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2 HEC Montréal, GERAD, Montreal, Canada
yossiri.adulyasak@hec.ca

Abstract. In a manufacturing context, the lot-sizing problems (LSP)
determine the quantity to produce over a planning horizon. Often, the
parameters used in the LSP models are unknown when the decisions
are made, and this uncertainty has a critical impact on the quality of
the decisions. However, the large amount of data that can nowadays be
collected from the shop floor allows inferring information on the LSP
parameters and their variability. Therefore, a recent research trend is to
properly account for the uncertainty in the LSP optimization models.
This work presents a survey on data-driven optimization approaches for
the LSPs. We also provide a comparison of some promising optimization
methodologies in the context of data-driven modeling of LSPs.

Keywords: Data-driven optimization · Lot-sizing problem ·
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1 Introduction

The lot-sizing problem (LSP) [16] determines the production lots over a planning
horizon that minimize overall costs and maintains a satisfactory level of service.
Due to its practical importance, the LSPs attracted a wide range of research
from the manufacturing and mathematical optimization communities. In fact,
production and distribution systems are settled in chaotic environment where
production, quality, sales, purchasing, logistics, corporate, technical, accounting
and marketing department are constantly affected by unexpected events. Thus,
LSPs become inadequate to meet the needs of the industry if they are not simple
enough to be adapted to changes in the environment [8].
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Production and distribution systems face various sources of uncertainties
(demand, lead time, production yield, among others) that affect the costs and
service level associated with the lot-sizes. Traditionally, these systems dampen
these uncertainties by changing parameters of the planning systems, such as the
safety stock, safety lead-time, and re-planning frequency. Advances in computing
technologies and the massive availability of data led to the design of data-driven
optimizations to directly incorporate the uncertainties within the LSP, such as
stochastic programming (SP) [5], robust optimization (RO) [1], and distribu-
tionally robust optimization (DRO) [17].

While SP models often seeks to minimize the expected costs over the distri-
bution of the uncertain LSP parameters, RO models minimize the overall costs
with regard to the worst-case realization of the LSP uncertainties. Finally, DRO
extends stochastic optimization by taking into account the uncertain probabil-
ity distributions of the unknown parameter. Even if these methodologies aim to
optimize the LSPs by mitigating uncertainties, continual modification on LSP
parameters leads to constant update of the production plans [7]. To overcome
this issue, a data-based perspective of optimization methodologies emerges as a
rather new and promising approach to compute production plans that are flexible
to changes, and whose impacts due to unexpected events is more controllable.

The data-driven models often rely on a statistical analysis of the available
data [3]. Bertsimas et al. [4] propose a data-driven approach based on sam-
ple approximation algorithms to choose the decision rules that perform best
from the perspective of the worst-case within a stochastic process. Jiang and
Guan [10] propose a data-driven methodology to obtain robust solutions from
a chance-constrained problem with inaccurate probability distributions of the
uncertain parameters. Then, they proposed a data-driven approach to solve the
LSP under demand uncertainty based on sample average approximation algo-
rithm [11]. Ning et al. [12] propose some artificial intelligence techniques have
been investigated for labeling the available uncertain data and to compute near-
optimal solutions through a data-driven approach. In addition, they present a
data-driven via the DRO methodology. A state-of-the-art in data analytics and
machine learning methods for process manufacturing in the light of big data
approaches is presented in [13]. Zhao et al. [19] proposes a data-driven approach
based on the kernel density estimation to represent the uncertain parameters
into the optimization problems based on information from the historical data.

Although data-driven optimization emerges as a rather novel methodology to
deal with non-deterministic optimization problems, a data-driven perspective of
the LSPs is still missing in the literature. This has inspired us to develop a survey
on data-driven optimization approaches applied to the LSPs. We are not interest
in an exhaustive literature review, but in a survey of the existing literature on
the data-driven optimization for LSP models. The remainder of this paper is
organized as follows: Sect. 2 presents the application of the different optimiza-
tion approaches starting from the data up to implementable decisions. Section 3
provides the advantages and issues of these methods in terms of computation
time, tractability, flexibility in handling unforeseen events, and robustness of the
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solution. Section 4 gives the main research areas of the data-driven optimization
to handle the LSPs. Finally, Sect. 5 summarizes the main findings of this work.

2 Data-Driven Optimizations for the LSPs

The main steps of the data-driven optimization (DDO) are: i. the definition of
the uncertain parameters distribution characteristics; ii. the analysis and pro-
cessing of available data (eventually coming from various sources) to learn how
to represent the uncertainties; iii. the formulation and modeling of the prob-
lem within the perspective of a chosen optimization method. Figure 1 gives a
schematic view on this methodology, and its steps are described in the rest of
this section.

Fig. 1. DDO framework

i. Selection of uncertain data: On the one hand, ignoring uncertainties in
LSPs leads to sub-optimal decisions. On the other hand, the inclusion of uncer-
tainties increases the model complexity, and the solution might require large
computation time and memory consumption. Consequently, the decision-maker
must carefully analyze the historical data, forecast, probability distributions of
data, experts insights, domain-specific knowledge, and any other available infor-
mation to select the type of uncertainties to include in the optimization model.
The decision-maker may consider the parameters whose value cannot be esti-
mated accurately, and whose variance affects the decisions.

ii. Uncertainty representation: aims to incorporate partial information
obtained from the uncertainties into the optimization methodology. For this,
some data processing and analysis methods are used to manipulate uncertain-
ties and extract as much useful and accurate information as possible. For the
SP models, this step estimates the probability distributions with some statisti-
cal methods, such as analyzing historical data and the moment information, or
some non-parametric statistical estimation [5]. For the RO models, the uncer-
tainty sets are designed to preserve the computational tractability of robust
models [2]. Consequently, these sets have well-defined structures such as box
and ellipsoid uncertainty set [2]. Similarly, for the DRO, the distributional sets
contain distributions with similar properties about the uncertainties, and these
sets have well defined structures [18]. Among the more applied methods to build
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uncertainty and distributional sets from data, we cite the statistical hypothesis
testing validation [3] and machine learning techniques [12].

iii. Optimization methods: The solution approaches for the LSPs usually
rely on mixed-integer linear programming, and the choice of the model must
be adapted to the production context. First, multiple formulations of the LSPs
exist, and the most efficient ones change depending on the context [9]. Second,
the incorporation of uncertainty in these models depends on the decision frame-
work [15]. Within a static decision framework, the lot-sizes are fixed for the
entire horizon, and so they are frozen. This situation corresponds to a two-stage
stochastic optimization model or a classical robust optimization model. Within a
dynamic decision framework, decisions can be updated in each period t after that
some uncertain parameters are revealed for periods up to t. This situation cor-
responds to a multi-stage stochastic optimization model or an adjustable robust
optimization model. Finally, in a non-deterministic context, the models must
include a mechanism to dampen uncertainty without escalating the costs. This
mechanism may be a service level constraint [14], though an appropriate balance
between the lost sales/backordering costs and inventory costs can also improve
the quality of the solution.

Solving large-scale LSPs in an uncertain context can require intensive com-
putations. To solve practical size instances with the SP method, the resolution
approaches often rely on sampling methods, such as sample average approxi-
mation algorithm, or decomposition such as L-shaped, stochastic dual dynamic
programming, or Progressive Hedging. The solution strategies for RO and DRO
often cover the reformulation per constraint and dualization, and adversarial
approaches, such as heuristics, branch-and-bound, or decomposition approaches.

3 Comparison of RO, SP, and DRO Methodologies

The choice of an optimization depends on decision makers’ preferences, instance
structures, available information, and expected trade-off in terms of solution
quality and computing time. Although the problem involves three possible deci-
sion frameworks, namely static, static-dynamic and dynamic strategies, we focus
our study on the static case. Based on the existing literature, we present a brief
analysis of the performance of each method in terms of scalability, tractability,
conservatism and flexibility of adaptation to unforeseen events.

First, RO can be used when little or no data is available, whereas SP requires
large historic data to accurately estimate the probability distribution. The SP
formulations often suffer from scalability issues, because the model must properly
account for the uncertainty (often by relying on large scenario samples). On the
contrary, RO approaches often remain tractable for practical size problems, when
the robust model can be formulated as a convex problem.

RO typically optimizes the worst possible realization of the uncertain param-
eters, which leads to conservative solutions. On the contrary, the SP optimizes
the expected costs, but it requires an sufficiently good probability distribution.
Therefore SP solutions are poorly flexible to unforeseen or misrepresented events.
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The DRO proposes a trade-off between these two approaches since it compen-
sates the conservatism of the RO by taking advantage of partial distributional
information obtained from the probability distributions from the SP framework.
Hence, DRO emerges as a method sufficiently flexible to unforeseen events, while
it remains computationally tractable, and it provides a less conservative solution.

4 Discussion

The LSPs have been studied for decades, but it still has room for improvements
and further investigation. The SP, RO and DRO methodologies have stood out
either for the quality of the solution, or for the ease of calculation within an
uncertain environment. Most of the studies on optimization under uncertainties
rely on statistical approaches to expound available data, and to reduce the con-
servatism of solutions. The growth of learning methods and the increase in data
availability have motivated recent works to develop some data-based approaches
that deal with the uncertain information [6].

Data-driven approaches enhance the quality and the performance of the
methodologies for optimization under uncertainties. Among the methodologies
presented in this work, a natural application of the data-driven methodology
leads to distributionally robust optimization. Here, some data processing and
analysis is implemented to extract more quality information from the decision
context, and propose better predictions about the information of the uncertain
parameters. Therefore, a worst-case perspective can be applied over all gathered
distributional data. Thus, an optimization combining the expected value from
the SP and the robustness from RO would propose more realistic solutions.

DDO is an emerging field of research, whose techniques, approaches, and
applications are still under development. More applications should be analyzed
to report the feasibility and tractability of the proposed approaches in real appli-
cations. On the other hand, further investigation into the application and fea-
sibility of different data-driven approaches must be carried out to deal with
different versions of LSPs, considering not only different versions of the problem
but also different uncertain parameters. In addition, a deeper study of data pro-
cessing, data analysis, and machine learning techniques is envisaged to develop
data-driven approaches, and to better understand their challenges, limits, and
prospects for improving different optimization methodologies.

5 Conclusion

There is a growing interest about data-driven optimization for lot-sizing prob-
lems. These methods learn the uncertainty representation from the data, and
they incorporate these uncertainties in the lot-sizing models. The DRO can be
applied to tackle different types of uncertainties which would derive more ben-
efits from the DDO approach, being more stochastic or robust according to the
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decision maker’s needs and decision environment. Although DRO is a promising
method integrating data-driven approaches to the conception of flexible produc-
tion plans, there is a lack of research on the DDO methods for the LSPs. Further
studies should be envisaged to fulfill this knowledge gap.
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