidity only plays a marginal role.

The cross-channel profiles of the fluid kinetic energy budgets for the divergence modes are shown

in figure 20. The figure demonstrates that the production, diffusion and dissipation contributions

are all localized in the near wall region. Comparison of figures 20(a) and (b) reveals a notable

difference between sinuous and varicose modes at d? = 5: while the production term P is negative

throughout the channel cross-section for the varicose mode, the sinuous mode exhibits a small

region near the wall with positive values of the production P. Interestingly, when d? is further

increased up to d? = 9, the plots in figure 20(c) show that then the varicose production term P
also exhibits a weakly positive region near the wall. This change of sign of the production term

appears to approximately coincide with the onset of divergence instability, i.e., change of sign of

the growth rate ωi plotted in figure 19(c). Hence, while the energy budget is dominated by the

term Ĉ2, it seems that the instability is also significantly influenced by P.

These detailed analyses of the energy transfer mechanisms associated with TS and DIV modes

clearly indicate that the prevailing amplification processes strongly differ for both classes.

Finally we consider TWF modes and study their energy transfer properties. For this final class
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FIG. 19: Energy of most unstable DIV mode as d? is increased at Re = 10000, B? = 1 and

VR = 2. (a,c) Evolution of integrated total energy budget and (b,d) breakdown of total energy

into its components for (a,b) sinuous and (c,d) varicose modes.
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FIG. 20: Fluid kinetic energy budget profiles for most unstable DIV mode at Re = 10000, B? = 1

and VR = 2 and (a) d? = 5 sinuous mode, (b) d? = 5 varicose mode, (c) d? = 9 varicose mode.
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ÊW
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FIG. 21: Energy of most unstable varicose TWF mode as VR is increased at Re = 10000, B? = 1

and d? = 0. (a) Evolution of integrated total energy budget. (b) Distribution of total energy as

fluid and wall contributions. (c) Cross-channel profile of the fluid kinetic energy budget for

VR = 3. The wall-normal position of the critical layer is shown in dashed line.

of modes, we restrict our analysis to the varicose symmetry which has been observed to always

dominate over the sinuous symmetry. The evolution of the total energy budgets with VR is shown

in figure 21(a) for Re = 10000, B? = 1 and d? = 0. These plots indicate that the budget is driven

by the production term Ĉ1, in agreement with previous analyses20,26. However, it is interesting

to notice that energy transfer Ĉ2 from the baseflow to the perturbation via the boundaries also

promotes the instability. Both contributions Ĉ1 and Ĉ2 have a destabilizing influence. The distri-

bution of the total energy among its different components plotted in figure 21(b) shows that for

small values of VR the wall is the most energetic component of this fluid-structure system, but for

VR > 1.6 the kinetic energy of the fluid overcomes the wall contribution. Thus, the present scenario

appears to be exactly opposite the situation prevailing for TS modes: as VR is increased, the ratio

EFK/EW decreases for TS modes while it increases for TWF modes. This is in accordance with the
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classification of TS modes as class A and TWF modes as class B modes. Finally, monitoring the

potential and kinetic components of the wall energy (EWP and EWK respectively) shows that the

wall energy is essentially due to the kinematic contribution for TWF modes, which is in contrast

to the situation prevailing for DIV modes.

In figure 21(c), the fluid kinetic energy profile is shown across the channel diameter for VR = 3.

The role of viscosity is found to be mainly concentrated in two distinct areas. The viscous diffusion

term D exhibits a first shallow peak around the critical layer (indicated by the dashed line), while

a second stronger peak emerges near the wall due to the viscous layer. This is consistent with

the theoretical model developed by Davies & Carpenter20. However, the dominant production

term P is associated with the work of the Reynolds stress against the mean shear and does not

exhibit a maximum near the critical layer. Its profile presents rather an inflection point near the

critical layer, which is in contrast with observations by Metcalfe & Domaradski26 for the flat plate

boundary layer. We also observe that both pressure diffusion Π and viscous diffusion D display

large positive values near the wall. Thus the energy production due to the basic shear flow is

transferred to the wall through the action of both diffusion processes.

To conclude this section on energy transfer meachanisms, the influence of wall dissipation d? is

reported in figure 22 for the most unstable varicose TWF modes at Re = 10000, B? = 1 and VR = 3.

The plots in figure 22(a) show that for small values of d? the stabilization of the TWF mode is

essentially due to the increasing energy dissipation Ĉ4 in the compliant walls. For larger values of

d?, both the work of the Reynolds stress against the basic shear Ĉ1 and the wall dissipation Ĉ4

evolve so as to stabilize the TWF mode. This illustrates that two distinct mechanisms are at

play to diminish the growth rate for the TWF mode. The curves in figure 22(b) illustrate the

redistribution of the total energy due to wall dissipation: as d? is increased, the wall contribution

(essentially kinetic energy) to the total energy decreases almost linearly in favour of the fluid

contribution. The effect of the wall damping on the wall-normal profiles of the fluid kinetic energy

is shown in figure 22(c). While these profiles at d? = 4 are similar to those prevailing without wall

dissipation (see figure 21c), it is observed that the production P exhibits a lower amplitude than

the pressure diffusion term Π. As d? increases, the energy transfer from the fluid towards the wall

is no longer sufficient to balance the higher wall dissipation and, as a result the proportion of fluid

energy increases in the total energy of the perturbation.
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FIG. 22: Energy of most unstable varicose TWF mode as d? is increased at Re = 10000, B? = 1

and VR = 3. (a) Evolution of integrated total energy budget. (b) Distribution of total energy as

fluid and wall contributions. (c) Cross-channel profile of the fluid kinetic energy budget for

d? = 4. The wall-normal position of the critical layer is shown in dashed-line.

5. CONCLUDING REMARKS

In this study, we have revisited the linear stability problem of a fluid interacting with a com-

pliant channel. The walls are modeled as spring-backed deformable plates including a damping

mechanism. A general numerical method free of spurious pressure modes is derived to tackle this

problem. By taking advantage of the base flow symmetries, varicose and sinuous eigenmodes are

computed separately and efficiently. A dimensional analysis has been carried out to identify the

most physically relevant control parameters. As for classical aeroelasticity problems, the main

parameter is the reduced velocity (VR), which measures the strength of the coupling between the

fluid and the compliant walls. Traveling wave flutter (TWF), divergence (DIV) and Tollmien–

Schlichting (TS) modes are recovered. Interestingly, the use of the reduced velocity VR reveals

that TWF modes are only weakly affected by the Reynolds number. For TWF modes, the per-
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turbations of varicose symmetry are observed to be destabilized first when increasing VR. For this

symmetry, a linear relationship is found between the critical reduced velocity and the dissipation,

independently of the flexural rigidity, when the wall dissipation d? is increased. For large values of

VR, the dynamics is eventually dominated by DIV modes. For the sinuous symmetry, the TS mode

is observed to depend on both VR and Re. For d? = 0, the increase of VR is accompanied with a

damping of the TS mode as expected7. For the same symmetry and small values of d?, the tempo-

ral amplification rate of the TS mode is increasing, in agreement with class A mode according to

Benjamin’s classification12–14. At the same time, the TWF mode is damped. For a given value of

d?, we observe the coalescence of TS and TWF modes in agreement with previous observations7.

For both symmetries, a stabilizing effect is observed for the divergence mode when increasing the

Reynolds number. This behaviour is explained through kinetic energy budget analyses.

Using a wall normal integrated energy budget, the dominant term for DIV modes appears to be

associated with an irreversible energy exchange due to the interaction of the displaced mean flow

and shear stress. For d? = 0, kinetic energy budgets indicate that the TS mode is stabilized as VR

is increasing under the action of two mechanisms. First, the work of the Reynolds stress against the

mean flow exhibits a region above the critical layer which is negative. Here, energy is transferred

from the wave to the base flow. The second mechanism is associated with an irreversible energy

transfer from the fluctuation to the mean flow due to the mean flow displacement near the walls.

Finally, the vertical distribution of production term associated with TWF mode is observed to peak

near the walls and exhibits an inflexion point close to the critical layer for both symmetries. Hence,

it shows some differences with results provided by Domaradzki & Metcalfe26 for the boundary layer

where a peak is observed near the critical layer position. Furthermore, the energy transfer from

the wall to the fluid is mainly attributed to a pressure diffusion term.

Extension of the present study to non modal stability analyses can be considered in a future

work. Hœpffner et al. 33 have investigated the same problem for three-dimensional perturbations

but numerical oscillations were observed by the authors when increasing the number of eigenmodes

used to compute transient growth. The formulation adopted here is free of spurious pressure

modes and we believe that the problem can be solved using the numerical procedure developed

in the present analysis. In addition, the role of the reduced velocity has not been investigated by

Hœpffner et al. 33. Finally, it should also be interesting to extend our study to pulsatile flow36,37

and the pipe geometry which cover more biologically significant phenomena.
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FIG. 23: Neutral curves. Sinuous configuration. Validation and illustration of the effect of the

boundary conditions used for the fluid/structure interaction problem.

K∗ = 107, B∗ = 4K∗, d∗ = 0 and Γ = 2. DC: results extracted from20. BC1 : the formulation

adopted in the present paper for the fluid/structure interaction problem. BC2 : the pressure at

the wall is expressed as in20 and we neglect the viscous stress at the walls. BC3 : formulation

adopted by25.

6. APPENDIX: VALIDATION AND INFLUENCE OF BOUNDARY CONDITIONS

For validation purposes, we adopt choices made by Davies & Carpenter20 for dimensionless

wall equations. Here, the Reynolds number is based on h, ν and the centerline velocity. The

dimensionless wall parameters are

Γ =
m

ρh
, B∗ =

B

hρν2
, K∗ =

Kh3

ρν2
, d∗ =

dh

ρν
.

Davies & Carpenter20 used an Orr–Sommerfeld equation for solving the fluid–structure interaction

problem. The pressure at the lower wall is recovered through:

p (−1) =
1

2

(
−iω

∫ 1

−1
v̂dy + iα

∫ 1

−1
Ubv̂dy

)
where the viscous terms have been neglected. For consistency, the authors have also neglected

the effect of the viscous stress at the wall for the coupling between the fluid and the walls. We

recall that this formulation is correct only for the sinuous configuration. Guaus et al. 25 used a

primitive formulation for the same problem and considered only the pressure at the wall for the

force associated with the fluid acting at the walls. However, the pressure is computed without
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neglecting the viscous stress along the wall normal direction. In the present study, we have not

neglected the effect of the viscous stress on both the pressure and the force acting onto the walls.

In figure 23, we show the neutral curve for the sinuous TWF mode for K∗ = 107, B∗ = 4K, d∗ = 0

and Γ = 2. The figure shows an almost perfect agreement between our approach and the one given

by Davies & Carpenter20. It supports the hypotheses made by the previous authors. Nevertheless,

our approach is more general because it also allows to deal with the varicose symmetry. In addition,

the system also reduces to an Orr–Sommerfeld problem with only one velocity component. The

figure 23 also shows that the formulation made by Guaus et al. 25 is not consistent and leads to

discrepancies near the critical Reynolds number.
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