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We consider the modified Korteweg-de Vries equation (mKdV) and prove that given any sum 𝑃 of solitons and breathers of (mKdV) (with distinct velocities), there exists a solution 𝑝 of (mKdV) such that 𝑝(𝑡) -𝑃(𝑡) → 0 when 𝑡 → +∞, which we call multi-breather. In order to do this, we work at the 𝐻 2 level (even if usually solitons are considered at the 𝐻 1 level). We will show that this convergence takes place in any 𝐻 𝑠 space and that this convergence is exponentially fast in time.

We also show that the constructed multi-breather is unique in two cases: in the class of solutions which converge to the profile 𝑃 faster than the inverse of a polynomial of a large enough degree in time (we will call this a super polynomial convergence), or (without hypothesis on the convergence rate), when all the velocities are positive.

1. Introduction 1.1. Setting of the problem. We consider the modified Korteweg-de Vries equation on R:

𝑢 𝑡 + (𝑢 𝑥𝑥 + 𝑢 3 ) 𝑥 = 0 𝑢(0) = 𝑢 0 (𝑡, 𝑥) ∈ R 2 𝑢(𝑡, 𝑥) ∈ R (mKdV)
The (mKdV) equation appears as a model of some physical problems as plasma physics [START_REF] Schamel | A modified korteweg-de vries equation for ion acoustic wavess due to resonant electrons[END_REF][START_REF] Cheemaa | Study of the dynamical nonlinear modified korteweg-de vries equation arising in plasma physics and its analytical wave solutions[END_REF], electrodynamics [START_REF] Perelman | A modified korteweg-de vries equation in electrodynamics[END_REF], fluid mechanics [START_REF] Helal | A Chebyshev spectral method for solving Korteweg-de Vries equation with hydrodynamical application[END_REF], ferromagnetic vortices [START_REF] Wexler | Contour dynamics, waves, and solitons in the quantum hall effect[END_REF], and more.

In [START_REF] Kenig | Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF], Kenig, Ponce and Vega established local well-posedness in 𝐻 𝑠 , for 𝑠 ≥ 1 4 , of the Cauchy problem for (mKdV), by fixed point argument in 𝐿 𝑝 𝑥 𝐿 𝑞 𝑡 type spaces. Moreover, if 𝑠 > 1 4 , the Cauchy problem is globally well posed [START_REF] Colliander | Sharp global well-posedness for KdV and modified KdV on R and T[END_REF]. Recently, Harrop-Griffiths, Killip and Visan [START_REF] Harrop-Griffiths | Sharp well-posedness for the cubic NLS and mKdV in 𝐻 𝑠 (R)[END_REF] proved local well-posedness in 𝐻 𝑠 for 𝑠 > -1/2. However, in this paper, we will only use the global wellposedness in 𝐻 2 .

(mKdV) is an integrable equation (like the original Korteweg-de Vries equation) and thus it has an infinity of conservation laws, see [START_REF] Miura | Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion[END_REF][START_REF] Ablowitz | The inverse scattering transform-Fourier analysis for nonlinear problems[END_REF]. We will use three of them (the first two of them are called mass and energy; the third is sometimes called second energy): Observe that if 𝑢 is a solution of (mKdV) then -𝑢 and, for any 𝑥 0 ∈ R, (𝑡, 𝑥) ↦ → 𝑢(𝑡, 𝑥 -𝑥 0 ) are solutions of (mKdV) too.

(mKdV) is a dispersive nonlinear equation that is a special case of a more general class of equations: the general Korteweg-de Vries equation (gKdV), where the nonlinearity 𝑢 3 is replaced by 𝑓 (𝑢) for some real valued function 𝑓 . The particularity of (mKdV) in comparison to other (gKdV) equation is that it admits special non linear solutions, namely breather solutions. The most simple nonlinear solutions of (mKdV) are solitons, i.e. a bump of a constant shape that translates with a constant velocity without deformation, that is, solutions of the form 𝑢(𝑡, 𝑥) = 𝑄 𝑐 (𝑥 -𝑐𝑡), where 𝑐 is the velocity and 𝑄 𝑐 is the profile function that depends only on one variable. 𝑄 𝑐 ∈ 𝐻 1 (R) should solve the elliptic equation:

𝑄 ′′ 𝑐 = 𝑐𝑄 𝑐 -𝑄 3 𝑐 . (1.1.4)
We can show that necessarily 𝑐 > 0 and that, if 𝑐 > 0, (1.1.4) has a unique solution in 𝐻 1 (R), up to translations and reflexion with respect to the 𝑥-axis. Actually, one has the explicit formula:

𝑄 𝑐 (𝑥) := 2𝑐 cosh 2 𝑐 1/2 𝑥 1 2
. (1. 1.5) Observe that we chose 𝑄 𝑐 so that it is even and positive.

A soliton is a solution of (mKdV), parameterized by a velocity parameter 𝑐 > 0, a sign parameter 𝜅 ∈ {-1, 1} and a translation parameter 𝑥 0 ∈ R (it corresponds to the initial position of the soliton) that has the following expression: 𝑅 𝑐,𝜅 (𝑡, 𝑥; 𝑥 0 ) := 𝜅𝑄 𝑐 (𝑥 -𝑥 0 -𝑐𝑡).

(1. 1.6) When 𝜅 = -1, this object is sometimes called antisoliton. Notice that solitons are smooth and decaying. The generalized Korteweg-de Vries equation (gKdV) also admit soliton type solutions, and the focusing nonlinear Schrödinger equation (NLS) as well. Solitons have been extensively studied, in particular their stability. Cazenave, Lions and Weinstein in [START_REF]Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF][START_REF] Berestycki | Nonlinear scalar field equations. I. Existence of a ground state[END_REF][START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF][START_REF] Weinstein | Modulational stability of ground states of nonlinear Schrödinger equations[END_REF] were interested in orbital stability of (gKdV) and (NLS) solitons in 𝐻 1 . A soliton of (mKdV) is indeed orbitally stable, i.e. if a solution is initially close to a soliton in 𝐻 1 (R), then it stays close to the soliton, up to a space translation defined for any time, in 𝐻 1 (R). General results about orbital stability of nonlinear dispersive solitons are presented by Grillakis, Shatah and Strauss in [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry. II[END_REF]. The result about orbital stability of a soliton can be improved in a result of asymptotic stability, as it was done in the works by Martel and Merle [START_REF] Martel | Asymptotic stability of solitons for subcritical generalized KdV equations[END_REF][START_REF]Asymptotic stability of solitons of the gKdV equations with general nonlinearity[END_REF][START_REF]Asymptotic stability of solitons of the subcritical gKdV equations revisited[END_REF], see also [START_REF] Germain | Asymptotic stability of solitons for mKdV[END_REF].

A breather is a solution of (mKdV), parameterized by 𝛼, 𝛽 > 0, 𝑥 1 , 𝑥 2 ∈ R that has the following expression: It corresponds to a localized periodic in time function (with frequency 𝛼, and exponential localization with decay rate 𝛽) that propagates at a constant velocity -𝛾 in time. Like solitons, breathers are smooth and decaying in space. Unlike solitons, breather's velocities can be positive, zero or negative. 𝛼, 𝛽 are the shape parameters and 𝑥 1 , 𝑥 2 are the translation parameters of a breather. Note that if we replace the parameter 𝑥 1 by 𝑥 1 + 𝜋 𝛼 , we transform 𝐵 𝛼,𝛽 (•, •; 𝑥 1 , 𝑥 2 ) in -𝐵 𝛼,𝛽 (•, •; 𝑥 1 , 𝑥 2 ) (therefore, we do not need to talk about "antibreathers").

Breathers were first introduced by Wadati in [START_REF] Wadati | The modified korteweg-de vries equation[END_REF], and they were already used by Kenig, Ponce and Vega in [START_REF]On the ill-posedness of some canonical dispersive equations[END_REF] to prove that the flowmap associated to (mKdV) equation is not uniformly continuous in 𝐻 𝑠 for 𝑠 < 1 4 : the point is that two breathers with close velocities can be very close at 𝑡 = 0 and can separate as fast as we want in 𝐻 𝑠 with 𝑠 < 1 4 , if 𝛼 is taken large enough. (mKdV) breathers and their properties, as well as breathers for other equations, are well studied by Alejo and Muñoz and co-authors in [START_REF]Nonlinear stability of MKdV breathers[END_REF][START_REF] Alejo | On the nonlinear stability of mKdV breathers[END_REF][START_REF] Alejo | On the variational structure of breather solutions I: Sine-Gordon equation[END_REF][START_REF]On the variational structure of breather solutions II: Periodic mKdV equation[END_REF][START_REF]Dynamics of complex-valued modified KdV solitons with applications to the stability of breathers[END_REF].

Let us singularize a result of 𝐻 2 orbital stability for breathers established in [START_REF]Nonlinear stability of MKdV breathers[END_REF], and improved to 𝐻 1 orbital stability in [START_REF]Dynamics of complex-valued modified KdV solitons with applications to the stability of breathers[END_REF]. In this last paper, a partial result of asymptotic stability is also given, for breathers traveling to the right only, with positive velocity -𝛾 > 0; asymptotic stability for breathers in full generality is still an open problem.

When 𝛼 → 0, 𝐵 𝛼,𝛽 tends to a solution of (mKdV) called double-pole solution [START_REF] Wadati | Multiple-pole solutions of the modified korteweg-de vries equation[END_REF], the methods employed in this article as well as the proof of orbital stability made by Alejo and Muñoz seem not to apply for this limit, which is expected to be unstable according to the numerical computations in [START_REF] Gorria | Discrete conservation laws and the convergence of long time simulations of the mkdv equation[END_REF].

An important result regarding the long time dynamics of (mKdV) is the soliton-breather resolution [START_REF] Chen | Soliton resolution for the focusing modified KdV equation[END_REF]: it asserts that any generic solution can be approached by a sum of solitons and breathers when 𝑡 → +∞ (up to a dispersive and a self-similar term). Together with their stability properties, the soliton-breather resolution shows why solitons and breathers are essential objects to study. This resolution was established for initial conditions in a weighted Sobolev space in [START_REF] Chen | Soliton resolution for the focusing modified KdV equation[END_REF] (see also Schuur [START_REF] Schuur | Asymptotic analysis of soliton problems[END_REF]) by inverse scattering method; see also [START_REF] Schuur | Asymptotic analysis of soliton problems[END_REF] for the soliton resolution for (KdV). Observe that (mKdV) breathers do not decouple into simple solitons for large time (it is a fully bounded state as it is called in [START_REF]Nonlinear stability of MKdV breathers[END_REF]); therefore, it must appear in the resolution. The soliton-breather resolution is one of the motivations of the study of multi-breathers, which we define below.

There are works in the literature about a more complicated object obtained from several solitons: a multi-soliton. A multi-soliton is a solution 𝑟(𝑡) of (mKdV) such that there exists 0 < 𝑐 1 < 𝑐 2 < ... < 𝑐 𝑁 , 𝜅 1 , ..., 𝜅 𝑁 ∈ {-1, 1} and 𝑥 1 , ..., 𝑥 𝑁 ∈ R, such that lim 𝑡→+∞ 𝑟(𝑡) -𝑁 𝑗=1 𝑅 𝑐 𝑗 ,𝜅 𝑗 (𝑡, •; 𝑥 𝑗 )

𝐻 1 (R) = 0. (1.1.8)
This definition is not specific to (mKdV) and makes sense for many other nonlinear dispersive PDEs as soon as they admit solitons. This object is introduced by Schuur [START_REF] Schuur | Asymptotic analysis of soliton problems[END_REF] and Lamb [START_REF] Lamb | Elements of soliton theory[END_REF], see also Miura [START_REF] Miura | The Korteweg-de Vries equation: a survey of results[END_REF], where explicit formulas are given: these were obtained by inverse scattering method thanks to the integrability of the equation. Multi-solitons were first constructed in a non integrable context by Merle [START_REF] Merle | Construction of solutions with exactly 𝑘 blow-up points for the Schrödinger equation with critical nonlinearity[END_REF] for the mass critical (NLS). Martel [START_REF] Martel | Asymptotic 𝑁-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF] constructed multi-solitons for masssubcritical and critical (gKdV) equations and proved that they are unique in 𝐻 1 (R), smooth and converge exponentially fast to their profile in any Sobolev space 𝐻 𝑠 . Similar studies were done for other nonlinear dispersive PDEs. Martel and Merle [START_REF]Multi solitary waves for nonlinear Schrödinger equations[END_REF] have proved the existence of multi-solitons for (NLS) in 𝐻 1 , Côte, Martel and Merle extended this construction to mass supercritical (gKdV) and (NLS) in [START_REF] Côte | Construction of multi-soliton solutions for the 𝐿 2 -supercritical gKdV and NLS equations[END_REF]. Friederich and Côte in [START_REF] Côte | On smoothness and uniqueness of multi-solitons of the non-linear Schrödinger equations[END_REF] proved smoothness, and uniqueness in a class of algebraic convergence. Côte and Muñoz constructed in [START_REF] Côte | Multi-solitons for nonlinear Klein-Gordon equations[END_REF] multi-solitons for the nonlinear Klein-Gordon equation. Ming, Rousset and Tzvetkov have constructed multi-solitons for the water-waves systems in [START_REF] Ming | Multi-solitons and related solutions for the water-waves system[END_REF]. Valet has proved in [START_REF] Valet | Asymptotic 𝐾-soliton-like solutions of the Zakharov-Kuznetsov type equations[END_REF] the existence and uniqueness of multi-solitons in 𝐻 1 for the Zakharov-Kuznetsov equation, which generalizes (gKdV) to higher dimension. 1.2. Main results. We prove in this article that given any sum of solitons and breathers with distinct velocities, there exists a solution of (mKdV) whose difference with this sum tends to zero when time goes to infinity. This solution will be called a multi-breather. Let us make the definition more precise.

Let 𝐽 ∈ N and 𝐾, 𝐿 ∈ N such that 𝐽 = 𝐾 + 𝐿. We will consider a set of 𝐿 solitons and 𝐾 breathers:

• the breather parameters are 𝛼 𝑘 > 0, 𝛽 𝑘 > 0, 𝑥 0 1,𝑘 ∈ R and 𝑥 0 2,𝑘 ∈ R for 1 ≤ 𝑘 ≤ 𝐾. • the solitons parameters are 𝑐 𝑙 > 0, 𝜅 𝑙 ∈ {-1, 1} and 𝑥 0 0,𝑙 ∈ R for 1 ≤ 𝑙 ≤ 𝐿. We define for 1 ≤ 𝑘 ≤ 𝐾, the 𝑘th breather: 𝐵 𝑘 (𝑡, 𝑥) := 𝐵 𝛼 𝑘 ,𝛽 𝑘 (𝑡, 𝑥; 𝑥 0 1,𝑘 , 𝑥 0 2,𝑘 ); (1.2.1) and for 1 ≤ 𝑙 ≤ 𝐿, the 𝑙th soliton: 𝑅 𝑙 (𝑡, 𝑥) := 𝑅 𝑐 𝑙 ,𝜅 𝑙 (𝑡, 𝑥; 𝑥 0 0,𝑙 ). (1.2.2)

We now define the velocity of our objects. Recall that for 1 ≤ 𝑘 ≤ 𝐾, the velocity of 𝐵 𝑘 is

𝑣 𝑏 𝑘 := -𝛾 𝑘 = 𝛽 2 𝑘 -3𝛼 2 𝑘 , (1.2.3)
and for 1 ≤ 𝑙 ≤ 𝐿, the velocity of 𝑅 𝑙 is

𝑣 𝑠 𝑙 := 𝑐 𝑙 . (1.2.4)
The most important assumption we make is that all these velocities are distinct:

∀𝑘 ≠ 𝑘 ′ 𝑣 𝑏 𝑘 ≠ 𝑣 𝑏 𝑘 ′ , ∀𝑙 ≠ 𝑙 ′ 𝑣 𝑠 𝑙 ≠ 𝑣 𝑠 𝑙 ′ , ∀𝑘, 𝑙 𝑣 𝑏 𝑘 ≠ 𝑣 𝑠 𝑙 . (1.2.5)
These implies for any two of these objects to be far from each other when time is large, and this assumption is essential in our analysis.

It will be useful to order our breathers and solitons by increasing velocities. As these are distinct, we can define an increasing function:

𝑣 : {1, ..., 𝐽} -→ {𝑣 𝑏 𝑘 , 1 ≤ 𝑘 ≤ 𝐾} ∪ {𝑣 𝑠 𝑙 , 1 ≤ 𝑙 ≤ 𝐿}. (1.2.6)
The set {𝑣 1 , ..., 𝑣 𝐽 } is thus the (ordered) set of all possible velocities of our objects. We define 𝑃 𝑗 , for 1 ≤ 𝑗 ≤ 𝐽, as the object (either a soliton 𝑅 𝑙 or a breather 𝐵 𝑘 ) that corresponds to the velocity 𝑣 𝑗 . Hence, 𝑃 1 , ..., 𝑃 𝐽 are the considered objects ordered by increasing velocity.

We will need both notations: the indexation by 𝑘 and 𝑙, and the indexation by 𝑗, and we will keep these notations to avoid ambiguity.

We will denote by 𝑥 𝑗 the center of mass of 𝑃 𝑗 , that is • if 𝑃 𝑗 = 𝐵 𝑘 is a breather, we set 𝑥 𝑗 (𝑡) := -𝑥 0 2,𝑘 + 𝑣 𝑗 𝑡; • if 𝑃 𝑗 = 𝑅 𝑙 is a soliton, we set 𝑥 𝑗 (𝑡) := 𝑥 0 0,𝑙 + 𝑣 𝑗 𝑡. We denote: structure of breathers, in the same fashion as Weinstein did in [START_REF]Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF] for (NLS) solitons. Such results were obtained by Alejo and Muñoz in [START_REF]Nonlinear stability of MKdV breathers[END_REF]: a breather is a critical point of a Lyapunov functional at the 𝐻 2 level, whose Hessian is coercive up to several (but finitely many) orthogonal conditions, see Section 2 for details. As we see from [START_REF]Nonlinear stability of MKdV breathers[END_REF], the 𝐻 2 regularity level is the most natural setting to study breathers, and the 𝐻 1 regularity level is natural for the study of solitons (as we see in [START_REF] Martel | Asymptotic 𝑁-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF][START_REF]Multi solitary waves for nonlinear Schrödinger equations[END_REF]). One important issue we face is therefore to understand soliton variational structure at 𝐻 2 level, and to adapt the Lyapunov functional in [START_REF]Nonlinear stability of MKdV breathers[END_REF] to accommodate for a sum of breathers (and solitons). Notice that arguments based on monotonicity may be adapted only if we suppose that all the considered velocities are positive. Because [START_REF]Multi solitary waves for nonlinear Schrödinger equations[END_REF][START_REF] Côte | On smoothness and uniqueness of multi-solitons of the non-linear Schrödinger equations[END_REF] are not based on monotonicity (these are results for (NLS) which is not well suited for monotonicity), we can adapt their arguments to obtain existence and uniqueness results for our case without any condition on the sign of velocities. The uniqueness result obtained in this setting is however weaker than the one that is obtained with monotonicity arguments.

1.3. Outline of the proof. The proof of Theorem 1.2 (the existence of multi-breathers) is split into two main parts: the construction of an 𝐻 2 multi-breather and the proof that this multi-breather is smooth.

1.3.1. An 𝐻 2 multi-breather. Let us start with the first part. We consider an increasing sequence (𝑇 𝑛 ) of R + with 𝑇 𝑛 → +∞, and for 𝑛 ∈ N, let 𝑝 𝑛 the unique global 𝐻 2 solution of (mKdV) such that 𝑝 𝑛 (𝑇 𝑛 ) = 𝑃(𝑇 𝑛 ) (recall that the Cauchy problem for (mKdV) is globally well-posed in 𝐻 2 ).

We will prove the following uniform estimate:

Proposition 1.6. There exists 𝑇 * > 0, 𝐴 > 0, 𝜃 > 0 such that, for any 𝑛 ∈ N such that 𝑇 𝑛 ≥ 𝑇 * , ∀𝑡 ∈ [𝑇 * , 𝑇 𝑛 ], ∥𝑝 𝑛 (𝑡) -𝑃(𝑡)∥ 𝐻 2 ≤ 𝐴𝑒 -𝜃𝑡 . (1. 3.1) With this proposition in hand, we can construct an 𝐻 2 multi-breather which converges exponentially fast to its profile, which is the first part of Theorem 1.2, as stated below.

Proposition 1.7. There exists 𝑇

* ∈ R, 𝐴 > 0, 𝜃 > 0 and a solution 𝑝 ∈ 𝐶([𝑇 * , +∞), 𝐻 2 (R)) of (mKdV) such that ∀𝑡 ≥ 𝑇 * , ∥𝑝(𝑡) -𝑃(𝑡)∥ 𝐻 2 ≤ 𝐴𝑒 -𝜃𝑡 . (1.3.2)
Proof of Proposition 1.7 assuming Proposition 1.6. We show that the sequence 𝑝 𝑛 (𝑇 * ) is 𝐿 2 -compact, in the following sense: Lemma 1.8. For any 𝜀 > 0, there exists 𝑅 > 0 such that

∀𝑛 ∈ N ∫ |𝑥|>𝑅 𝑝 2 𝑛 (𝑇 * , 𝑥) 𝑑𝑥 < 𝜀. (1.3.3)
An analogous lemma has already been proved on p. 1111 of [START_REF] Martel | Asymptotic 𝑁-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF], which is the proof of formula [START_REF] Côte | On smoothness and uniqueness of multi-solitons of the non-linear Schrödinger equations[END_REF] (and can also be found in [START_REF]Multi solitary waves for nonlinear Schrödinger equations[END_REF]). The same proof works here. We need to use Proposition 1.6 for 𝑇 𝑛 large enough and then make a time variation to obtain the result in 𝑇 * . We can first find 𝑅 that works for 𝑃 2 (𝑡 0 ) instead of 𝑝 2 𝑛 (𝑇 * ) for a fixed 𝑡 0 > 𝑇 * large enough. From Proposition 1.6, we see that if we take 𝑡 0 large enough, we obtain the desired lemma for 𝑝 2 𝑛 (𝑡 0 ) instead of 𝑝 2 𝑛 (𝑇 * ). To finish, with the help of a cut-off function, we control time variations of

∫ |𝑥|>𝑅 𝑝 2 𝑛 (𝑡) 𝑑𝑥,
where 𝑅 is taken larger if needed. This is why, we obtain the result at 𝑡 = 𝑇 * .

As a consequence of the Proposition 1.6 above, (∥𝑝 𝑛 (𝑇 * )∥ 𝐻 2 ) is a bounded sequence. Thus, there exists 𝑝 * ∈ 𝐻 2 (R) such that, up to a subsequence,

𝑝 𝑛 (𝑇 * ) ⇀ 𝑝 * in 𝐻 2 . (1.3.4)
Thus, from Lemma 1.8, there holds the strong convergence:

𝑝 𝑛 (𝑇 * ) → 𝑝 * in 𝐿 2 . (1.3.5)
Therefore, we obtain by interpolation:

𝑝 𝑛 (𝑇 * ) → 𝑝 * in 𝐻 1 . (1.3.6)
Now, let us consider the global 𝐻 1 (even 𝐻 2 ) solution 𝑝 of (mKdV) such that 𝑝(𝑇 * ) = 𝑝 * . As shown in [START_REF] Martel | Asymptotic 𝑁-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF], the Cauchy problem for (mKdV) has a continuous dependence in 𝐻 1 on compact sets of time. Let 𝑡 ≥ 𝑇 * . By continuous dependence, we deduce that 𝑝 𝑛 (𝑡) → 𝑝(𝑡) in 𝐻 1 . (𝑝 𝑛 (𝑡) -𝑃(𝑡)) is a bounded sequence in 𝐻 2 , which admits a unique weak limit and so

𝑝 𝑛 (𝑡) -𝑃(𝑡) ⇀ 𝑝(𝑡) -𝑃(𝑡) in 𝐻 2 . (1.3.7)
By weak convergence and from Proposition 1.6, we obtain:

∥𝑝(𝑡) -𝑃(𝑡)∥ 𝐻 2 ≤ lim inf 𝑛→+∞ ∥𝑝 𝑛 (𝑡) -𝑃(𝑡)∥ 𝐻 2 ≤ 𝐴𝑒 -𝜃𝑡 . (1.3.8)
As this is true for any 𝑡 ≥ 𝑇 * . This ends the proof of the Proposition 1.7.

□

It remains to prove Proposition 1.6, for which we rest on a bootstrap argument. More precisely, we will reduce the proof to the following proposition: Proposition 1.9. There exists 𝑇 * > 0, 𝐴 > 0, 𝜃 > 0, such that for any 𝑛 ∈ N such that 𝑇 𝑛 ≥ 𝑇 * , for any

𝑡 * ∈ [𝑇 * , 𝑇 𝑛 ], if ∀𝑡 ∈ [𝑡 * , 𝑇 𝑛 ], ∥𝑝 𝑛 (𝑡) -𝑃(𝑡)∥ 𝐻 2 ≤ 𝐴𝑒 -𝜃𝑡 , (1.3.9) then ∀𝑡 ∈ [𝑡 * , 𝑇 𝑛 ], ∥𝑝 𝑛 (𝑡) -𝑃(𝑡)∥ 𝐻 2 ≤ 𝐴 2 𝑒 -𝜃𝑡 . (1.3.10)
The proof of Proposotion 1.6 then follows from a simple continuity argument.

Proof of Proposition 1.6 assuming Proposition 1.9. We define 𝑡 * 𝑛 in the following way:

𝑡 * 𝑛 := inf{𝑡 * ∈ [𝑇 * , 𝑇 𝑛 ), ∀𝑡 ∈ [𝑡 * , 𝑇 𝑛 ], ∥𝑝 𝑛 (𝑡) -𝑃(𝑡)∥ 𝐻 2 ≤ 𝐴𝑒 -𝜃𝑡 }. (1.3.11)
The map 𝑡 ↦ → ∥𝑝 𝑛 (𝑡) -𝑃(𝑡)∥ 𝐻 2 is a continuous function and ∥𝑝 𝑛 (𝑇 𝑛 ) -𝑃(𝑇 𝑛 )∥ 𝐻 2 = 0. This means that there exists

𝑇 * ≤ 𝑡 * < 𝑇 𝑛 such that ∀𝑡 ∈ [𝑡 * , 𝑇 𝑛 ], ∥𝑝 𝑛 (𝑡) -𝑃(𝑡)∥ 𝐻 2 ≤ 𝐴𝑒 -𝜃𝑡 . (1.3.12)
Therefore, we have that

𝑇 * ≤ 𝑡 * 𝑛 < 𝑇 𝑛 . (1.3.13)
We would like to prove that 𝑡 * 𝑛 = 𝑇 * . Let us argue by contradiction and assume that 𝑡 * 𝑛 > 𝑇 * . The Proposition 1.9 allows us to deduce that .3.14) This means that

∀𝑡 ∈ [𝑡 * 𝑛 , 𝑇 𝑛 ], ∥𝑝 𝑛 (𝑡) -𝑃(𝑡)∥ 𝐻 2 ≤ 𝐴 2 𝑒 -𝜃𝑡 . ( 1 
∥𝑝 𝑛 (𝑡 * 𝑛 ) -𝑃(𝑡 * 𝑛 )∥ 𝐻 2 ≤ 𝐴 2 𝑒 -𝜃𝑡 * 𝑛 , (1.3.15)
which means that 𝑡 * 𝑛 could be chosen smaller, by continuity. This is a contradiction.

□

Hence, we are left to prove Proposition 1.9, which will be done in Section 2.

1.3.2. The 𝐻 2 multi-breather is smooth. We now turn to the second part of Theorem 1.2, which is strongly adapted from [START_REF] Martel | Asymptotic 𝑁-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF]. The heart of this part is to prove uniform estimates in 𝐻 𝑠 for 𝑝 𝑛 -𝑃, for any 𝑠 ≥ 0: Proposition 1.10. There exists 𝑇 * > 0, 𝜃 > 0, such that for any 𝑠 ≥ 0, there exists 𝐴 𝑠 ≥ 1 such that for any

𝑛 ∈ N such that 𝑇 𝑛 ≥ 𝑇 * , ∀𝑡 ∈ [𝑇 * , 𝑇 𝑛 ], ∥𝑝 𝑛 (𝑡) -𝑃(𝑡)∥ 𝐻 𝑠 ≤ 𝐴 𝑠 𝑒 -𝜃𝑡 . (1.3.16)
With this improved version of Proposition 1.6, one can prove by the same reasonning as in the proof of the Proposition 1.7, that for any 𝑠 ≥ 0, 𝑝 actually belongs to 𝐿 ∞ ([𝑇 * , +∞), 𝐻 𝑠 (R)) and that the convergence of 𝑝(𝑡) -𝑃(𝑡) occurs in 𝐻 𝑠 with an exponential decay rate. More precisely, Theorem 1.11. For any 𝑠 ≥ 2, we have that 𝑝 ∈ 𝒞([𝑇 * , +∞), 𝐻 𝑠 (R)), and furthermore, ∀𝑡 ≥ 𝑇 * , ∥𝑝(𝑡) -𝑃(𝑡)∥ 𝐻 𝑠 ≤ 𝐴 𝑠 𝑒 -𝜃𝑡 . (1.3.17) It remains to prove Proposition 1.10, which will be done in Section 3.

1.3.3. The uniqueness result. We denote 𝑝 the multi-breather constructed in the previous sections, the existence of which is established. Let 𝑢 be a solution of (mKdV) such that

∥𝑢 -𝑃 ∥ 𝐻 2 → 𝑡→+∞ 0. (1.3.18)
Equivalently, there holds:

∥𝑢 -𝑝∥ 𝐻 2 → 𝑡→+∞ 0. (1.3.19)
We denote

𝑧 := 𝑢 -𝑝. (1.3.20)
The goal is to prove that 𝑧 = 0. We prove it in two configurations: when all the velocities are positive (Theorem 1.4), and without any assumption on velocities (Proposition 1.5), but in this last case we need to assume a stronger convergence than given in (1.3.18).

The proof of Theorem 1.4 will be carried out in two steps. We start with Proposition 1.5, which is adapted from [START_REF] Côte | On smoothness and uniqueness of multi-solitons of the non-linear Schrödinger equations[END_REF]. For this, we do not study 𝑢 -𝑃 anymore, we deal only with 𝑧 = 𝑢 -𝑝. 𝑧 is the difference of two solutions of (mKdV), which is much more precise than 𝑢 -𝑃. Thus, we do not modulate parameters of the solitons, as it is needed in other parts of the proof in order to deal with the soliton part of the linear part of the Lyapunov functional, and we avoid some difficulty. In order to prove our inequalities, we need again to use coercivity of the same type of quadratic forms. In order to do this, we replace 𝑧 by 𝑧 = 𝑧 + 𝐽 𝑗=1 𝑐 𝑗 𝐾 𝑗 , where 𝐾 𝑗 , 𝑗 = 1, ..., 𝐽 is a well chosen basis of the kernel of the quadratic form, in order to have 𝑧 orthogonal to any 𝐾 𝑗 . A important idea is to use slow variations of localized functionals with adapted cut-off functions of the form 𝜑 𝑥-𝑣𝑡

𝛿𝑡 , which provides an extra 𝑂(1/𝑡) decay when derivatives fall on the cut-off, and ultimately explain why algebraic decay comes into play.

In the context of Theorem 1.4, we actually prove that

𝑣 := 𝑢 -𝑃 (1.3.21)
converges exponentially fast to 0: this is the purpose of Proposition 4.10, which uses some ideas of [START_REF] Martel | Asymptotic 𝑁-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF]. Due to Proposition 1.5, we deduce immediately from there that an exponential convergence is trivial, that is 𝑧 = 0.

To prove Proposition 4.10, we use monotonicity properties combined with coercivity of an energy type functional very similar to that used for the existence result. This is why, we also need to modulate, and the choice of the orthogonality condition is essential: it allows to bound linear terms in 𝑤 that appear in the computations. An issue of the mixed breathers/solitons context is that one cannot build a functional adapted to all the nonlinear objects at once, as it is done in [START_REF] Martel | Asymptotic 𝑁-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF]. Instead, we carry out an induction and we argue successively around each object, soliton or breather, separately. 1.3.4. Organisation of the paper. Sections 2 and 3 are devoted to the proof of the existence of a multibreather: Proposition 1.9 is proved in Section 2, Proposition 1.10 is proved in Section 3. Section 4 gathers the proofs of the uniqueness results: Section 4.1 is devoted to the proof of Proposition 1.5, and Sections 4.2 and 4.3 are devoted to the proof of Theorem 1.4. 1.4. Acknowledgments. The author would like to thank his supervisor Raphaël Côte for suggesting the idea of this work, for fruitful discussions and for his useful advice.

Construction of a multi-breather in 𝐻 2 (R)

We set

𝛽 := min{𝛽 𝑘 , 1 ≤ 𝑘 ≤ 𝐾} ∪ { √ 𝑐 𝑙 , 1 ≤ 𝑙 ≤ 𝐿}, (2.0.1) 𝜏 := min{𝑣 𝑗+1 -𝑣 𝑗 , 1 ≤ 𝑗 ≤ 𝐽 -1}. (2.0.2)
Our goal in this section is to prove Proposition 1.9.

Elementary results.

Let us first collect a few basic facts that will be used throughout the article. One may check an exponential decay result for any of our objects: Proposition 2.1. Let 𝑗 = 1, ..., 𝐽, 𝑛, 𝑚 ∈ N. Then, there exists a constant 𝐶 > 0 such that for any 𝑡, 𝑥 ∈ R,

|𝜕 𝑛 𝑥 𝜕 𝑚 𝑡 𝑃 𝑗 (𝑡, 𝑥)| ≤ 𝐶𝑒 -𝛽|𝑥-𝑣 𝑗 𝑡| . (2.1.1)
Corollary 2.2. Let 𝑟 > 0. For 𝑡, 𝑥 such that 𝑣 𝑗 𝑡 + 𝑟 < 𝑥 < 𝑣 𝑗+1 𝑡 -𝑟, we have that

|𝑃(𝑡, 𝑥)| ≤ 𝐶𝑒 -𝛽𝑟 . (2.1.2)
The same is true for any space or time derivative of 𝑃.

We will also use the following cross-product result: Proposition 2.3. Let 𝑖 ≠ 𝑗 ∈ {1, ..., 𝐽} and 𝑚, 𝑛 ∈ N. There exists a constant 𝐶 that depends only on 𝑃, such that for any 𝑡 ∈ R,

∫ 𝜕 𝑚 𝑥 𝑃 𝑖 𝜕 𝑛 𝑥 𝑃 𝑗 ≤ 𝐶𝑒 -𝛽𝜏𝑡/2 . (2.1.3)
There is also an orthogonality result for breathers that will be useful: Lemma 2.4. Let 𝐵 := 𝐵 𝛼,𝛽 be a breather. We denote 𝐵 1 := 𝜕 𝑥 1 𝐵 and 𝐵 2 := 𝜕 𝑥 2 𝐵. Then,

∫ 𝐵𝐵 1 = ∫ 𝐵𝐵 2 = 0. (2.1.4) Proof. Note that Span(𝐵 1 , 𝐵 2 ) = Span(𝐵 𝑥 , 𝐵 𝑡 ). Therefore, it is enough to prove that ∫ 𝐵𝐵 𝑥 = ∫ 𝐵𝐵 𝑡 = 0. (2.1.5) Firstly, ∫ 𝐵𝐵 𝑥 = 1 2 ∫ 𝐵 2 𝑥 = 0. (2.1.6) Secondly, ∫ 𝐵𝐵 𝑡 = 1 2 ∫ 𝐵 2 𝑡 = 1 2 𝑑 𝑑𝑡 ∫ 𝐵 2 = 0, (2.1.7)
by mass conservation and because a breather is a solution of (mKdV). □ 2.2. Almost-conservation of localized conservation laws. From now on, we will fix 𝑛 ∈ N. This is why, for the simplicity of notations, we can write 𝑇 for 𝑇 𝑛 , and 𝑝 for 𝑝 𝑛 . The goal will be to find constants 𝑇 * , 𝐴 > 1, 𝜃 that do not depend on 𝑛, nor on the translation parameters of the given objects, and that will be chosen later (𝑇 * will depend on 𝐴 and 𝜃), such that Proposition 1.9 is verified. We will take 𝑡 * ∈ [𝑇 * , 𝑇], and we will make the following bootstrap assumption for the remaining of the article:

∀𝑡 ∈ [𝑡 * , 𝑇], ∥𝑝(𝑡) -𝑃(𝑡)∥ 𝐻 2 ≤ 𝐴𝑒 -𝜃𝑡 , (2.2.1)
where 𝑝(𝑇) = 𝑃(𝑇).

Remark 2.5. We have the following property for solutions of (mKdV): there exists 𝐶 0 > 0 such that for any solution 𝑤 of (mKdV), 𝑤 is global and

∀𝑡 ∈ R, ∥𝑤(𝑡)∥ 𝐻 2 ≤ 𝐶 0 ∥𝑤(𝑇)∥ 𝐻 2 . (2.2.2) Therefore, ∀𝑡 ∈ R, ∥𝑝(𝑡)∥ 𝐻 2 ≤ 𝐶 0 ∥𝑃(𝑇)∥ 𝐻 2 ≤ 𝐶 0 𝐽 𝑗=1 ∥𝑃 𝑗 (𝑇)∥ 𝐻 2 ≤ 𝐶 0 𝐶, (2.2.3)
where 𝐶 is a constant that depends only on the problem data (because the 𝐻 𝑠 -norm of solitons or breathers can be easily bounded).

Let 𝜃 := 𝛽𝜏 32 . Let min(1, 𝜏 4 ) > 𝛿 > 0 be a constant to be chosen later. This part of the proof is adapted from [START_REF]Multi solitary waves for nonlinear Schrödinger equations[END_REF]. Let 𝜓(𝑥) be a 𝐶 3 function such that

0 ≤ 𝜓 ≤ 1 on R, 𝜓 ′ ≥ 0 on R, (2.2.4) 𝜓(𝑥) = 0 for 𝑥 ≤ -1, 𝜓(𝑥) = 1 for 𝑥 ≥ 1, (2.2.5)
and satisfying, for a constant 𝐶 > 0, for any 𝑥 ∈ R,

(𝜓 ′ (𝑥)) 4/3 ≤ 𝐶𝜓(𝑥), (𝜓 ′ (𝑥)) 4/3 ≤ 𝐶(1 -𝜓(𝑥)), |𝜓 ′′ (𝑥)| 3/2 ≤ 𝐶𝜓 ′ (𝑥). (2.2.6)
Note that it is enough to take 𝜓 that is equal to (1 + 𝑥) 4 on a neighbourhood of -1 and equal to 1 -(-1 + 𝑥) 4 on a neighbourhood of 1.

These conditions on 𝜓 will be needed for the proof of Proposition 2.19.

For any 𝑗 = 2, ..., 𝐽, let

𝜎 𝑗 := 1 2 (𝑣 𝑗-1 + 𝑣 𝑗 ). (2.2.7)
For any 𝑗 = 2, ..., 𝐽 -1, let

𝜑 𝑗 (𝑡, 𝑥) := 𝜓 𝑥 -𝜎 𝑗 𝑡 𝛿𝑡 -𝜓 𝑥 -𝜎 𝑗+1 𝑡 𝛿𝑡 , (2.2.8) 𝜑 1 (𝑡, 𝑥) := 1 -𝜓 𝑥 -𝜎 2 𝑡 𝛿𝑡 , 𝜑 𝐽 (𝑡, 𝑥) := 𝜓 𝑥 -𝜎 𝐽 𝑡 𝛿𝑡 , ( 2 
.2.9) so that the function 𝜑 𝑗 corresponds obviously to the object 𝑃 𝑗 . We will also use notations 𝜑 𝑠 𝑙 and 𝜑 𝑏 𝑘 , which represent the same functions, and where 𝜑 𝑠 𝑙 corresponds to the soliton 𝑅 𝑙 and 𝜑 𝑏 𝑘 corresponds to the breather 𝐵 𝑘 .

We will also denote, for 𝑗 = 2, ..., 𝐽 -1, Proof. We will use the results of the computations made on the bottom of page 1115 and on the bottom of page 1116 of [START_REF] Martel | Asymptotic 𝑁-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF] to claim the following facts:

𝜑 1,𝑗 (𝑡, 𝑥) := 𝜓 ′ 𝑥 -𝜎 𝑗 𝑡 𝛿𝑡 -𝜓 ′ 𝑥 -𝜎 𝑗+1 𝑡 𝛿𝑡 , (2.2.10) 𝜑 1,1 (𝑡, 𝑥) := -𝜓 ′ 𝑥 -𝜎 2 𝑡 𝛿𝑡 , 𝜑
∫ 𝜎 𝑗 𝑡+𝛿𝑡 -∞ 𝑒 -2𝛽|𝑥-𝑣 𝑗 𝑡| 𝑑𝑥 = 𝑒 -2𝛽𝑣 𝑗 𝑡 ∫ 𝜎 𝑗 𝑡+𝛿𝑡 -∞ 𝑒 2𝛽𝑥 𝑑𝑥 (2.2.13) = 1 2𝛽 𝑒 -2𝛽𝑣 𝑗 𝑡 𝑒 𝛽(𝑣 𝑗 +𝑣 𝑗-1 )𝑡 𝑒 2𝛽𝛿𝑡 (2.2.14) ≤ 𝐶𝑒 -𝛽𝜏𝑡 𝑒 2𝛽𝛿𝑡 ≤ 𝐶𝑒 -𝛽𝜏𝑡/2 , (2.2.15) and ∫ +∞ 𝜎 𝑗+1 𝑡-𝛿𝑡 𝑒 -2𝛽|𝑥-𝑣 𝑗 𝑡| 𝑑𝑥 ≤ 𝐶𝑒 -𝛽𝜏𝑡/2
𝑑 𝑑𝑡 1 2 ∫ 𝑝 2 𝑓 = ∫ - 3 2 𝑝 2 𝑥 + 3 4 𝑝 4 𝑓 ′ - ∫ 𝑝 𝑥 𝑝 𝑓 ′′ , (2.2.23) 𝑑 𝑑𝑡 ∫ 1 2 𝑝 2 𝑥 - 1 4 𝑝 4 𝑓 = ∫ - 1 2 (𝑝 𝑥𝑥 + 𝑝 3 ) 2 -𝑝 2 𝑥𝑥 + 3𝑝 2 𝑥 𝑝 2 𝑓 ′ (2.2.24) - ∫ 𝑝 𝑥𝑥 𝑝 𝑥 𝑓 ′′ , (2.2.25)
where 𝑓 is a 𝐶 2 function that does not depend on time.

𝑀 𝑗 (𝑡) is a sum of quantities of the form 1 2 ∫ 𝑝 2 𝜓( 𝑥-𝜎 𝑗 𝑡
𝛿𝑡 ). This is why, we compute: 𝑑 𝑑𝑡 

1 2 ∫ 𝑝 2 𝜓 𝑥 -𝜎 𝑗 𝑡 𝛿𝑡 = 1 𝛿𝑡 ∫ - 3 2 𝑝 2 𝑥 + 3 4 𝑝 4 𝜓 ′ 𝑥 -𝜎 𝑗 𝑡 𝛿𝑡 (2.2.26) - 1 (𝛿𝑡) 2 ∫ 𝑝 𝑥 𝑝𝜓 ′′ 𝑥 -𝜎 𝑗 𝑡 𝛿𝑡 - 1 2 ∫ 𝑝 2 𝑥 𝛿𝑡 2 𝜓 ′ 𝑥 -𝜎 𝑗 𝑡 𝛿𝑡 . ( 2 
∫ Ω 𝑗 (𝑡) 𝑝 4 ≤ ∥𝑝 ∥ 2 𝐿 ∞ ∫ Ω 𝑗 (𝑡) 𝑝 2 (2.2.29) ≤ 𝐶 ∥𝑝 ∥ 2 𝐻 1 ∫ Ω 𝑗 (𝑡) 𝑝 2 by
= 1 𝛿𝑡 ∫ - 1 2 (𝑝 𝑥𝑥 + 𝑝 3 ) 2 -𝑝 2 𝑥𝑥 + 3𝑝 2 𝑥 𝑝 𝜓 ′ 𝑥 -𝜎 𝑗 𝑡 𝛿𝑡 (2.2.34) - 1 (𝛿𝑡) 2 ∫ 𝑝 𝑥𝑥 𝑝 𝑥 𝜓 ′′ 𝑥 -𝜎 𝑗 𝑡 𝛿𝑡 - ∫ 1 2 𝑝 2 𝑥 - 1 4 𝑝 4 𝑥 𝛿𝑡 2 𝜓 ′ 𝑥 -𝜎 𝑗 𝑡 𝛿𝑡 . (2.2.35)
We deduce from this, by using similar arguments as for the mass, that for any 𝑡 ∈ [𝑡 * , 𝑇],

𝑑 𝑑𝑡 ∫ 1 2 𝑝 2 𝑥 - 1 4 𝑝 4 𝜓 𝑥 -𝜎 𝑗 𝑡 𝛿𝑡 ≤ 𝐶 𝛿 2 𝑡 ∫ Ω 𝑗 (𝑡) 𝑝 2 + ∫ Ω 𝑗 (𝑡) 𝑝 2 𝑥 + ∫ Ω 𝑗 (𝑡) 𝑝 2 𝑥𝑥 . (2.2.36)
Now, we write 𝑝(𝑡) = 𝑃(𝑡) + (𝑝(𝑡) -𝑃(𝑡)), and we use the triangular inequality:

∫ Ω 𝑗 (𝑡) 𝑝 2 + 𝑝 2 𝑥 + 𝑝 2 𝑥𝑥 ≤ 2 ∫ Ω 𝑗 (𝑡) 𝑃 2 + 𝑃 2 𝑥 + 𝑃 2 𝑥𝑥 + 2∥𝑝 -𝑃∥ 2 𝐻 2 . (2.2.37)
We have assumed that ∥𝑝 -𝑃∥ 2 𝐻 2 ≤ 𝐴 2 𝑒 -2𝜃𝑡 , so we need to study 𝑃 on Ω 𝑗 (𝑡). The following computations work also for the derivatives of 𝑃:

∫ Ω 𝑗 (𝑡) 𝑃 2 = ∫ Ω 𝑗 (𝑡) 𝐽 𝑚=1 𝑃 𝑚 (𝑡, 𝑥) 2 𝑑𝑥 = 1≤𝑚,𝑙≤𝐽 ∫ Ω 𝑗 (𝑡) 𝑃 𝑚 (𝑡, 𝑥)𝑃 𝑙 (𝑡, 𝑥) 𝑑𝑥 (2.2.38) ≤ 𝐶 1≤𝑚,𝑙≤𝐽 ∫ Ω 𝑗 (𝑡) 𝑒 -𝛽|𝑥-𝑣 𝑚 𝑡| 𝑒 -𝛽|𝑥-𝑣 𝑙 𝑡| 𝑑𝑥, (2.2.39)
where we use the Proposition 2.1.

We assume that 𝑚 ≥ 𝑗 (we argue similarly if 𝑚 ≤ 𝑗 -1). Then,

𝑥 ∈ Ω 𝑗 (𝑡) ⇔ -𝛿𝑡 + 𝜎 𝑗 𝑡 ≤ 𝑥 ≤ 𝛿𝑡 + 𝜎 𝑗 𝑡 (2.2.40) ⇔ -𝛿𝑡 + (𝜎 𝑗 -𝑣 𝑚 )𝑡 ≤ 𝑥 -𝑣 𝑚 𝑡 ≤ 𝛿𝑡 + (𝜎 𝑗 -𝑣 𝑚 )𝑡. (2.2.41)
We note that 𝜎 𝑗 -𝑣 𝑚 ≤ - 1 2 𝜏 < 0, we can thus deduce from the condition on 𝛿 that 𝜎 𝑗 -𝑣 𝑚 + 𝛿 ≤ - 1 4 𝜏 < 0. We deduce that 𝑥 -𝑣 𝑚 𝑡 is negative for 𝑥 ∈ Ω 𝑗 (𝑡). Similarly, if 𝑚 ≤ 𝑗 -1, 𝑥 -𝑣 𝑚 𝑡 is positive for 𝑥 ∈ Ω 𝑗 (𝑡). We will now make calculations for different cases. If 𝑚, 𝑙 ≤ 𝑗 -1,

∫ Ω 𝑗 (𝑡) 𝑒 -𝛽|𝑥-𝑣 𝑚 𝑡| 𝑒 -𝛽|𝑥-𝑣 𝑙 𝑡| 𝑑𝑥 ≤ ∫ Ω 𝑗 (𝑡)
𝑒 -𝛽(𝑥-𝑣 𝑚 𝑡) 𝑒 -𝛽(𝑥-𝑣 𝑙 𝑡) 𝑑𝑥 (2.2.42) Finally, 𝑝(𝑇) = 𝑃(𝑇) = 𝑃(𝑇) and 𝜀(𝑇) = 𝑥 0,𝑙 (𝑇) = 𝑥 1,𝑘 (𝑇) = 𝑥 2,𝑘 (𝑇) = 𝑐 0,𝑙 (𝑇) = 0. Proof: see for example [START_REF] Combet | Multi-soliton solutions for the supercritical gKdV equations[END_REF] for reference. Let, for 𝑡 ∈ [𝑡 * , 𝑇], We observe that 𝐹 𝑡 is a 𝐶 1 function and that 𝐹 𝑡 (𝑃(𝑡), 0, 0, 0, 0) = 0. Now, let us consider the matrix which gives the differential of 𝐹 𝑡 (with respect to 𝑥 1,𝑘 , 𝑥 2,𝑘 , 𝑥 0,𝑙 , 𝑐 0,𝑙 ) in (𝑃(𝑡), 0, 0, 0, 0) (we consider diagonal and extra-diagonal terms for each bloc): denoting 𝑦 0 0,𝑙 := 𝑥 -𝑥 0 0,𝑙 -𝑐 𝑙 𝑡, and crosses stand for exponentially decaying terms when 𝑡 → +∞, and where we consider variables in the following order: 𝑥 1,1 , 𝑥 2,1 , 𝑥 1,2 , 𝑥 2,2 , 𝑥 1,3 , 𝑥 2,3 , ..., 𝑥 1,𝐾 , 𝑥 2,𝐾 , 𝑥 0,1 , 𝑐 0,1 , ..., 𝑥 0,𝐿 , 𝑐 0,𝐿 and we order the coefficients of the function in the similar way. This is a matrix with dominant diagonal blocs.

= 1 2𝛽 𝑒 𝛽𝑡(-𝑣 𝑗 -𝑣 𝑗-1 +𝑣 𝑚 +𝑣 𝑙 ) (𝑒 2𝛽𝛿𝑡 -𝑒 -2𝛽𝛿𝑡 ) (2.2.43) ≤ 𝐶𝑒 𝛽𝑡(-𝑣 𝑗 -𝑣 𝑗-1 +𝑣 𝑚 +𝑣 𝑙 +2𝛿) ≤ 𝐶𝑒 -𝛽𝜏𝑡/2 . (2.2.44) Similarly, if 𝑚, 𝑙 ≥ 𝑗, ∫ Ω 𝑗 (𝑡) 𝑒 -𝛽|𝑥-𝑣 𝑚 𝑡| 𝑒 -𝛽|𝑥-𝑣 𝑙 𝑡| 𝑑𝑥 ≤ 𝐶𝑒 -𝛽𝜏𝑡/2 . (2.2.45) And, if 𝑚 ≤ 𝑗 -1, 𝑙 ≥ 𝑗, ∫ Ω 𝑗 (𝑡) 𝑒 -𝛽|𝑥-𝑣 𝑚 𝑡| 𝑒 -𝛽|𝑥-𝑣 𝑙 𝑡| 𝑑𝑥 ≤ ∫ Ω 𝑗 (𝑡) 𝑒 -𝛽(𝑥-𝑣 𝑚 𝑡) 𝑒 𝛽(𝑥-𝑣 𝑙 𝑡) 𝑑𝑥 (2.2.46) ≤ 2𝛿𝑡𝑒 𝛽𝑡(𝑣 𝑚 -𝑣 𝑙 ) ≤ 𝐶𝑒 -𝛽𝜏𝑡 2 . ( 2 
𝐹 𝑡 : 𝐿 2 (R) × R 2𝐾 × R 2𝐿 → R 2𝐾+2𝐿 , ( 2 
𝐷𝐹 𝑡 = 𝐵 1 𝑘,𝑘 𝐵 3 𝑘,𝑘 × × × × × × 𝐵 3 𝑘,𝑘 𝐵 2 𝑘,𝑘 × × × × × × × × 𝐵 1 𝑘 ′ ,𝑘 ′ 𝐵 3 𝑘 ′ ,𝑘 ′ × × × × × × 𝐵 3 𝑘 ′ ,𝑘 ′ 𝐵 2 𝑘 ′ ,𝑘 ′ × × × × × × × × 𝑅 1 𝑙,𝑙 𝑅 4 𝑙,𝑙 × × × × × × 𝑅 3 𝑙,𝑙 𝑅 2 𝑙,𝑙 × × × × × × × × 𝑅 1 𝑙 ′ ,𝑙 ′ 𝑅 4 𝑙 ′ ,𝑙 ′ × × × × × × 𝑅 3 𝑙 ′ ,𝑙 ′ 𝑅 2 𝑙 ′ ,
Note that 𝐵 This means that the second product is bounded below by a positive constant independent from time and translation parameters.

This means that if 𝑇 * 2 is large enough, the considered matrix is invertible. Now, we may use the implicit function theorem (actually, we use a quantitative version of the implicit function theorem, see [11, Section 2.2] for a precise statement). If 𝑤 is close enough to 𝑃(𝑡), then there exists

(𝑥 1,𝑘 , 𝑥 2,𝑘 , 𝑥 0,𝑙 , 𝑐 0,𝑙 ) (2.3.36) such that 𝐹 𝑡 (𝑤, 𝑥 1,𝑘 , 𝑥 2,𝑘 , 𝑥 0,𝑙 , 𝑐 0,𝑙 ) = 0, (2.3.37)
where (2.3.36) depends in a regular 𝐶 1 way on 𝑤. It is possible to show that the "close enough" in the previous sentence does not depend on 𝑡; for this, it is required to use a uniform implicit function theorem. This means that for 𝑇 * 2 large enough (depending on 𝐴), 𝐴𝑒 -𝜃𝑡 is small enough for 𝑡 ∈ [𝑡 * , 𝑇], thus for 𝑡 ∈ [𝑡 * , 𝑇], 𝑝(𝑡) is close enough to 𝑃(𝑡) in order to apply the implicit function theorem. Therefore, we have for 𝑡 ∈ [𝑡 * , 𝑇], the existence of 𝑥 1,𝑘 (𝑡), 𝑥 2,𝑘 (𝑡), 𝑥 0,𝑙 (𝑡) and 𝑐 0,𝑙 (𝑡). It is possible to show that these functions are 𝐶 1 in time. Basically, this comes from the fact that they are 𝐶 1 in 𝑝(𝑡) and that 𝑝(𝑡) has a similar regularity in time (see [START_REF] Combet | Multi-soliton solutions for the supercritical gKdV equations[END_REF] for more details). Now, we prove the inequalities (2.3.8) and (2.3.9). We can take the differential of the implicit functions with respect to 𝑝(𝑡) for 𝑡 ∈ [𝑡 * , 𝑇]. For this, we differentiate the following equation with respect to 𝑝(𝑡):

𝐹 𝑡 𝑝(𝑡), 𝑥 1,𝑘 𝑝(𝑡) , 𝑥 2,𝑘 𝑝(𝑡) , 𝑥 0,𝑙 𝑝(𝑡) , 𝑐 0,𝑙 𝑝(𝑡) = 0. (2.3.38)
We know that the matrix that gives the differential of 𝐹 𝑡 (with respect to 𝑥 1,𝑘 , 𝑥 2,𝑘 , 𝑥 0,𝑙 , 𝑐 0,𝑙 ) in

𝑝(𝑡), 𝑥 1,𝑘 𝑝(𝑡) , 𝑥 2,𝑘 𝑝(𝑡) , 𝑥 0,𝑙 𝑝(𝑡) , 𝑐 0,𝑙 𝑝(𝑡) (2.3.39)
is invertible and its inverse is bounded in time (from the formula giving the inverse of a matrix from the comatrix and the determinant). The differential of 𝐹 𝑡 with respect to the first variable is also bounded. Thus, by the mean-value theorem:

|𝑥 1,𝑘 | ≤ 𝐶 ∥𝑝 -𝑃∥ ≤ 𝐶𝐴𝑒 -𝜃𝑡 . (2.3.40)
The same is true for 𝑥 2,𝑘 , 𝑥 0,𝑙 and 𝑐 0,𝑙 .

By applying the mean-value theorem (inequality) for 𝑄 𝑐 𝑙 with respect to 𝑥 0,𝑙 and 𝑐 0,𝑙 or for 𝐵 𝛼 𝑘 ,𝛽 𝑘 with respect to 𝑥 1,𝑘 and 𝑥 2,𝑘 , we deduce that

∥𝑃 𝑗 (𝑡) -𝑃 𝑗 (𝑡)∥ 𝐻 2 ≤ 𝐶 |𝑥 1,𝑘 (𝑡)| + |𝑥 2,𝑘 (𝑡)| , (2.3.41)
if 𝑃 𝑗 = 𝐵 𝑘 is a breather, and

∥𝑃 𝑗 (𝑡) -𝑃 𝑗 (𝑡)∥ 𝐻 2 ≤ 𝐶 |𝑥 0,𝑙 (𝑡)| + |𝑐 0,𝑙 (𝑡)| , (2.3.42) if 𝑃 𝑗 = 𝑅 𝑙 is a soliton.
Finally, by triangular inequality,

∥𝜀(𝑡)∥ 𝐻 2 ≤ ∥𝑝(𝑡) -𝑃(𝑡)∥ 𝐻 2 + ∥𝑃(𝑡) -𝑃(𝑡)∥ 𝐻 2 ≤ ∥𝑝(𝑡) -𝑃(𝑡)∥ 𝐻 2 (2.3.43) + 𝐶 𝐾 𝑘=1 |𝑥 1,𝑘 (𝑡)| + |𝑥 2,𝑘 (𝑡)| + 𝐿 𝑙=1 |𝑥 0,𝑙 (𝑡)| + |𝑐 0,𝑙 (𝑡)| (2.3.44) ≤ 𝐶 ∥𝑝(𝑡) -𝑃(𝑡)∥ 𝐻 2 ≤ 𝐶𝐴𝑒 -𝜃𝑡 . (2.3.45)
This completes the proof of (2.3.8).

For (2.3.9), we will take time derivatives of the equations (2.3.7). From now on, we write 𝐵 𝑘 1 for 𝜕 𝑥 1 𝐵 𝑘 and 𝐵 𝑘 2 for 𝜕 𝑥 2 𝐵 𝑘 . Firstly, we write the PDE verified by 𝜀 (knowing that 𝑝, 𝐵 1 , ..., 𝐵 𝐾 , 𝑅 1 , ..., 𝑅 𝐿 are solutions of (mKdV)):

𝜕 𝑡 𝜀 = -𝜀 𝑥𝑥𝑥 -𝜀 𝜀 2 + 3𝜀 𝐽 𝑗=1 𝑃 𝑗 + 3 𝐽 𝑖,𝑗=1 𝑃 𝑖 𝑃 𝑗 𝑥 (2.3.46) - 𝐾 𝑘=1 𝑥 ′ 1,𝑘 (𝑡) 𝐵 𝑘 1 - 𝐾 𝑘=1 𝑥 ′ 2,𝑘 (𝑡) 𝐵 𝑘 2 - 𝐿 𝑙=1 𝑥 ′ 0,𝑙 (𝑡) 𝑅 𝑙 𝑥 (2.3.47) - 𝐿 𝑙=1 𝑐 ′ 0,𝑙 (𝑡) 2(𝑐 𝑙 + 𝑐 0,𝑙 (𝑡)) 𝑅 𝑙 + 𝑦 0,𝑙 (𝑡) 𝑅 𝑙 𝑥 - ℎ≠𝑖 or 𝑖≠𝑗 𝑃 ℎ 𝑃 𝑖 𝑃 𝑗 𝑥 , (2.3.48)
where 𝑦 0,𝑙 (𝑡) := 𝑥 -𝑥 0 0,𝑙 + 𝑥 0,𝑙 (𝑡) -𝑐 𝑙 𝑡. Now, we will take the time derivative of the equation ∫ 𝐵 𝑘 1 𝜀 𝜑 𝑏 𝑘 = 0 (and perform an integration by parts):

-

∫ 𝐵 𝑘 3 1𝑥 𝜀 𝜑 𝑏 𝑘 - ∫ 𝐵 𝑘 1 ℎ≠𝑖 or 𝑔≠ℎ 𝑃 ℎ 𝑃 𝑖 𝑃 𝑔 𝑥 𝜑 𝑏 𝑘 (2.3.49) + 𝑥 ′ 2,𝑘 (𝑡) ∫ 𝐵 𝑘 12 𝜀 𝜑 𝑏 𝑘 + 1 2𝛿𝑡 ∫ 𝐵 𝑘 1 𝜀 𝜀 2 + 3𝜀 𝐽 𝑖=1 𝑃 𝑖 + 3 𝐽 ℎ,𝑖=1 𝑃 ℎ 𝑃 𝑖 𝜑 𝑏 1,𝑘 𝜑 𝑏 𝑘 (2.3.50) + ∫ 𝐵 𝑘 1𝑥 𝜀 𝜀 2 + 3𝜀 𝐽 𝑖=1 𝑃 𝑖 + 3 𝐽 ℎ,𝑖=1 𝑃 ℎ 𝑃 𝑖 𝜑 𝑏 𝑘 - 1 2𝛿𝑡 2 ∫ 𝐵 𝑘 1 𝜀𝑥 𝜑 𝑏 1,𝑘 𝜑 𝑏 𝑘 (2.3.51) + 1 2𝛿𝑡 ∫ 𝐵 𝑘 1 𝜀 𝑥𝑥 𝜑 𝑏 1,𝑘 𝜑 𝑏 𝑘 - 1 2𝛿𝑡 ∫ 𝐵 𝑘 1𝑥 𝜀 𝑥 𝜑 𝑏 1,𝑘 𝜑 𝑏 𝑘 + 1 2𝛿𝑡 ∫ 𝐵 𝑘 1𝑥𝑥 𝜀 𝜑 𝑏 1,𝑘 𝜑 𝑏 𝑘 (2.3.52) + 𝑥 ′ 1,𝑘 (𝑡) ∫ 𝐵 𝑘 11 𝜀 𝜑 𝑏 𝑘 = 𝐾 𝑚=1 𝑥 ′ 1,𝑚 (𝑡) ∫ 𝐵 𝑘 1 𝐵 𝑚 1 𝜑 𝑏 𝑘 (2.3.53) + 𝐾 𝑚=1 𝑥 ′ 2,𝑚 (𝑡) ∫ 𝐵 𝑘 1 𝐵 𝑚 2 𝜑 𝑏 𝑘 + 𝐿 𝑛=1 𝑥 ′ 0,𝑛 (𝑡) ∫ 𝐵 𝑘 1 𝑅 𝑛 𝑥 𝜑 𝑏 𝑘 (2.3.54) + 𝐿 𝑛=1 𝑐 ′ 0,𝑛 (𝑡) 2 𝑐 𝑛 + 𝑐 0,𝑛 (𝑡) ∫ 𝐵 𝑘 1 𝑅 𝑛 + 𝑦 0,𝑛 (𝑡) 𝑅 𝑛 𝑥 𝜑 𝑏 𝑘 . (2.3.55)
Similarly, taking the time derivative of

∫ 𝐵 𝑘 2 𝜀 𝜑 𝑏 𝑘 = 0: - ∫ 𝐵 𝑘 3 2𝑥 𝜀 𝜑 𝑏 𝑘 - ∫ 𝐵 𝑘 2 ℎ≠𝑖 or 𝑔≠ℎ 𝑃 ℎ 𝑃 𝑖 𝑃 𝑔 𝑥 𝜑 𝑏 𝑘 (2.3.56) + 𝑥 ′ 2,𝑘 (𝑡) ∫ 𝐵 𝑘 22 𝜀 𝜑 𝑏 𝑘 + 1 2𝛿𝑡 ∫ 𝐵 𝑘 2 𝜀 𝜀 2 + 3𝜀 𝐽 𝑖=1 𝑃 𝑖 + 3 𝐽 ℎ,𝑖=1 𝑃 ℎ 𝑃 𝑖 𝜑 𝑏 1,𝑘 𝜑 𝑏 𝑘 (2.3.57) + ∫ 𝐵 𝑘 2𝑥 𝜀 𝜀 2 + 3𝜀 𝐽 𝑖=1 𝑃 𝑖 + 3 𝐽 ℎ,𝑖=1 𝑃 ℎ 𝑃 𝑖 𝜑 𝑏 𝑘 + 1 2𝛿𝑡 ∫ 𝐵 𝑘 2 𝜀 𝑥𝑥 𝜑 𝑏 1,𝑘 𝜑 𝑏 𝑘 (2.3.58) - 1 2𝛿𝑡 ∫ 𝐵 𝑘 2𝑥 𝜀 𝑥 𝜑 𝑏 1,𝑘 𝜑 𝑏 𝑘 + 1 2𝛿𝑡 ∫ 𝐵 𝑘 2𝑥𝑥 𝜀 𝜑 𝑏 1,𝑘 𝜑 𝑏 𝑘 - 1 2𝛿𝑡 2 ∫ 𝐵 𝑘 2 𝜀𝑥 𝜑 𝑏 1,𝑘 𝜑 𝑏 𝑘 (2.3.59) + 𝑥 ′ 1,𝑘 (𝑡) ∫ 𝐵 𝑘 12 𝜀 𝜑 𝑏 𝑘 = 𝐾 𝑚=1 𝑥 ′ 1,𝑚 (𝑡) ∫ 𝐵 𝑘 2 𝐵 𝑚 1 𝜑 𝑏 𝑘 (2.3.60) + 𝐾 𝑚=1 𝑥 ′ 2,𝑚 (𝑡) ∫ 𝐵 𝑘 2 𝐵 𝑚 2 𝜑 𝑏 𝑘 + 𝐿 𝑛=1 𝑥 ′ 0,𝑛 (𝑡) ∫ 𝐵 𝑘 2 𝑅 𝑛 𝑥 𝜑 𝑏 𝑘 (2.3.61) + 𝐿 𝑛=1 𝑐 ′ 0,𝑛 (𝑡) 2 𝑐 𝑛 + 𝑐 0,𝑛 (𝑡) ∫ 𝐵 𝑘 2 𝑅 𝑛 + 𝑦 0,𝑛 (𝑡) 𝑅 𝑛 𝑥 𝜑 𝑏 𝑘 . (2.3.62)
Similarly, taking the time derivative of

∫ 𝑅 𝑙 𝑥 (𝑡)𝜀(𝑡) 𝜑 𝑠 𝑙 = 0: - ∫ 𝑅 𝑙 3 𝑥𝑥 𝜀 𝜑 𝑠 𝑙 + 𝑐 ′ 0,𝑙 (𝑡) 2 𝑐 𝑙 + 𝑐 0,𝑙 (𝑡) ∫ 𝑅 𝑙 𝑥 + 𝑦 0,𝑙 (𝑡) 𝑅 𝑙 𝑥𝑥 𝜀 𝜑 𝑠 𝑙 (2.3.63) + 𝑥 ′ 0,𝑙 (𝑡) ∫ 𝑅 𝑙 𝑥𝑥 𝜀 𝜑 𝑠 𝑙 + 1 2𝛿𝑡 ∫ 𝑅 𝑙 𝑥 𝜀 𝜀 2 + 3𝜀 𝐽 𝑖=1 𝑃 𝑖 + 3 𝐽 ℎ,𝑖=1 𝑃 ℎ 𝑃 𝑖 𝜑 𝑠 1,𝑙 𝜑 𝑠 𝑙 (2.3.64) + ∫ 𝑅 𝑙 𝑥𝑥 𝜀 𝜀 2 + 3𝜀 𝐽 𝑖=1 𝑃 𝑖 + 3 𝐽 ℎ,𝑖=1 𝑃 ℎ 𝑃 𝑖 𝜑 𝑠 𝑙 - 1 2𝛿𝑡 2 ∫ 𝑅 𝑙 𝑥 𝜀𝑥 𝜑 𝑠 1,𝑙 𝜑 𝑠 𝑙 (2.3.65) + 1 2𝛿𝑡 ∫ 𝑅 𝑙 𝑥 𝜀 𝑥𝑥 𝜑 𝑠 1,𝑙 𝜑 𝑠 𝑙 - 1 2𝛿𝑡 ∫ 𝑅 𝑙 𝑥𝑥 𝜀 𝑥 𝜑 𝑠 1,𝑙 𝜑 𝑠 𝑙 + 1 2𝛿𝑡 ∫ 𝑅 𝑙 𝑥𝑥𝑥 𝜀 𝜑 𝑠 1,𝑙 𝜑 𝑠 𝑙 (2.3.66) - ∫ 𝑅 𝑙 𝑥 ℎ≠𝑖 or 𝑔≠ℎ 𝑃 ℎ 𝑃 𝑖 𝑃 𝑔 𝑥 𝜑 𝑠 𝑙 = 𝐿 𝑛=1 𝑥 ′ 0,𝑛 (𝑡) ∫ 𝑅 𝑙 𝑥 𝑅 𝑛 𝑥 𝜑 𝑠 𝑙 (2.3.67) + 𝐿 𝑛=1 𝑐 ′ 0,𝑛 (𝑡) 2 𝑐 𝑛 + 𝑐 0,𝑛 (𝑡) ∫ 𝑅 𝑙 𝑥 𝑅 𝑛 + 𝑦 0,𝑛 (𝑡) 𝑅 𝑛 𝑥 𝜑 𝑠 𝑙 (2.3.68) + 𝐾 𝑚=1 𝑥 ′ 1,𝑚 (𝑡) ∫ 𝑅 𝑙 𝑥 𝐵 𝑚 1 𝜑 𝑠 𝑙 + 𝐾 𝑚=1 𝑥 ′ 2,𝑚 (𝑡) ∫ 𝑅 𝑙 𝑥 𝐵 𝑚 2 𝜑 𝑠 𝑙 . (2.3.69)
Finally, taking the time derivative of

∫ 𝑅 𝑙 𝜀 𝜑 𝑠 𝑙 = 0: - ∫ 𝑅 𝑙 3 𝑥 𝜀 𝜑 𝑠 𝑙 + 𝑐 ′ 0,𝑙 (𝑡) 2 𝑐 𝑙 + 𝑐 0,𝑙 (𝑡) ∫ 𝑅 𝑙 + 𝑦 0,𝑙 (𝑡) 𝑅 𝑙 𝑥 𝜀 𝜑 𝑠 𝑙 (2.3.70) + 𝑥 ′ 0,𝑙 (𝑡) ∫ 𝑅 𝑙 𝑥 𝜀 𝜑 𝑠 𝑙 + 1 2𝛿𝑡 ∫ 𝑅 𝑙 𝜀 𝜀 2 + 3𝜀 𝐽 𝑖=1 𝑃 𝑖 + 3 𝐽 ℎ,𝑖=1 𝑃 ℎ 𝑃 𝑖 𝜑 𝑠 1,𝑙 𝜑 𝑠 𝑙 (2.3.71) + ∫ 𝑅 𝑙 𝑥 𝜀 𝜀 2 + 3𝜀 𝐽 𝑖=1 𝑃 𝑖 + 3 𝐽 ℎ,𝑖=1 𝑃 ℎ 𝑃 𝑖 𝜑 𝑠 𝑙 - 1 2𝛿𝑡 2 ∫ 𝑅 𝑙 𝜀𝑥 𝜑 𝑠 1,𝑙 𝜑 𝑠 𝑙 (2.3.72) + 1 2𝛿𝑡 ∫ 𝑅 𝑙 𝜀 𝑥𝑥 𝜑 𝑠 1,𝑙 𝜑 𝑠 𝑙 - 1 2𝛿𝑡 ∫ 𝑅 𝑙 𝑥 𝜀 𝑥 𝜑 𝑠 1,𝑙 𝜑 𝑠 𝑙 + 1 2𝛿𝑡 ∫ 𝑅 𝑙 𝑥𝑥 𝜀 𝜑 𝑠 1,𝑙 𝜑 𝑠 𝑙 (2.3.73) - ∫ 𝑅 𝑙 ℎ≠𝑖 or 𝑔≠ℎ 𝑃 ℎ 𝑃 𝑖 𝑃 𝑔 𝑥 𝜑 𝑠 𝑙 = 𝐿 𝑛=1 𝑥 ′ 0,𝑛 (𝑡) ∫ 𝑅 𝑙 𝑅 𝑛 𝑥 𝜑 𝑠 𝑙 (2.3.74) + 𝐿 𝑛=1 𝑐 ′ 0,𝑛 (𝑡) 2 𝑐 𝑛 + 𝑐 0,𝑛 (𝑡) ∫ 𝑅 𝑙 𝑅 𝑛 + 𝑦 0,𝑛 (𝑡) 𝑅 𝑛 𝑥 𝜑 𝑠 𝑙 (2.3.75) + 𝐾 𝑚=1 𝑥 ′ 1,𝑚 (𝑡) ∫ 𝑅 𝑙 𝐵 𝑚 1 𝜑 𝑠 𝑙 + 𝐾 𝑚=1 𝑥 ′ 2,𝑚 (𝑡) ∫ 𝑅 𝑙 𝐵 𝑚 2 𝜑 𝑠 𝑙 . (2.3.76)
By the Proposition 2.10 below (that follows from the first part of the lemma we prove) and its corollary, several terms of the equalities (2.3.55), (2.3.62), (2.3.69) and (2.3.76) are bounded by 𝐶𝑒 -𝜃𝑡 ; other terms are 𝑂(∥𝜀∥ 𝐿 2 ). We remind that 𝑂(∥𝜀∥ 𝐿 2 ) ≤ 𝐶𝐴𝑒 -𝜃𝑡 . From the basic properties of 𝜑 𝑗 (see Section 2.2),

𝜑 1,𝑗 √ 𝜑 𝑗 is bounded. Because of the compact support of 𝜑 𝑗 , 𝑥 𝑡 𝜑 1,𝑗
√ 𝜑 𝑗 is bounded independently on 𝑥 and 𝑡. Using these bounds, and after several linear combinations, we obtain the desired inequalities.

□

Remark 2.9. As a consequence of Lemma 2.8, there exists a constant 𝐶 > 0 such that

∀𝑡 ∈ [𝑡 * , 𝑇] 𝐾 𝑘=1 |𝑥 1,𝑘 (𝑡)| + |𝑥 2,𝑘 (𝑡)| + 𝐿 𝑙=1 |𝑥 0,𝑙 (𝑡)| + |𝑐 0,𝑙 (𝑡)| ≤ 𝐶𝐴𝑒 -𝜃𝑇 * . (2.3.77)
This means, that if we take 𝑇 * 2 eventually larger (which we will assume in the following of the article), we may extend Proposition 2.1 to 𝑃 𝑗 in the following way, by integration of the bounds given by modulation (the constant 𝐶 is a bit larger in a controled way, we write 𝛽 2 because the shape of the solitons is a bit modified in a controled way): [START_REF]Nonlinear stability of MKdV breathers[END_REF], the Lyapunov functional that was introduced to study the orbital stability of a breather was the following conserved-in-time functional:

Proposition 2.10. Let 𝑗 = 1, ..., 𝐽, 𝑛 ∈ N. If 𝑇 * > 𝑇 * 2 ,
𝐹[𝑝](𝑡) + 2 𝛽 2 -𝛼 2 𝐸[𝑝](𝑡) + 𝛼 2 + 𝛽 2 2 𝑀[𝑝](𝑡). (2.4.1)
The functional that we will consider here is adapted from the latter. For 𝑡 ∈ [𝑡 * , 𝑇], we set

ℋ [𝑝](𝑡) := 𝐹[𝑝](𝑡) + 𝐾 𝑘=1 2 𝛽 2 𝑘 -𝛼 2 𝑘 𝐸 𝑏 𝑘 [𝑝](𝑡) + 𝛼 2 𝑘 + 𝛽 2 𝑘 2 𝑀 𝑏 𝑘 [𝑝](𝑡) (2.4.2) + 𝐿 𝑙=1 2𝑐 𝑙 𝐸 𝑠 𝑙 [𝑝](𝑡) + 𝑐 2 𝑙 𝑀 𝑠 𝑙 [𝑝](𝑡) . (2.4.3)
For the simplicity of notations, for 𝑗 ∈ {1, ..., 𝐽}, 𝑎 𝑗 will denote 𝛼 𝑘 if 𝑃 𝑗 is the breather 𝐵 𝑘 or 0 if 𝑃 𝑗 is a soliton, and 𝑏 𝑗 will denote 𝛽 𝑘 if 𝑃 𝑗 is the breather 𝐵 𝑘 or 𝑐 1/2 𝑙 if 𝑃 𝑗 is the soliton 𝑅 𝑙 . With these notations, we may write:

ℋ [𝑝](𝑡) = 𝐹[𝑝](𝑡) + 𝐽 𝑗=1 2 𝑏 2 𝑗 -𝑎 2 𝑗 𝐸 𝑗 [𝑝](𝑡) + 𝑎 2 𝑗 + 𝑏 2 𝑗 2 𝑀 𝑗 [𝑝](𝑡) . (2.4.4)
We would like to study locally this functional around the considered sum of breathers and solitons. The aim of this section will be to prove two following propositions: Proposition 2.12 (Expansion of 𝐻 2 conserved quantity). There exists

𝑇 * 4 > 0 such that if 𝑇 * ≥ 𝑇 * 4 , for all 𝑡 ∈ [𝑡 * , 𝑇], we have that ℋ [𝑝](𝑡) = 𝐽 𝑗=1 𝐹 𝑃 𝑗 (𝑡) + 2 𝑏 2 𝑗 -𝑎 2 𝑗 𝐸 𝑃 𝑗 (𝑡) + 𝑎 2 𝑗 + 𝑏 2 𝑗 2 𝑀 𝑃 𝑗 (𝑡) (2.4.5) + 𝐻 2 [𝜀](𝑡) + 𝑂 ∥𝜀(𝑡)∥ 3 𝐻 2 + 𝑂 𝑒 -2𝜃𝑡 ∥𝜀(𝑡)∥ 𝐻 2 + 𝑂 𝑒 -2𝜃𝑡 , (2.4.6)
where

𝐻 2 [𝜀](𝑡) := 1 2 ∫ 𝜀 2 𝑥𝑥 - 5 2 ∫ 𝑃 2 𝜀 2 𝑥 + 5 2 ∫ 𝑃 2 𝑥 𝜀 2 + 5 ∫ 𝑃 𝑃 𝑥𝑥 𝜀 2 + 15 4 ∫ 𝑃 4 𝜀 2 (2.4.7) + 𝐽 𝑗=1 𝑏 2 𝑗 -𝑎 2 𝑗 ∫ 𝜀 2 𝑥 𝜑 𝑗 -3 ∫ 𝑃 2 𝜀 2 𝜑 𝑗 + 𝐽 𝑗=1 𝑎 2 𝑗 + 𝑏 2 𝑗 2 1 2 ∫ 𝜀 2 𝜑 𝑗 . (2.4.8) Proposition 2.13 (Coercivity of 𝐻 2 ). There exists 𝜇 > 0, 𝑇 * 3 = 𝑇 * 3 (𝐴) such that, if 𝑇 * ≥ 𝑇 * 3 , we have for any 𝑡 ∈ [𝑡 * , 𝑇], 𝐻 2 [𝜀](𝑡) ≥ 𝜇∥𝜀(𝑡)∥ 2 𝐻 2 - 1 𝜇 𝐾 𝑘=1 ∫ 𝜀 𝐵 𝑘 𝜑 𝑏 𝑘 2 . (2.4.9)
The Propositions 2.12 and 2.13 will be used in the next concluding subsection to prove the Proposition 1.9.

Firstly, let us prove the Proposition 2.12.

Proof of Proposition 2.12. We would like to compare ℋ [ 𝑃 + 𝜀](𝑡) and ℋ [ 𝑃](𝑡) (recall that 𝑝 = 𝑃 + 𝜀) by studying the difference asymptotically when 𝜀 is small. Firstly, let us see how we could simplify the expression of ℋ [ 𝑃](𝑡).

Step 1:

Claim 2.14. If 𝑇 * is large enough, for all 𝑡 ∈ [𝑡 * , 𝑇], we have that

ℋ [ 𝑃](𝑡) = 𝐽 𝑗=1 𝐹 𝑃 𝑗 (𝑡) + 2 𝑏 2 𝑗 -𝑎 2 𝑗 𝐸 𝑃 𝑗 (𝑡) + 𝑎 2 𝑗 + 𝑏 2 𝑗 2 𝑀 𝑃 𝑗 (𝑡) (2.4.10) + 𝑂 𝑒 -2𝜃𝑡 . (2.4.11)
Proof. We prove that, for 𝑡 ∈ [𝑡 * , 𝑇],

ℋ [ 𝑃] - 𝐽 𝑗=1 𝐹 𝑃 𝑗 + 2 𝑏 2 𝑗 -𝑎 2 𝑗 𝐸 𝑃 𝑗 + 𝑎 2 𝑗 + 𝑏 2 𝑗 2 𝑀 𝑃 𝑗 ≤ 𝐶𝑒 -2𝜃𝑡 . (2.4.12)
Let us compare 𝐹 𝑗 [ 𝑃] and 𝐹[ 𝑃 𝑗 ]:

𝐹 𝑗 [ 𝑃] = ∫ 1 2 𝑃 2 𝑥𝑥 - 5 2 𝑃 2 𝑃 2 𝑥 + 1 4 𝑃 6 𝜑 𝑗 (𝑡, 𝑥) 𝑑𝑥, (2.4.13) 𝐹[ 𝑃 𝑗 ] = ∫ 1 2 𝑃 𝑗 2 𝑥𝑥 - 5 2 𝑃 𝑗 2 𝑃 𝑗 2 𝑥 + 1 4 𝑃 𝑗 6 𝑑𝑥. (2.4.14)
We compare the corresponding terms of these equalities. Let us start by the first one:

∫ 𝑃 2 𝑥𝑥 𝜑 𝑗 (𝑡, 𝑥) -𝑃 𝑗 2 𝑥𝑥 (2.4.15) ≤ ∫ 𝑃 𝑗 2 𝑥𝑥 1 -𝜑 𝑗 (𝑡, 𝑥) + (𝑟,𝑠)≠(𝑗,𝑗) ∫ 𝑃 𝑟 𝑥𝑥 𝑃 𝑠 𝑥𝑥 𝜑 𝑗 (𝑡, 𝑥) (2.4.16) ≤ 𝐶 ∫ 𝑒 -𝛽 2 |𝑥-𝑣 𝑗 𝑡| 𝑒 𝛽𝜏 32 𝑡 1 -𝜑 𝑗 (𝑡, 𝑥) 𝑑𝑥 (2.4.17) + 𝐶 𝑖≠𝑗 ∫ 𝑒 -𝛽 2 |𝑥-𝑣 𝑖 𝑡| 𝑒 𝛽𝜏 32 𝑡 𝜑 𝑗 (𝑡, 𝑥) 𝑑𝑥 (2.4.18) ≤ 𝐶𝑒 𝛽𝜏 32 𝑡 ∫ 𝜎 𝑗 𝑡+𝛿𝑡 -∞ + ∫ +∞ 𝜎 𝑗+1 𝑡-𝛿𝑡 𝑒 -𝛽 2 |𝑥-𝑣 𝑗 𝑡| 𝑑𝑥 (2.4.19) + 𝑖≠𝑗 ∫ 𝜎 𝑗+1 𝑡+𝛿𝑡 𝜎 𝑗 𝑡-𝛿𝑡 𝑒 -𝛽 2 |𝑥-𝑣 𝑖 𝑡| 𝑑𝑥 ≤ 𝐶𝑒 -𝛽𝜏𝑡/16 , (2.4.20)
by Proposition 2.10 and Remark 2.6. For the other terms of the difference to be bounded, we reason in a similar way. This completes the proof of the claim.

□

Step 2: Therefore, when we manage to compare ℋ [𝑝](𝑡) and ℋ [ 𝑃](𝑡), we are also able to compare ℋ [𝑝](𝑡) and

𝐽 𝑗=1 𝐹 𝑃 𝑗 (𝑡) + 2 𝑏 2 𝑗 -𝑎 2 𝑗 𝐸 𝑃 𝑗 (𝑡) + 𝑎 2 𝑗 + 𝑏 2 𝑗 2 𝑀 𝑃 𝑗 (𝑡) . (2.4.21)
We compute the Taylor expansion of ℋ [𝑝] = ℋ [ 𝑃 + 𝜀]:

ℋ 𝑃 + 𝜀 = 1 2 ∫ 𝑃 + 𝜀 2 𝑥𝑥 - 5 2 ∫ 𝑃 + 𝜀 2 𝑃 + 𝜀 2 𝑥 + 1 4 ∫ 𝑃 + 𝜀 6 (2.4.22) + 𝐽 𝑗=1 𝑏 2 𝑗 -𝑎 2 𝑗 ∫ 𝑃 + 𝜀 2 𝑥 𝜑 𝑗 - 1 2 ∫ 𝑃 + 𝜀 4 𝜑 𝑗 (2.4.23) + 𝐽 𝑗=1 𝑎 2 𝑗 + 𝑏 2 𝑗 2 1 2 ∫ 𝑃 + 𝜀 2 𝜑 𝑗 (2.4.24) = 1 2 ∫ 𝑃 2 𝑥𝑥 - 5 2 ∫ 𝑃 2 𝑃 2 𝑥 + 1 4 ∫ 𝑃 6 + ∫ 𝑃 (4𝑥) 𝜀 + 5 ∫ 𝑃 𝑃 2 𝑥 𝜀 (2.4.25) + 5 ∫ 𝑃 2 𝑃 𝑥𝑥 𝜀 + 3 2 ∫ 𝑃 5 𝜀 + 1 2 ∫ 𝜀 2 𝑥𝑥 - 5 2 ∫ 𝑃 2 𝜀 2 𝑥 (2.4.26) + 5 2 ∫ 𝑃 2 𝑥 𝜀 2 + 5 ∫ 𝑃 𝑃 𝑥𝑥 𝜀 2 + 15 4 ∫ 𝑃 4 𝜀 2 + 𝑂 ∥𝜀(𝑡)∥ 3 𝐻 2
(2.4.27)

+ 𝐽 𝑗=1 𝑏 2 𝑗 -𝑎 2 𝑗 ∫ 𝑃 2 𝑥 𝜑 𝑗 - 1 2 ∫ 𝑃 4 𝜑 𝑗 -2 ∫ 𝑃 𝑥𝑥 𝜀𝜑 𝑗 (2.4.28) -2 ∫ 𝑃 𝑥 𝜀𝜑 𝑗,𝑥 -2 ∫ 𝑃 3 𝜀𝜑 𝑗 + ∫ 𝜀 2 𝑥 𝜑 𝑗 -3 ∫ 𝑃 2 𝜀 2 𝜑 𝑗 (2.4.29) + 𝐽 𝑗=1 𝑎 2 𝑗 + 𝑏 2 𝑗 2 1 2 ∫ 𝑃 2 𝜑 𝑗 + 2 ∫ 𝑃𝜀𝜑 𝑗 + ∫ 𝜀 2 𝜑 𝑗 . (2.4.30)
We can observe that the sum (2.4.30) is composed of 0-order terms in 𝜀, of 1 𝑠𝑡 -order terms in 𝜀, of 2 𝑛𝑑 -order terms in 𝜀; 3 𝑟𝑑 and larger-order terms in 𝜀 are contained in 𝑂(∥𝜀(𝑡)∥ 3 𝐻 2 ). The sum of the 0-order terms is actually ℋ

[ 𝑃]. The sum of 2 𝑛𝑑 -order terms in 𝜀 is 𝐻 2 [𝜀](𝑡).
Let us study more closely the 1 𝑠𝑡 -order terms:

𝐻 1 = ∫ 𝑃 (4𝑥) 𝜀 + 5 ∫ 𝑃 𝑃 2 𝑥 𝜀 + 5 ∫ 𝑃 2 𝑃 𝑥𝑥 𝜀 + 3 2 ∫ 𝑃 5 𝜀 (2.4.31) + 𝐽 𝑗=1 𝑏 2 𝑗 -𝑎 2 𝑗 2 ∫ 𝑃 𝑥 𝜀 𝑥 𝜑 𝑗 -2 ∫ 𝑃 3 𝜀𝜑 𝑗 + 𝐽 𝑗=1 𝑎 2 𝑗 + 𝑏 2 𝑗 2 ∫ 𝑃𝜀𝜑 𝑗 . (2.4.32)
From [START_REF]Nonlinear stability of MKdV breathers[END_REF], we know that a breather 𝐴 = 𝐴 𝛼,𝛽 satisfies for any fixed 𝑡 ∈ R, the following nonlinear equation:

𝐴 (4𝑥) -2 𝛽 2 -𝛼 2 𝐴 𝑥𝑥 + 𝐴 3 + 𝛼 2 + 𝛽 2 2 𝐴 + 5𝐴𝐴 2 𝑥 + 5𝐴 2 𝐴 𝑥𝑥 + 3 2 𝐴 5 = 0. (2.4.33)
This equation is also satisfied for 𝐴 = 𝐵 𝑘 with 𝛼 = 𝛼 𝑘 and 𝛽 = 𝛽 𝑘 for any 𝑘 = 1, ..., 𝐾 (the shape parameters of a breather are not changed by modulation).

For a soliton 𝑄 = 𝑅 𝑐,𝜅 , we know from 𝑄 𝑥𝑥 = 𝑐𝑄 -𝑄 3 that 𝑄 satisfies for any fixed 𝑡 ∈ R, the following nonlinear equation (see Section 5.1 (Appendix)):

𝑄 (4𝑥) -2𝑐 𝑄 𝑥𝑥 + 𝑄 3 + 𝑐 2 𝑄 + 5𝑄𝑄 2 𝑥 + 5𝑄 2 𝑄 𝑥𝑥 + 3 2 𝑄 5 = 0. (2.4.34)
This equation is not exactly satisfied for 𝑄 = 𝑅 𝑙 for any 𝑙 = 1, ..., 𝐿 (the shape parameters of a soliton are changed by modulation). The exact equation satisfied by 𝑄 = 𝑅 𝑙 is:

𝑄 (4𝑥) -2𝑐 𝑙 𝑄 𝑥𝑥 + 𝑄 3 + 𝑐 2 𝑙 𝑄 + 5𝑄𝑄 2 𝑥 + 5𝑄 2 𝑄 𝑥𝑥 + 3 2 𝑄 5 (2.4.35) = 2𝑐 0,𝑙 (𝑡) 𝑄 𝑥𝑥 + 𝑄 3 -2𝑐 𝑙 𝑐 0,𝑙 (𝑡)𝑄 -𝑐 0,𝑙 (𝑡) 2 𝑄. (2.4.36)
We will compare 𝐻 1 and To succeed, we need to find a bound for a term of the type ∫ 𝑃 ℎ 𝑃 𝑖 𝑥 𝑃 𝑗 𝑥 𝜀 where ℎ ≠ 𝑖 or 𝑖 ≠ 𝑗. We can perform the following upper bounding (where without loss of generality, we suppose that 𝑖 ≠ 𝑗):

𝐻 ′ 1 := ∫ 𝑃 (4𝑥) 𝜀 + 5 𝐽 𝑗=1 ∫ 𝑃 𝑗 𝑃 𝑗 2 𝑥 𝜀 + 5 𝐽 𝑗=1 ∫ 𝑃 𝑗 2 𝑥 𝑃 𝑗 𝑥𝑥 𝜀 + 3 2 𝐽 𝑗=1 ∫ 𝑃 𝑗 5 𝜀 (2.4.37) -2 𝐽 𝑗=1 𝑏 2 𝑗 -𝑎 2 𝑗 ∫ 𝑃 𝑗 𝑥𝑥 𝜀 + ∫ 𝑃 𝑗 3 𝜀 + 𝐽 𝑗=1 𝑎
∫ 𝑃 ℎ 𝑃 𝑖 𝑥 𝑃 𝑗 𝑥 𝜀 ≤ 𝐶𝑒 𝛽𝜏 16 𝑡 ∫ 𝑒 -𝛽 2 |𝑥-𝑣 𝑖 𝑡| 𝑒 -𝛽 2 |𝑥-𝑣 𝑗 𝑡| |𝜀| (2.4.41) ≤ 𝐶 ∥𝜀∥ 𝐿 ∞ 𝑒 𝛽𝜏 16 𝑡 ∫ 𝑒 -𝛽 2 |𝑥-𝑣 𝑖 𝑡| 𝑒 -𝛽 2 |𝑥-𝑣 𝑗 𝑡|
(2.4.42) 

≤ 𝐶 ∥𝜀∥ 𝐻 2 𝑒 -𝛽𝜏𝑡/
∫ 𝑃 𝑥 𝜀 𝑥 𝜑 𝑗 - ∫ R 𝑃 𝑗 𝑥 𝜀 𝑥 ≤ 𝐶 ∥𝜀∥ 𝐻 2 𝑒 -𝛽𝜏𝑡 16 . (2.4.44)
This enables us to bound the difference between 𝐻 1 and 𝐻 ′ 1 :

𝐻 1 -𝐻 ′ 1 ≤ 𝐶 ∥𝜀(𝑡)∥ 𝐻 2 𝑒 -𝛽𝜏𝑡 16 . (2.4.45)
Now, because our objects are not only breathers, 𝐻 ′ 1 is not equal to 0. Actually, we have that

𝐻 ′ 1 = 2 𝐿 𝑙=1 𝑐 0,𝑙 (𝑡) ∫ 𝑅 𝑙 𝑥𝑥 𝜀 + ∫ 𝑅 𝑙 3 𝜀 (2.4.46) -2 𝐿 𝑙=1 𝑐 𝑙 𝑐 0,𝑙 (𝑡) ∫ 𝑅 𝑙 𝜀 - 𝐿 𝑙=1 𝑐 0,𝑙 (𝑡) 2 ∫ 𝑅 𝑙 𝜀. (2.4.47)
Now, we introduce:

𝐻 ′′ 1 = 2 𝐿 𝑙=1 𝑐 0,𝑙 (𝑡) ∫ 𝑅 𝑙 𝑥𝑥 𝜀 𝜑 𝑠 𝑙 + ∫ 𝑅 𝑙 3 𝜀 𝜑 𝑠 𝑙 (2.4.48) -2 𝐿 𝑙=1 𝑐 𝑙 𝑐 0,𝑙 (𝑡) ∫ 𝑅 𝑙 𝜀 𝜑 𝑠 𝑙 - 𝐿 𝑙=1 𝑐 0,𝑙 (𝑡) 2 ∫ 𝑅 𝑙 𝜀 𝜑 𝑠 𝑙 . (2.4.49)
By reasonning the same way as for 𝐻 1 and 𝐻 ′ 1 , we see that

𝐻 ′ 1 -𝐻 ′′ 1 ≤ 𝐶 ∥𝜀(𝑡)∥ 𝐻 2 𝑒 -2𝜃𝑡 . (2.4.50)
Because of (2.3.7) and because of the elliptic equation satisfied by a soliton, we have that

𝐻 ′′ 1 = 0. (2.4.51) Thus, |𝐻 1 | = |𝐻 1 -𝐻 ′ 1 | + |𝐻 ′ 1 -𝐻 ′′ 1 | + |𝐻 ′′ 1 | ≤ 𝐶 ∥𝜀(𝑡)∥ 𝐻 2 𝑒 -2𝜃𝑡 . (2.4.52)
The proof of Proposition 2.12 is now completed. Let 𝐴 = 𝐵 𝛼,𝛽 be a breather (we note 𝐴 1 := 𝜕 𝑥 1 𝐴 and 𝐴 2 := 𝜕 𝑥 2 𝐴). We define a quadratic form associated to this breather:

𝒬 𝑏 𝛼,𝛽 [𝜖] := 1 2 ∫ 𝜖 2 𝑥𝑥 - 5 2 ∫ 𝐴 2 𝜖 2 𝑥 + 5 2 ∫ 𝐴 2 𝑥 𝜖 2 + 5 ∫ 𝐴𝐴 𝑥𝑥 𝜖 2 + 15 4 ∫ 𝐴 4 𝜖 2 (2.4.53) + 𝛽 2 -𝛼 2 ∫ 𝜖 2 𝑥 -3 ∫ 𝐴 2 𝜖 2 + 𝛼 2 + 𝛽 2 2 1 2 ∫ 𝜖 2 =: 𝒬 𝛼,𝛽 [𝜖]. (2.4.54)
From [START_REF]Nonlinear stability of MKdV breathers[END_REF], we know that the kernel of this quadratic form is of dimension 2 and is spanned by 𝜕 𝑥 1 𝐵 𝛼,𝛽 and 𝜕 𝑥 2 𝐵 𝛼,𝛽 , and that this quadratic form has only one negative eigenvalue that is of multiplicity 1: Proposition 2.15 (Proposition 4.11, [START_REF]Multi solitary waves for nonlinear Schrödinger equations[END_REF]). There exists 𝜇 𝑏 𝛼,𝛽 > 0 that depends only on 𝛼 and 𝛽 (and does not depend on time), such that if

𝜖 ∈ 𝐻 2 (R) is such that ∫ 𝐴 1 𝜖 = ∫ 𝐴 2 𝜖 = 0, (2.4.55) then 𝒬 𝑏 𝛼,𝛽 [𝜖] ≥ 𝜇 𝑏 𝛼,𝛽 ∥𝜖∥ 2 𝐻 2 - 1 𝜇 𝑏 𝛼,𝛽 ∫ 𝜖𝐴 2 .
(2.4.56) Remark 2.16. 𝜇 𝑏 𝛼,𝛽 is continuous in 𝛼, 𝛽. Note that translation parameters are implicit in 𝒬 𝑏 𝛼,𝛽 . Let 𝑄 = 𝑅 𝑐,𝜅 be a soliton. We define a quadratic form associated to this soliton:

𝒬 𝑠 𝑐 [𝜖] := 1 2 ∫ 𝜖 2 𝑥𝑥 - 5 2 ∫ 𝑄 2 𝜖 2 𝑥 + 5 2 ∫ 𝑄 2 𝑥 𝜖 2 + 5 ∫ 𝑄𝑄 𝑥𝑥 𝜖 2 + 15 4 ∫ 𝑄 4 𝜖 2 (2.4.57) + 𝑐 ∫ 𝜖 2 𝑥 -3 ∫ 𝑄 2 𝜖 2 + 𝑐 2 1 2 ∫ 𝜖 2 =: 𝒬 0, √ 𝑐 [𝜖]. (2.4.58)
By the same techniques, such as those presented in [START_REF]Nonlinear stability of MKdV breathers[END_REF], adapted to the quadratic form of a soliton, we may establish that the kernel of this quadratic form is of dimension 2, and is spanned by 𝜕 𝑥 𝑄 and 𝜕 𝑐 𝑄, and that this quadratic form does not have any negative eigenvalue (see Section 5.2 (Appendix)). After that, from Section 5.3 (Appendix), we deduce that the coercivity still works when 𝜖 is orthogonal to 𝑄 and 𝜕 𝑥 𝑄. More precisely: Proposition 2.17. There exists 𝜇 𝑠 𝑐 > 0 that depends only on 𝑐 (and does not depend on time), such that if

𝜖 ∈ 𝐻 2 (R) is such that ∫ 𝑄𝜖 = ∫ 𝑄 𝑥 𝜖 = 0, (2.4.59) then 𝒬 𝑠 𝑐 [𝜖] ≥ 𝜇 𝑠 𝑐 ∥𝜖∥ 2 𝐻 2 . (2.4.60) Remark 2.18. 𝜇 𝑠 𝑐 is continuous in 𝑐.
Note that translation and sign parameters are implicit in the notation 𝒬 𝑠 𝑐 . We would like to find a similar minoration for 𝐻 2 (which is a generalization of 𝒬). For 𝑗 = 1, ..., 𝐽, let us define for 𝜖 ∈ 𝐻 2 ,

𝒬 𝑗 [𝜖] := 1 2 ∫ 𝜖 2 𝑥𝑥 𝜑 𝑗 - 5 2 ∫ 𝑃 𝑗 2 𝜖 2 𝑥 𝜑 𝑗 + 5 2 ∫ 𝑃 𝑗 2 𝑥 𝜖 2 𝜑 𝑗 (2.4.61) + 5 ∫ 𝑃 𝑗 𝑃 𝑗 𝑥𝑥 𝜖 2 𝜑 𝑗 + 15 4 ∫ 𝑃 𝑗 4 𝜖 2 𝜑 𝑗 (2.4.62) + 𝑏 2 𝑗 -𝑎 2 𝑗 ∫ 𝜖 2 𝑥 𝜑 𝑗 -3 ∫ 𝑃 𝑗 2 𝜖 2 𝜑 𝑗 + 𝑎 2 𝑗 + 𝑏 2 𝑗 2 1 2 ∫ 𝜖 2 𝜑 𝑗 , (2.4.63) and 𝒬 ′ 𝑗 [𝜖] := 1 2 ∫ 𝜖 2 𝑥𝑥 𝜑 𝑗 - 5 2 ∫ 𝑃 2 𝜖 2 𝑥 𝜑 𝑗 + 5 2 ∫ 𝑃 2 𝑥 𝜖 2 𝜑 𝑗 (2.4.64) + 5 ∫ 𝑃 𝑃 𝑥𝑥 𝜖 2 𝜑 𝑗 + 15 4 ∫ 𝑃 4 𝜖 2 𝜑 𝑗 (2.4.65) + 𝑏 2 𝑗 -𝑎 2 𝑗 ∫ 𝜖 2 𝑥 𝜑 𝑗 -3 ∫ 𝑃 2 𝜖 2 𝜑 𝑗 + 𝑎 2 𝑗 + 𝑏 2 𝑗 2 1 2 ∫ 𝜖 2 𝜑 𝑗 . (2.4.66)
We have that

𝐻 2 [𝜀(𝑡)] = 𝐽 𝑗=1 𝒬 ′ 𝑗 [𝜀(𝑡)]. (2.4.67)
Notations 𝒬 𝑏 𝑘 , (𝒬 𝑏 𝑘 ) ′ , 𝒬 𝑠 𝑙 and (𝒬 𝑠 𝑙 ) ′ will also be used. We note that the support of 𝜑 𝑗 increases with time, so that 𝒬 𝑗 is near a 𝒬 𝑏 𝛼 𝑘 ,𝛽 𝑘 or a 𝒬 𝑠 𝑐 𝑙 when time is large (note that 𝒬 𝑏 𝛼 𝑘 ,𝛽 𝑘 is the canonical quadratic form associated to the breather 𝐵 𝑘 , but the canonical quadratic form associated to the soliton 𝑅 𝑐 is 𝒬 𝑠 𝑐 𝑙 +𝑐 0,𝑙 (𝑡) ). However, firstly, let us study the difference between 𝒬 𝑗 and 𝒬 ′ 𝑗 . Using the computations carried out at the beginning of this part (those done for the linear part) and Sobolev inequalities, we obtain: 𝛿𝑡 ), as defined by (2.2.10) and (2.2.11), which will be useful to write the derivatives of 𝜑 𝑗 . We recall that they have the same support and bounding properties as 𝜑 𝑗 . We have that

𝒬 𝑗 [𝜖] -𝒬 ′ 𝑗 [𝜖] ≤ 𝐶𝑒 -2𝜃𝑡 ∥𝜖∥
∫ 𝐵 𝑘 1 (𝑡)𝜖 𝜑 𝑏 𝑘 (𝑡) = ∫ 𝐵 𝑘 2 (𝑡)𝜖 𝜑 𝑏 𝑘 (𝑡) = 0, (2.4.69) then 𝒬 𝑏 𝑘 [𝜖] ≥ 𝜇 ∫ 𝜖 2 + 𝜖 2 𝑥 + 𝜖 2 𝑥𝑥 𝜑 𝑏 𝑘 (𝑡) - 1 𝜇 ∫ 𝜖 𝐵 𝑘 (𝑡) 𝜑 𝑏 𝑘 (𝑡) 2 -𝜌∥𝜖∥ 2 𝐻 2 . (2.
∫ 𝜖 𝜑 𝑗 2 𝑥𝑥 = ∫ 𝜖 2 𝑥𝑥 𝜑 𝑗 + ∫ 𝜖 2 𝑥 (𝛿𝑡) 2 𝜑 2 1,𝑗 𝜑 𝑗 + 1 4 ∫ 𝜖 2 (𝛿𝑡) 4 𝜑 2 2,𝑗 𝜑 𝑗 + 1 16 ∫ 𝜖 2 (𝛿𝑡) 4 𝜑 4 1,𝑗 𝜑 3 𝑗 (2.4.71) - 1 4 ∫ 𝜖 2 (𝛿𝑡) 4 𝜑 2,𝑗 𝜑 2 1,𝑗 𝜑 2 𝑗 + 2 ∫ 𝜖 𝑥𝑥 𝜖 𝑥 𝛿𝑡 𝜑 1,𝑗 + ∫ 𝜖 𝑥𝑥 𝜖 (𝛿𝑡) 2 𝜑 2,𝑗 (2.4.72) - 1 2 ∫ 𝜖 𝑥𝑥 𝜖 (𝛿𝑡) 2 𝜑 2 1,𝑗 𝜑 𝑗 + ∫ 𝜖 𝑥 𝜖 (𝛿𝑡) 3 𝜑 1,𝑗 𝜑 2,𝑗 𝜑 𝑗 - 1 2 ∫ 𝜖 𝑥 𝜖 (𝛿𝑡) 3 𝜑 3 1,𝑗 𝜑 2 𝑗 . (2.4.73)
We observe that, for 𝑇 * 3 large enough, and by using the inequalities that define 𝜓, the error terms can be bounded by 

□

Proof of Proposition 2.13. We will now use the Lemma 2.19 and its version for solitons (Lemma 2.20) for 𝜖 = 𝜀(𝑡). From this, we deduce that for 𝜌 > 0 small enough, we have that The proof of Proposition 2.13 is now completed. □ 2.5. Proof of Proposition 1.9 (Bootstrap). We recall that 𝑝 𝑛 from Proposition 1.9 is denoted by 𝑝 and 𝑇 𝑛 is denoted by 𝑇 in what follows, in order to simplify the notations. We do the proof that follows under the assumption (2.2.1), so that the Propositions proved above are true for 𝑡 ∈ [𝑡 * , 𝑇].

𝐽 𝑗=1 𝒬 𝑗 [𝜀(𝑡)] ≥ 𝜇∥𝜀(𝑡)∥ 2 𝐻 2 - 1 𝜇 𝐾 𝑘=1 ∫ 𝜀(𝑡) 𝐵 𝑘 𝜑 𝑏 𝑘 2 , ( 2 
The aim of this subsection is to complete the proof of Proposition 1.9 by using the Propositions 2.12 and 2.13.

We note that by Lemma 2.7, the conservation of 𝐹[𝑝](𝑡) and the definition of ℋ [𝑝], we have for any 𝑡 ∈ [𝑡 * , 𝑇], that

ℋ [𝑝](𝑇) -ℋ [𝑝](𝑡) ≤ 𝐶𝐴 2 𝛿 2 𝑡 𝑒 -2𝜃𝑡 . (2.5.1)
Thus, for any 𝑡 ∈ [𝑡 * , 𝑇],

ℋ [𝑝](𝑡) ≤ ℋ [𝑝](𝑇) + 𝐶𝐴 2 𝛿 2 𝑡 𝑒 -2𝜃𝑡 . (2.5.2)
From Proposition 2.12,

ℋ 𝑃 + 𝜀 (𝑡) -𝐻 2 [𝜀](𝑡) (2.5.3) - 𝐽 𝑗=1 𝐹 𝑃 𝑗 (𝑡) + 2 𝑏 2 𝑗 -𝑎 2 𝑗 𝐸 𝑃 𝑗 (𝑡) + 𝑎 2 𝑗 + 𝑏 2 𝑗 2 𝑀 𝑃 𝑗 (𝑡) (2.5.4) ≤ 𝐶𝑒 -2𝜃𝑡 + 𝐶 ∥𝜀∥ 𝐻 2 𝑒 -2𝜃𝑡 + 𝐶 ∥𝜀∥ 3 𝐻 2 ≤ 𝐶𝑒 -2𝜃𝑡 + 𝜇 100 ∥𝜀∥ 2 𝐻 2 . (2.5.5)
In order to obtain the last line, we use the fact that ∥𝜀(𝑡)∥ 𝐻 2 ≤ 𝐶𝐴𝑒 -𝜃𝑡 , and we take 𝑇 * ≥ 𝑇 

+ 𝑐 5/2 𝑙 1 + 𝑐 0,𝑙 (𝑡) 𝑐 𝑙 1/2 𝑀[𝑞]. (2.5.12)
Note that from Lemma 2.8, |𝑐 0,𝑙 (𝑡)| 3 ≤ 𝐶𝐴 3 𝑒 -𝜃𝑡 𝑒 -2𝜃𝑡 . That is why, if we take 𝑇 * 5 eventually larger, |𝑐 0,𝑙 (𝑡)| 3 ≤ 𝐶𝑒 -2𝜃𝑡 . For this reason, we will do Taylor expansions of order 2 of (2.5.12): From this, we deduce that Proof. We compute:

1 + 𝑐 0,𝑙 (𝑡) 𝑐 𝑙 5/2 = 1 + 5 
ℛ 𝑙 (𝑡) = 𝑐 5/2 𝑙 𝐹[𝑞] + 2𝐸[𝑞] + 𝑀[𝑞] + 𝑐 3/2 𝑙 𝑐 0,𝑙 (𝑡) 5 2 𝐹[𝑞] + 3𝐸[𝑞] + 1 2 𝑀[𝑞] (2.5.16) + 𝑐 1/2 𝑙 𝑐 0,𝑙 (𝑡) 2 15 8 𝐹[𝑞] + 3 4 𝐸[𝑞] - 1 8 𝑀[𝑞] + 𝑂 𝑒 -2𝜃𝑡 . (2.5.17) Now, 𝑐 5/2 𝑙 (𝐹[𝑞] + 2𝐸[𝑞] + 𝑀[𝑞]) is constant in time.
ℛ 𝑙 (𝑡) -ℛ 𝑙 (𝑇) = 𝑂 𝑒 -2𝜃𝑡 . (2.5.19) By using that ℋ [𝑝](𝑇) = ℋ [𝑃](𝑇) = ℋ [ 𝑃](𝑇),
𝑑 𝑑𝑡 ∫ 1 2 𝑝 2 (𝑡, 𝑥) 𝜑 𝑗 (𝑡, 𝑥) 𝑑𝑥 (2.5.31) = 1 2𝛿𝑡 ∫ - 3 2 𝑝 2 𝑥 + 3 4 𝑝 4 𝜑 1,𝑗 √ 𝜑 𝑗 - 1 2(𝛿𝑡) 2 ∫ 𝑝 𝑥 𝑝 𝜑 2,𝑗 √ 𝜑 𝑗 (2.5.32) + 1 4(𝛿𝑡) 2 ∫ 𝑝 𝑥 𝑝 𝜑 2 1,𝑗 𝜑 3/2 𝑗 - 1 4 ∫ 𝑝 2 𝑥 𝛿𝑡 2 𝜑 1,𝑗 √ 𝜑 𝑗 . (2.5.33)
From the inequalities that define 𝜓, we find that

𝑑 𝑑𝑡 ∫ 1 2 𝑝 2 (𝑡, 𝑥) 𝜑 𝑗 (𝑡, 𝑥) 𝑑𝑥 ≤ 𝐶 𝛿 2 𝑡 ∫ Ω 𝑗 (𝑡)∪Ω 𝑗+1 (𝑡) 𝑝 2 𝑥 + 𝑝 2 + 𝑝 4 . (2.5.34)
From now on, we can follow the proof of Lemma 2.7.

□

Now, we observe the following:

∫ 𝑃 + 𝜀 2 𝜑 𝑏 𝑘 = ∫ 𝐵 𝑘 2 + 2 ∫ 𝐵 𝑘 𝜀 𝜑 𝑏 𝑘 + ∫ 𝜀 2 𝜑 𝑏 𝑘 + Err, (2.5.35)
where Err stands for the other terms of the sum, which we consider as error terms, and we will show that they are bounded by 𝐶𝑒 -𝜃𝑡 .

For 𝑖 ≠ 𝑗 and any ℎ (if 𝑃 𝑗 = 𝐵 𝑘 is a breather), 

∫ 𝑃 𝑖 𝑃 ℎ 𝜑 𝑗 ≤ 𝐶 ∫ 𝛿𝑡+𝜎 𝑗+1 𝑡 -𝛿𝑡+𝜎 𝑗 𝑡 𝑒 -𝛽 2 |𝑥-𝑣 𝑖 𝑡| 𝑑𝑥 ≤ 𝐶𝑒 -𝜃𝑡 , ( 2 
+ 𝐶 𝐾 𝑘=1 |𝑥 1,𝑘 (𝑡)| + |𝑥 2,𝑘 (𝑡)| + 𝐿 𝑙=1 |𝑥 0,𝑙 (𝑡)| + |𝑐 0,𝑙 (𝑡)| (2.5.47) ≤ 𝐶 𝐴 4 𝛿 4 𝑡 + 1 𝑒 -𝜃𝑡 + 𝐶 𝐾 𝑘=1 ∫ 𝑇 𝑡 𝑥 ′ 1,𝑘 (𝑠) 𝑑𝑠 + ∫ 𝑇 𝑡 𝑥 ′ 2,𝑘 (𝑠) 𝑑𝑠 (2.5.48) + 𝐶 𝐿 𝑙=1 ∫ 𝑇 𝑡 𝑥 ′ 0,𝑙 (𝑠) 𝑑𝑠 + ∫ 𝑇 𝑡 𝑐 ′ 0,𝑙 (𝑠) 𝑑𝑠 (2.5.49) ≤ 𝐶 𝐴 4 𝛿 4 𝑡 + 1 𝑒 -𝜃𝑡 + 𝐶 ∫ 𝑇 𝑡 𝜀(𝑠) 𝐻 2 𝑑𝑠 + ∫ 𝑇 𝑡 𝑒 -𝜃𝑠 𝑑𝑠 (2.5.50) ≤ 𝐶 𝐴 4 𝛿 4 𝑡 + 1 𝑒 -𝜃𝑡 . (2.5.51)
We take 𝐴 = 4𝐶 (where 𝐶 is a constant that can be used anywhere in the proof above) and which is exactly what we wanted to prove.

𝑇 * := max 𝑇 * 1 ,

𝑝 is a smooth multi-breather

Our goal here is to prove Proposition 1.10.

3.1. Estimates in higher order Sobolev norms. Firstly, we notice that the proposition is already established for 𝑠 = 2. We note also that if this proposition is proved for an 𝑠 ≥ 2 with a corresponding constant 𝐴 𝑠 , then this proposition is also valid for any 𝑠 ′ ≤ 𝑠 with the same constant 𝐴 𝑠 . This means that 𝐴 𝑠 can possibly increase with 𝑠 and that this proposition is already established for 0 ≤ 𝑠 ≤ 2. From now on, we will denote (as before) 𝑝 𝑛 by 𝑝, 𝑇 𝑛 by 𝑇 and 𝑝 𝑛 -𝑃 by 𝑣, and make sure that the constant 𝐴 𝑠 that we will obtain in the proof does not depend on 𝑛 (although it will depend on 𝑠). For the constant 𝜃, we will take the usual value: 𝜃 := 𝛽𝜏 32 . For the constant 𝑇 * , we will also take the value that works for Proposition 1.6.

We will prove the proposition by induction on 𝑠 (it is sufficient to prove the proposition for any integer 𝑠). Let 𝑠 ≥ 3. We will prove the proposition for 𝑠, assuming that the proposition is true for any 0 ≤ 𝑠 ′ ≤ 𝑠 -1.

Let us deduce from the (mKdV) equation the equation satisfied by 𝑣:

𝑣 𝑡 = 𝑝 𝑡 - 𝐽 𝑗=1 𝑃 𝑗𝑡 (3.1.1) = -𝑝 𝑥𝑥 + 𝑝 3 - 𝐽 𝑗=1 𝑃 𝑗𝑥𝑥 - 𝐽 𝑗=1 𝑃 3 𝑗 𝑥 (3.1.2) = -𝑣 𝑥𝑥 + (𝑣 + 𝑃) 3 - 𝐽 𝑗=1 𝑃 3 𝑗 𝑥 (3.1.3) = -𝑣 𝑥𝑥 + 𝑣 3 + 3𝑣 2 𝑃 + 3𝑣𝑃 2 + 𝑃 3 - 𝐽 𝑗=1 𝑃 3 𝑗 𝑥 . (3.1.4)
Firstly, we compute 𝑑 𝑑𝑡 ∫ (𝜕 𝑠 𝑥 𝑣) 2 by integration by parts:

𝑑 𝑑𝑡 ∫ 𝜕 𝑠 𝑥 𝑣 2 = 2 ∫ 𝜕 𝑠 𝑥 𝑣 𝑡 𝜕 𝑠 𝑥 𝑣 (3.1.5) = -2 ∫ 𝜕 𝑠+1 𝑥 𝑣 𝑥𝑥 + 𝑣 3 + 3𝑣 2 𝑃 + 3𝑣𝑃 2 + 𝑃 3 - 𝐽 𝑗=1 𝑃 3 𝑗 𝜕 𝑠 𝑥 𝑣 (3.1.6) = 2(-1) 𝑠+1 ∫ 𝜕 2𝑠+1 𝑥 𝑃 3 - 𝐽 𝑗=1 𝑃 3 𝑗 𝑣 -2 ∫ 𝜕 𝑠+1 𝑥 𝑣 3 𝜕 𝑠 𝑥 𝑣 (3.1.7) -6 ∫ 𝜕 𝑠+1 𝑥 𝑣 2 𝑃 𝜕 𝑠 𝑥 𝑣 -6 ∫ 𝜕 𝑠+1 𝑥 𝑣𝑃 2 𝜕 𝑠 𝑥 𝑣 , (3.1.8) because ∫ (𝜕 𝑠+3 𝑥 𝑣)(𝜕 𝑠 𝑥 𝑣) = - ∫ (𝜕 𝑠+2 𝑥 𝑣)(𝜕 𝑠+1
𝑥 𝑣) = 0. We will now bound above each of the terms of the obtained sum. By Sobolev embedding, Proposition 2.3 and Proposition 1.6,

∫ 𝜕 2𝑠+1 𝑥 𝑃 3 - 𝐽 𝑗=1 𝑃 3 𝑗 𝑣 ≤ ∥𝑣 ∥ 𝐿 ∞ ∫ 𝜕 2𝑠+1 𝑥 𝑃 3 - 𝐽 𝑗=1 𝑃 3 𝑗 (3.1.9) ≤ 𝐶 ∥𝑣 ∥ 𝐻 1 𝑒 -𝛽𝜏𝑡/2 (3.1.10) ≤ 𝐶𝐴𝑒 -𝜃𝑡 𝑒 -𝛽𝜏𝑡/2 (3.1.11) ≤ 𝐶𝐴𝑒 -2𝜃𝑡 ≤ 𝐶𝐴 2 𝑠-1 𝑒 -2𝜃𝑡 , (3.1.12)
where 𝐶 ≥ 0 is a constant that depends only on 𝑠.

We observe that 𝜕 𝑠+1 𝑥 𝑣 

∫ 𝜕 𝑠+1 𝑥 𝑣 3 𝜕 𝑠 𝑥 𝑣 = 3 2 ∫ 𝜕 𝑠 𝑥 𝑣 2 𝑥 𝑣 2 + 3(𝑠 + 1) ∫ 𝜕 𝑠 𝑥 𝑣 2 𝑣 2 𝑥 + ∫ 𝜕 𝑠 𝑥 𝑣 𝑍 1 (3.1.16) = 6(𝑠 + 1) -3 2 ∫ 𝜕 𝑠 𝑥 𝑣 2 𝑣 2 𝑥 + ∫ 𝜕 𝑠 𝑥 𝑣 𝑍 1 . (3.1.17)
Then, we bound above each of the terms of the obtained sum:

∫ (𝜕 𝑠 𝑥 𝑣) 2 (𝑣 2 ) 𝑥 ≤ 𝐶 𝑣 𝐿 ∞ 𝑣 𝑥 𝐿 ∞ ∫ 𝜕 𝑠 𝑥 𝑣 2 (3.1.18) ≤ 𝐶 𝑣 2 𝐻 2 ∫ 𝜕 𝑠 𝑥 𝑣 2 (3.1.19) ≤ 𝐶 ∥𝑝 ∥ 𝐻 2 + ∥𝑃 ∥ 𝐻 2 𝐴𝑒 -𝜃𝑡 ∫ 𝜕 𝑠 𝑥 𝑣 2 (3.1.20) ≤ 𝐶𝐶 0 𝐴𝑒 -𝜃𝑡 ∫ 𝜕 𝑠 𝑥 𝑣 2 ≤ 𝐶𝐴 𝑠-1 𝑒 -𝜃𝑡 ∫ 𝜕 𝑠 𝑥 𝑣 2 . (3.1.21)
We have actually shown in the computation above that ∥𝑣∥ 2 𝐻 2 can be bounded above by ∥𝑣∥ 𝐻 2 (with a constant that depends only on problem data), and therefore the degree of ∥𝑣 ∥ 𝐻 2 can be lowered without harm in the upper bound. We will use this fact again for the rest of the proof. In fact, all what it means is that, for several terms, what we have is more than what we need.

By the Cauchy-Schwarz and Gagliardo-Nirenberg-Sobolev inequalities, 

∫ 𝜕 𝑠 𝑥 𝑣 𝑍 1 ≤ 𝐶 ∫ 𝜕 𝑠 𝑥 𝑣 𝑠-1 𝑠 ′ =0 𝜕 𝑠 ′ 𝑥 𝑣 3 (3.1.22) ≤ 𝐶 ∫ 𝜕 𝑠 𝑥 𝑣 2 1/2 𝑠-1 𝑠 ′ =0 ∫ 𝜕 𝑠 ′ 𝑥 𝑣 6 1/2 (3.1.23) ≤ 𝐶 ∫ 𝜕 𝑠 𝑥 𝑣 2 1/2 𝑠-1 𝑠 ′ =0 ∫ 𝜕 𝑠 ′ 𝑥 𝑣 2 ∫ 𝜕 𝑠 ′ +1 𝑥 𝑣 2 1/2 (3.1.24) ≤ 𝐶 𝑠-1 𝑠 ′ =0 ∫ 𝜕 𝑠 ′ 𝑥 𝑣 2 ∫ 𝜕 𝑠 𝑥 𝑣 2 + ∫ 𝜕 𝑠 ′ +1 𝑥 𝑣 2 (3.1.25) ≤ 𝐶𝐴 2 𝑠-1 𝑒 -2𝜃𝑡 + 𝐶𝐴 𝑠-1 𝑒 -𝜃𝑡 ∫ 𝜕 𝑠 𝑥 𝑣 2 . ( 3 
= 2𝑠 + 1 2 ∫ 𝜕 𝑠 𝑥 𝑣 2 𝑃 2 𝑥 + ∫ 𝜕 𝑠-1 𝑥 𝑣 𝑍 3 (𝑣, 𝑣 𝑥 , ..., 𝜕 𝑠-1 𝑥 𝑣), (3.1.37)
where 𝑍 0 3 and 𝑍 3 are homogeneous polynomials of degree 1 whose coefficients are polynomials in 𝑃 and its space derivatives. We have that

|𝑍 3 | ≤ 𝐶( 𝑠-1 𝑠 ′ =0 |𝜕 𝑠 ′ 𝑥 𝑣|). Therefore, ∫ 𝜕 𝑠-1 𝑥 𝑣 𝑍 3 ≤ 𝐶𝐴 2 𝑠-1 𝑒 -2𝜃𝑡 . (3.1.38)
Thus, by taking the sum of all those inequalities, we obtain:

𝑑 𝑑𝑡 ∫ 𝜕 𝑠 𝑥 𝑣 2 + 3(2𝑠 + 1) ∫ 𝜕 𝑠 𝑥 𝑣 2 𝑃 2 𝑥 ≤ 𝐶𝐴 2 𝑠-1 𝑒 -2𝜃𝑡 + 𝐶𝐴 𝑠-1 𝑒 -𝜃𝑡 ∫ 𝜕 𝑠 𝑥 𝑣 2 . (3.1.39)
Next, we perform similar computations for 𝑑 𝑑𝑡 ∫

(𝜕 𝑠-1 𝑥 𝑣) 2 𝑃 2 : 𝑑 𝑑𝑡 ∫ (𝜕 𝑠-1 𝑥 𝑣) 2 𝑃 2 = 2 ∫ 𝜕 𝑠-1 𝑥 𝑣 𝑡 𝜕 𝑠-1 𝑥 𝑣 𝑃 2 + 2 ∫ 𝜕 𝑠-1 𝑥 𝑣 2 𝑃 𝑡 𝑃 (3.1.40) = -2 ∫ 𝜕 𝑠 𝑥 𝑣 𝑥𝑥 + 𝑣 3 + 3𝑣 2 𝑃 + 3𝑣𝑃 2 + 𝑃 3 - 𝐽 𝑗=1 𝑃 3 𝑗 𝜕 𝑠-1 𝑥 𝑣 𝑃 2 (3.1.41) -2 ∫ 𝜕 𝑠-1 𝑥 𝑣 2 𝑃 𝑥𝑥 + 𝐽 𝑗=1 𝑃 3 𝑗 𝑥 𝑃. (3.1.42)
Let us study each of the obtained terms.

Firstly,

-2 ∫ 𝜕 𝑠+2 𝑥 𝑣 𝜕 𝑠-1 𝑥 𝑣 𝑃 2 = 2 ∫ 𝜕 𝑠+1 𝑥 𝑣 𝜕 𝑠 𝑥 𝑣 𝑃 2 + 2 ∫ 𝜕 𝑠+1 𝑥 𝑣 (𝜕 𝑠-1 𝑥 𝑣 𝑃 2 𝑥 (3.1.43) = -3 ∫ 𝜕 𝑠 𝑥 𝑣 2 𝑃 2 𝑥 -2 ∫ 𝜕 𝑠 𝑥 𝑣 𝜕 𝑠-1 𝑥 𝑣 𝑃 2 𝑥𝑥 (3.1.44) = -3 ∫ 𝜕 𝑠 𝑥 𝑣 2 𝑃 2 𝑥 + ∫ 𝜕 𝑠-1 𝑥 𝑣 2 𝑃 2 𝑥𝑥𝑥 . (3.1.45) Indeed, ∫ 𝜕 𝑠-1 𝑥 𝑣 2 𝑃 2 𝑥𝑥𝑥 ≤ 𝐶𝐴 2 𝑒 -2𝜃𝑡 . (3.1.46) Secondly, ∫ 𝜕 𝑠 𝑥 𝑃 3 - 𝐽 𝑗=1 𝑃 3 𝑗 𝜕 𝑠-1 𝑥 𝑣 𝑃 2 ≤ 𝐶𝐴 2 𝑠-1 𝑒 -2𝜃𝑡 (3.1.47)
can be obtained similarly to the first part of the proof (starting by an integration by parts to have 𝜕 𝑠-2 𝑥 𝑣 at the place of 𝜕 𝑠-1 𝑥 𝑣). Thirdly, 

∫ 𝜕 𝑠 𝑥 𝑣 3 𝜕 𝑠-1 𝑥 𝑣 𝑃 2 = 3 ∫ 𝜕 𝑠 𝑥 𝑣 𝜕 𝑠-1 𝑥 𝑣 𝑣 2 𝑃 2 + ∫ 𝑍 4 (𝑣, 𝑣 𝑥 , ..., 𝜕 𝑠-1 𝑥 𝑣)𝑃 2 (3.1.48) = - 3 2 ∫ 𝜕 𝑠-1 𝑥 𝑣 2 𝑣 2 𝑃 2 𝑥 + ∫ 𝑍 4 𝑃 2 , ( 3 
∫ 𝜕 𝑠-1 𝑥 𝑣 2 𝑃 𝑥𝑥 + 𝐽 𝑗=1 𝑃 3 𝑗 𝑥 𝑃 ≤ 𝐶𝐴 2 𝑠-1 𝑒 -2𝜃𝑡 (3.1.50) is clear. Therefore, 𝑑 𝑑𝑡 ∫ 𝜕 𝑠-1 𝑥 𝑣 2 𝑃 2 + 3 ∫ 𝜕 𝑠 𝑥 𝑣 2 𝑃 2 𝑥 ≤ 𝐶𝐴 2 𝑠-1 𝑒 -2𝜃𝑡 . ( 3 
𝑑 𝑑𝑡 𝐹(𝑡) ≤ 𝐶𝐴 2 𝑠-1 𝑒 -2𝜃𝑡 + 𝐶𝐴 𝑠-1 𝑒 -𝜃𝑡 ∫ 𝜕 𝑠 𝑥 𝑣 2 . (3.1.53) Because ∫ (𝜕 𝑠-1 𝑥 𝑣) 2 𝑃 2 ≤ 𝐶𝐴 2 𝑒 -2𝜃𝑡
, we can write the following upper bound: 

∫ 𝜕 𝑠 𝑥 𝑣 2 ≤ |𝐹(𝑡)| + 𝐶𝐴 2 𝑠-1 𝑒 -2𝜃𝑡 . ( 3 
+ 𝐶𝐴 𝑠-1 ∫ 𝑇 𝑡 𝑒 -𝜃𝜎 𝐶𝐴 2 𝑠-1 𝑒 -2𝜃𝜎 exp ∫ 𝜎 𝑡 𝐶𝐴 𝑠-1 𝑒 -𝜃𝑢 𝑑𝑢 𝑑𝜎 (3.1.60) ≤ 𝐶𝐴 2 𝑠-1 𝑒 -2𝜃𝑡 (3.1.61) + 𝐶𝐴 3 𝑠-1 exp 𝐶𝐴 𝑠-1 𝜃 𝑒 -𝜃𝑡 ∫ 𝑇 𝑡 𝑒 -3𝜃𝜎 exp - 𝐶𝐴 𝑠-1 𝜃 𝑒 -𝜃𝜎 𝑑𝜎 (3.1.62) ≤ 𝐶𝐴 2 𝑠-1 𝑒 -2𝜃𝑡 + 𝐶𝐴 3 𝑠-1 exp 𝐶𝐴 𝑠-1 𝜃 ∫ 𝑇 𝑡 𝑒 -3𝜃𝜎 𝑑𝜎 (3.1.63) ≤ 𝐶𝐴 2 𝑠-1 𝑒 -2𝜃𝑡 + 𝐶𝐴 3 𝑠-1 exp 𝐶𝐴 𝑠-1 𝜃 𝑒 -3𝜃𝑡 (3.1.64) ≤ 𝐶𝐴 3 𝑠-1 exp 𝐶𝐴 𝑠-1 𝜃 𝑒 -2𝜃𝑡 . (3.1.65) Therefore, ∫ 𝜕 𝑠 𝑥 𝑣 2 ≤ 𝐴 𝑠 𝑒 -2𝜃𝑡 , (3.1.66)
where

𝐴 𝑠 := 𝐶𝐴 3 𝑠-1 exp 𝐶𝐴 𝑠-1

𝜃

and 𝐶 is a constant large enough that depends only on 𝑠. This conclude the proof of Proposition 1.10, and so of Theorem 1.2.

Uniformity of constants.

We conclude this section with an explanation regarding Remark 1.3.

In the proof above, the constants that we obtain 𝐴, 𝑇 * , 𝜃 do depend on 𝑃 𝑗 (0) (1 ≤ 𝑗 ≤ 𝐽). Actually, we may characterize this dependence. In fact, they do not depend on the initial positions of our objects in the case when our objects are initially ordered in the right order and sufficiently far from each other. Firstly, we will prove that for any 𝐷 > 0, if (3.2.1) is satisfied, then the constants 𝐴 𝑠 and 𝑇 * do only depend on 𝛼 𝑘 , 𝛽 𝑘 , 𝑐 𝑙 and 𝐷. Finally, we will prove that if 𝐷 > 0 is large enough with respect to the given parameters, then we can take 𝑇 * = 0.

To establish the validity of this theorem, it is enough to read again the whole article and to make sure that on any step of the proof, there is no dependence on initial positions of our objects when our objects are initially far from each other for the constant 𝐶. This will allow to claim the same for the constants 𝐴 and 𝑇 * (but, these constants may depend on 𝐷). This works, but we should change a bit the way we write our results.

For Proposition 2.1, we should write:

|𝜕 𝑛 𝑥 𝜕 𝑚 𝑡 𝑃 𝑗 (𝑡, 𝑥)| ≤ 𝐶𝑒 -𝛽|𝑥-𝑣 𝑗 𝑡-𝑥 𝑗 (0)| . (3.2.3)
Therefore, in Proposition 2.3, we have nothing to change, but the constant 𝐶 do depend on 𝐷. This will also be the case in the following propositions and lemmas of this proof.

We should replace 𝜎 𝑗 𝑡 for the definition of 𝜑 𝑗 in (2.2.8) and (2.2.9) by 𝜎 𝑗 𝑡 + 𝑥 𝑗-1 (0)+𝑥 𝑗 (0) 2 to take into account of initial positions. More precisely, we will have for any 𝑗 = 2, ..., 𝐽 -1,

𝜑 𝑗 (𝑡, 𝑥) := 𝜓 𝑥 -𝜎 𝑗 𝑡 - 𝑥 𝑗-1 (0)+𝑥 𝑗 (0) 2 𝛿𝑡 -𝜓 𝑥 -𝜎 𝑗+1 𝑡 - 𝑥 𝑗 (0)+𝑥 𝑗+1 (0) 2 𝛿𝑡 , (3.2.4)
and similarly for other definitions.

After having done the modulation with 𝐶 and 𝑇 * depending on 𝐷, for Proposition 2.10, we should write:

|𝜕 𝑛 𝑥 𝑃 𝑗 (𝑡, 𝑥)| ≤ 𝐶𝑒 -𝛽 2 |𝑥-𝑣 𝑗 𝑡-𝑥 𝑗 (0)| 𝑒 𝛽𝜏 32 𝑡 . (3.2.5)
Therefore, with these adaptations, the same proof works to prove that 𝐴 𝑠 and 𝑇 * do depend only on 𝛼 𝑘 , 𝛽 𝑘 , 𝑐 𝑙 and 𝐷. Now, given 𝛼 𝑘 , 𝛽 𝑘 , 𝑐 𝑙 , we choose 𝐷 0 > 0 in an arbitrary maner. Therefore, we get 𝐴 𝑠 (𝐷 0 ) and 𝑇 * (𝐷 0 ) associated to 𝐷 0 . Let Λ := 𝑣 𝐽 -𝑣 1 the maximal difference between two velocities. We set 𝐷 := 𝐷 0 + Λ • 𝑇 * (𝐷 0 ). Therefore, if we suppose (3.2.1) in 𝑡 = 0 for 𝐷, then we have (3.2.1) in 𝑡 = -𝑇 * (𝐷 0 ) for 𝐷 0 . Therefore, by appliying the intermediate result for 𝐷 0 , we obtain the desired conclusion with 𝐷 and 𝐴 𝑠 that depend on 𝐷 0 .

Uniqueness

𝑝 is the multi-breather constructed in the existence part. The goal here is to prove that if a solution 𝑢 converges to 𝑝 when 𝑡 → +∞ (in some sense), then 𝑢 = 𝑝 (under well chosen assumptions).

We prove here two propositions. For both of them, we assume that the velocities of all our objects are distinct (this was also an assumption for the existence). The first proposition does not make more assumptions on velocities of our objects, but it is a partial uniqueness result as we restrict ourselves to the class of super polynomial convergence to the multi-breather. The second proposition assumes that the velocities of all our objects are positive (this is a new assumption and it is needed because this proof uses monotonicity arguments).

4.1.

A solution converging super polynomialy to a multi-breather is this multi-breather. The goal of this subsection is to prove Proposition 1.5.

Remark 4.1. Note that in Proposition 1.5, we don't make any assumptions on the sign of 𝑣 1 or 𝑣 2 . This uniqueness proposition has the same degree of generality as Theorem 1.2.

Proof of Proposition 1.5. Let 𝑝(𝑡) be the multi-breather associated to 𝑃 by Theorem 1.2. Recall that for any 𝑠, ∥𝑝(𝑡) -𝑃(𝑡)∥ 𝐻 𝑠 = 𝑂(𝑒 -𝜃𝑡 ), (4.1.1) for a suitable 𝜃 > 0.

Let 𝑁 > 2 to be chosen later. We take 𝑢(𝑡) an 𝐻 2 solution of (mKdV) such that there exists 𝐶 0 > 0 such that for 𝑡 large enough,

∥𝑢(𝑡) -𝑃(𝑡)∥ 𝐻 2 ≤ 𝐶 0 𝑡 𝑁 . (4.1.2)
From that, we may deduce that for 𝑡 large enough (namely, 𝑡 ≥ 2𝐶 0 along with the previous condition),

∥𝑢(𝑡) -𝑃(𝑡)∥ 𝐻 2 ≤ 1 2 1 𝑡 𝑁-1 . (4.1.3)
Our goal is to find a condition on 𝑁 that do not depend on 𝑢, such that the condition (4.1.3) on 𝑢 for 𝑡 large enough implies that 𝑢 ≡ 𝑝.

Because of (4.1.1), the condition (4.1.3) for 𝑡 large enough is equivalent to: for 𝑡 large enough,

∥𝑢(𝑡) -𝑝(𝑡)∥ 𝐻 2 ≤ 1 𝑡 𝑁-1 . (4.1.4)
We denote 𝑧(𝑡) := 𝑢(𝑡) -𝑝(𝑡). Our goal is to find 𝑁 large enough that do not depend on 𝑧, for which we will be able to prove that 𝑧 ≡ 0, given

∥𝑧(𝑡)∥ 𝐻 2 ≤ 1 𝑡 𝑁-1 , (4.1.5)
for 𝑡 large enough. Because 𝑧 is a difference of two solutions of (mKdV), we may derive the following equation for 𝑧:

𝑧 𝑡 + 𝑧 𝑥𝑥 + (𝑧 + 𝑝) 3 -𝑝 3 𝑥 = 0. (4.1.6)
We divide our proof in several steps.

Step 1. Modulation on 𝑧.

For 𝑗 = 1, ..., 𝐽, if 𝑃 𝑗 = 𝐵 𝑘 is a breather, we denote

𝐾 𝑗 := 𝜕 𝑥 1 𝐵 𝑘 𝜕 𝑥 2 𝐵 𝑘 , (4.1.7)
and if 𝑃 𝑗 = 𝑅 𝑙 is a soliton, we denote:

𝐾 𝑗 = 𝜕 𝑥 𝑅 𝑙 . (4.1.8)
We may derive the following equation for 𝐾 𝑗 :

(𝐾 𝑗 ) 𝑡 + (𝐾 𝑗 ) 𝑥𝑥 + 3𝑃 2
𝑗 𝐾 𝑗 𝑥 = 0. (4.1.9)

For 𝑗 = 1, ..., 𝐽, if 𝑃 𝑗 = 𝐵 𝑘 is a breather, let 𝑐 𝑗 (𝑡) ∈ R 2 defined for 𝑡 large enough and if 𝑃 𝑗 = 𝑅 𝑙 is a soliton, let 𝑐 𝑗 (𝑡) ∈ R defined for 𝑡 large enough such that for

𝑧(𝑡) := 𝑧(𝑡) + 𝐽 𝑗=1 𝑐 𝑗 (𝑡)𝐾 𝑗 (𝑡), (4.1.10)
where 𝑐 𝑗 𝐾 𝑗 is either a product of two numbers of R or a scalar product of two vectors of R 2 , the following condition is satisfied: for any 𝑗 = 1, ..., 𝐽, for 𝑡 large enough, ∫ 𝑧(𝑡)𝐾 𝑗 (𝑡) 𝜑 𝑗 (𝑡) = 0, (4. 1.11) where 𝜑 𝑗 is defined in Section 2.2 (in this proof, it is OK to take 𝛿 = 1). It is possible to do so in a unique way, because the Gram matrix associated to 𝐾 𝑗 (𝑡) 𝜑 𝑗 (𝑡), 1 ≤ 𝑗 ≤ 𝐽, is invertible; which is the case because 𝐾 𝑗 (𝑡) 𝜑 𝑗 (𝑡), 1 ≤ 𝑗 ≤ 𝐽, are linearly independent. This is why 𝑐 𝑗 (𝑡), 1 ≤ 𝑗 ≤ 𝐽, are defined in a unique way. For the same reason, 𝑐 𝑗 (𝑡) is obtained linearly from ∫ 𝐾 𝑘 (𝑡)𝑧(𝑡) 𝜑 𝑘 (𝑡), 1 ≤ 𝑘 ≤ 𝐽, with coefficients that depend only on 𝐾 𝑘 , 1 ≤ 𝑘 ≤ 𝐽. This is why, from Cauchy-Schwarz, we may deduce the following lemma. The Gram matrix is 𝐶 1 in time and invertible. This is why, its inverse is 𝐶 1 We may derive the following equation for 𝑧: 

𝑧 𝑡 + 𝑧 𝑥𝑥 + 3 𝑧𝑝 2 𝑥 = -3𝑧 2 𝑝 + 𝑧 3 𝑥 + 𝐽 𝑘=1 𝑐 ′ 𝑘 (𝑡)𝐾 𝑘 -3 𝐽 𝑘=1 𝑐 𝑘 (𝑡) (𝑃
∫ 𝑐 𝑘 (𝑡) • (𝑃 2 𝑘 -𝑝 2 )𝐾 𝑘 𝑥 𝐾 𝑗 𝜑 𝑗 ≤ 𝐶𝑒 -𝜃𝑡 ∥𝑧(𝑡)∥ 𝐻 2 , (4.1.24)
for a suitable 𝜃 > 0 that do not depend on 𝑧. This is why, we deduce that for any 𝑗 = 1, ..., 𝐽, for 𝑡 large enough, there exists 𝐶 > 0 and 𝜃 > 0 that do not depend on 𝑧, such that

𝐽 𝑘=1 ∫ 𝑐 ′ 𝑘 (𝑡) • 𝐾 𝑘 𝐾 𝑗 𝜑 𝑗 ≤ 𝐶 ∥ 𝑧(𝑡)∥ 𝐻 2 + 𝐶𝑒 -𝜃𝑡 ∥𝑧(𝑡)∥ 𝐻 2 + 𝐶 ∥𝑧(𝑡)∥ 2 𝐻 2 . (4.1.25)
We recall that for any (𝑒 1 , 𝑒 2 ) ∈ (R) 2 or (R 2 ) 2 , 𝑒 3 ∈ R or R 2 , we have the following equality between two elements of R or R 2 (where vectors are denoted as a colon) 

𝑒 1 • 𝑒 2 𝑒 3 = 𝑒 𝑇 1 𝑒 2 𝑒 𝑇 3 𝑇 , ( 4 

∫

𝐾 𝑘 𝐾 𝑇 𝑗 is exponentially decreasing, and from (4.1.14), we may write that for any 𝑗 = 1, ..., 𝐽, for 𝑡 large enough, there exists 𝐶 > 0 and 𝜃 > 0 that do not depend on 𝑧, such that

𝑐 ′ 𝑗 (𝑡) 𝑇 ∫ 𝐾 𝑗 𝐾 𝑇 𝑗 𝑇 ≤ 𝐶 ∥ 𝑧(𝑡)∥ 𝐻 2 + 𝐶𝑒 -𝜃𝑡 ∥𝑧(𝑡)∥ 𝐻 2 + 𝐶 ∥𝑧(𝑡)∥ 2 𝐻 2 . (4.1.27)
Now, in the case when 𝐾 𝑗 ∈ R 2 , using the fact that its components are linearly independent and Cauchy-Schwarz inequality, we deduce the desired lemma.

□

Step 3. Coercivity. We define the following functional quadratic in 𝑧:

𝐻(𝑡) = 1 2 ∫ 𝑧 2 𝑥𝑥 - 5 2 ∫ 𝑝 2 𝑧 2 𝑥 + 5 2 ∫ 𝑝 2 𝑥 𝑧 2 + 5 ∫ 𝑝𝑝 𝑥𝑥 𝑧 2 + 15 4
∫ 𝑝 4 𝑧 2 (4.1.28)

+ 𝐽 𝑗=1 𝑏 2 𝑗 -𝑎 2 𝑗 ∫ 𝑧 2 𝑥 𝜑 𝑗 -3 ∫ 𝑝 2 𝑧 2 𝜑 𝑗 + 𝐽 𝑗=1 𝑎 2 𝑗 + 𝑏 2 𝑗 2 1 2 ∫ 𝑧 2 𝜑 𝑗 . (4.1.29)
We will prove the following lemma: Lemma 4.4. There exists 𝐶 > 0 that do not depend on 𝑧, such that for 𝑡 large enough,

∥ 𝑧(𝑡)∥ 2 𝐻 2 ≤ 𝐶𝐻(𝑡) + 𝐶 𝐽 𝑗=1 ∫ 𝑧𝑃 𝑗 2 . (4.1.30)
Proof. We denote 𝒬 𝑗 the quadratic form associated to 𝑃 𝑗 . We remind that

𝒬 𝑗 [𝜀] := 1 2 ∫ 𝜀 2 𝑥𝑥 - 5 2 ∫ 𝑃 2 𝑗 𝜀 2 𝑥 + 5 2 ∫ (𝑃 𝑗 ) 2 𝑥 𝜀 2 + 5 ∫ 𝑃 𝑗 (𝑃 𝑗 ) 𝑥𝑥 𝜀 2 (4.1.31) + 15 4 ∫ 𝑃 4 𝑗 𝜀 2 + 𝑏 2 𝑗 -𝑎 2 𝑗 ∫ 𝜀 2 𝑥 -3 ∫ 𝑃 2 𝑗 𝜀 2 + 𝑎 2 𝑗 + 𝑏 2 𝑗 2 1 2 ∫ 𝜀 2 . (4.1.32)
In any case, we have that for any 𝑗 = 1, ..., 𝐽, there exists 𝜇 𝑗 > 0, such that if 𝜀 ∈ 𝐻 2 satisfies ∫ 𝐾 𝑗 𝜀 = 0, then we have

𝒬 𝑗 [𝜀] ≥ 𝜇 𝑗 ∥𝜀∥ 2 𝐻 2 - 1 𝜇 𝑗 ∫ 𝜀𝑃 𝑗 2 . (4.1.33)
Here, we apply this coercivity result with 𝜀 = 𝑧 √ 𝜑 𝑗 for which the orthogonality conditions (4. 1.11) are satisfied. Thus,

∥ 𝑧 𝜑 𝑗 ∥ 2 𝐻 2 ≤ 𝐶𝒬 𝑗 [ 𝑧 𝜑 𝑗 ] + 𝐶 ∫ 𝑧𝑃 𝑗 𝜑 𝑗 2 . (4.1.34)
We denote: √ 𝜑 𝑗 converges exponentially to 𝑃 𝑗 , and the fact that 𝐶 𝑡 may be as small as we want if we take 𝑡 large enough, we deduce the desired lemma.

𝒬 ′ 𝑗 [𝜀] := 1 2 ∫ 𝜀 2 𝑥𝑥 𝜑 𝑗 - 5 2 ∫ 𝑝 2 𝜀 2 𝑥 𝜑 𝑗 + 5 2 ∫ 𝑝 2 𝑥 𝜀 2 𝜑 𝑗 + 5 ∫ 𝑝𝑝 𝑥𝑥 𝜀 2 𝜑 𝑗 (4.1.35) + 15 4 ∫ 𝑝 4 𝜀 2 𝜑 𝑗 + 𝑏 2 𝑗 -𝑎 2 𝑗 ∫ 𝜀 2 𝑥 𝜑 𝑗 -3 ∫ 𝑝 2 𝜀 2 𝜑 𝑗 + 𝑎 2 𝑗 + 𝑏 2 𝑗 2 1 2 ∫ 𝜀 2 𝜑 𝑗 , ( 4 

□

Step 4. Modification of 𝐻 for the sake of simplification. We define:

𝐻(𝑡) := ∫ 1 2 𝑧 2 𝑥𝑥 - 5 2 ( 𝑧 + 𝑝) 2 ( 𝑧 + 𝑝) 2 𝑥 -𝑝 2 𝑝 2 𝑥 -2 𝑧𝑝𝑝 2 𝑥 -2 𝑧 𝑥 𝑝 2 𝑝 𝑥 (4.1.39) + 1 4 ( 𝑧 + 𝑝) 6 -𝑝 6 -6 𝑧𝑝 5 + 1 2 𝐽 𝑗=1 𝑎 2 𝑗 + 𝑏 2 𝑗 2 ∫ 𝑧 2 𝜑 𝑗 (4.1.40) + 2 𝐽 𝑗=1 𝑏 2 𝑗 -𝑎 2 𝑗 ∫ 1 2 𝑧 2 𝑥 - 1 4 ( 𝑧 + 𝑝) 4 -𝑝 4 -4 𝑧𝑝 3 𝜑 𝑗 . (4.1.41)
We observe that the difference between 𝐻 and 𝐻 is bounded by 𝑂 ∥ 𝑧(𝑡)∥ 3 𝐻 2 . We can thus claim: Lemma 4.5. There exists 𝐶 > 0 that do not depend on 𝑧, such that for 𝑡 large enough,

∥ 𝑧(𝑡)∥ 2 𝐻 2 ≤ 𝐶 𝐻(𝑡) + 𝐶 𝐽 𝑗=1 ∫ 𝑧𝑃 𝑗 2 . (4.1.42)
Step 5. A bound for 𝑑 𝐻 𝑑𝑡 . Lemma 4.6. There exists 𝐶 > 0 and 𝜃 > 0 that do not depend on 𝑧, such that for 𝑡 large enough,

𝑑 𝐻 𝑑𝑡 ≤ 𝐶 𝑡 ∥ 𝑧(𝑡)∥ 2 𝐻 2 + 𝐶𝑒 -𝜃𝑡 ∥ 𝑧(𝑡)∥ 𝐻 2 ∥𝑧(𝑡)∥ 𝐻 2 + 𝐶 ∥ 𝑧(𝑡)∥ 𝐻 2 ∥𝑧(𝑡)∥ 2 𝐻 2 . (4.1.43)
Proof. We develop the expression of 𝐻(𝑡), we differentiate each term obtained and we use (4.1.15), the fact that 𝑝 is a solution of (mKdV) and the fact that (𝜑 𝑗 ) 𝑡 = -𝑥 𝑡 (𝜑 𝑗 ) 𝑥 , where 𝑥 𝑡 is bounded independently from 𝑧 because of the compact support of 𝜑 𝑗 . We obtain several sorts of terms after doing several integrations by parts and several obvious simplifications.

Several terms are clearly bounded by one of the bounds of the lemma, because in these terms, the cumulated degree of 𝑧 and 𝑧 is larger than 2. As an example, we show how to deal with 

+5𝑝𝑝 2 𝑥 + 5𝑝 2 𝑝 𝑥𝑥 + 3 2 𝑝 5 𝜑 𝑗 , (4.1.47) 3 𝐽 𝑗=1 ∫ 𝑧 2 𝑝 𝑥 𝑝 𝑥𝑥𝑥𝑥 -2(𝑏 2 𝑗 -𝑎 2 𝑗 )(𝑝 𝑥𝑥 + 𝑝 3 ) + (𝑎 2 𝑗 + 𝑏 2 𝑗 ) 2 𝑝 (4.1.48) +5𝑝𝑝 2 𝑥 + 5𝑝 2 𝑝 𝑥𝑥 + 3 2 𝑝 5 𝜑 𝑗 . (4.1.49)
To deal with these two expressions, we use the elliptic equation satisfied by 𝑃 𝑗 : Other terms contain 𝐾 𝑘 (or a derivative) and 𝜑 𝑗 with 𝑗 ≠ 𝑘. In this case, this product gives an exponential decreasing, and such a term is bounded by 𝐶𝑒 -𝜃𝑡 ∥ 𝑧(𝑡)∥ 𝐻 2 ∥𝑧(𝑡)∥ 𝐻 2 , using (4.1.14).

(𝑃 𝑗 ) 𝑥𝑥𝑥𝑥 -2(𝑏 2 𝑗 -𝑎 2 𝑗 ) (𝑃 𝑗 ) 𝑥𝑥 + 𝑃 3 𝑗 + (𝑎 2 𝑗 + 𝑏 2 𝑗 ) 2 𝑃 𝑗 (4.1.50) +5𝑃 𝑗 (𝑃 𝑗 ) 2 𝑥 + 5𝑃 2 𝑗 (𝑃 𝑗 ) 𝑥𝑥 + 3 2 𝑃 5 𝑗 = 0, ( 4 
Therefore, we are left with the following terms: 

𝐽 𝑗=1 𝑐 ′ 𝑗 (𝑡) ∫ (𝐾 𝑗 ) 𝑥𝑥 𝑧 𝑥𝑥 -10𝐾 𝑗 𝑧 𝑥 𝑝𝑝 𝑥 -5𝐾 𝑗 𝑧𝑝

□

By differentiation of a square, we obtain that Lemma 4.8. There exists > 0 and 𝜃 > 0 that do not depend on 𝑧, such that for 𝑡 large enough, for any

𝑗 = 1, ..., 𝐽, 𝑑 𝑑𝑡 ∫ 𝑧𝑃 𝑗 2 ≤ 𝐶𝑒 -𝜃𝑡 ∥ 𝑧(𝑡)∥ 𝐻 2 ∥𝑧(𝑡)∥ 𝐻 2 + 𝐶 ∥ 𝑧(𝑡)∥ 𝐻 2 ∥𝑧(𝑡)∥ 2 𝐻 2 . (4.1.69)
Step 7. A bound for ∥𝑧(𝑡)∥ 𝐻 2 in function of 𝑧(𝑡). Because we have chosen 𝑁 > 2 and because of (4.1.5), we may claim that for 𝑡 large enough, the integral

∫ +∞ 𝑡 ∥𝑧(𝑠)∥ 𝐻 2 𝑑𝑠 is finite.
Because of Lemma 4. 

≤ 𝐶 ∫ +∞ 𝑡 ∥ 𝑧(𝑠)∥ 𝐻 2 𝑑𝑠 + 𝐶 ∫ +∞ 𝑡 𝑒 -𝜃𝑠 ∥𝑧(𝑠)∥ 𝐻 2 𝑑𝑠 + ∫ +∞ 𝑡 ∥𝑧(𝑠)∥ 2 𝐻 2 𝑑𝑠. (4.1.72)
Knowing this and using (4.1.10), we may deduce that

∥𝑧(𝑡)∥ 𝐻 2 ≤ 𝐶 ∥ 𝑧(𝑡)∥ 𝐻 2 + 𝐶 ∫ +∞ 𝑡 ∥ 𝑧(𝑠)∥ 𝐻 2 𝑑𝑠 + 𝐶 ∫ +∞ 𝑡 𝑒 -𝜃𝑠 ∥𝑧(𝑠)∥ 𝐻 2 𝑑𝑠 (4.1.73) + ∫ +∞ 𝑡 ∥𝑧(𝑠)∥ 2 𝐻 2 𝑑𝑠 (4.1.74) ≤ 𝐶 ∥ 𝑧(𝑡)∥ 𝐻 2 + 𝐶 ∫ +∞ 𝑡 ∥ 𝑧(𝑠)∥ 𝐻 2 𝑑𝑠 + 𝐶 sup 𝑠≥𝑡 ∥𝑧(𝑠)∥ 𝐻 2 𝑒 -𝜃𝑡 (4.1.75) + 𝐶 sup 𝑠≥𝑡 ∥𝑧(𝑠)∥ 𝐻 2 ∫ +∞ 𝑡 ∥𝑧(𝑠)∥ 𝐻 2 𝑑𝑠, (4.1.76) which implies, because ∫ +∞ 𝑡 ∥ 𝑧(𝑠)∥ 𝐻 2 𝑑𝑠, sup 𝑠≥𝑡 ∥𝑧(𝑠)∥ 𝐻 2 𝑒 -𝜃𝑡 , sup 𝑠≥𝑡 ∥𝑧(𝑠)∥ 𝐻 2 ∫ +∞ 𝑡 ∥𝑧(𝑠)∥ 𝐻 2 𝑑𝑠 (4.1.77) are decreasing in time, that sup 𝑠≥𝑡 ∥𝑧(𝑠)∥ 𝐻 2 ≤ 𝐶 sup 𝑠≥𝑡 ∥ 𝑧(𝑠)∥ 𝐻 2 + 𝐶 ∫ +∞ 𝑡 ∥ 𝑧(𝑠)∥ 𝐻 2 𝑑𝑠 + 𝐶 sup 𝑠≥𝑡 ∥𝑧(𝑠)∥ 𝐻 2 𝑒 -𝜃𝑡 (4.1.78) + 𝐶 sup 𝑠≥𝑡 ∥𝑧(𝑠)∥ 𝐻 2 ∫ +∞ 𝑡 ∥𝑧(𝑠)∥ 𝐻 2 𝑑𝑠, (4.1.79)
and because 𝑒 -𝜃𝑡 and ∫ +∞ 𝑡 ∥𝑧(𝑠)∥ 𝐻 2 𝑑𝑠 may be as small as we want for 𝑡 large enough (dependent on 𝑧), we may deduce that Lemma 4.9. There exists 𝐶 > 0 that do not depend on 𝑧, such that for 𝑡 large enough,

∥𝑧(𝑡)∥ 𝐻 2 ≤ sup 𝑠≥𝑡 ∥𝑧(𝑠)∥ 𝐻 2 ≤ 𝐶 sup 𝑠≥𝑡 ∥ 𝑧(𝑠)∥ 𝐻 2 + 𝐶 ∫ +∞ 𝑡 ∥ 𝑧(𝑠)∥ 𝐻 2 𝑑𝑠. (4.1.80)
Step 8. Conclusion. By integration, from Lemmas 4.5, 4.6 and 4.8, for 𝑡 large enough (depending on 𝑧), with constants 𝐶 and 𝜃 that do not depend on 𝑧,

∥ 𝑧(𝑡)∥ 2 𝐻 2 ≤ 𝐶 ∫ +∞ 𝑡 1 𝑠 ∥ 𝑧(𝑠)∥ 2 𝐻 2 𝑑𝑠 + 𝐶 ∫ +∞ 𝑡 𝑒 -𝜃𝑠 ∥ 𝑧(𝑠)∥ 𝐻 2 ∥𝑧(𝑠)∥ 𝐻 2 𝑑𝑠 (4.1.81) + 𝐶 ∫ +∞ 𝑡 ∥ 𝑧(𝑠)∥ 𝐻 2 ∥𝑧(𝑠)∥ 2 𝐻 2 𝑑𝑠 (4.1.82) ≤ 𝐶 sup 𝑠≥𝑡 ∥ 𝑧(𝑠)∥ 𝐻 2 ∫ +∞ 𝑡 1 𝑠 ∥ 𝑧(𝑠)∥ 𝐻 2 + 𝑒 -𝜃𝑠 ∥𝑧(𝑠)∥ 𝐻 2 + ∥𝑧(𝑠)∥ 2 𝐻 2 𝑑𝑠. (4.1.83)
Because the right-hand side of the inequality above is decreasing in time, we deduce after taking the supremum of the previous inequality and after simplification, that for 𝑡 large enough,

sup 𝑠≥𝑡 ∥ 𝑧(𝑠)∥ 𝐻 2 ≤ 𝐶 ∫ +∞ 𝑡 1 𝑠 ∥ 𝑧(𝑠)∥ 𝐻 2 𝑑𝑠 + 𝐶 ∫ +∞ 𝑡 𝑒 -𝜃𝑠 ∥𝑧(𝑠)∥ 𝐻 2 𝑑𝑠 (4.1.84) + 𝐶 ∫ +∞ 𝑡 ∥𝑧(𝑠)∥ 2 𝐻 2 𝑑𝑠 (4.1.85) ≤ 𝐶 ∫ +∞ 𝑡 1 𝑠 ∥ 𝑧(𝑠)∥ 𝐻 2 𝑑𝑠 + 𝐶 sup 𝑠≥𝑡 ∥𝑧(𝑠)∥ 𝐻 2 𝑒 -𝜃𝑡 (4.1.86) + 𝐶 sup 𝑠≥𝑡 ∥𝑧(𝑠)∥ 𝐻 2 ∫ +∞ 𝑡 ∥𝑧(𝑠)∥ 𝐻 2 𝑑𝑠. (4.1.87)
And using (4.1.5), the fact that 𝑁 -1 > 1 and the fact that 𝑒 -𝜃𝑡 is decreasing faster than 1 𝑡 𝑁-2 , we deduce that for 𝑡 large enough,

sup 𝑠≥𝑡 ∥ 𝑧(𝑠)∥ 𝐻 2 ≤ 𝐶 ∫ +∞ 𝑡 1 𝑠 ∥ 𝑧(𝑠)∥ 𝐻 2 𝑑𝑠 + 𝐶 1 𝑡 𝑁-2 sup 𝑠≥𝑡 ∥𝑧(𝑠)∥ 𝐻 2 . (4.1.88)
And using Lemma 4.9, we deduce that sup

𝑠≥𝑡 ∥ 𝑧(𝑠)∥ 𝐻 2 ≤ 𝐶 ∫ +∞ 𝑡 1 𝑠 ∥ 𝑧(𝑠)∥ 𝐻 2 𝑑𝑠 + 𝐶 1 𝑡 𝑁-2 sup 𝑠≥𝑡 ∥ 𝑧(𝑠)∥ 𝐻 2 (4.1.89) + 𝐶 1 𝑡 𝑁-2 ∫ +∞ 𝑡 ∥ 𝑧(𝑠)∥ 𝐻 2 𝑑𝑠. (4.1.90)
And because 1 𝑡 𝑁-2 can be as small as we want for 𝑡 large enough, we deduce that for 𝑡 large enough and for a constant 𝐶 > 0 that do not depend on 𝑧 or on 𝑁,

∥ 𝑧(𝑡)∥ 𝐻 2 ≤ sup 𝑠≥𝑡 ∥ 𝑧(𝑠)∥ 𝐻 2 ≤ 𝐶 ∫ +∞ 𝑡 1 𝑠 ∥ 𝑧(𝑠)∥ 𝐻 2 𝑑𝑠 + 𝐶 1 𝑡 𝑁-2 ∫ +∞ 𝑡 ∥ 𝑧(𝑠)∥ 𝐻 2 𝑑𝑠. (4.1.91)
Let us pick 𝑇 > 0 large enough such that for 𝑡 ≥ 𝑇, the inequality (4.1.91) works (i.e. 𝑇 is large enough so that every part of the preceeding proof works). From (4.1.10) and Lemma 4.2, we know that for 𝑡 ≥ 𝑇 (by taking 𝑇 larger if needed),

∥ 𝑧(𝑡)∥ 𝐻 2 ≤ 𝐶 𝑡 𝑁-1 . (4.1.92)
This is why, the following quantity is well defined:

𝐴 := sup 𝑡≥𝑇 {𝑡 𝑁-1 ∥ 𝑧(𝑡)∥ 𝐻 2 }, (4.1.93) which means that for 𝑡 ≥ 𝑇, ∥ 𝑧(𝑡)∥ 𝐻 2 ≤ 𝐴 𝑡 𝑁-1 . (4.1.94)
Now, using (4.1.92) and (4.1.94), we deduce from (4.1.91) that for 𝑡 ≥ 𝑇, with 𝐶 > 0 that do not depend on 𝑧, on 𝑁 or on 𝐴,

∥ 𝑧(𝑡)∥ 𝐻 2 ≤ 𝐶𝐴 𝑁 -1 1 𝑡 𝑁-1 + 𝐶𝐴 𝑁 -2 1 𝑡 2𝑁-4 ≤ 𝐶𝐴 𝑁 -2 1 𝑡 𝑁-1 , (4.1.95)
if we assume that 𝑁 > 3. Now, from (4.1.93), we deduce that there exists 𝑇 * > 𝑇 such that

(𝑇 * ) 𝑁-1 ∥ 𝑧(𝑇 * )∥ 𝐻 2 ≥ 𝐴 2 . (4.1.96)
This is why, by evaluating (4.1.95) in 𝑡 = 𝑇 * , we find that

𝐴 2(𝑇 * ) 𝑁-1 ≤ 𝐶𝐴 𝑁 -2 1 (𝑇 * ) 𝑁-1 , (4.1.97)
which, if we assume that 𝐴 > 0, after simplification yields:

𝑁 -2 ≤ 2𝐶. (4.1.98)
This means that if we assume that 𝑁 > 2𝐶 + 2 and 𝑁 > 3, the assumption 𝐴 > 0 leads to a contradiction. Therefore, 𝐴 = 0 under that assumption on 𝑁, which implies ∥ 𝑧(𝑡)∥ 𝐻 2 = 0, and from Lemma 4.9, this implies that 𝑧 ≡ 0. This means that the condition that we have established for 𝑁, namely 𝑁 > max(2𝐶 + 2, 3), (4.1.99) do not depend on 𝑧 and allows us to deduce that under (4.1.5), we may establish that 𝑧 ≡ 0. The Proposition 1.5 is now proved. where 𝑝 is the multi-breather constructed in Section 2. If

𝑣 1 > 0, (4.2.2)
then there exists 𝜛 > 0, 𝑇 0 ≥ 𝑇 and 𝐶 > 0 such that for any 𝑡 ≥ 𝑇 0 ,

∥𝑢(𝑡) -𝑝(𝑡)∥ 𝐻 2 ≤ 𝐶𝑒 -𝜛𝑡 . (4.2.3)
Note that in the formulation of the Proposition above, we may replace 𝑝 by 𝑃 without changing its content (it is a consequence from (1.2.9)).

Proof. We set 𝑣(𝑡) := 𝑢(𝑡) -𝑃(𝑡), such that ∥𝑣(𝑡)∥ 𝐻 2 → 𝑡→+∞ 0.

We denote:

Ψ(𝑥) := 2 𝜋 arctan exp(- √ 𝜎𝑥/2) , (4.2.4)
where 𝜎 > 0 is small enough (with precise conditions that will be mentioned throughout the proof). By direct calculations,

Ψ ′ (𝑥) = - √ 𝜎 2𝜋 cosh( √ 𝜎𝑥/2) . (4.2.5) Thus, |Ψ ′ (𝑥)| ≤ 𝐶 exp(- √ 𝜎|𝑥|/2). (4.2.6)
We have the following properties: lim

+∞ Ψ = 0, lim -∞ Ψ = 1, for all 𝑥 ∈ R Ψ(-𝑥) = 1 -Ψ(𝑥), Ψ ′ (𝑥) < 0, |Ψ ′′ (𝑥)| ≤ √ 𝜎 2 |Ψ ′ (𝑥)|, |Ψ ′′′ (𝑥)| ≤ √ 𝜎 2 |Ψ ′′ (𝑥)|, |Ψ ′ (𝑥)| ≤ √ 𝜎 2 Ψ and |Ψ ′ (𝑥)| ≤ √ 𝜎 2 (1 -Ψ).
For 𝑗 = 2, ..., 𝐽, let 𝑚 𝑗 be such that

𝑚 𝑗 = 𝑣 𝑗-1 + 𝑣 𝑗 2 . (4.2.7)
Let us denote 𝜏 0 > 0 the minimal distance between a 𝑣 𝑗 and a 𝑚 𝑗 .

From this, we define for 𝑗 = 2, ..., 𝐽,

Φ 𝑗 (𝑡, 𝑥) := Ψ(𝑥 -𝑚 𝑗 𝑡). (4.2.8)
We may extend this definition to 𝑗 = 1 and 𝑗 = 𝐽 + 1 in the following way: Φ 1 := 0 and Φ 𝐽+1 := 1. Thus, the function that allows us to study properties around each object 𝑃 𝑗 (for 𝑗 = 1, ..., 𝐽) is

𝜒 𝑗 := Φ 𝑗+1 -Φ 𝑗 .
The goal is to prove that, for 𝑡 large enough,

∥𝑣(𝑡)∥ 𝐻 2 ≤ 𝐶𝑒 -𝜛𝑡 , (4.2.9)
where 𝜛 > 0 is a constant to be deduced from the constants of the problem. Proposition 4.10 follows from this, because of Theorem 1.2.

Let 𝜛 > 0 to be deduced from the constants of the problem with respect to the needs of the following proof.

We will prove (4.2.9) by induction. We will prove, for 𝑗 = 2, ..., 𝐽 + 1, that

∫ (𝑣 2 + 𝑣 2 𝑥 + 𝑣 2 𝑥𝑥 )Φ 𝑗 ≤ 𝐶𝑒 -2𝜛𝑡 for 𝑡 large enough, knowing that ∫ (𝑣 2 + 𝑣 2 𝑥 + 𝑣 2 𝑥𝑥 )Φ 𝑗-1 ≤ 𝐶𝑒 -2𝜛𝑡
for 𝑡 large enough (note that this assumption is empty when 𝑗 = 2). This implies the desired inequality. (Note that it is OK if 𝜛 becomes smaller after a step of this induction, as long as it stays positive.)

Let us write the 𝑗-th step of our reasoning by induction (where 𝑗 ∈ {2, ..., 𝐽 + 1}). Thus, 𝑗 is fixed in the rest of the proof. We assume that

∫ 𝑣 2 + 𝑣 2 𝑥 + 𝑣 2 𝑥𝑥 Φ 𝑗-1 ≤ 𝐶𝑒 -2𝜛𝑡 . (4.2.10)
We divide our proof in several steps.

Step 1. Almost-conservation of localized conservation laws. We define quantities that are similar to quantities defined in Section 2.2. We note that we localize around the first 𝑗 -1 objects, not only around the (𝑗 -1)-th object. Notations defined in Section 2.2 should not be considered in the following proof and should be replaced by notations we define here:

𝑀 𝑗 (𝑡) := 1 2 ∫ 𝑢 2 (𝑡)Φ 𝑗 (𝑡), (4.2.11) 𝐸 𝑗 (𝑡) := ∫ 1 2 𝑢 2 𝑥 - 1 4 𝑢 4 Φ 𝑗 (𝑡), (4.2.12) 𝐹 𝑗 (𝑡) := ∫ 1 2 𝑢 2 𝑥𝑥 - 5 2 𝑢 2 𝑢 2 𝑥 + 1 4 𝑢 6 Φ 𝑗 (𝑡). (4.2.13)
Lemma 4.11. Let 𝜔 2 , 𝜔 6 > 0, as small as desired. There exists 𝑇 1 ≥ 𝑇 and 𝐶 > 0 such that for 𝑡 ≥ 𝑇 1 ,

𝑗-1 𝑖=1 𝑀[𝑃 𝑖 ] -𝑀 𝑗 (𝑡) ≥ -𝐶𝑒 -2𝜛𝑡 , (4.2.14) 𝑗-1 𝑖=1 𝐸[𝑃 𝑖 ] + 𝜔 2 𝑀[𝑃 𝑖 ] -𝐸 𝑗 (𝑡) + 𝜔 2 𝑀 𝑗 (𝑡) ≥ -𝐶𝑒 -2𝜛𝑡 , (4.2.15) 𝑗-1 𝑖=1 𝐹[𝑃 𝑖 ] + 𝜔 6 𝑀[𝑃 𝑖 ] -𝐹 𝑗 (𝑡) + 𝜔 6 𝑀 𝑗 (𝑡) ≥ -𝐶𝑒 -2𝜛𝑡 . (4.2.16)
Proof. We will use the results of the computations made at the bottom of page 1115 and at the bottom of page 1116 of [START_REF] Martel | Asymptotic 𝑁-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF], as well as in Section 5.5 (Appendix) to claim the three following facts:

𝑑 𝑑𝑡 1 2 ∫ 𝑢 2 𝑓 = ∫ - 3 2 𝑢 2 𝑥 + 3 4 𝑢 4 𝑓 ′ + 1 2 ∫ 𝑢 2 𝑓 ′′′ , (4.2.17) 𝑑 𝑑𝑡 ∫ 1 2 𝑢 2 𝑥 - 1 4 𝑢 4 𝑓 = ∫ - 1 2 𝑢 𝑥𝑥 + 𝑢 3 2 -𝑢 2 𝑥𝑥 + 3𝑢 2 𝑥 𝑢 2 𝑓 ′ + 1 2 ∫ 𝑢 2 𝑥 𝑓 ′′′ , (4.2.18) 𝑑 𝑑𝑡 ∫ 1 2 𝑢 2 𝑥𝑥 - 5 2 𝑢 2 𝑢 2 𝑥 + 1 4 𝑢 6 𝑓 (4.2.19) = ∫ - 3 2 𝑢 2 𝑥𝑥𝑥 + 9𝑢 2 𝑥𝑥 𝑢 2 + 15𝑢 2 𝑥 𝑢𝑢 𝑥𝑥 + 9 16 𝑢 8 + 1 4 𝑢 4 𝑥 + 3 2 𝑢 𝑥𝑥 𝑢 5 (4.2.20) - 45 4 𝑢 4 𝑢 2 𝑥 𝑓 ′ + 5 ∫ 𝑢 2 𝑢 𝑥 𝑢 𝑥𝑥 𝑓 ′′ + 1 2 ∫ 𝑢 2 𝑥𝑥 𝑓 ′′′ . (4.2.21)
where 𝑓 is a 𝐶 3 function that does not depend on time.

For the mass:

If 𝑗 ≤ 𝐽, 2 𝑑 𝑑𝑡 𝑀 𝑗 (𝑡) = - ∫ 3𝑢 2 𝑥 + 𝑚 𝑗 𝑢 2 - 3 2 𝑢 4 Φ 𝑗𝑥 (𝑡) + ∫ 𝑢 2 Φ 𝑗𝑥𝑥𝑥 (𝑡). (4.2.22)
We recall that

|Φ 𝑗𝑥𝑥 | ≤ √ 𝜎 2 |Φ 𝑗𝑥 |, |Φ 𝑗𝑥𝑥𝑥 | ≤ 𝜎 4 |Φ 𝑗𝑥 |, Φ 𝑗𝑥 ≤ 0, (4.2.23) 
where we can choose 𝜎 as small as desired. For this proof, we would like to ask for 𝜎: We can thus deduce that for 𝑟 large enough and for 𝑇 1 large enough, for 𝑥 ∈ (𝑣 𝑗-1 𝑡 + 𝑟, 𝑣 𝑗 𝑡 -𝑟), we can obtain that |𝑢| is bounded by any fixed constant, that can be taken as small as desired. Here, we will use the latter to bound 3 2 𝑢 2 by 𝜎 4 . For 𝑡 ≥ 𝑇 1 and 𝑥 ≤ 𝑣 𝑗-1 𝑡 + 𝑟 or 𝑥 ≥ 𝑣 𝑗 𝑡 -𝑟, we have |𝑥 -𝑚 𝑗 𝑡 | ≤ 𝜏 0 𝑡 -𝑟, and therefore for such 𝑡, 𝑥:

0 < 𝜎 ≤ 𝑚 2 ≤ 𝑚 𝑗 . (4.2.24) Thus, 2 𝑑 𝑑𝑡 𝑀 𝑗 (𝑡) ≥ ∫ 3𝑢 2 𝑥 + 3𝜎 4 𝑢 2 - 3 2 𝑢 4 |Φ 𝑗𝑥 (𝑡)|.
|Φ 𝑗𝑥 (𝑡, 𝑥)| ≤ 𝐶 exp - √ 𝜎|𝑥 -𝑚 𝑗 𝑡|/2 (4.2.28) ≤ 𝐶 exp - √ 𝜎𝜏 0 𝑡/2 exp √ 𝜎𝑟/2 . (4.2.29)
Because ∫ 𝑢 4 is bounded by a constant for any time and exp(

√ 𝜎𝑟/2) is a fixed constant (𝑟 is already chosen), we have, for 𝑡 ≥ 𝑇 1 , 𝑑 𝑑𝑡 𝑀 𝑗 (𝑡) ≥ ∫ 3 2 𝑢 2 𝑥 + 𝜎 4 𝑢 2 |Φ 𝑗𝑥 (𝑡)| -𝐶𝑒 -2𝜛𝑡 ≥ -𝐶𝑒 -2𝜛𝑡 , (4.2.30)
where 𝜛 is chosen as a suitable function of 𝜎 and 𝜏 0 .

By integration, we deduce that for any 𝑡 1 ≥ 𝑡, with a constant 𝐶 > 0 that does not depend on 𝑡 1 , we have:

𝑀 𝑗 (𝑡 1 ) -𝑀 𝑗 (𝑡) ≥ -𝐶𝑒 -2𝜛𝑡 . (4.2.31)
We note that this conclusion is immediate when 𝑗 = 𝐽 + 1, because we have exactly the conserved quantity.

We have that

𝑗-1 𝑖=1 𝑀[𝑃 𝑖 ] -𝑀 𝑗 (𝑡 1 ) (4.2.32) ≤ 𝑗-1 𝑖=1 1 2 ∫ 𝑃 2 𝑖 - 1 2 ∫ 𝑃 2 Φ 𝑗 (𝑡 1 ) + 1 2 ∫ 𝑃 2 Φ 𝑗 (𝑡 1 ) - ∫ 𝑢 2 Φ 𝑗 (𝑡 1 ) (4.2.33) ≤ 𝐶𝑒 -𝜅(𝛽,𝜎,𝜏 0 )𝑡 1 + 1 2 ∫ |𝑃 2 -𝑢 2 |Φ 𝑗 (𝑡 1 ) (4.2.34) ≤ 𝐶𝑒 -𝜅(𝛽,𝜎,𝜏 0 )𝑡 1 + 𝐶 ∫ |𝑃 2 -𝑢 2 | → 𝑡 1 →+∞ 0. (4.2.35)
This means that when we take the limit of (4.2.31) when 𝑡 1 → +∞, we obtain, for 𝑡 ≥ 𝑇 1 ,

𝑗-1 𝑖=1 𝑀[𝑃 𝑖 ] -𝑀 𝑗 (𝑡) ≥ -𝐶𝑒 -2𝜛𝑡 , (4.2.36)
which is exactly what we wished to prove.

For the energy:

If 𝑗 ≤ 𝐽, 2 𝑑 𝑑𝑡 𝐸 𝑗 (𝑡) = ∫ -𝑢 𝑥𝑥 + 𝑢 3 2 -2𝑢 2 𝑥𝑥 + 6𝑢 2 𝑥 𝑢 2 Φ 𝑗𝑥 (𝑡) (4.2.37) -𝑚 𝑗 ∫ 𝑢 2 𝑥 - 1 2 𝑢 4 Φ 𝑗𝑥 (𝑡) + 1 2 ∫ 𝑢 2 𝑥 Φ 𝑗𝑥𝑥𝑥 (𝑡) (4.2.38) ≥ ∫ 𝑢 𝑥𝑥 + 𝑢 3 2 + 2𝑢 2 𝑥𝑥 -6𝑢 2 𝑥 𝑢 2 + 3𝜎 4 𝑢 2 𝑥 - 𝑚 𝑗 2 𝑢 4 |Φ 𝑗𝑥 (𝑡)|. (4.2.39)
We can do the same reasoning as for the mass to bound above 𝑚 𝑗 2 𝑢 2 by 𝜔 1 , a constant that we can choose as small as desired, and to bound above 6𝑢 Then, by integration and similarly as for the mass, we obtain the desired conclusion that is true for any 𝑗.

For 𝐹: 

If 𝑗 ≤ 𝐽, 2 𝑑 𝑑𝑡 𝐹 𝑗 (𝑡) = ∫ -3𝑢 2 𝑥𝑥𝑥 + 18𝑢 2 𝑥𝑥 𝑢 2 + 30𝑢
∫ 𝑃 𝑗-1 1 (𝑡)𝑤(𝑡) = ∫ 𝑃 𝑗-1 2 (𝑡)𝑤(𝑡) = 0, if 𝑃 𝑗-1 is a breather, (4.2.60) or, ∫ 𝑃 𝑗-1 (𝑡)𝑤(𝑡) = ∫ 𝑃 𝑗-1 𝑥 (𝑡)𝑤(𝑡) = 0, if 𝑃 𝑗-1 is a soliton, (4.2.61)
where in the case when 𝑃 𝑗-1 is a breather we denote: We observe that 𝐹 𝑡 is a 𝐶 1 function and that 𝐹 𝑡 (𝑃(𝑡), 0, 0) = 0. Now, let us consider the matrix which gives the differential of 𝐹 𝑡 (with respect to 𝑦 1 , 𝑦 2 ) in (𝑃(𝑡), 0, 0).

𝑃 𝑗-1 1 (𝑡, 𝑥) := 𝜕 𝑥 1 𝑃 𝑗-1 , 𝑃 𝑗-
In the case when 𝑃 𝑗-1 = 𝐵 𝑘 is a breather, this matrix is:

𝐷𝐹 𝑡 = - ∫ (𝜕 𝑥 1 𝐵 𝑘 ) 2 𝑑𝑥 - ∫ 𝜕 𝑥 1 𝐵 𝑘 𝜕 𝑥 2 𝐵 𝑘 𝑑𝑥 - ∫ 𝜕 𝑥 1 𝐵 𝑘 𝜕 𝑥 2 𝐵 𝑘 𝑑𝑥 - ∫ (𝜕 𝑥 2 𝐵 𝑘 ) 2 𝑑𝑥 , (4.2.72) whose determinant is: det(𝐷𝐹 𝑡 ) = ∫ (𝜕 𝑥 1 𝐵 𝑘 ) 2 𝑑𝑥 ∫ (𝜕 𝑥 2 𝐵 𝑘 ) 2 𝑑𝑥 - ∫ 𝜕 𝑥 1 𝐵 𝑘 𝜕 𝑥 2 𝐵 𝑘 𝑑𝑥 2 . (4.2.73)
By Cauchy-Schwarz inequality and the fact that 𝜕 𝑥 1 𝐵 𝑘 and 𝜕 𝑥 2 𝐵 𝑘 are linearly independent as functions of the 𝑥 variable, for any time 𝑡 fixed, we see that det(𝐷𝐹 𝑡 ) is positive. Since each member of its expression is periodic in time, then det(𝐷𝐹 𝑡 ) is bounded below by a positive constant independent on time and translation parameters of 𝐵 𝑘 .

In the case when 𝑃 𝑗-1 = 𝑅 𝑙 is a soliton, let us recall, denoting 𝑦 0,𝑙 := 𝑥 -𝑥 0 0,𝑙 + 𝑦 2 -𝑐 𝑙 𝑡, that This means that det(𝐷𝐹 𝑡 ) is bounded below by a positive constant independent on time and translation parameters of 𝑅 𝑙 . Thus, in any case, 𝐷𝐹 𝑡 is invertible. Now, we may use the implicit function theorem. If 𝑈 is close enough to 𝑃(𝑡), then there exists (𝑦 1 , 𝑦 2 ) such that 𝐹 𝑡 (𝑈, 𝑦 1 , 𝑦 2 ) = 0, where (𝑦 1 , 𝑦 2 ) depends in a regular 𝐶 1 way on 𝑈. It is possible to show that the "close enough" in the previous sentence does not depend on 𝑡; for this, it is required to use a uniform implicit function theorem. This means that for 𝑇 2 large enough, ∥𝑣(𝑡)∥ 𝐻 2 is small enough for 𝑡 ∈ [𝑇 2 , +∞), thus for 𝑡 ≥ 𝑇 2 , 𝑢(𝑡) is close enough to 𝑃(𝑡) in order to apply the implicit function theorem. Therefore, we have for 𝑡 ∈ [𝑇 2 , +∞), the existence of 𝑦 1 (𝑡) and 𝑦 2 (𝑡). It is possible to show that these functions are 𝐶 1 in time. Basically, this comes from the fact that they are 𝐶 1 in 𝑢(𝑡) and that 𝑢(𝑡) has a similar regularity in time (see [START_REF] Combet | Multi-soliton solutions for the supercritical gKdV equations[END_REF] for more details). Now, we prove the inequalities (4.2.63) and (4.2.64). We can take the differential of the implicit functions with respect to 𝑢(𝑡) for 𝑡 ∈ [𝑇 2 , +∞). For this, we differentiate the following equation with respect to 𝑢(𝑡):

𝜕 𝑦 1 𝑄 𝑐 𝑙 +𝑦 1 (𝑦 0,𝑙 ) = 1 2𝑐 𝑙 𝑄 𝑐 𝑙 +𝑦
𝐹 𝑡 (𝑢(𝑡), 𝑦 1 (𝑢(𝑡)), 𝑦 2 (𝑢(𝑡))) = 0. (4.2.78)
We know that the matrix that gives the differential of 𝐹 𝑡 (with respect to 𝑦 1 , 𝑦 2 ) in (𝑢(𝑡), 𝑦 1 (𝑢(𝑡)), 𝑦 2 (𝑢(𝑡))) is invertible and that its inverse is bounded in time. The differential of 𝐹 𝑡 with respect to the first variable is also bounded (from its expression, 𝐹 𝑡 being linear in 𝑈). Thus, by the mean-value theorem (given (𝑦 1 , 𝑦 2 )(𝑃(𝑡)) = (0, 0)): Φ 𝑗 ) 1/2 or 𝑒 -𝜛𝑡 for 𝜛 > 0, a constant chosen small enough. Using these bounds, and after several linear combinations, we obtain (4.2.64).

|𝑦 1 (𝑢(𝑡))| + |𝑦 2 (𝑢(𝑡))| ≤ 𝐶 ∥𝑢(𝑡) -𝑃(𝑡)∥ ≤ 𝐶 ∥𝑣(𝑡)∥ 𝐻 2 . ( 4 

□

Step 3. Quadratic approximations of localized conservation laws. Lemma 4.14. Let 𝜔 > 0 as small as we want. There exists 𝐶 > 0, 𝑇 3 ≥ 𝑇 such that the following holds for 𝑡 ≥ 𝑇 3 : We compute: 𝑖=1 𝑃 𝑖 𝑤 converges exponentially to 0 (the velocity of a soliton is not modified a lot by modulation, this is why it works in any cases).

𝑀 𝑗 (𝑡) - 𝑗-1 𝑖=1 𝑀 𝑃 𝑖 - 𝑗-1 𝑖=1 ∫ 𝑃 𝑖 𝑤 - 1 2 ∫ 𝑤 2 Φ 𝑗 ≤ 𝐶𝑒 -2𝜛𝑡 , (4.2.100) 𝐸 𝑗 (𝑡) - 𝑗-1 𝑖=1 𝐸 𝑃 𝑖 - 𝑗-1 𝑖=1 ∫ 𝑃 𝑖 𝑥 𝑤 𝑥 -𝑃 𝑖 3 𝑤 (4.2.101) - ∫ 1 2 𝑤 2 𝑥 - 3 2 𝑃 2 𝑤 2 Φ 𝑗 ≤ 𝐶𝑒 -2𝜛𝑡 + 𝜔 ∫ 𝑤 2 Φ 𝑗 , ( 4 
𝑀 𝑗 (𝑡) = 1 2 ∫ 𝑃 + 𝑤 2 Φ 𝑗 (4.2.106) = 1 2 ∫ 𝑃 2 Φ 𝑗 + ∫ 𝑃𝑤Φ 𝑗 + 1 2 ∫ 𝑤 2 Φ 𝑗 . ( 4 
For 𝐸 and 𝐹, we perform similar basic computations with the only difference that there will also be terms of degree 3 or more in 𝑤. We know that ∥𝑤(𝑡)∥ 𝐻 2 → 𝑡→+∞ 0, this is the reason why for 𝑡 large enough, such terms are boundable by 𝜔

∫ 𝑤 2 Φ 𝑗 or 𝜔 ∫ 𝑤 2 𝑥 Φ 𝑗 .

□

Step 4. Approximation of the Lyapunov functional. By analogy with the existence part, we introduce the following Lyapunov functional:

ℋ 𝑗 (𝑡) := 𝐹 𝑗 (𝑡) + 2 𝑏 2 𝑗-1 -𝑎 2 𝑗-1 𝐸 𝑗 (𝑡) + 𝑎 2 𝑗-1 + 𝑏 2 𝑗-1 2 
𝑀 𝑗 (𝑡). (4.2.108)

We will use the previous steps to approximate ℋ 𝑗 (𝑡).

Lemma 4.15.

There exists 𝑇 4 ≥ 𝑇 such that the following holds for 𝑡 ≥ 𝑇 4 :

ℋ 𝑗 (𝑡) = 𝑗-1 𝑖=1 𝐹[ 𝑃 𝑖 ] + 2 𝑏 2 𝑗-1 -𝑎 2 𝑗-1 𝑗-1 𝑖=1 𝐸[ 𝑃 𝑖 ] + 𝑎 2 𝑗-1 + 𝑏 2 𝑗-1 2 𝑗-1 𝑖=1 𝑀[ 𝑃 𝑖 ] (4.2.109) + 𝐻 𝑗 (𝑡) + 𝑂(𝑒 -2𝜛𝑡 ) + 𝑜 ∫ 𝑤 2 + 𝑤 2 𝑥 Φ 𝑗 , (4.2.110) where 𝐻 𝑗 (𝑡) : = ∫ 1 2 𝑤 2 𝑥𝑥 - 5 2 𝑤 2 𝑥 𝑃 𝑗-1 2 + 5 2 𝑤 2 𝑃 𝑗-1 2 𝑥 + 5𝑤 2 𝑃 𝑗-1 𝑃 𝑗-1 𝑥𝑥 (4.2.111) + 15 4 𝑤 2 𝑃 𝑗-1 4 Φ 𝑗 (𝑡) + 𝑏 2 𝑗-1 -𝑎 2 𝑗-1 ∫ 𝑤 2 𝑥 -3𝑤 2 𝑃 𝑗-1 2 Φ 𝑗 (𝑡) (4.2.112) + 1 2 𝑎 2 𝑗-1 + 𝑏 2 𝑗-1 2 ∫ 𝑤 2 Φ 𝑗 (𝑡). (4.2.113)
Proof. This lemma is obtained from the summation of the facts established in the previous lemma. We get rid of the linear terms in the following way, by integrations by parts:

𝑗-1 𝑖=1 ∫ 𝑃 𝑖 𝑥𝑥 𝑤 𝑥𝑥 -5 𝑃 𝑖 𝑃 𝑖 2 𝑥 𝑤 -5 𝑃 𝑖 2 𝑃 𝑖 𝑥 𝑤 𝑥 + 3 2 𝑃 𝑖 5 𝑤 (4.2.114) + 2 𝑏 2 𝑗-1 -𝑎 2 𝑗-1 𝑗-1 𝑖=1 ∫ 𝑃 𝑖 𝑥 𝑤 𝑥 -𝑃 𝑖 3 𝑤 + 𝑎 2 𝑗-1 + 𝑏 2 𝑗-1 2 𝑗-1 𝑖=1 𝑃 𝑖 𝑤 (4.2.115) = 𝑗-1 𝑖=1 ∫ 𝑃 𝑖 𝑥𝑥𝑥𝑥 + 5 𝑃 𝑖 𝑃 𝑖 2 𝑥 + 5 ∫ 𝑃 𝑖 2 𝑃 𝑖 𝑥𝑥 + 3 2 𝑃 𝑖 5 𝑤 (4.2.116) + 2 𝑏 2 𝑗-1 -𝑎 2 𝑗-1 𝑗-1 𝑖=1 ∫ -𝑃 𝑖 𝑥𝑥 -𝑃 𝑖 3 𝑤 + 𝑎 2 𝑗-1 + 𝑏 2 𝑗-1 2 𝑗-1 𝑖=1 ∫ 𝑃 𝑖 𝑤. (4.2.117)
If we consider that this sum goes from 𝑖 = 1 to 𝑗 -2, we see that for 1 ≤ 𝑖 ≤ 𝑗 -2, this sum is exponentially bounded by induction assumption (we use that for 𝑖 ≤ 𝑗 -2, a polynomial in 𝑃 𝑖 and its derivatives is bounded by 𝐶Φ 𝑗-1 and that 𝑤 = 𝑣 + (𝑃 𝑗-1 -𝑃 𝑗-1 )). It is left to consider the sum of the terms with 𝑖 = 𝑗 -1.

For 𝑖 = 𝑗 -1, we have nearly the elliptic equation satisfied by 𝑃 𝑗-1 . It is actually exactly this equation in the case when 𝑃 𝑗-1 is a breather. When 𝑃 𝑗-1 is a soliton, its shape parameter is modified by modulation. This is why, in this case, the sum of the terms with 𝑖 = 𝑗 -1 is equal to

2𝑦 1 (𝑡) ∫ -𝑃 𝑗-1 𝑥𝑥 -𝑃 𝑗-1 3 𝑤 + 2𝑏 2 𝑗-1 𝑦 1 (𝑡) ∫ 𝑃 𝑗-1 𝑤 + 𝑦 1 (𝑡) 2 ∫ 𝑃 𝑗-1 𝑤, (4.2.118)
which vanishes because of the orthogonality condition from the modulation (Lemma 4.13) and the elliptic equation satisfied by a soliton (1.1.4).

𝐻 𝑗 is obtained as the sum of the quadratic parts of the previous lemma on which we have performed some integrations by parts, and some simplifications based on the fact that for 𝑖 ≥ 𝑗, 𝑃 𝑖 Φ 𝑗 (𝑡) is exponentially decreasing, and the fact that for 𝑖 ≤ 𝑗 -2, ∫ 𝑃 𝑖 𝑤 2 is exponentially decreasing by the induction assumption (4.2.10). Therefore, 𝐻 𝑗 corresponds to the sum of the quadratic parts of previous lemma to which we have to add 5 ∫ 𝑤 2 𝑃 𝑃 𝑥 Φ 𝑗𝑥 , which is bounded exponentially.

□

Step 5. Bound from above for 𝐻 𝑗 (𝑡). Because 𝑣 1 > 0, we have that 𝑏 2 𝑗-1 -𝑎 2 𝑗-1 ≥ 0. By taking 𝜔 2 and 𝜔 6 small enough (with respect to (𝑎 2 𝑗-1 + 𝑏 2 𝑗-1 ) 2 ), we obtain, by summation of the facts of Lemma 4.11, the following inequality:

ℋ 𝑗 (𝑡) - 𝑗-1 𝑖=1 𝐹[𝑃 𝑖 ] -2 𝑏 2 𝑗-1 -𝑎 2 𝑗-1 𝑗-1 𝑖=1 𝐸[𝑃 𝑖 ] (4.2.119) -𝑎 2 𝑗-1 + 𝑏 2 𝑗-1 2 𝑗-1 𝑖=1 𝑀[𝑃 𝑖 ] ≤ 𝐶𝑒 -2𝜛𝑡 . (4.2.120) From Lemma 4.15, for 𝑡 ≥ 𝑇 3 , 𝐻 𝑗 (𝑡) ≤ 𝐹[𝑃 𝑗-1 ] -𝐹[ 𝑃 𝑗-1 ] + 2 𝑏 2 𝑗-1 -𝑎 2 𝑗-1 𝐸[𝑃 𝑗-1 ] -𝐸[ 𝑃 𝑗-1 ] (4.2.121) + 𝑎 2 𝑗-1 + 𝑏 2 𝑗-1 2 𝑀[𝑃 𝑗-1 ] -𝑀[ 𝑃 𝑗-1 ] + 𝐶𝑒 -2𝜛𝑡 + 𝜔 ∫ 𝑤 2 + 𝑤 2 𝑥 Φ 𝑗 . (4.2.122)
In the case if 𝑃 𝑗-1 is a breather, we obtain immediately that

𝐻 𝑗 (𝑡) ≤ 𝐶𝑒 -2𝜛𝑡 + 𝜔 ∫ 𝑤 2 + 𝑤 2 𝑥 Φ 𝑗 . (4.2.123)
The case when 𝑃 𝑗-1 is a soliton needs more inspection. As in the existence part, we have the following relations:

𝑀[ 𝑃 𝑗-1 ](𝑡) = 𝑏 2 𝑗-1 + 𝑦 1 (𝑡) 1/2 𝑀[𝑞], (4.2.124) 𝐸[ 𝑃 𝑗-1 ](𝑡) = 𝑏 2 𝑗-1 + 𝑦 1 (𝑡) 3/2 𝐸[𝑞], (4.2.125) 𝐹[ 𝑃 𝑗-1 ](𝑡) = 𝑏 2 𝑗-1 + 𝑦 1 (𝑡) 5/2 𝐹[𝑞]. (4.2.126) We set ℛ 𝑗-1 (𝑡) := 𝐹[ 𝑃 𝑗-1 ](𝑡) + 2𝑏 2 𝑗-1 𝐸[ 𝑃 𝑗-1 ](𝑡) + 𝑏 4 𝑗-1 𝑀[ 𝑃 𝑗-1 ](𝑡)
, and we simplify it as follows:

ℛ 𝑗-1 (𝑡) = 𝑏 5 𝑗-1 1 + 𝑦 1 (𝑡) 𝑏 2 𝑗-1 5/2 𝐹[𝑞] + 2𝑏 5 𝑗-1 1 + 𝑦 1 (𝑡) 𝑏 2 𝑗-1 3/2 𝐸[𝑞] (4.2.127) + 𝑏 5 𝑗-1 1 + 𝑦 1 (𝑡) 𝑏 2 𝑗-1 1/2 𝑀[𝑞]. (4.2.128)
After making a Taylor expansion as in Section 2.5,

ℛ 𝑗-1 (𝑡) -𝐹[𝑃 𝑗-1 ] -2𝑏 2 𝑗-1 𝐸[𝑃 𝑗-1 ] -𝑏 4 𝑗-1 𝑀[𝑃 𝑗-1 ] = 𝑂(𝑦 1 (𝑡) 3 ). (4.2.129)
Therefore, if 𝑇 4 is large enough, ∥𝑣(𝑡)∥ 𝐻 2 can be as small as we want, and for 𝑡 ≥ 𝑇 4 , if 𝑃 𝑗-1 a soliton, we may write: More precisely, we need to prove that for 𝜈 > 0 small enough (from Section 5.4),

𝐻 𝑗 (𝑡) ≤ 𝐶𝑒 -2𝜛𝑡 + 𝜔 ∫ 𝑤 2 + 𝑤 2 𝑥 Φ 𝑗 + 𝜔𝑦 1 (𝑡) 2 . ( 4 
∫ 𝑤 Φ 𝑗 𝑃 𝑗-1 1 + ∫ 𝑤 Φ 𝑗 𝑃 𝑗-1 2 ≤ 𝜈∥𝑤 Φ 𝑗 ∥ 𝐻 2 , (4.2.131) if 𝑃 𝑗-1 is a breather or that ∫ 𝑤 Φ 𝑗 𝑃 𝑗-1 + ∫ 𝑤 Φ 𝑗 𝑃 𝑗-1 𝑥 ≤ 𝜈∥𝑤 Φ 𝑗 ∥ 𝐻 2 , (4.2.132)
if 𝑃 𝑗-1 is a soliton. In any case, the proof is the same and let us write 𝐾 at the place of 𝑃 𝑗-1 1 , 𝑃 𝑗-1 2 , 𝑃 𝑗-1 or 𝑃 𝑗-1 𝑥 . This means that we want to bound ∫ 𝑤 Φ 𝑗 𝐾. From (4.2.60), (4.2.61), we see that it is enough to bound ∫ 𝑤(1 -Φ 𝑗 )𝐾 by 𝜈∥𝑤 Φ 𝑗 ∥ 𝐻 2 . The reasonning that follows works for 𝑗 ≤ 𝐽, for 𝑗 = 𝐽 + 1 the result is immediate because Φ 𝐽+1 = 1. Φ 𝑗 is a translate of Ψ, and, using the fact that when 𝑣 → 0,

√ 1 + 𝑣 = 1 + 𝑂(𝑣), 1 - √ Ψ = 1 - √ 1 + Ψ -1 = 1 -1 -Ψ(-𝑥) = 𝑂(Ψ(-𝑥)), (4.2.133) which means that 1 -Φ 𝑗 ≤ 𝐶 min(1, exp( √ 𝜎(𝑥 -𝑚 𝑗 𝑡)/2)). We may deduce now that ∫ 𝑤(1 -Φ 𝑗 )𝐾 = ∫ 𝑤 Φ 𝑗 1 -Φ 𝑗 Φ 𝑗 𝐾 (4.2.134) ≤ 1 -Φ 𝑗 Φ 𝑗 𝐾 𝐿 2 ∥𝑤 Φ 𝑗 ∥ 𝐿 2 (4.2.135) ≤ 𝐶𝑒 √ 𝜎(𝑚 𝑗 -𝑣 𝑗-1 )𝑡 ∥𝑤 Φ 𝑗 ∥ 𝐿 2 , (4.2.136) if √ 𝜎 4 < 𝛽 2 .
And so, if 𝑡 is large enough, we get the bound we want. Thus, there exists 𝜇 > 0 such that for 𝑡 ≥ 𝑇 5 (where 𝑇 5 is large enough and depends on 𝜎), 

𝜇∥𝑤 Φ 𝑗 ∥ 2 𝐻 2 ≤ 𝐻 𝑗 (𝑡) + 𝐶 √ 𝜎 ∫ 𝑤 2 + 𝑤 2 𝑥 + 𝑤 2 𝑥𝑥 Φ 𝑗 + 1 𝜇 ∫ 𝑃 𝑗-1 𝑤 Φ 𝑗 2 (4.2.137) ≤ 𝐶𝑒 -2𝜛𝑡 + 𝜔 ∫ 𝑤 2 + 𝑤 2 𝑥 Φ 𝑗 + 𝐶 √ 𝜎 ∫ 𝑤 2 + 𝑤 2 𝑥 + 𝑤 2 𝑥𝑥 Φ 𝑗 (4.2.138) + 𝜔𝑦 1 (𝑡) 2 + 1 𝜇 ∫ 𝑃 𝑗-1 𝑤 Φ 𝑗 2 , ( 4 
, 𝑗-1 𝑖=1 ∫ 𝑃 𝑖 𝑤 = 𝑂(𝑒 -2𝜛𝑡 ) + 𝑀 𝑗 (𝑡) - 𝑗-1 𝑖=1 𝑀[𝑃 𝑖 ] - 1 2 ∫ 𝑤 2 Φ 𝑗 (4.2.141) ≤ 𝐶𝑒 -2𝜛𝑡 - 1 2 ∫ 𝑤 2 Φ 𝑗 ≤ 𝐶𝑒 -2𝜛𝑡 . ( 4 
2 𝑗-1 -𝑎 2 𝑗-1 ≥ 0), for 𝑡 ≥ 𝑇 0 , -𝑎 2 𝑗-1 + 𝑏 2 𝑗-1 2 𝑗-1 𝑖=1 ∫ 𝑃 𝑖 𝑤 = 𝑂(𝑒 -2𝜛𝑡 ) + 𝑜 ∫ 𝑤 2 + 𝑤 2 𝑥 Φ 𝑗 + 𝐹 𝑗 (𝑡) (4.2.143) + 2 𝑏 2 𝑗-1 -𝑎 2 𝑗-1 𝐸 𝑗 (𝑡) - 𝑗-1 𝑖=1 𝐹[𝑃 𝑖 ] -2 𝑏 2 𝑗-1 -𝑎 2 𝑗-1 𝑗-1 𝑖=1 𝐸[𝑃 𝑖 ] (4.2.144) - ∫ 1 2 𝑤 2 𝑥𝑥 - 5 2 𝑤 2 𝑃 2 𝑥 -10 𝑃𝑤 𝑃 𝑥 𝑤 𝑥 - 5 2 𝑃 2 𝑤 2 𝑥 + 15 4 𝑃 4 𝑤 2 Φ 𝑗 (4.2.145) -2 𝑏 2 𝑗-1 -𝑎 2 𝑗-1 ∫ 1 2 𝑤 2 𝑥 - 3 2 𝑃 2 𝑤 2 Φ 𝑗 + 𝑜(𝑦 1 (𝑡) 2 ) (4.2.146) = 𝑂(𝑒 -2𝜛𝑡 ) + 𝑜 ∫ 𝑤 2 + 𝑤 2 𝑥 Φ 𝑗 (4.2.147) + 𝐹 𝑗 (𝑡) + 𝜔 6 𝑀 𝑗 (𝑡) - 𝑗-1 𝑖=1 𝐹[𝑃 𝑖 ] -𝜔 6 𝑗-1 𝑖=1 𝑀[𝑃 𝑖 ] (4.2.148) + 2 𝑏 2 𝑗-1 -𝑎 2 𝑗-1 𝐸 𝑗 (𝑡) + 𝜔 2 𝑀 𝑗 (𝑡) - 𝑗-1 𝑖=1 𝐸[𝑃 𝑖 ] -𝜔 2 𝑗-1 𝑖=1 𝑀[𝑃 𝑖 ] (4.2.149) + 𝜔 6 + 2𝜔 2 𝑏 2 𝑗-1 -𝑎 2 𝑗-1 𝑗-1 𝑖=1 𝑀[𝑃 𝑖 ] -𝑀 𝑗 (𝑡) (4.2.150) - ∫ 1 2 𝑤 2 𝑥𝑥 - 5 2 𝑤 2 𝑃 2 𝑥 -10 𝑃𝑤 𝑃 𝑥 𝑤 𝑥 - 5 2 𝑃 2 𝑤 2 𝑥 + 15 4 𝑃 4 𝑤 2 Φ 𝑗 (4.2.151) -2 𝑏 2 𝑗-1 -𝑎 2 𝑗-1 ∫ 1 2 𝑤 2 𝑥 - 3 2 𝑃 2 𝑤 2 Φ 𝑗 + 𝑜(𝑦 1 (𝑡) 2 ) (4.2.152) ≤ 𝐶𝑒 -2𝜛𝑡 + 𝐶 ∫ 𝑤 2 + 𝑤 2 𝑥 Φ 𝑗 + 𝑜(𝑦 1 (𝑡) 2 ) (4.2.153) -𝜔 6 + 2𝜔 2 𝑏 2 𝑗-1 -𝑎 2 𝑗-1 𝑗-1 𝑖=1 ∫ 𝑃 𝑖 𝑤 + 1 2 ∫ 𝑤 2 Φ 𝑗 , (4.2.154)
where the term 𝑜(𝑦 1 (𝑡) 2 ) is present only if 𝑃 𝑗-1 is a soliton. And therefore, for 𝜔 2 and 𝜔 6 small enough,

- 𝑗-1 𝑖=1 ∫ 𝑃 𝑖 𝑤 ≤ 𝐶𝑒 -2𝜛𝑡 + 𝐶 ∫ 𝑤 2 + 𝑤 2 𝑥 Φ 𝑗 + 𝑜(𝑦 1 (𝑡) 2 ). (4.2.155)
Thus, we deduce the following bound: 

∫ 𝑃 𝑗-1 𝑤 Φ 𝑗 ≤ 𝐶𝑒 -2𝜛𝑡 + 𝐶 ∫ 𝑤 2 + 𝑤 2 𝑥 Φ 𝑗 + 𝑜(𝑦 1 (𝑡) 2 ). (4.2.156) Because ∥𝑤(𝑡)∥ 𝐻 2 → 𝑡→+∞ 0, we deduce that ∫ 𝑃 𝑗-1 𝑤 Φ 𝑗 2 = 𝑜(𝑒 -2𝜛𝑡 ) + 𝑜 ∫ 𝑤 2 + 𝑤 2 𝑥 Φ 𝑗 + 𝑜(𝑦 1 (𝑡) 2 ). ( 4 
∫ 𝑤 2 + 𝑤 2 𝑥 + 𝑤 2 𝑥𝑥 Φ 𝑗 = 𝑂(𝑒 -2𝜛𝑡 ) + 𝑜 𝑦 1 (𝑡) 2 + 𝑜 ∫ 𝑤 2 + 𝑤 2 𝑥 Φ 𝑗 . (4.2.158)
This means that if we take 𝑇 0 large enough, we have:

∫ 𝑤 2 + 𝑤 2 𝑥 + 𝑤 2 𝑥𝑥 Φ 𝑗 = 𝑜 𝑦 1 (𝑡) 2 + 𝑂(𝑒 -2𝜛𝑡 ), (4.2.159)
where the term 𝑜(𝑦 1 (𝑡) 2 ) is present only if 𝑃 𝑗-1 is a soliton.

Before finishing the proof, we need to find a better bound for 𝑦 1 (𝑡) than just a convergence to 0 given by the modulation (in the case when 𝑃 𝑗-1 is a soliton). For this, we study 𝑀 𝑗 (𝑡): Now, we recall that when 𝑡 1 → +∞, we have 𝑦 1 (𝑡 1 ) → 0. Therefore, by taking the limit of the previous formula when 𝑡 1 → +∞, we obtain:

𝑀 𝑗 (𝑡) = 1 
𝑏 𝑗-1 -𝑏 2
𝑗-1 + 𝑦 1 (𝑡) For this result, see [START_REF] Greenberg | An oscillation method for fourth-order, selfadjoint, two-point boundary value problems with nonlinear eigenvalues[END_REF], where the finite interval case was considered. As shown in several articles [START_REF] Holmer | Effective dynamics of double solitons for perturbed mKdV[END_REF][START_REF] Maddocks | On the stability of KdV multi-solitons[END_REF], the extension to the real line is direct.

Thus, it is sufficient to see that det 𝑊[𝑄 𝑥 , 𝑄 + 𝑥𝑄 𝑥 ](𝑡, 𝑥) is never zero. For this, let us simply calculate this determinant: where 𝐵 𝛼,𝛽 denotes the breather of parameters 𝛼 and 𝛽 or any of its translations (in space or in time).

Proof. Take 𝜈 > 0 (we will find a condition on 𝜈 later in the proof) and take 𝜖 satisfying the assumption of the lemma. Then (denoting 𝐵 = 𝐵 𝛼,𝛽 ) , 𝜖 = 𝜖 1 + 𝑎𝐵 1 + 𝑏𝐵 2 = 𝜖 1 + 𝜖 2 , (5.4.6) where

∫ 𝜖 1 𝐵 1 = ∫ 𝜖 1 𝐵 2 = ∫ 𝜖 1 𝜖 2 = 0.
By performing a 𝐿 2 -scalar product of (5.4.6) where 𝑅 𝑐,𝜅 denotes the soliton of parameter 𝑐 and sign 𝜅 or any of its translations. 5.5. Computations for the third localized integral (to be used for the uniqueness). Lemma 5.7. Let 𝑓 : R → R be a 𝐶 3 function that do not depend on time and 𝑢 a solution of (mKdV). Then, 

𝑑

𝑢 2 ( 4 ∫R𝑢 6 (

 246 𝑡, 𝑥)𝑢 2 𝑥 (𝑡, 𝑥) 𝑑𝑥 + 1 𝑡, 𝑥) 𝑑𝑥. (1.1.3)

𝐵 2 √𝑦 1 :

 21 𝛼,𝛽 (𝑡, 𝑥; 𝑥 1 , 𝑥 2 ) := = 𝑥 + 𝛿𝑡 + 𝑥 1 and 𝑦 2 := 𝑥 + 𝛾𝑡 + 𝑥 2 , with 𝛿 := 𝛼 2 -3𝛽 2 and 𝛾 := 3𝛼 2 -𝛽 2 .

□

  Now, we would like to study the quadratic terms in 𝜀 of the development of ℋ [ 𝑃 + 𝜀]. They are contained in 𝐻 2 [𝜀](𝑡).

  4.70) Proof of Lemma 2.19. The idea is to write 𝒬 𝑏 𝑘 [𝜖] as 𝒬 𝛼 𝑘 ,𝛽 𝑘 [𝜖 𝜑 𝑏 𝑘 ] plus several error terms. Let 𝑗 such that 𝑃 𝑗 = 𝐵 𝑘 . We will denote 𝜑 1,𝑗 := 𝜓 ′ ( 𝑥-𝜎 𝑗 𝑡 𝛿𝑡 ) -𝜓 ′ ( 𝑥-𝜎 𝑗+1 𝑡 𝛿𝑡 ) and 𝜑 2,𝑗 := 𝜓 ′′ ( 𝑥-𝜎 𝑗 𝑡 𝛿𝑡 ) -𝜓 ′′ ( 𝑥-𝜎 𝑗+1 𝑡

  For both other terms, we use that 𝑀[𝑞] = 2, 𝐸[𝑞] = -2 3 and 𝐹[𝑞] = 2 5 , and we see that 5 2 𝐹[𝑞] + 3𝐸[𝑞] + 1 2 𝑀[𝑞] = 0 and 15 8 𝐹[𝑞] + 3 4 𝐸[𝑞] -1 8 𝑀[𝑞] = 0. This allows us to write: ℛ 𝑙 (𝑡)

  both parts of the proof together:

  .1.54) Therefore, we have, for a suitable constant 𝐶 > 0 that depends only on 𝑠, 𝑑 𝑑𝑡 𝐹(𝑡) ≤ 𝐶𝐴 2 𝑠-1 𝑒 -2𝜃𝑡 + 𝐶𝐴 𝑠-1 𝑒 -𝜃𝑡 |𝐹(𝑡)|. (3.1.55) For 𝑡 ∈ [𝑇 * , 𝑇], by integration between 𝑡 and 𝑇 (we recall that 𝐹(𝑇) = 0), |𝐹(𝑡)| = |𝐹(𝑇) -𝐹(𝑡)| = |𝐹(𝜎)| 𝑑𝜎 (3.1.57) ≤ 𝐶𝐴 2 𝑠-1 𝑒 -2𝜃𝑡 + 𝐶𝐴 𝑠-1 ∫ 𝑇 𝑡 𝑒 -𝜃𝜎 |𝐹(𝜎)| 𝑑𝜎. (3.1.58) By Gronwall lemma, for all 𝑡 ∈ [𝑇 * , 𝑇], |𝐹(𝑡)| ≤ 𝐶𝐴 2 𝑠-1 𝑒 -2𝜃𝑡 (3.1.59)

Theorem 3 . 1 .

 31 Given parameters (1.2.1), (1.2.2), (1.2.3) and (1.2.4) which satisfy (1.2.5), there exists 𝐷 > 0 large enough that depends only on 𝛼 𝑘 , 𝛽 𝑘 , 𝑐 𝑙 such that if∀𝑗 ≥ 2, 𝑥 𝑗 (0) ≥ 𝑥 𝑗-1 (0) + 𝐷, (3.2.1)then the following holds. We set 𝜃 := 𝛽𝜏 32 , with 𝛽 and 𝜏 given by (2.0.1) and 𝑝(𝑡) the multi-breather associated to 𝑃 by Proposition 1.7. There exists 𝐴 𝑠 ≥ 1 for any 𝑠 ≥ 2 that depends only on 𝛼 𝑘 , 𝛽 𝑘 , 𝑐 𝑙 and 𝐷 such that ∀𝑡 ≥ 0, ∥𝑝(𝑡) -𝑃(𝑡)∥ 𝐻 𝑠 ≤ 𝐴 𝑠 𝑒 -𝜃𝑡 . (3.2.2)

Lemma 4 . 2 .

 42 For any 𝑗 = 1, ..., 𝐽, for 𝑡 large enough, there exists 𝐶 > 0 that do not depend on 𝑧, such that |𝑐 𝑗 (𝑡)| ≤ 𝐶 ∥𝑧(𝑡)∥ 𝐿 2 , (4.1.12) ∥ 𝑧(𝑡)∥ 𝐻 2 ≤ 𝐶 ∥𝑧(𝑡)∥ 𝐻 2 . (4.1.13) 

  2 and (4.1.5), we deduce that 𝑐 𝑗 (𝑡) → 𝑡→+∞ 0. (4.1.70) Knowing this, from Lemma 4.3, we deduce by integration that |𝑐 𝑗 (𝑡)| ≤ ∫ +∞ 𝑡 |𝑐 ′ 𝑗 (𝑠)| 𝑑𝑠 (4.1.71)

□ 4 . 2 .Proposition 4 . 10 .

 42410 A solution converging to a multi-breather converges exponentially to this multi-breather, if the velocities are positive. Let 𝑢(𝑡) be an 𝐻 2 solution of (mKdV) on [𝑇, +∞), for 𝑇 ∈ R. We assume that ∥𝑢(𝑡) -𝑝(𝑡)∥ 𝐻 2 → 𝑡→+∞ 0, (4.2.1)

  (4.2.25) By Corollary 2.2, for 𝑟 > 0, if 𝑡, 𝑥 satisfy 𝑣 𝑗-1 𝑡 + 𝑟 < 𝑥 < 𝑣 𝑗 𝑡 -𝑟, then |𝑢(𝑡, 𝑥)| ≤ |𝑃(𝑡, 𝑥)| + ∥𝑣(𝑡)∥ 𝐿 ∞ (4.2.26) ≤ 𝐶𝑒 -𝛽𝑟 + 𝐶 ∥𝑣(𝑡)∥ 𝐻 2 , (4.2.27) the same could be said for 𝑢 𝑥 .

□ 5 . 3 . 3 ∫𝑄 2 𝜖 2 + 𝑐 2 1 2 ∫Lemma 5 . 3 . 2 ∫

 533222532 𝑄 𝑥 (2𝑄 𝑥 + 𝑥𝑄 𝑥𝑥 ) -(𝑄 + 𝑥𝑄 𝑥 )𝑄 𝑥𝑥 = 2𝑄2 𝑥 -𝑄𝑄 𝑥𝑥 (5.2.10)= 2𝑐𝑄 2 𝑄 4 -𝑄(𝑐𝑄 -𝑄 3 ) (5.2.11) = 𝑐𝑄 2 > 0.(5.2.12) Coercivity of the quadratic form associated to a soliton. For 𝑄 = 𝑅 𝑐,𝜅 , let𝒬 𝑠 𝑐 [𝜖]: There exists 𝜇 𝑐 > 0 such that for any 𝜖 ∈ 𝐻 2 such that∫ 𝜖𝑄 = ∫ 𝜖𝑄 𝑥 = 0, we have that 𝒬 𝑠 𝑐 [𝜖] ≥ 𝜇 𝑐 ∥𝜖∥ 2 𝐻 2 . (5.3.3)Proof. From Section 5.2, we know that if ∫ 𝜖𝜕 𝑥 𝑄 = ∫ 𝜖𝜕 𝑐 𝑄 = 0, then, for a constant 𝜈 𝑐 > 0, we have that𝒬 𝑠 𝑐 [𝜖] ≥ 𝜈 𝑐 ∥𝜖∥ 2 𝐻 2 . (5.3.4) Let 𝜖 ∈ 𝐻 2 be such that ∫ 𝜖𝑄 = ∫ 𝜖𝜕 𝑥 𝑄 = 0. There exists 𝑎 ∈ R and 𝜖 ⊥ ∈ Span(𝜕 𝑥 𝑄, 𝜕 𝑐 𝑄) ⊥ such that 𝜖 = 𝑎𝜕 𝑐 𝑄 + 𝜖 ⊥ . 𝑄 2 + ∫ 𝜖 ⊥ 𝑄 = 0, (5.3.7) which allows us to derive: 𝑎 = -2

3 )Lemma 5 . 4 .

 354 We would like to prove the following lemma (adapted from the Appendix A of[START_REF]Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation[END_REF]): There exists 𝜈 := 𝜈 𝑏 𝛼,𝛽 > 0 such that, for 𝜖 ∈ 𝐻 2 (R), if∫ (𝜕 𝑥 1 𝐵 𝛼,𝛽 )𝜖 + ∫ (𝜕 𝑥 2 𝐵 𝛼,𝛽 )𝜖 < 𝜈∥𝜖∥ 𝐻 2

Modulation. Lemma 2.8. There

  exists 𝐶 > 0, 𝑇 * 2 = 𝑇 * 2 (𝐴) such that, if 𝑇 * > 𝑇 * 2 , then there exist unique 𝐶 1 functions 𝑥 1,𝑘 : [𝑡 * , 𝑇] → R, 𝑥 2,𝑘 : [𝑡 * , 𝑇] → R for 1 ≤ 𝑘 ≤ 𝐾 and 𝑥 0,𝑙 : [𝑡 * , 𝑇] → R, 𝑐 0,𝑙 : [𝑡 * , 𝑇] → R, such that if we setwhere there is the usual correspondence between 𝑃 𝑗 and 𝐵 𝑘 or 𝑅 𝑙 , then, 𝜀(𝑡) satisfies, for any 𝑘 = 1, ..., 𝐾, for any 𝑙 = 1, ..., 𝐿 and for any 𝑡 ∈ [𝑡 * , 𝑇],

	(2.2.50)		≤	𝐶 𝛿 2 𝑡	𝐴 2 𝑒 -2𝜃𝑡 +		𝐶 𝛿 2 𝑡	𝑒 -𝛽𝜏𝑡 2 ≤	𝐶 𝛿 2 𝑡	(𝐴 2 + 𝑒 -2𝜃𝑡 )𝑒 -2𝜃𝑡 ≤	𝐶 𝛿 2 𝑡	𝐴 2 𝑒 -2𝜃𝑡 .
	Thus, for 𝑗 = 1, ..., 𝐽, 𝑡 ∈ [𝑡 * , 𝑇],									
	(2.2.51)				|𝑀 𝑗 (𝑇) -𝑀 𝑗 (𝑡)| + |𝐸 𝑗 (𝑇) -𝐸 𝑗 (𝑡)|
	(2.2.52)					≤	∫ 𝑇 𝑡	𝐶 𝛿 2 𝑠	𝐴 2 𝑒 -2𝜃𝑠 𝑑𝑠 ≤	𝐶 𝛿 2 𝑡	𝐴 2	𝑡 ∫ 𝑇	𝑒 -2𝜃𝑠 𝑑𝑠
	(2.2.53)					=	𝐶 𝛿 2 𝑡	𝐴 2 1 2𝜃	(𝑒 -2𝜃𝑡 -𝑒 -2𝜃𝑇 ) ≤	𝐶 𝛿 2 𝑡	𝐴 2 𝑒 -2𝜃𝑡 .
																□
	2.3. 𝜀(𝑡, 𝑥) = 𝑝(𝑡, 𝑥) -𝐵(𝑡, 𝑥) -𝑅(𝑡, 𝑥) = 𝑝(𝑡, 𝑥) -𝑃(𝑡, 𝑥), (2.3.1)
	where, for 1 ≤ 𝑘 ≤ 𝐾,												
					𝐾										
	(2.3.2)	𝐵(𝑡, 𝑥) =		𝐵 𝑘 (𝑡), 𝐵 𝑘 (𝑡, 𝑥) = 𝐵 𝛼 𝑘 ,𝛽 𝑘 (𝑡, 𝑥; 𝑥 0 1,𝑘 + 𝑥 1,𝑘 (𝑡), 𝑥 0 2,𝑘 + 𝑥 2,𝑘 (𝑡)),
					𝑘=1									
	for 1 ≤ 𝑙 ≤ 𝐿,														
						𝐿									
	(2.3.3)	𝑅(𝑡, 𝑥) :=	𝑅 𝑙 (𝑡), 𝑅 𝑙 (𝑡, 𝑥) := 𝜅 𝑙 𝑄 𝑐 𝑙 +𝑐 0,𝑙 (𝑡) (𝑥 -𝑥 0 0,𝑙 + 𝑥 0,𝑙 (𝑡) -𝑐 𝑙 𝑡),
						𝑙=1									
	(2.3.4)									𝑃(𝑡) := 𝑅(𝑡) + 𝐵(𝑡),
	and														
															𝐽
	(2.3.5)										𝑃(𝑡) :=	𝑃 𝑗 (𝑡),
															𝑗=1
						∫									∫
	(2.3.6)					𝑅 𝑙 (𝑡)𝜀(𝑡) 𝜑 𝑠 𝑙 (𝑡) =	𝜕 𝑥 𝑅 𝑙 (𝑡)𝜀(𝑡) 𝜑 𝑠 𝑙 (𝑡) = 0,
				∫										∫
	(2.3.7)					𝜕 𝑥 1 𝐵 𝑘 (𝑡)𝜀(𝑡) 𝜑 𝑏 𝑘 (𝑡) =		𝜕 𝑥 2 𝐵 𝑘 (𝑡)𝜀(𝑡) 𝜑 𝑏 𝑘 (𝑡) = 0.
	Moreover, for any 𝑡 ∈ [𝑡 * , 𝑇],									
						𝐾										𝐿
	(2.3.8)	∥𝜀(𝑡)∥ 𝐻 2 +	(|𝑥 1,𝑘 (𝑡)| + |𝑥 2,𝑘 (𝑡)|) +	(|𝑥 0,𝑙 (𝑡)| + |𝑐 0,𝑙 (𝑡)|) ≤ 𝐶𝐴𝑒 -𝜃𝑡 ,
						𝑘=1									𝑙=1
	and														
	.2.47) Thus, (2.3.9)	𝐾	(|𝑥 ′ 1,𝑘 (𝑡)| + |𝑥 ′ 2,𝑘 (𝑡)|) +		𝐿	(|𝑥 ′ 0,𝑙 (𝑡)| + |𝑐 ′ 0,𝑙 (𝑡)|) ≤ 𝐶 ∥𝜀(𝑡)∥ 𝐿 2 + 𝐶𝑒 -𝜃𝑡 .
	(2.2.48)	𝑘=1								∫ 𝑙=1		2 , 𝑃 2 ≤ 𝐶𝑒 -𝛽𝜏𝑡
											Ω 𝑗 (𝑡)	
	and the same is valid for the derivatives of 𝑃. Thus, for 𝑡 ∈ [𝑡 * , 𝑇],		
	(2.2.49)	𝐽 𝑗=1	𝑑 𝑑𝑡	1 2	∫	𝑝 2 𝜓	𝑥 -𝜎 𝑗 𝑡 𝛿𝑡			+	𝑑 𝑑𝑡	∫	1 2	𝑝 2 𝑥 -	1 4	𝑝 4 𝜓	𝑥 -𝜎 𝑗 𝑡 𝛿𝑡

  𝜕 𝑥 1 𝐵 𝛼 𝑘 ,𝛽 𝑘 𝜕 𝑥 2 𝐵 𝛼 𝑘 ,𝛽 𝑘 𝜑 𝑏

	(2.3.18)								,
									𝑙 ′
	where							
	(2.3.19)	𝐵 1 𝑘,𝑘 := -	∫	𝜕 𝑥 1 𝐵 𝛼 𝑘 ,𝛽 𝑘	2 𝜑 𝑏 𝑘 , 𝐵 2 𝑘,𝑘 := -	∫	𝜕 𝑥 2 𝐵 𝛼 𝑘 ,𝛽 𝑘	2 𝜑 𝑏 𝑘 ,
	(2.3.20)	𝐵 3 𝑘,𝑘 := -	∫			𝑘 ,
	(2.3.21)	𝑅 1 𝑙,𝑙 := -	∫		𝜕 𝑥 𝑄 𝑐 𝑙 (𝑦 0 0,𝑙 )	2 𝜑 𝑠 𝑙 , 𝑅 3 𝑙,𝑙 := -	∫	𝑄 𝑐 𝑙 (𝑦 0 0,𝑙 )𝜕 𝑥 𝑄 𝑐 𝑙 (𝑦 0 0,𝑙 ) 𝜑 𝑠 𝑙 ,
	(2.3.22)	𝑅 2 𝑙,𝑙 := -	1 2𝑐 𝑙	∫	𝑄 𝑐 𝑙 (𝑦 0 0,𝑙 ) 𝑄 𝑐 𝑙 (𝑦 0 0,𝑙 ) + 𝑦 0 0,𝑙 𝜕 𝑥 𝑄 𝑐 𝑙 (𝑦 0 0,𝑙 ) 𝜑 𝑠 𝑙 ,
	(2.3.23)	𝑅 4 𝑙,𝑙 := -	1 2𝑐 𝑙	∫	𝜕 𝑥 𝑄 𝑐 𝑙 (𝑦 0 0,𝑙 ) 𝑄 𝑐 𝑙 (𝑦 0 0,𝑙 ) + 𝑦 0 0,𝑙 𝜕 𝑥 𝑄 𝑐 𝑙 (𝑦 0 0,𝑙 ) 𝜑 𝑠 𝑙 ,

  𝐵 𝛼 𝑘 ,𝛽 𝑘 𝜕 𝑥 2 𝐵 𝛼 𝑘 ,𝛽 𝑘 𝐵 𝛼 𝑘 ,𝛽 𝑘 (𝑡, 𝑥; 𝑥 0 1,𝑘 , 𝑥 0 2,𝑘 ) and 𝜕 𝑥 2 𝐵 𝛼 𝑘 ,𝛽 𝑘 (𝑡, 𝑥; 𝑥 0 1,𝑘 , 𝑥 0 2,𝑘 ) are linearly independent as functions of the 𝑥 variable, for any time 𝑡 fixed, we see that the first product is positive. Since each member of the product is periodic in time, then the first product is bounded below by a positive constant independent from time and translation parameters.For the second product, by translation of the variable in the integrations, for any time 𝑡 fixed, we see that we can replace 𝑦 0 0,𝑙 by 𝑥. Then, by integration by parts, By scaling, if 𝑞 denotes the soliton with 𝑐 = 1, i.e. 𝑞 = 𝑄 1 ,

	(2.3.26)												≤ 𝐶𝑒 -𝛽𝜏 2 𝑡 ,
	and the same is true for the other dominant diagonal terms of the matrix (we can get rid of 𝜑s).
	Therefore, the determinant of the matrix is exponentially close to:
	(2.3.27)		det(𝐷𝐹 𝑡 )							
	(2.3.28)			=	𝐾	∫		𝜕 𝑥 1 𝐵 𝛼 𝑘 ,𝛽 𝑘 (𝑡, 𝑥; 𝑥 0 1,𝑘 , 𝑥 0 2,𝑘 )	2	∫	𝜕 𝑥 2 𝐵 𝛼 𝑘 ,𝛽 𝑘 (𝑡, 𝑥; 𝑥 0 1,𝑘 , 𝑥 0 2,𝑘 )	2
					𝑘=1							
	(2.3.29)				-	∫		𝜕 𝑥 1 2
	(2.3.30)			•	𝐿 𝑙=1	1 2𝑐 𝑙	∫	𝑄 𝑐 𝑙 (𝑦 0 0,𝑙 ) 𝑄 𝑐 𝑙 (𝑦 0 0,𝑙 ) + 𝑦 0 0,𝑙 𝜕 𝑥 𝑄 𝑐 𝑙 (𝑦 0 0,𝑙 )	∫	𝜕 𝑥 𝑄 𝑐 𝑙 (𝑦 0 0,𝑙 )	2 ,
	because	∫	𝑄 𝑐 𝑙 (𝑦 0 0,𝑙 )𝜕 𝑥 𝑄 𝑐 𝑙 (𝑦 0 0,𝑙 ) 𝑑𝑥 = 0.	
	By Cauchy-Schwarz inequality and the fact that
	(2.3.31)				𝜕 𝑥 1 ∫	𝑥𝑄 𝑐 𝑙 (𝑥)𝜕 𝑥 𝑄 𝑐 𝑙 (𝑥) 𝑑𝑥 = -	1 2	∫	𝑄 𝑐 𝑙 (𝑥) 2 𝑑𝑥.
	(2.3.32)						∫	𝑄 2 𝑐 𝑙 =	√	𝑐 𝑙	∫	𝑞 2 ,	∫	𝜕 𝑥 𝑄 2 𝑐 𝑙 = 𝑐	3/2 𝑙	∫	𝑞 2 𝑥 .
	Therefore,										
	(2.3.33)				1 2𝑐 𝑙	∫	𝑄 𝑐 𝑙 (𝑦 0 0,𝑙 ) 𝑄 𝑐 𝑙 (𝑦 0 0,𝑙 ) + 𝑦 0 0,𝑙 𝜕 𝑥 𝑄 𝑐 𝑙 (𝑦 0 0,𝑙 )	∫	(𝜕 𝑥 𝑄 𝑐 𝑙 (𝑦 0 0,𝑙 )) 2
	(2.3.34)					=	1 4	𝑐 𝑙	∫	𝑞 2	∫	(𝑞 𝑥 ) 2
	(2.3.35)					≥	1 4	min{𝑐 𝑛 , 1 ≤ 𝑛 ≤ 𝐿}	∫	𝑞 2	∫	𝑞 2 𝑥 .
			1 𝑘,𝑘 is exponentially close to -	∫	𝜕 𝑥 1 𝐵 𝛼 𝑘 ,𝛽 𝑘	2 , because if 𝑃 𝑗 = 𝐵 𝑘 is a breather,
	(2.3.24)		∫	𝜕 𝑥 1 𝐵 𝛼 𝑘 ,𝛽 𝑘	2	1 -𝜑 𝑏 𝑘 ≤	∫ 𝜎 𝑗 𝑡+𝛿𝑡 -∞	𝜕 𝑥 1 𝐵 𝛼 𝑘 ,𝛽 𝑘	2	+	∫ +∞ 𝜎 𝑗+1 𝑡+𝛿𝑡	𝜕 𝑥 1 𝐵 𝛼 𝑘 ,𝛽 𝑘	2
	(2.3.25)												≤ 𝐶	∫ 𝜎 𝑗 𝑡+𝛿𝑡	𝑒 -2𝛽|𝑥-𝑣 𝑗 𝑡| +	∫ +∞	𝑒 -2𝛽|𝑥-𝑣 𝑗 𝑡 |
													-∞	𝜎 𝑗+1 𝑡+𝛿𝑡

  If 𝑇 * > 𝑇 * 2 , then there exists a constant 𝐶 that depends only on 𝑃, such that for any 𝑡 ∈ R, 𝜕 𝑚 𝑥 𝑃 𝑖 𝜕 𝑛 𝑥 𝑃 𝑗 ≤ 𝐶𝑒 -𝛽𝜏𝑡/8 . (2.3.79) 2.4. Study of coercivity. In

	∫

then there exists a constant 𝐶 > 0 such that for any 𝑡, 𝑥 ∈ R, |𝜕 𝑛 𝑥 𝑃 𝑗 (𝑡, 𝑥)| ≤ 𝐶𝑒 -𝛽 2 |𝑥-𝑣 𝑗 𝑡| . (2.3.78) We will also use that any ∥𝜕 𝑛 𝑥 𝑃 𝑗 ∥ 𝐻 2 is bounded by 𝐶. Corollary 2.11. Let 𝑖 ≠ 𝑗 ∈ {1, ..., 𝐽} and 𝑚, 𝑛 ∈ N.

  𝑃 𝑥 𝜀 𝑥 𝜑 𝑗 and ∫ R 𝑃 𝑗 𝑥 𝜀 𝑥 , and for similar terms, we can use computations that we have already performed at the beginning of this proof. Therefore,

	(2.4.43)	8 ,
	by Sobolev embeddings and Proposition 2.3.	
	The bounding is quite similar for	

∫ 𝑃 2 𝑃 𝑥𝑥 𝜀 and ∫ 𝑃 5 𝜀. We observe that -∫ 𝑃 𝑗 𝑥𝑥 𝜀 = ∫ 𝑃 𝑗 𝑥 𝜀 𝑥 . To compare ∫

  There exists 𝜇 > 0 such that for 𝜌 > 0, there exists 𝑇 * 3 such that, if 𝑇

	(2.4.68)	2 𝐻 2 (R) .
	Lemma 2.19.	

* ≥ 𝑇 * 3 , for any 𝜖 ∈ 𝐻 2 (R), for any 𝑡 ∈ [𝑡 * , 𝑇],

if

  There exists 𝜇 > 0 such that for 𝜌 > 0, there exists 𝑇 * 3 such that if 𝑇 * ≥ 𝑇 * 3 , then for any 𝜖 ∈ 𝐻 2 (R), for any 𝑡 ∈ [𝑡 * , 𝑇], we have that if Proof. As in the previous proof, we write 𝒬 𝑠 𝑙 [𝜖] as 𝒬 𝑠 𝑐 𝑙 [𝜖 𝜑 𝑠 𝑙 ] (with 𝑄 = 𝑅 𝑙 ) plus several error terms, that are all bounded by 𝜌∥𝜖∥ 2 𝐻 2 if 𝑇 * 3 is chosen large enough. However, 𝒬 𝑠 𝑐 𝑙 [𝜖 𝜑 𝑠 𝑙 ] is not appropriate in order to have coercivity, the appropriate quadratic form is 𝒬 𝑠 𝑐 𝑙 +𝑐 0,𝑙 (𝑡) [𝜖 𝜑 𝑠 𝑙 ]. This is why, we need to bound the difference between 𝒬 𝑠 𝑐 𝑙 [𝜖 𝜑 𝑠 𝑙 ] and 𝒬 𝑠 𝑐 𝑙 +𝑐 0,𝑙 (𝑡) [𝜖 𝜑 𝑠 𝑙 ]. This difference is 𝜑 𝑗 + 𝑐 𝑙 𝑐 0,𝑙 (𝑡) ∫ 𝜖 2 𝜑 𝑗 + 𝑐 0,𝑙 (𝑡) 2 1 2 ∫ 𝜖 2 𝜑 𝑗 , (2.4.77) which can, because of the bound for 𝑐 0,𝑙 (𝑡), for 𝑇 * 3 large enough (depending on 𝐴), be bounded by 𝜌∥𝜖∥ 2 𝐻 2 . Now, 𝜖 𝜑 𝑠 𝑙 satisfies the orthogonality conditions we need, and as in the previous proof we may apply coercivity.

			∫					∫	
	(2.4.75)			𝑅 𝑙 (𝑡)𝜖 𝜑 𝑠 𝑙 (𝑡) =	𝑅 𝑙 𝑥 (𝑡)𝜖 𝜑 𝑠 𝑙 (𝑡) = 0,
	then								
	(2.4.76)		𝒬 𝑠 𝑙 [𝜖] ≥ 𝜇	∫	𝜖 2 + 𝜖 2 𝑥 + 𝜖 2 𝑥𝑥 𝜑 𝑠 𝑙 (𝑡) -𝜌∥𝜖∥ 2 𝐻 2 .
	𝑐 0,𝑙 (𝑡)	∫	𝜖 2 𝑥 𝜑 𝑗 -3	∫	𝑅 𝑙	2 𝜖 2	
	𝐶 𝛿𝑡 ∥𝜖∥ 2 𝐻 2 ≤	𝜌 100 ∥𝜖∥ 2 𝐻 2 . The computation for the other terms is similar and the
	same bound can be used for the error terms.	
	Because 𝜖 𝜑 𝑏 𝑘 satisfies the orthogonality conditions, we can apply Proposition 2.15, and obtain
	that								
	(2.4.74)	𝒬 𝛼 𝑘 ,𝛽 𝑘 𝜖 𝜑 𝑏 𝑘 ≥ 𝜇 𝑏 𝑘 𝜖 𝜑 𝑏 𝑘	2 𝐻 2	-	1 𝑘 𝜇 𝑏	∫	𝜖 𝜑 𝑏 𝑘 𝐵 𝑘	2	.
	To finish, ∥𝜖 𝜑 𝑏 𝑘 ∥ 2 𝐻 2 is							

∫ (𝜖 2 + 𝜖 2 𝑥 + 𝜖 2 𝑥𝑥 )𝜑 𝑏 𝑘 (𝑡) plus several error terms as in (2.4.73). □ Lemma 2.20.

  * 5 for 𝑇 * 5 large enough (depending on 𝐴) so that ∥𝜀∥ 𝐻 2 ≤ 𝐶 and 𝐶 ∥𝜀(𝑡)∥ 𝐻 2 ≤ 𝐻 2 . We remark that if 𝑃 𝑗 = 𝐵 𝑘 is a breather, then 𝐹[ 𝑃 𝑗 ], 𝐸[ 𝑃 𝑗 ] and 𝑀[ 𝑃 𝑗 ] are all constants in time. If 𝑃 𝑗 = 𝑅 𝑙 is a soliton and we denote 𝑞 the basic ground state (i.e. the ground state for 𝑐 = 1), we have the following: 𝑀[ 𝑅 𝑙 ](𝑡) = 𝑐 𝑙 + 𝑐 0,𝑙 (𝑡) 𝐸[ 𝑅 𝑙 ](𝑡) = 𝑐 𝑙 + 𝑐 0,𝑙 (𝑡) 𝐹[ 𝑅 𝑙 ](𝑡) = 𝑐 𝑙 + 𝑐 0,𝑙 (𝑡) Using that, we can simplify ℛ 𝑙 (𝑡) := 𝐹[ 𝑅 𝑙 ](𝑡) + 2𝑐 𝑙 𝐸[ 𝑅 𝑙 ](𝑡) + 𝑐 2 𝑙 𝑀[ 𝑅 𝑙 ](𝑡) as follows: ℛ 𝑙 (𝑡) = 𝑐 𝑙 + 𝑐 0,𝑙 (𝑡) 𝐹[𝑞] + 2𝑐 𝑙 𝑐 𝑙 + 𝑐 0,𝑙 (𝑡)

	𝜇 100 ∥𝜀(𝑡)∥ 2												𝜇 100 , and thus 𝐶 ∥𝜀(𝑡)∥ 3 𝐻 2 ≤
	(2.5.6)							1/2	𝑀[𝑞],		
	(2.5.7)							3/2	𝐸[𝑞],		
	(2.5.8)							5/2	𝐹[𝑞].		
	(2.5.9)				5/2					3/2	𝐸[𝑞]
	(2.5.10)	+ 𝑐 2 𝑙 𝑐 𝑙 + 𝑐 0,𝑙 (𝑡)	1/2	𝑀[𝑞]					
	(2.5.11)	= 𝑐	5/2 𝑙	1 +	𝑐 0,𝑙 (𝑡) 𝑐 𝑙	5/2	𝐹[𝑞] + 2𝑐	5/2 𝑙	1 +	𝑐 0,𝑙 (𝑡) 𝑐 𝑙	3/2	𝐸[𝑞]

  the equations (2.5.5) and (2.5.2), Claim 2.14, and the fact that for 𝑡 ≥ 𝑇 * 4 , 𝑂(∥𝜀(𝑡)∥ 3 𝐻 2 ) ≤We will now need to establish a result close to Lemma 2.7. We set for any 𝑗 = 1, ..., 𝐽:

	(2.5.21)	≤ ℋ [𝑝](𝑡) + 𝐶𝑒 -2𝜃𝑡 +	𝜇 100	∥𝜀(𝑡)∥ 2 𝐻 2
			𝐽							
	(2.5.22)	-		𝐹 𝑃 𝑗 (𝑡) + 2 𝑏 2 𝑗 -𝑎 2 𝑗 𝐸 𝑃 𝑗 (𝑡) + 𝑎 2 𝑗 + 𝑏 2 𝑗	2	𝑀 𝑃 𝑗 (𝑡)
			𝑗=1							
	(2.5.23)	≤ ℋ [ 𝑃](𝑇) + 𝐶	𝐴 2 𝛿 2 𝑡	+ 1 𝑒 -2𝜃𝑡 +	𝜇 100	∥𝜀(𝑡)∥ 2 𝐻 2
			𝐽							
	(2.5.24)	-		𝐹 𝑃 𝑗 (𝑡) + 2 𝑏 2 𝑗 -𝑎 2 𝑗 𝐸 𝑃 𝑗 (𝑡) + 𝑎 2 𝑗 + 𝑏 2 𝑗	2	𝑀 𝑃 𝑗 (𝑡)
			𝑗=1							
	(2.5.25)	≤ ℋ 𝑃 (𝑇) + 𝐶	𝐴 2 𝛿 2 𝑡	+ 1 𝑒 -2𝜃𝑡 +	𝜇 100	∥𝜀(𝑡)∥ 2 𝐻 2 +	𝐿 𝑙=1	ℛ 𝑙 (𝑇) -ℛ 𝑙 (𝑡)
			𝐽							
	(2.5.26)	-		𝐹 𝑃 𝑗 (𝑇) + 2 𝑏 2 𝑗 -𝑎 2 𝑗 𝐸 𝑃 𝑗 (𝑇) + 𝑎 2 𝑗 + 𝑏 2 𝑗	2	𝑀 𝑃 𝑗 (𝑇)
			𝑗=1							
	(2.5.27)	≤ 𝐶	𝐴 2 𝛿 2 𝑡	+ 1 𝑒 -2𝜃𝑡 +	𝜇 100	∥𝜀(𝑡)∥ 2 𝐻 2 .
	From Proposition 2.13, we deduce (by taking a smaller constant 𝜇) that
	(2.5.28)		𝜇∥𝜀∥ 2 𝐻 2 ≤ 𝐶	𝐴 2 𝛿 2 𝑡	+ 1 𝑒 -2𝜃𝑡 +	1 𝜇	𝐾 𝑘=1	∫	𝜀 𝐵 𝑘 𝜑 𝑏 𝑘	2	.
	(2.5.30)		𝑚 𝑗 (𝑡) :=	∫	1 2		𝑝 𝐶 𝛿 2 𝑡	𝐴 2 𝑒 -2𝜃𝑡 .
						𝜇 100 ∥𝜀∥ 2 𝐻 2 , we have that
	(2.5.20)	𝐻 2 [𝜀](𝑡)								

2 (𝑡, 𝑥) 𝜑 𝑗 (𝑡, 𝑥) 𝑑𝑥 := 𝑚 𝑗 [𝑝](𝑡). (2.5.29) Lemma 2.21. There exists 𝐶 > 0, 𝑇 * 6 = 𝑇 * 6 (𝐴) such that, if 𝑇 * ≥ 𝑇 * 6 , for any 𝑗 = 1, ..., 𝐽, for any 𝑡 ∈ [𝑡 * , 𝑇], 𝑚 𝑗 (𝑇) -𝑚 𝑗 (𝑡) ≤

(

  ≤ 𝐶𝑒 -𝜃 2 𝑡 ∥𝜀∥ 𝐻 2 ≤ 𝐶𝐴𝑒 -𝜃𝑡 𝑒 -𝜃 2 𝑡 ≤ 𝐶𝑒 -𝜃𝑡 ,(2.5.38) where 𝑇 * ≥ 𝑇 * 7 with 𝑇 * 7 being large enough depending on 𝐴. If we use the calculations we have made in the proof of Claim 2.14, we see that 𝑃 + 𝜀) 2 √ 𝜑 𝑗 . By writing the difference of the equation(2.5.35) between 𝑡 and 𝑇, and using that 𝜀(𝑇) = 0, we deduce, for 𝑇 * ≥ max(𝑇 * By using (2.5.44), the mean-value theorem and Lemma 2.8, we deduce that for 𝑡 ∈ [𝑡

	and								
	(2.5.37)		∫	𝑃 𝑖 𝜀 𝜑 𝑗 ≤			∫	𝑃 𝑖	2 𝜑 𝑗	∫	𝜀 2
	(2.5.39)				∫	𝑃 𝑗	2 -	∫	𝑃 𝑗	2 𝜑 𝑗 ≤ 𝐶𝑒 -𝜃𝑡 .
	This proves the bound for the error terms.		
	Now, we study the variations of (2.5.35). We know that	∫	𝑃 𝑗	2	=	∫	𝐵 𝑘	2	has no variations. We can
	apply Lemma 2.21 for	∫						
										6 , 𝑇 * 7 ), that
	(2.5.40)		∫	𝑃 𝑗 𝜀 𝜑 𝑗 (𝑡) ≤ 𝐶	𝐴 2 𝛿 2 𝑡	+ 1 𝑒 -𝜃𝑡 + ∥𝜀∥ 2 𝐻 2
	(2.5.41)						≤ 𝐶	𝐴 2 𝛿 2 𝑡	+ 1 𝑒 -𝜃𝑡 +	𝜇 100	∥𝜀(𝑡)∥ 𝐻 2 .
	Thus,								
	(2.5.42)		𝜇∥𝜀∥ 2 𝐻 2 ≤ 𝐶	𝐴 2 𝛿 2 𝑡	+ 1 𝑒 -2𝜃𝑡 +	1 𝜇	𝐽 𝑗=1	∫	𝜀 𝑃 𝑗 𝜑 𝑗	2
	(2.5.43)				≤ 𝐶	𝐴 4 𝛿 4 𝑡	+ 1 𝑒 -2𝜃𝑡 +	𝜇 100	∥𝜀(𝑡)∥ 2 𝐻 2 .
	Therefore,								
	(2.5.44)				∥𝜀(𝑡)∥ 2 𝐻 2 ≤ 𝐶	𝐴 4 𝛿 4 𝑡	+ 1 𝑒 -2𝜃𝑡 .
	(2.5.45)									𝐻 2
	(2.5.46)	≤ 𝐶	𝐴 4 𝛿 4 𝑡	+ 1 𝑒 -𝜃𝑡			
	.5.36)								

* , 𝑇], 𝑝(𝑡) -𝑃(𝑡) 𝐻 2 ≤ 𝜀(𝑡) 𝐻 2 + 𝑃(𝑡) -𝑃(𝑡)

  𝑇 * 8 (𝐴) is such that for 𝑡 ≥ 𝑇 * 8 , 𝐴 4 𝛿 4 𝑡 ≤ 1. And thus, for any 𝑡 ∈ [𝑡 * , 𝑇],

	(depending on 𝐴), where 𝑇 * 8 := 𝐶 (2.5.53)	𝐴 4 𝛿 4 𝑡	+ 1 ≤ 2𝐶 =	𝐴 2	,
	(2.5.52)		𝑇 * 2 , 𝑇 * 3 , 𝑇 * 4 , 𝑇 * 5 , 𝑇 * 6 , 𝑇 * 7 , 𝑇 * 8

  3 = 3 𝜕 𝑠+1 𝑥 𝑣 𝑣 2 + 6(𝑠 + 1) 𝜕 𝑠 𝑥 𝑣 𝑣 𝑥 𝑣 + 𝑍 1 𝑣, 𝑣 𝑥 , ..., 𝜕 𝑠-1 𝑥 𝑣 , (3.1.13) + 𝑍 2 𝑣, 𝑣 𝑥 , ..., 𝜕 𝑠-1 𝑥 𝑣, 𝑃, 𝑃 𝑥 , ..., 𝜕 𝑠+1 𝑥 𝑃 , (3.1.15)where 𝑍 1 and 𝑍 2 are homogeneous polynomials of degree 3 with constant coefficients.

	(3.1.14)	𝜕 𝑠+1 𝑥	𝑣 2 𝑃 = 2 𝜕 𝑠+1 𝑥 𝑣 𝑣𝑃 + 2(𝑠 + 1) 𝜕 𝑠 𝑥 𝑣 (𝑣𝑃) 𝑥
	Now, let us look for a bound for	∫	𝜕 𝑠+1 𝑥 (𝑣 3 )(𝜕 𝑠 𝑥 𝑣). Firstly, by integration by parts,

  𝐶(∥𝑣∥ 𝐿 ∞ + ∥𝑣 𝑥 ∥ 𝐿 ∞ )

	We bound above each of the terms of the obtained sum, starting by
	(3.1.29)								∫	𝜕 𝑠 𝑥 𝑣	2		𝑣𝑃	𝑥 ≤ ∫	𝜕 𝑠 𝑥 𝑣	2
	(3.1.30)														≤ 𝐶𝐴𝑒 -𝜃𝑡	∫	𝜕 𝑠 𝑥 𝑣	2 .
	The upper bound of		∫	(𝜕 𝑠 𝑥 𝑣)𝑍 2 is similar to (3.1.26) above:
	(3.1.31)								∫	𝜕 𝑠 𝑥 𝑣 𝑍 2 ≤ 𝐶𝐴 2 𝑠-1 𝑒 -2𝜃𝑡 + 𝐶𝐴 𝑠-1 𝑒 -𝜃𝑡	∫	𝜕 𝑠 𝑥 𝑣	2 .
	∫	𝜕 𝑠+1 𝑥 (𝑣𝑃 2 )(𝜕 𝑠 𝑥 𝑣) remains to be bounded. By integration by parts,
	(3.1.32)		∫	𝜕 𝑠+1 𝑥	𝑣𝑃 2 𝜕 𝑠 𝑥 𝑣 = -	∫	𝜕 𝑠+2 𝑥	𝑣𝑃 2 𝜕 𝑠-1 𝑥 𝑣
	(3.1.33)				= -	∫	𝜕 𝑠+2 𝑥 𝑣 𝜕 𝑠-1 𝑥 𝑣 𝑃 2 -(𝑠 + 2)	∫	𝜕 𝑠+1 𝑥 𝑣 𝜕 𝑠-1 𝑥 𝑣 𝑃 2	𝑥
	(3.1.34)				-		(𝑠 + 2)(𝑠 + 1) 2		∫	𝜕 𝑠 𝑥 𝑣 𝜕 𝑠-1 𝑥 𝑣 𝑃 2	𝑥𝑥 +	∫	𝜕 𝑠-1 𝑥 𝑣 𝑍 0 3 (𝑣, 𝑣 𝑥 , ..., 𝜕 𝑠-1 𝑥 𝑣)
	(3.1.35)				=	1 2	∫		𝜕 𝑠 𝑥 𝑣	2	𝑥	𝑃 2 + (𝑠 + 1)	∫	𝜕 𝑠 𝑥 𝑣	2	𝑃 2	𝑥
	(3.1.36)				-		𝑠(𝑠 + 1) 4	∫			𝜕 𝑠-1 𝑥 𝑣	2	𝑥	𝑃 2	𝑥𝑥 +	∫	𝜕 𝑠-1 𝑥 𝑣 𝑍 0 3 (𝑣, 𝑣 𝑥 , ..., 𝜕 𝑠-1 𝑥 𝑣)
	.1.26)													
	Similarly, we bound	∫	𝜕 𝑠+1 𝑥 (𝑣 2 𝑃)(𝜕 𝑠 𝑥 𝑣). By integration by parts,
	(3.1.27)	∫	𝜕 𝑠+1 𝑥		𝑣 2 𝑃 𝜕 𝑠 𝑥 𝑣 =	∫	𝜕 𝑠 𝑥 𝑣	2	𝑣𝑃 + 2(𝑠 + 1)	∫	𝜕 𝑠 𝑥 𝑣	2	𝑣𝑃	𝑥 +	∫	𝜕 𝑠 𝑥 𝑣 𝑍 2
																𝑥
	(3.1.28)										= (2𝑠 + 1)	∫	𝜕 𝑠 𝑥 𝑣	2	𝑣𝑃	𝑥 +	∫	𝜕 𝑠 𝑥 𝑣 𝑍 2 .

∫

  in time. Because 𝐾 𝑘 (𝑡)𝑧(𝑡) 𝜑 𝑘 (𝑡), 1 ≤ 𝑘 ≤ 𝐽, and from 𝑑 𝑑𝑡 𝐾 𝑘 (𝑡)𝑧(𝑡) 𝜑 𝑘 (𝑡), 1 ≤ 𝑘 ≤ 𝐽, with coefficients that depend on 𝐾 𝑘 , 1 ≤ 𝑘 ≤ 𝐽 (and their derivatives). Because it is easy to see that 𝑑 𝐾 𝑘 (𝑡)𝑧(𝑡) 𝜑 𝑘 (𝑡) may still be bounded by 𝐶 ∥𝑧(𝑡)∥ 𝐿 2 , we deduce that for any 𝑗 = 1, ..., 𝐽, for 𝑡 large enough, there exists 𝐶 > 0 that do not depend on 𝑧, such that |𝑐 ′ 𝑗 (𝑡)| ≤ 𝐶 ∥𝑧(𝑡)∥ 𝐿 2 . (4.1.14) 

∫ 𝐾 𝑗 𝑧 √ 𝜑 𝑗 are 𝐶 1 in time, we deduce by multiplication that 𝑐 𝑗 (𝑡) are 𝐶 1 in time. By differentiating in time the linear relation that defines 𝑐 𝑗 (𝑡), we see that 𝑐 ′ 𝑗 (𝑡) is obtained linearly from ∫ 𝑑𝑡 ∫

∫

  For any 𝑗 = 1, ..., 𝐽, for 𝑡 large enough, there exists 𝐶 > 0 and 𝜃 > 0 that do not depend on 𝑧, 𝑧 𝑡 𝐾 𝑗 𝜑 𝑗 + ∫ 𝑧(𝐾 𝑗 ) 𝑡 𝜑 𝑗 + 𝑧 (𝐾 𝑗 ) 𝑥𝑥 + 3𝐾 𝑗 𝑃 2 𝑗 𝑥 𝜑 𝑗 + 𝜑 𝑗 ) 𝑥 and ( √ 𝜑 𝑗 ) 𝑡 are bounded (from inequalities established in Section 2.2). This is why, for any 𝑡 large enough, ∫ 𝑧𝐾 𝑗 ( 𝜑 𝑗 ) 𝑡 ≤ 𝐶 ∥ 𝑧(𝑡)∥ 𝐻 2 . (4.1.22) For the same reason, after eventually doing an integration by parts, for any 𝑡 large enough, ∫ 𝑧 𝑥𝑥 + 3 𝑧𝑝 2 𝑥 𝐾 𝑗 𝜑 𝑗 + ∫ 𝑧 (𝐾 𝑗 ) 𝑥𝑥 + 3𝐾 𝑗 𝑃 2 𝑗 𝑥 𝜑 𝑗 ≤ 𝐶 ∥ 𝑧(𝑡)∥ 𝐻 2 . (4.1.23) ∫ (3𝑧 2 𝑝 + 𝑧 3 ) 𝑥 𝐾 𝑗 √ 𝜑 𝑗 is clearly bounded by 𝐶 ∥𝑧(𝑡)∥ 2 𝐻 2 . Finally, we see that (𝑃 2 𝑘 -𝑝 2 )𝐾 𝑘 is exponentially bounded in time (in Sobolev or 𝐿 ∞ norm), and using Lemma 4.2, we deduce that

	Proof. We may differentiate (4.1.11):			
	(4.1.17)	0 =	𝑑 𝑑𝑡	∫	𝑧𝐾 𝑗 𝜑 𝑗			
								∫
	(4.1.18)								𝑧𝐾 𝑗 ( 𝜑 𝑗 ) 𝑡
	(4.1.19)	= -	∫	𝑧 𝑥𝑥 + 3 𝑧𝑝 2	𝑥 𝐾 𝑗 𝜑 𝑗 -	∫	3𝑧 2 𝑝 + 𝑧 3	𝑥 𝐾 𝑗 𝜑 𝑗
	(4.1.20)	+	𝐽		∫	𝑐 ′ 𝑘 (𝑡) • 𝐾 𝑘 𝐾 𝑗 𝜑 𝑗 -3	𝐽	𝑐 𝑘 (𝑡)	∫	𝑐 𝑘 (𝑡) • (𝑃 2 𝑘 -𝑝 2 )𝐾 𝑘 𝑥 𝐾 𝑗 𝜑 𝑗
			𝑘=1				𝑘=1	
								∫	
	(4.1.21)	-							𝑧𝐾 𝑗 ( 𝜑 𝑗 ) 𝑡 .
	We know that ( √							
	(4.1.15)									2 𝑘 -𝑝 2 )𝐾 𝑘 𝑥 .
	Step 2. A bound for |𝑐 ′ 𝑗 (𝑡)|.			
	The goal here is to improve (4.1.14).		
	Lemma 4.3. such that								
	(4.1.16)				|𝑐 ′				𝐻 2 .

𝑗 (𝑡)| ≤ 𝐶 ∥ 𝑧(𝑡)∥ 𝐻 2 + 𝐶𝑒 -𝜃𝑡 ∥𝑧(𝑡)∥ 𝐻 2 + 𝐶 ∥𝑧(𝑡)∥ 2 = ∫

  𝐻 2 , because of (4.1.1) mainly. After that, the expression obtained may be replaced by 𝒬 𝑗 [ 𝑧(𝑡) 𝜑 𝑗 (𝑡)] with an error bounded by 𝐶 𝑡 ∥ 𝑧(𝑡)∥ 2 𝐻 2 (cf. calculations done in the proof of Lemma 2.19). For the same reason,

	.1.36)			
	and we observe that			
						𝐽
	(4.1.37)		𝐻(𝑡) =	𝒬 ′ 𝑗 [ 𝑧(𝑡)].
						𝑗=1
	In 𝒬 ′			
	∥ 𝑧	√ 𝜑 𝑗 ∥ 2 𝐻 2 may be replaced by	∫	( 𝑧 2 + 𝑧 2 𝑥 + 𝑧 2 𝑥𝑥 )𝜑 𝑗 with an error bounded by 𝐶 𝑡 ∥ 𝑧(𝑡)∥ 2 𝐻 2 . Therefore,
	because of			
	(4.1.38)		∥ 𝑧 ∥ 2 𝐻 2 =	𝐽	∫	𝑧 2 + 𝑧 2 𝑥 + 𝑧 2 𝑥𝑥 𝜑 𝑗 ,
					𝑗=1
	the fact that 𝑃 𝑗			

𝑗 [ 𝑧(𝑡)], we may replace 𝑝 by 𝑃 𝑗 with an error bounded by 𝐶𝑒 -𝜃𝑡 ∥ 𝑧(𝑡)∥ 2

∫

  𝑧 𝑥𝑥𝑥 𝑧 𝑧 𝑥𝑥 𝑝. We use the fact that 𝑧 = 𝑧 -It is easy to see that any of these terms is bounded as we want in the lemma (several of them are bounded by 𝐶 𝑡 ∥ 𝑧(𝑡)∥ 2 𝐻 2 , the last one is bounded by 𝐶 ∥ 𝑧(𝑡)∥ 𝐻 2 ∥𝑧(𝑡)∥ 2 𝐻 2 ), because of Lemma 4.2 and of (4.1.5).Other terms contain 𝑧 quadratically and contain (𝜑 𝑗 ) 𝑥 . And, (𝜑 𝑗 ) 𝑥 is bounded by 𝐶

				𝐽 𝑗=1 𝑐 𝑗 𝐾 𝑗 , and we obtain the following:
	∫				∫	∫	𝐽
	(4.1.44)	𝑧 𝑥𝑥𝑥 𝑧 𝑧 𝑥𝑥 𝑝 =	𝑧 𝑥𝑥𝑥 𝑧 𝑧 𝑥𝑥 𝑝 -	𝑧 𝑥𝑥𝑥	𝑐 𝑗 𝐾 𝑗 𝑧 𝑥𝑥 𝑝
						𝑗=1
		∫		𝐽		∫	𝐽	𝐽
	(4.1.45)	-			𝑐 𝑗 (𝐾 𝑗 ) 𝑥𝑥𝑥 𝑧 𝑧 𝑥𝑥 𝑝 +	𝑐 𝑗 (𝐾 𝑗 ) 𝑥𝑥𝑥	𝑐 𝑗 𝐾 𝑗 𝑧 𝑥𝑥 𝑝.
				𝑗=1		𝑗=1	𝑗=1
						𝑡 . This is why,
	such terms are bounded by 𝐶 𝑡 ∥ 𝑧(𝑡)∥ 2 𝐻 2 .
	Several other terms can be, by doing suitable integrations by parts transformed in one of the two
	following expressions:			
	(4.1.46)	6	𝐽	∫	𝑧 𝑧 𝑥 𝑝 𝑝 𝑥𝑥𝑥𝑥 -2(𝑏 2 𝑗 -𝑎 2 𝑗 )(𝑝 𝑥𝑥 + 𝑝 3 ) + (𝑎 2 𝑗 + 𝑏 2 𝑗 ) 2 𝑝
			𝑗=1		

  𝑥𝑥𝑥𝑥 -2(𝑏 2 𝑗 -𝑎 2 𝑗 ) (𝑃 𝑗 ) 𝑥𝑥 + 𝑃 3 𝑗 + (𝑎 2 𝑗 + 𝑏 2 𝑗 ) 2 𝑃 𝑗 (4.1.53) +5𝑃 𝑗 (𝑃 𝑗 ) 2 𝑥 + 5𝑃 2 𝑗 (𝑃 𝑗 ) 𝑥𝑥 + direct consequence of (4.1.1). This is why, such terms are bounded by 𝐶 𝑡 ∥ 𝑧(𝑡)∥ 2 𝐻 2 . Other terms contain (𝑃 2 𝑗 -𝑝 2 )𝐾 𝑗 , which is bounded exponentially, with 𝑐 𝑗 bounded by ∥𝑧∥ 𝐻 2 . Those terms are obviously bounded by 𝐶𝑒 -𝜃𝑡 ∥ 𝑧(𝑡)∥ 𝐻 2 ∥𝑧(𝑡)∥ 𝐻 2 .

	converges exponentially to		
	(4.1.54)	(𝑃 𝑗 ) 3 2	𝑃 5 𝑗 ,	
	which is a			
	.1.51)			
	and the fact that			
	(4.1.52)	𝑝 𝑥𝑥𝑥𝑥 -2(𝑏 2	3 2	𝑝 5 𝜑 𝑗

𝑗 -𝑎 2 𝑗 )(𝑝 𝑥𝑥 + 𝑝 3 ) + (𝑎 2 𝑗 + 𝑏 2 𝑗 ) 2 𝑝 + 5𝑝𝑝 2 𝑥 + 5𝑝 2 𝑝 𝑥𝑥 +

  𝐾 𝑗 ) 𝑥 𝑧𝑝𝑝 𝑥 -5(𝐾 𝑗 ) 𝑥 𝑧 𝑥 𝑝 2 + 𝑗 )(𝐾 𝑗 ) 𝑥 𝑧 𝑥 -6(𝑏 2 𝑗 -𝑎 2 𝑗 )𝐾 𝑗 𝑧𝑝 2 + (𝑎 2 𝑗 + 𝑏 2 𝑗 ) 2 𝐾 𝑗 𝑧 𝜑 𝑗 . (4.1.57) We may replace 𝑝 by 𝑃 𝑗 in the preceeding expression with an error bounded by 𝐶𝑒 -𝜃𝑡 ∥ 𝑧(𝑡)∥ 𝐻 2 ∥𝑧(𝑡)∥ 𝐻 2 , (4.1.58) because of (4.1.14) and (4.1.1). This is acceptable, knowing the result we want to prove. By integration by parts, we obtain several terms of the form 𝑐 ′ 𝑗 (𝑡) 𝑥 𝑃 𝑗 (𝑃 𝑗 ) 𝑥 + 5𝐾 𝑗 (𝑃 𝑗 ) 2 +10𝐾 𝑗 𝑃 𝑗 (𝑃 𝑗 ) 𝑥𝑥 + 5(𝐾 𝑗 ) 𝑥𝑥 𝑃 2The last expression equals zero, because of the elliptic equation satisfied by 𝐾 𝑗 , which we may derive by differentiating (4.1.51). There exists 𝐶 > 0 and 𝜃 > 0 that do not depend on 𝑧, such that for 𝑡 large enough, for any 𝑗 = 1, ..., 𝐽,𝑧𝑃 𝑗 ≤ 𝐶𝑒 -𝜃𝑡 ∥𝑧(𝑡)∥ 𝐻 2 + 𝐶 ∥𝑧(𝑡)∥2 𝐾 𝑘 𝑃 𝑗 + 𝑐 𝑘 (𝑡) ∫ (𝐾 𝑘 ) 𝑡 𝑃 𝑗 + 𝑐 𝑘 (𝑡) ∫ 𝐾 𝑘 (𝑃 𝑗 ) 𝑡 , (4.1.66) and it is obvious, from Lemma 4.2 and (4.1.14), that the latter is bounded by 𝐶𝑒 -𝜃𝑡 ∥𝑧(𝑡)∥ 𝐻 2 . 𝑧(𝑝 2 -𝑃 2 𝑗 )(𝑃 𝑗 ) 𝑥 , (4.1.68) which is obviously bounded by 𝐶𝑒 -𝜃𝑡 ∥𝑧(𝑡)∥ 𝐻 2 , because of (4.1.1).

	and for 𝑘 ≠ 𝑗,								
	𝑑 𝑑𝑡	𝑐 𝑘 (𝑡)	∫	𝑘 (𝑡) 𝐾 𝑘 𝑃 𝑗 = 𝑐 ′	∫
	It is left to bound 𝑑 𝑑𝑡	∫	𝑧𝑃 𝑗 . We use (4.1.6) and we obtain:
	(4.1.67)	𝑑 𝑑𝑡	∫		𝑧𝑃 𝑗 = -	∫	𝑧 𝑥𝑥 + (𝑧 + 𝑝) 3 -𝑝 3	𝑥 𝑃 𝑗 -	∫	𝑧 (𝑃 𝑗 ) 𝑥𝑥 + 𝑃 3 𝑗 𝑥 .
	Several terms are immediately boundable by 𝐶 ∥𝑧(𝑡)∥ 2 𝐻 2 , we kill several others by integration by
	parts and we are left with			
										∫
	(4.1.55)									2 𝑥
	(4.1.56)									-10(15 4	𝐾 𝑗 𝑧𝑝 4
			+2(𝑏 2 𝑗 -𝑎 2		
	(4.1.59)									𝐻 2 ,
	which is exactly the bound that we want. And, we are left with the following terms:
							𝐽		
	(4.1.60)						𝑐 ′ 𝑗 (𝑡)	𝑥
							𝑗=1		
	(4.1.61)									𝑗 +	15 2	𝐾 𝑗 𝑃 4 𝑗
	(4.1.62)			-2(𝑏 2 𝑗 -𝑎 2 𝑗 )(𝐾 𝑗 ) 𝑥𝑥 -6(𝑏 2 𝑗 -𝑎 2 𝑗 )𝐾 𝑗 𝑃 2 𝑗 + (𝑎 2 𝑗 + 𝑏 2 𝑗 ) 2 𝐾 𝑗 𝑧𝜑 𝑗 .
										□
	Step 6. A bound for 𝑑 𝑑𝑡	∫	𝑧𝑃 𝑗 .		
	Lemma 4.7. 𝑑 𝑑𝑡 (4.1.63)	∫	𝐻 2 .
	Proof. We observe that						
							∫	∫	𝐽	∫
	(4.1.64)								𝑧𝑃 𝑗 =	𝑧𝑃 𝑗 +	𝑐 𝑘 (𝑡)	𝐾 𝑘 𝑃 𝑗 .
										𝑘=1
	Firstly, for 𝑘 = 𝑗,								
										∫
	(4.1.65)									𝐾 𝑗 𝑃 𝑗 = 0,

∫ (𝐾 𝑗 ) 𝑥𝑥 𝑧 𝑥 (𝜑 𝑗 ) 𝑥 , which are bounded by 𝐶 𝑡 |𝑐 ′ 𝑗 (𝑡)|∥ 𝑧(𝑡)∥ 𝐻 2 . Now, from Lemma 4.3, we deduce that they are bounded by 𝐶 𝑡 ∥ 𝑧(𝑡)∥ 2 𝐻 2 + 𝐶𝑒 -𝜃𝑡 ∥ 𝑧(𝑡)∥ 𝐻 2 ∥𝑧(𝑡)∥ 𝐻 2 + 𝐶 ∥ 𝑧(𝑡)∥ 𝐻 2 ∥𝑧(𝑡)∥ 2 ∫ (𝐾 𝑗 ) 𝑥𝑥𝑥𝑥 + 10(𝐾 𝑗 )

  2 by𝜎 4 . We obtain that if 𝑇 1 is large enough (dependently on the chosen constant 𝜔 1 ),

	(4.2.40)	2	𝑑 𝑑𝑡	𝐸 𝑗 (𝑡) ≥	∫	𝑢 𝑥𝑥 + 𝑢 3 2 + 2𝑢 2 𝑥𝑥 +	𝜎 2	𝑢 2 𝑥 -𝜔 1 𝑢 2 |Φ 𝑗𝑥 (𝑡)| -𝐶𝑒 -2𝜛𝑡 .
	By using what we have performed for the mass, we have that if we take 𝜔 1 small enough with respect to 𝜔 2 𝜎 2 ,
	(4.2.41)					𝑑 𝑑𝑡	𝐸 𝑗 + 𝜔 2 𝑀 𝑗 (𝑡) ≥ -𝐶𝑒 -2𝜛𝑡 .

  By the same reasoning as for the energy and the mass, if we set 𝜔 3 , 𝜔 4 , 𝜔 5 > 0 constants that we can take as small as desired, and if 𝑇 1 is large enough dependently on these constants, for 𝑡 ≥ 𝑇 1 ,By using what we have carried out for the mass, we have that if we take 𝜔 3 , 𝜔 4 , 𝜔 5 small enough (with respect to 𝜔 6 ), Remark 4.12. If 𝑗 = 𝐽 + 1, we have thatStep 2. Modulation. Notations that were defined in Section 2.3 should not be taken into consideration in the following proof and should be replaced by notations we define here. There exists 𝐶 > 0, 𝑇 2 ≥ 𝑇, such that there exist unique 𝐶 1 functions 𝑦 1 , 𝑦 2 : [𝑇 2 , +∞) → R such that if we set:𝑃 𝑗-1 (𝑡, 𝑥) := 𝜅 𝑙 𝑄 𝑐 𝑙 +𝑦 1 (𝑡) (𝑥 -𝑥 0 0,𝑙 + 𝑦 2 (𝑡) -𝑐 𝑙 𝑡), if 𝑃 𝑗-1 =𝑅 𝑙 is a soliton, (𝑡, 𝑥) := 𝐵 𝛼 𝑘 ,𝛽 𝑘 (𝑡, 𝑥; 𝑥 1,𝑘 + 𝑦 1 (𝑡), 𝑥 2,𝑘 + 𝑦 2 (𝑡)), if 𝑃 𝑗-1 = 𝐵 𝑘 is a breather, (4.2.59) then, 𝑤(𝑡) satisfies, for any 𝑡 ∈ [𝑇 2 , +∞), either,

	(4.2.48)			-5	∫		𝑢 2 𝑢 2 𝑥𝑥 |Φ 𝑗𝑥𝑥 (𝑡)| -	∫	𝑢 2 𝑥𝑥 |Φ 𝑗𝑥𝑥𝑥 (𝑡)|.
	we have that											
	(4.2.49)	2	𝑑 𝑑𝑡	𝐹 𝑗 (𝑡) ≥	∫			3𝑢 2 𝑥𝑥𝑥 +	45 2	𝑢 4 𝑢 2 𝑥 +	3𝜎 4	𝑢 2 𝑥𝑥 +	𝜎 2	𝑢 6 -𝜔 3 𝑢 2 𝑥𝑥 -𝜔 4 𝑢 2 𝑥
	(4.2.50)							-𝜔 5 𝑢 2 |Φ 𝑗𝑥 (𝑡)| -𝐶𝑒 -2𝜛𝑡 .
	(4.2.51)									𝑑 𝑑𝑡	𝐹 𝑗 + 𝜔 6 𝑀 𝑗 (𝑡) ≥ -𝐶𝑒 -2𝜛𝑡 .
	Then, by integration and similarly as before, we obtain that the desired conclusion true for any
	𝑗.											
											𝐽
	(4.2.52)												𝑀[𝑃 𝑖 ] -𝑀 𝐽+1 (𝑡) = 0,
											𝑖=1
													𝐽
	(4.2.53)												𝐸[𝑃 𝑖 ] -𝐸 𝐽+1 (𝑡) = 0,
											𝑖=1
													𝐽
	(4.2.54)												𝐹[𝑃 𝑖 ] -𝐹 𝐽+1 (𝑡) = 0.
											𝑖=1
	Lemma 4.13. 𝑤(𝑡, 𝑥) := 𝑢 -𝑃, (4.2.55)
	where											
													𝐽
	(4.2.56)											𝑃(𝑡, 𝑥) :=	𝑃 𝑖 (𝑡, 𝑥),
													𝑖=1
	for 𝑖 ≠ 𝑗 -1,											
	(4.2.57) (4.2.42) and either,												2 𝑥 𝑢𝑢 𝑥𝑥 + 𝑃 𝑖 (𝑡, 𝑥) := 𝑃 𝑖 (𝑡, 𝑥),	9 8	𝑢 8 +	1 2	𝑢 4 𝑥 + 3𝑢 𝑥𝑥 𝑢 5
	(4.2.43) (4.2.58) or, (4.2.44)	𝑃 𝑗-1		-+ 10	45 2 ∫	𝑢 4 𝑢 2 𝑥 Φ 𝑗𝑥 (𝑡) -𝑚 𝑗 𝑢 2 𝑢 𝑥𝑥 𝑢 𝑥 Φ 𝑗𝑥𝑥 (𝑡) + ∫ ∫	𝑢 2 𝑥𝑥 -5𝑢 2 𝑢 2 𝑥 + 𝑢 2 𝑥𝑥 Φ 𝑗𝑥𝑥𝑥 (𝑡)	1 2	𝑢 6 Φ 𝑗𝑥 (𝑡)
	(4.2.45)			≥	∫		3𝑢 2 𝑥𝑥𝑥 +	45 2	𝑢 4 𝑢 2 𝑥 -18𝑢 2 𝑥𝑥 𝑢 2 -15𝑢 2 𝑥 𝑢 2 -15𝑢 2 𝑥 𝑢 2 𝑥𝑥 -	9 8	𝑢 8
	(4.2.46)					-	1 2	𝑢 4 𝑥 -	3 2	𝑢 2 𝑥𝑥 𝑢 4 -	3 2	𝑢 6 |Φ 𝑗𝑥 (𝑡)|
	(4.2.47)			+	∫		𝜎𝑢 2 𝑥𝑥 +	𝜎 2	𝑢 6 -5𝑚 𝑗 𝑢 2 𝑢 2 𝑥 |Φ 𝑗𝑥 (𝑡)| -5	∫	𝑢 2 𝑢 2 𝑥 |Φ 𝑗𝑥𝑥 (𝑡)|

□

  1 2 (𝑡, 𝑥) := 𝜕 𝑥 2 𝑃 𝑗-1 . (4.2.62) Moreover, for any 𝑡 ∈ [𝑇 2 , +∞), ∥𝑤(𝑡)∥ 𝐻 2 + |𝑦 1 (𝑡)| + |𝑦 2 (𝑡)| ≤ 𝐶 ∥𝑣(𝑡)∥ 𝐻 2 , (4.2.63)and, if 𝜛 is small enough, Proof. The proof that has to be performed is similar to the proof of Lemma 2.8, which is a consequence of a quantitative version of the implicit function theorem. See[START_REF] Chow | Methods of bifurcation theory[END_REF] Section 2.2] for a precise statement. The proof of (4.2.64) is also similar: as in the proof of Lemma 2.8, we take the time derivative of 𝑃 𝑗-1 2 (𝑡)𝑤(𝑡) = 0. To be complete, let us perform this proof. For 𝑡 ∈ [𝑇 2 , +∞), let𝐹 𝑡 : 𝐿 2 (R) × R 2 → R 2 (4.2.65) be such that if 𝑃 𝑗-1 = 𝐵 𝑘 is a breather, (𝑈, 𝑦 1 , 𝑦 2 ) ↦ -→ ∫ 𝜕 𝑥 1 𝐵 𝛼 𝑘 ,𝛽 𝑘 (𝑡, 𝑥; 𝑥 0 1,𝑘 + 𝑦 1 , 𝑥 0 2,𝑘 + 𝑦 2 )𝜖 𝑑𝑥, (4.2.66) ∫ 𝜕 𝑥 2 𝐵 𝛼 𝑘 ,𝛽 𝑘 (𝑡, 𝑥; 𝑥 0 1,𝑘 + 𝑦 1 , 𝑥 0 2,𝑘 + 𝑦 2 )𝜖 𝑑𝑥 , (4.2.67) where 𝜖 := 𝑈 -𝑃 + 𝑃 𝑗-1 -𝐵 𝛼 𝑘 ,𝛽 𝑘 (𝑡, 𝑥; 𝑥 0 1,𝑘 + 𝑦 1 , 𝑥 0 2,𝑘 + 𝑦 2 ), (4.2.68) and if 𝑃 𝑗-1 = 𝑅 𝑙 is a soliton, 𝑈 -𝑃 + 𝑃 𝑗-1 -𝜅 𝑙 𝑄 𝑐 𝑙 +𝑦 1 (𝑥 -𝑥 0 0,𝑙 + 𝑦 2 -𝑐 𝑙 𝑡).

	(4.2.64)	|𝑦 ′ 1 (𝑡)| + |𝑦 ′ 2 (𝑡)| ≤ 𝐶	∫	𝑤(𝑡) 2 Φ 𝑗	1/2	+ 𝐶𝑒 -𝜛𝑡 .
	∫	𝑃 𝑗-1 1 (𝑡)𝑤(𝑡) =	∫			
	(4.2.69)	(𝑈, 𝑦 1 , 𝑦 2 ) ↦ -→	∫	𝜅 𝑙 𝑄 𝑐 𝑙 +𝑦 1 (𝑥 -𝑥 0 0,𝑙 + 𝑦 2 -𝑐 𝑙 𝑡)𝜖 𝑑𝑥,
	(4.2.70)			∫	𝜕 𝑥 𝜅 𝑙 𝑄 𝑐 𝑙 +𝑦 1 (𝑥 -𝑥 0 0,𝑙 + 𝑦 2 -𝑐 𝑙 𝑡)𝜖 𝑑𝑥 ,
	where					
	𝜖 := (4.2.71)			

  1 (𝑦 0,𝑙 ) + 𝑦 0,𝑙 𝜕 𝑥 𝑄 𝑐 𝑙 +𝑦 1 (𝑦 0,𝑙 ) . (4.2.74) Thus, denoting 𝑄 𝑐 𝑙 (𝑥 -𝑥 0 0,𝑙 -𝑐 𝑙 𝑡) by 𝑄 𝑐 𝑙 and 𝑥 -𝑥 0 0,𝑙 -𝑐 𝑙 𝑡 by 𝑦 0 0,𝑙 , 𝑄 𝑐 𝑙 𝑄 𝑐 𝑙 + 𝑦 0 0,𝑙 𝜕 𝑥 𝑄 𝑐 𝑙 𝑑𝑥 -𝜕 𝑥 𝑄 𝑐 𝑙 𝑄 𝑐 𝑙 + 𝑦 0 0,𝑙 𝜕 𝑥 𝑄 𝑐 𝑙 𝑑𝑥 -𝑄 𝑐 𝑙 𝜕 𝑥 𝑄 𝑐 𝑙 𝑑𝑥 = 0. And, from the computations made to obtain (2.3.35), we have that 𝑞 denotes the soliton with 𝑐 = 1, i.e. 𝑞 = 𝑄 1 .

	(4.2.75)	𝐷𝐹 𝑡 =	-1 2𝑐 𝑙 -1 2𝑐 𝑙 ∫	∫					∫ ∫	𝑄 𝑐 𝑙 𝜕 𝑥 𝑄 𝑐 𝑙 𝑑𝑥 𝜕 𝑥 𝑄 𝑐 𝑙 2 𝑑𝑥	,
	whose determinant is:							
	(4.2.76)	det(𝐷𝐹 𝑡 ) =	1 2𝑐 𝑙	∫	𝑄 𝑐 𝑙 𝑄 𝑐 𝑙 + 𝑦 0 0,𝑙 𝜕 𝑥 𝑄 𝑐 𝑙 𝑑𝑥	∫	𝜕 𝑥 𝑄 𝑐 𝑙	2	𝑑𝑥,
	because	∫							
	(4.2.77)					det(𝐷𝐹 𝑡 ) =	1 4	𝑐 𝑙	∫	𝑞 2	∫	𝑞 2 𝑥 ,
	where								

  .2.79) By applying the mean-value theorem (inequality) for 𝑄 𝑐 𝑙 or 𝐵 𝛼 𝑘 ,𝛽 𝑘 with respect to 𝑦 1 and 𝑦 2 , we deduce that∥𝑃 𝑗-1 (𝑡) -𝑃 𝑗-1 (𝑡)∥ 𝐻 2 ≤ 𝐶(|𝑦 1 (𝑡)| + |𝑦 2 (𝑡)|). 𝜕 𝑡 𝑤 = -𝑤 𝑥𝑥𝑥 -𝑤 𝑤 2 + 3𝑤 𝑃 𝑗-1 = 𝐵 𝑘 is a breather, 𝐸 := 𝑦 ′ 1 (𝑡) 𝐵 𝑘 1 + 𝑦 ′ 2 (𝑡) 𝐵 𝑘 2 , (4.2.86) and if 𝑃 𝑗-1 = 𝑅 𝑙 is a soliton, denoting 𝑦 0,𝑙 (𝑡) := 𝑥 -𝑥 0 0,𝑙 + 𝑦 2 (𝑡) -𝑐 𝑙 𝑡, 𝑐 𝑙 + 𝑦 1 (𝑡) 𝑅 𝑙 + 𝑦 0,𝑙 (𝑡) 𝑅 𝑙 𝑥 + 𝑦 ′ 2 (𝑡) 𝑅 𝑙 𝑥 . (4.2.87) If 𝑃 𝑗-1 = 𝐵 𝑘 , we start by taking the time derivative of ∫ 𝐵 𝑘 1 𝑤 = 0 and perform some integrations by parts to obtain: If 𝑃 𝑗-1 = 𝑅 𝑙 , we start by taking the time derivative of 𝑅 𝑙 𝑥 𝑅 𝑙 + 𝑦 0,𝑙 (𝑡) 𝑅 𝑙 𝑥 + 𝑦 ′ 2 (𝑡) As a consequence of (4.2.63), we see that |𝑦 1 (𝑡)| + |𝑦 2 (𝑡)| tends to 0 when 𝑡 → +∞. This is why, we may use Proposition 2.10 and Corollary 2.11 here, if 𝑇 2 is large enough. So, several terms of the four equalities above are obviously bounded by (𝑤(𝑡)

	(4.2.80) Finally, by triangular inequality, ∥𝑤(𝑡)∥ 𝐻 2 ≤ ∥𝑢(𝑡) -𝑃(𝑡)∥ 𝐻 2 + ∥𝑃(𝑡) -𝑃(𝑡)∥ 𝐻 2 (4.2.81) ≤ ∥𝑢(𝑡) -𝑃(𝑡)∥ 𝐻 2 + 𝐶 |𝑦 1 (𝑡)| + |𝑦 2 (𝑡)| (4.2.82) ≤ 𝐶 ∥𝑣(𝑡)∥ 𝐻 2 . (4.2.83) This completes the proof of (4.2.63). For (4.2.64), we will take time derivatives of the equations (4.2.60) and (4.2.61). Firstly, we may write the PDE verified by 𝑤: 𝐽 𝑖=1 𝑃 𝑖 + 3 𝐽 𝑖,𝑚=1 𝑃 𝑖 𝑃 𝑚 𝑥 (4.2.84) -ℎ≠𝑖 or 𝑖≠𝑚 𝑃 ℎ 𝑃 𝑖 𝑃 𝑚 𝑥 -𝐸, (4.2.85) 𝑦 ′ 1 (𝑡) 2 -∫ 𝐵 𝑘 3 1𝑥 𝑤 + 𝑦 ′ 1 (𝑡) ∫ 𝐵 𝑘 11 𝑤 + 𝑦 ′ 2 (𝑡) ∫ 𝐵 𝑘 12 𝑤 (4.2.88) + ∫ 𝐵 𝑘 1𝑥 𝑤 𝑤 2 + 3𝑤 𝐽 𝑖=1 𝑃 𝑖 + 3 𝐽 ℎ,𝑖=1 𝑃 ℎ 𝑃 𝑖 -∫ 𝐵 𝑘 1 ℎ≠𝑖 or 𝑔≠ℎ 𝑃 ℎ 𝑃 𝑖 𝑃 𝑔 𝑥 (4.2.89) = 𝑦 ′ 1 (𝑡) ∫ 𝐵 𝑘 2 1 + 𝑦 ′ 2 (𝑡) ∫ 𝐵 𝑘 1 𝐵 𝑘 2 , (4.2.90) then, we take the time derivative of ∫ 𝐵 𝑘 2 𝑤 = 0: -∫ 𝐵 𝑘 3 2𝑥 𝑤 + 𝑦 ′ 1 (𝑡) ∫ 𝐵 𝑘 12 𝑤 + 𝑦 ′ 2 (𝑡) ∫ 𝐵 𝑘 22 𝑤 (4.2.91) + ∫ 𝐵 𝑘 2𝑥 𝑤 𝑤 2 + 3𝑤 𝐽 𝑖=1 𝑃 𝑖 + 3 𝐽 ℎ,𝑖=1 𝑃 ℎ 𝑃 𝑖 -∫ 𝐵 𝑘 2 ℎ≠𝑖 or 𝑔≠ℎ 𝑃 ℎ 𝑃 𝑖 𝑃 𝑔 𝑥 (4.2.92) = 𝑦 ′ 1 (𝑡) ∫ 𝐵 𝑘 1 𝐵 𝑘 2 + 𝑦 ′ 2 (𝑡) ∫ 𝐵 𝑘 2 2 . (4.2.93) ∫ 𝑅 𝑙 𝑤 = 0 and perform some integrations by parts to obtain: -∫ 𝑅 𝑙 3 𝑥 𝑤 + 𝑦 ′ 1 (𝑡) 2𝑐 𝑙 ∫ 𝑅 𝑙 + 𝑦 0,𝑙 (𝑡) 𝑅 𝑙 𝑥 𝑤 + 𝑦 ′ 2 (𝑡) ∫ 𝑅 𝑙 𝑥 𝑤 (4.2.94) + ∫ 𝑅 𝑙 𝑥 𝑤 𝑤 2 + 3𝑤 𝐽 𝑖=1 𝑃 𝑖 + 3 𝐽 ℎ,𝑖=1 𝑃 ℎ 𝑃 𝑖 -∫ 𝑅 𝑙 ℎ≠𝑖 or 𝑔≠ℎ 𝑃 ℎ 𝑃 𝑖 𝑃 𝑔 𝑥 (4.2.95) = 𝑦 ′ 1 (𝑡) 2 𝑐 𝑙 + 𝑦 1 (𝑡) ∫ 𝑅 𝑙 𝑅 𝑙 + 𝑦 0,𝑙 (𝑡) 𝑅 𝑙 𝑥 + 𝑦 ′ 2 (𝑡) ∫ 𝑅 𝑙 𝑅 𝑙 𝑥 , (4.2.96) then, we take the time derivative of ∫ 𝑅 𝑙 𝑥 𝑤 = 0: -∫ 𝑅 𝑙 3 𝑥𝑥 𝑤 + 𝑦 ′ 1 (𝑡) 2𝑐 𝑙 ∫ 𝑅 𝑙 𝑥 + 𝑦 0,𝑙 (𝑡) 𝑅 𝑙 𝑥𝑥 𝑤 + 𝑦 ′ 2 (𝑡) ∫ 𝑅 𝑙 𝑥𝑥 𝑤 (4.2.97) + ∫ 𝑅 𝑙 𝑥𝑥 𝑤 𝑤 2 + 3𝑤 𝐽 𝑖=1 𝑃 𝑖 + 3 𝐽 ℎ,𝑖=1 𝑃 ℎ 𝑃 𝑖 -∫ 𝑅 𝑙 𝑥 ℎ≠𝑖 or 𝑔≠ℎ 𝑃 ℎ 𝑃 𝑖 𝑃 𝑔 𝑥 (4.2.98) where, if 𝐸 := = 𝑦 ′ 1 (𝑡) 2 𝑐 𝑙 + 𝑦 1 (𝑡) ∫ ∫ 𝑅 𝑙 𝑥 2 . (4.2.99)
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  .2.102)

	(4.2.103)	𝐹 𝑗 (𝑡) -	𝑗-1 𝑖=1	𝐹 𝑃 𝑖 -	𝑗-1 𝑖=1	∫	𝑃 𝑖 𝑥𝑥 𝑤 𝑥𝑥 -5 𝑃 𝑖 𝑃 𝑖	2 𝑥 𝑤 -5 𝑃 𝑖	2	𝑃 𝑖 𝑥 𝑤 𝑥 +	3 2	𝑃 𝑖	5	𝑤
	(4.2.104)		-	∫	1 2	𝑤 2 𝑥𝑥 -	5 2	𝑤 2 𝑃 2 𝑥 -10 𝑃𝑤 𝑃 𝑥 𝑤 𝑥 -	5 2	𝑃 2 𝑤 2 𝑥 +	15 4	𝑃 4 𝑤 2 Φ 𝑗 (𝑡)
	(4.2.105)	≤ 𝐶𝑒 -2𝜛𝑡 + 𝜔	∫			𝑤 2 + 𝑤 2 𝑥 Φ 𝑗 .			
	Proof. For the mass:													

∫

  𝑃 2 Φ 𝑗 converges exponentially (we choose 𝜛 with respect to this exponential convergence) to

	.2.107)			
	As in Step 1, we can show that 1 2			
	𝑗-1 𝑖=1 𝑀[ 𝑃 𝑖 ]. Similarly, the difference between	∫	𝑃𝑤Φ 𝑗 and	𝑗-1

  .2.130)Step 6. Coercivity.𝐻 𝑗 can be seen as the quadratic form associated to 𝑃 𝑗-1 and evaluated in 𝑤 Φ 𝑗 , modulo several terms that can be bounded by 𝐶 𝑗 (because these terms depend on derivatives of Φ 𝑗 ). Let us prove that we can apply Section 5.4 (Appendix) for 𝑤 Φ 𝑗 .

	√	𝜎	∫	(𝑤 2 + 𝑤 2 𝑥 + 𝑤 2 𝑥𝑥 )Φ

∫

  𝑃 𝑗-1 𝑤 Φ 𝑗 2 is present only if 𝑃 𝑗-1 is a breather and the term 𝜔𝑦 1 (𝑡) 2 is present only if 𝑃 𝑗-1 is a soliton. For 𝜎 small enough and 𝜔 small enough, we deduce that∫ 𝑤 2 + 𝑤 2 𝑥 + 𝑤 2 𝑥𝑥 Φ 𝑗 ≤ 𝐶𝑒 -2𝜛𝑡 + 𝜔𝑦 1 (𝑡) 2 + 𝐶We set 𝑇 0 := max(𝑇 1 , 𝑇 2 , 𝑇 3 , 𝑇 4 , 𝑇 5 ).𝑃 𝑗-1 𝑤 Φ 𝑗 (to do in the case if 𝑃 𝑗-1 is a breather). We would like to prove that ∫ 𝑃 𝑗-1 𝑤 Φ 𝑗 is exponentially decreasing. To do so, we would like to get rid of Φ 𝑗 . It is clear that 𝑃 𝑖 𝑤 is exponentially decreasing. From the mass approximation of Lemma 4.14 and Lemma 4.11, we observe that, for 𝑡 ≥ 𝑇 0

	where the term 1 𝜇
				∫	2
	(4.2.140)			𝑃 𝑗-1 𝑤 Φ 𝑗	.
	Step 7. Bound for	∫
				∫	𝑃 𝑗-1 𝑤(1 -Φ 𝑗 ) is exponentially decreasing. Thus, it is enough to
	prove that	∫	𝑃 𝑗-1 𝑤 is exponentially decreasing.
	If 𝑖 ≤ 𝑗 -2, we know that	∫	𝑃 𝑖 𝑤 is exponentially decreasing by the induction assumption (4.2.10).
	Thus, it is enough to prove that	𝑖=1 𝑗-1	∫
	.2.139)		

  .2.142) Now, we use the fact that the sum of the linear parts of our localized conservation laws is exponentially decreasing, which we have established in the proof of Lemma 4.15. Therefore, the linear terms of 𝐹 𝑗 + 2(𝑏 2 Now, from the energy and 𝐹 approximation of Lemma 4.14 and Lemma 4.11, and from (4.2.129), we observe that (we recall that 𝑏

𝑗-1 -𝑎 2 𝑗-1 )𝐸 𝑗 are equal to 𝑂(𝑒 -2𝜛𝑡 ) -(𝑎 2 𝑗-1 + 𝑏 2 𝑗-1 ) 2 𝑗-1 𝑖=1 ∫ 𝑃 𝑖 𝑤.

  .2.157) Step 8. Conclusion. From (4.2.140) and (4.2.157), we deduce for 𝑡 ≥ 𝑇 0 , that

  𝑀 𝑗 (𝑡) = 𝑏2 𝑗-1 + 𝑦 1 (𝑡)Now, if we take 𝑡 1 ≥ 𝑡, we obtain from (4.2.159) that𝑀 𝑗 (𝑡 1 ) -𝑀 𝑗 (𝑡) = 𝑏 2 𝑗-1 + 𝑦 1 (𝑡 1 ) 1/2 -𝑏 2 𝑗-1 + 𝑦 1 (𝑡) + 𝑂 𝑒 -2𝜛𝑡 + 𝑜 𝑦 1 (𝑡) 2 + 𝑜 𝑦 1 (𝑡 1 ) 2 . (4.2.169)By doing a Taylor expansion of order 1, as in the existence part, we obtain:+ 𝑦 1 (𝑡 1 ) 1/2 -𝑏 2 𝑗-1 + 𝑦 1 (𝑡) (𝑡 1 ) -𝑦 1 (𝑡) + 𝑂 𝑦 1 (𝑡1 ) 2 + 𝑂 𝑦 1 (𝑡) 2 . (4.2.172)

	(4.2.168)												1/2	𝑀[𝑞]
	(4.2.170)	𝑏 2 𝑗-1 + 𝑦 1 (𝑡 1 )	1/2 = 𝑏 𝑗-1 1 +	1 2	𝑗-1 𝑦 1 (𝑡 1 ) 𝑏 2	+ 𝑂 𝑦 1 (𝑡 1 ) 2 .
	Therefore,											
	(4.2.171)	𝑏 2 𝑗-1 1/2
			=		1 2𝑏 𝑗-1	𝑦 1		
	(4.2.160)		2		∫	𝑢 2 (𝑡)Φ 𝑗 (𝑡) =	1 2	∫	𝑃(𝑡) + 𝑤(𝑡)	2 Φ 𝑗 (𝑡)
	(4.2.161)	=	1 2		∫	𝑃(𝑡) 2 Φ 𝑗 (𝑡) +	∫	𝑃(𝑡)𝑤(𝑡)Φ 𝑗 (𝑡) +	1 2	∫	𝑤(𝑡) 2 Φ 𝑗 (𝑡)
	(4.2.162)	=	1 2		𝑗-1 𝑖=1	∫	𝑃 𝑖 (𝑡) 2 +	𝑗-1 𝑖=1	∫	𝑃 𝑖 (𝑡)𝑤(𝑡) + 𝑂 𝑒 -2𝜛𝑡 +	1 2	∫	𝑤(𝑡) 2 Φ 𝑗 (𝑡)
	(4.2.163)	=	1 2		∫	𝑃 𝑗-1 (𝑡) 2 +	∫		𝑃 𝑗-1 (𝑡)𝑤(𝑡) + 𝑂 𝑒 -2𝜛𝑡
	(4.2.164)		+	1 2	∫	𝑤(𝑡) 2 Φ 𝑗 (𝑡) +	1 2	𝑖=1 𝑗-2	∫	𝑃 𝑖 (𝑡) 2 ,
	by the induction assumption (4.2.10), then		
	(4.2.165)	𝑀 𝑗 (𝑡) =	1 2	∫	𝑃 𝑗-1 (𝑡) 2 + 𝑂 𝑒 -2𝜛𝑡 +	1 2	∫	𝑤(𝑡) 2 Φ 𝑗 (𝑡) +	1 2	𝑖=1 𝑗-2	∫	𝑃 𝑖 (𝑡) 2 ,
	by the orthogonality condition from the modulation (Lemma 4.13). Therefore,
	(4.2.166)									1/2		𝑀[𝑞] + 𝑂 𝑒 -2𝜛𝑡 +	1 2	∫	𝑤(𝑡) 2 Φ 𝑗 (𝑡)
	(4.2.167)				+		1 2	𝑖=1 𝑗-2	∫	𝑃 𝑖 (𝑡) 2 .

  1/2 = -𝑦 1 (𝑡) 2𝑏 𝑗-1 + 𝑂 𝑦 1 (𝑡) 2 . (4.2.173) Therefore, from (4.2.169), with 𝑡 1 → +∞, 𝑃 𝑖 ] -𝑀 𝑗 (𝑡) = -𝑦 1 (𝑡) 2𝑏 𝑗-1 𝑀[𝑞] + 𝑂 𝑒 -2𝜛𝑡 + 𝑂 𝑦 1 (𝑡) 2 . (4.2.174)The second step is to study 𝐸 𝑗 (𝑡) (we do the same reasonning as for 𝑀 𝑗 ):𝑃 𝑥 𝑤 𝑥 -𝑃 3 𝑤 Φ 𝑗 (𝑡) + 𝑂 ∫ 𝑤 2 Φ 𝑗 (𝑡) , (4.2.176)and after simplications by Φ 𝑗 due to exponential convergences, induction assumption (4.2.10) and orthogonality conditions (Lemma 4.13),𝐸 𝑗 (𝑡) = 𝐸[ 𝑃 𝑗-1 (𝑡)] + 𝑃 𝑖 ] + 𝑂 𝑒 -2𝜛𝑡 + 𝑜 𝑦 1 (𝑡)2 , (4.2.179) by (4.2.159). And then, by taking the difference for 𝑡 1 ≥ 𝑡,𝐸 𝑗 (𝑡 1 ) -𝐸 𝑗 (𝑡) = 𝑏 2 𝑗-1 + 𝑦 1 (𝑡 1 ) 3/2 -𝑏 2 𝑗-1 + 𝑦 1 (𝑡) + 𝑂 𝑒 -2𝜛𝑡 + 𝑜 𝑦 1 (𝑡 1 ) 2 + 𝑜 𝑦 1 (𝑡) 2 . (4.2.181)By taking a Taylor expansion of order 1, we obtain:+ 𝑂 𝑦 1 (𝑡 1 ) 2 . (4.2.182)Therefore, after taking 𝑡 1 → +∞, we obtain:𝑃 𝑖 ] -𝐸 𝑗 (𝑡) = -3 2 𝑏 𝑗-1 𝑦 1 (𝑡)𝐸[𝑞] + 𝑂 𝑒 -2𝜛𝑡 + 𝑂 𝑦 1 (𝑡) 2 . (4.2.183)A direct analysis involving ODE shows that the null space of ℳ is spawned by four linearly independent functions: Among these four functions, there are only two 𝐿 2 -integrable ones in the semi-infinite line [0, +∞). Therefore, the null space of ℒ 𝑠 𝑐 | 𝐻 4 (R) is spanned by at most two 𝐿 2 -functions. Therefore, ker(ℒ 𝑠 𝑐 ) = Span(𝜕 𝑥 𝑄, 𝑄 + 𝑥𝜕 𝑥 𝑄). (5.2.7) Lemma 5.2. The operator ℒ 𝑠 𝑐 does not have any negative eigenvalue. Proof. ℒ 𝑠 𝑐 has 𝑥∈R dim ker 𝑊[𝑄 𝑥 , 𝑄 + 𝑥𝑄 𝑥 ](𝑡, 𝑥) (5.2.8) negative eigenvalues, counting multiplicity, where 𝑊 is the Wronskian matrix: 𝑊[𝑄 𝑥 , 𝑄 + 𝑥𝑄 𝑥 ](𝑡, 𝑥) := 𝑄 𝑥 𝑄 + 𝑥𝑄 𝑥 𝑄 𝑥𝑥 (𝑄 + 𝑥𝑄 𝑥 ) 𝑥 . (5.2.9)

		√	√
	(4.2.175) (4.2.177) (4.2.178) (4.2.180) (5.2.6)	𝑗-1 𝑖=1 𝑀[𝐸 𝑗 (𝑡) = ∫ = ∫ = 𝑏 2 1 2 1 2 𝑗-1 + 𝑦 1 (𝑡) 𝑢 2 𝑥 -1 4 𝑢 4 Φ 𝑗 (𝑡) 𝑃 2 𝑥 -1 4 𝑃 4 Φ 𝑗 (𝑡) + 𝑗-2 𝑖=1 𝐸[𝑃 𝑖 ] + 𝑂 𝑒 -2𝜛𝑡 + 𝑂 ∫ 3/2 𝐸[𝑞] + 𝑗-2 𝑖=1 𝐸[𝑃 𝑖 ] + 𝑂 𝑒 -2𝜛𝑡 + 𝑂 ∫ 𝑤 2 Φ 𝑗 (𝑡) ∫ = 𝑏 2 𝑗-1 + 𝑦 1 (𝑡) 3/2 𝐸[𝑞] + 𝑗-2 𝑖=1 𝐸[3/2 𝐸[𝑞] 𝑏 2 𝑗-1 + 𝑦 1 (𝑡 1 ) 3/2 = 𝑏 3 𝑗-1 1 + 3 2 𝑦 1 (𝑡 1 ) 𝑏 2 𝑗-1 𝑗-1 𝐸[𝑒 ± 𝑐𝑥 , 𝑥𝑒 ± 𝑐𝑥 .	𝑤 2 Φ 𝑗 (𝑡)
		𝑖=1	

Coercivity with almost orthogonality conditions (to be used for the uniqueness).

  Because 𝜕 𝑐 𝑄 is in the kernel of 𝒬 𝑠 𝑐 , we have that𝒬 𝑠 𝑐 [𝜖] = 𝒬 𝑠 𝑐 [𝜖 ⊥ ] ≥ 𝜈 𝑐 ∥𝜖 ⊥ ∥ 2 𝐻 2 . (5.3.9)𝜕 𝑐 𝑄 + 𝜖 ⊥ ,(5.3.10) we have by triangular and Cauchy-Schwarz inequalities that∥𝜖∥ 𝐻 2 ≤ ∥𝜖 ⊥ ∥ 𝐻 2 + 2 ∥𝜕 𝑐 𝑄 ∥ 𝐻 2 (5.3.11) ≤ ∥𝜖 ⊥ ∥ 𝐻 2 + 2 ∥𝜕 𝑐 𝑄 ∥ 𝐻 2 ∥𝑄 ∥ 𝐿 2 ∥𝜖 ⊥ ∥ 𝐿 2 (5.3.12) ≤ 1 + 2 ∥𝜕 𝑐 𝑄 ∥ 𝐻 2 ∥𝑄 ∥ 𝐿 2 ∥𝜖 ⊥ ∥ 𝐻 2 . (5.3.13)Therefore, we may derive a constant 𝜇 𝑐 (independent on 𝜖) such that𝒬 𝑠 𝑐 [𝜖] ≥ 𝜇 𝑐 ∥𝜖∥ 2 𝐻 2 .(5.3.14) For 𝐵 := 𝐵 𝛼,𝛽 or any of its translations, we define the canonical quadratic form associated to 𝐵:𝐵 2 𝜖 2 + 𝛼 2 + 𝛽 2 2 1 2 ∫ 𝜖 2 , (5.4.2)and we know that 𝜕 𝑥 1 𝐵 and 𝜕 𝑥 2 𝐵 span the kernel of 𝒬 𝑏 𝛼,𝛽 . More precisely, there exists 𝜇 𝑏 𝛼,𝛽 > 0 such that if 𝜖 is orthogonal to 𝜕 𝑥 1 𝐵 and 𝜕 𝑥 2 𝐵, we have that

	Now, from														
							𝜖 = -2	∫ ∫	𝜖 ⊥ 𝑄 𝑄 2		
														∫	𝜖 ⊥ 𝑄
														∥𝑄 ∥ 2 𝐿 2
																□
	5.4. 𝒬 𝑏 𝛼,𝛽 [𝜖] : = (5.4.1)	1 2	∫	𝜖 2 𝑥𝑥 -	5 2	∫	𝐵 2 𝜖 2 𝑥 +	5 2	∫		𝐵 2 𝑥 𝜖 2 + 5	∫	𝐵𝐵 𝑥𝑥 𝜖 2 +	15 4	∫	𝐵 4 𝜖 2
	+ 𝛽 2 -𝛼 2	∫	𝑥 -3 𝜖 2	∫					
				𝒬 𝑏 𝛼,𝛽 [𝜖] ≥ 𝜇 𝑏 𝛼,𝛽 ∥𝜖∥ 2 𝐻 2 -	1 𝜇 𝑏 𝛼,𝛽
	(5.3.8)											∫ ∫	𝜖 ⊥ 𝑄 𝑄 2	.

  with 𝐵 1 and 𝐵 2 , we obtain, by assumption, that 𝐵 1 𝐵 2 ≤ 𝜈∥𝜖∥ 𝐻 2 , (5.4.7) Lemma 5.6. There exists 𝜈 := 𝜈 𝑠 𝑐 > 0, such that, for 𝜖 ∈ 𝐻 2 (R), if ∫ 𝑅 𝑐,𝜅 𝜖 + ∫ (𝜕 𝑥 𝑅 𝑐,𝜅 )𝜖 ≤ 𝜈∥𝜖∥ 𝐻 2 , (5.4.23)

	then					
	(5.4.24)			𝒬 𝑠 𝑐 [𝜖] ≥	𝜇 𝑠 𝑐 4	∥𝜖∥ 2 𝐻 2 ,
		𝑎	∫	1 + 𝑏 𝐵 2	∫	
	(5.4.8)	𝑎	∫	𝐵 1 𝐵 2 + 𝑏	∫	𝐵 2 2 ≤ 𝜈∥𝜖∥ 𝐻 2 .

  Proof. We perform by doing integrations by parts when needed and basic calculations:𝑢 2 𝑢 𝑥𝑥𝑥𝑥 𝑢 𝑥 𝑓 + 5 ∫ 𝑢 2 3𝑢 𝑥𝑥 𝑢 2 + 6𝑢2 𝑥 𝑢 𝑢 𝑥 𝑓 -𝑢 𝑥𝑥 + 𝑢 3 𝑥𝑥 𝑢 𝑥𝑥 𝑓 ′ + 3 ∫ 𝑢 2 𝑢 𝑥𝑥 𝑢 𝑥𝑥𝑥 𝑓 + 5 ∫ 𝑢 2 𝑢 𝑥𝑥𝑥𝑥 𝑢 𝑥 𝑓 𝑢 2 𝑢 𝑥 𝑢 𝑥𝑥𝑥 𝑓 ′ -

	(5.5.14)												
	= -	1 2	∫		𝑢 2 𝑥𝑥𝑥 𝑓 ′ +	∫						
	(5.5.15)												
	+ 11	∫	𝑢𝑢 2 𝑥 𝑢 𝑥𝑥𝑥 𝑓 + 45	∫	𝑢 3 𝑢 3 𝑥 𝑓 + 15	∫	𝑢 4 𝑢 𝑥 𝑢 𝑥𝑥 𝑓 -	3 2	∫	𝑢 𝑥𝑥𝑥 𝑢 5 𝑓 +	9 16	∫	𝑢 8 𝑓 ′
	(5.5.16)												
	= -	1 2	∫		𝑢 2 𝑥𝑥𝑥 𝑓 ′ +	∫	𝑢 𝑥𝑥 + 𝑢 3	𝑥𝑥 𝑢 𝑥𝑥 𝑓 ′ +	9 16	∫	𝑢 8 𝑓 ′ -2	∫	𝑢 2 𝑢 𝑥𝑥 𝑢 𝑥𝑥𝑥 𝑓
	(5.5.17)												
	+ = -(5.5.18) (5.5.1) (5.5.2) (5.5.3) + (5.5.19)	∫ 1 2 ∫	∫	𝑑𝑡 𝑥 𝑢 𝑥𝑥𝑥 𝑓 -5 ∫ 1 2 𝑢𝑢 2 = ∫ 𝑢 2 𝑥𝑥𝑥 𝑓 ′ + ∫ 𝑢𝑢 2 𝑥 𝑢 𝑥𝑥𝑥 𝑓 + 45 𝑢 2 𝑥𝑥 -∫ 𝑢 2 𝑢 𝑥 𝑢 𝑥𝑥𝑥 𝑓 ′ + 45 5 2 𝑢 2 𝑢 2 𝑥 + 1 𝑢 6 𝑓 ∫ 4 -3 2 𝑢 2 𝑥𝑥𝑥 + 9𝑢 2 𝑥𝑥 𝑢 2 + 15𝑢 2 𝑢 3 𝑢 3 𝑥 𝑓 + 15 𝑥 𝑢𝑢 𝑥𝑥 + ∫ 16 𝑢 4 𝑢 𝑥 𝑢 𝑥𝑥 𝑓 -9 𝑢 8 + 1 4 𝑢 4 𝑥 + 𝑢 𝑥𝑥 + 𝑢 3 𝑥𝑥 𝑢 𝑥𝑥 𝑓 ′ + 9 ∫ 𝑢 8 𝑓 ′ -5 ∫ 16 -45 4 𝑢 4 𝑢 2 𝑥 𝑓 ′ + 5 ∫ 𝑢 2 𝑢 𝑥 𝑢 𝑥𝑥 ′′ + 1 2 𝑢 2 𝑥𝑥 𝑓 ′′′ . ∫ 𝑢 3 𝑢 3 𝑥 𝑓 + 15 ∫ 𝑢 4 𝑢 𝑥 𝑢 𝑥𝑥 𝑓 -3 2 𝑢 5 𝑢 𝑥𝑥𝑥 𝑓 ∫ ∫	3 2 3 𝑢 𝑥𝑥 𝑢 5 ∫ 𝑢 5 𝑢 𝑥𝑥𝑥 𝑓 ∫ 𝑢 2 𝑢 2 𝑥𝑥 𝑥 𝑓 2
	(5.5.20)												
	𝑑 𝑑𝑡 (5.5.4) ∫ (5.5.5) (5.5.21) = -1 2 + ∫	𝑢 2 𝑥𝑥 -1 2 ∫ 𝑢 2 5 2 𝑥𝑥𝑥 𝑓 ′ + 𝑢 2 𝑢 2 𝑥 + ∫ 1 𝑢 2 𝑢 2 𝑥𝑥 𝑓 ′ + 2 ∫ 4	𝑢 𝑥𝑥 + 𝑢 3 𝑢𝑢 𝑥 𝑢 2 𝑥𝑥 𝑓 -𝑢 6 𝑓	𝑥𝑥 𝑢 𝑥𝑥 𝑓 ′ + ∫ 𝑢 3 𝑥 𝑢 𝑥𝑥 𝑓 -2 9 ∫ 16 ∫	𝑢 8 𝑓 ′ -5 𝑥𝑥 𝑓 ∫ 𝑢𝑢 𝑥 𝑢 2	𝑢 2 𝑢 𝑥 𝑢 𝑥𝑥𝑥 𝑓 ′
	= (5.5.22) = -∫ (5.5.6) -(5.5.23)	𝑢 𝑡𝑥𝑥 𝑢 𝑥𝑥 𝑓 -5 ∫ 𝑢 𝑥𝑥 + 𝑢 3 𝑥𝑥𝑥 𝑢 𝑥𝑥 𝑓 + 5 ∫ 𝑢 𝑡 𝑢𝑢 2 𝑥 𝑓 -5 ∫ 𝑢𝑢 2 𝑥 𝑢 𝑥𝑥 𝑓 ′ + 45 ∫ 𝑢 3 𝑢 3 𝑥 𝑓 + 15 ∫ ∫ 𝑢 𝑥𝑥 + 𝑢 3 𝑢 2 𝑢 𝑡𝑥 𝑢 𝑥 𝑓 + ∫ 𝑢 4 𝑢 𝑥 𝑢 𝑥𝑥 𝑓 -3 ∫ 2 𝑥 𝑢𝑢 2 𝑥 𝑓	3 2	𝑢 𝑡 𝑢 5 𝑓 ∫ 𝑢 5 𝑢 𝑥𝑥𝑥 𝑓
	+ 5 = -∫ 1 2 (5.5.24) (5.5.7) = ∫ (5.5.8) -∫ (5.5.25)	𝑢 2 𝑢 𝑥𝑥 + 𝑢 3 ∫ 𝑢 2 𝑥𝑥𝑥 𝑓 ′ + ∫ 𝑥𝑥 𝑢 𝑥 𝑓 -𝑢 𝑥𝑥 + 𝑢 3 3 ∫ 2 𝑢 𝑥𝑥 + 𝑢 3 𝑥𝑥 𝑢 𝑥𝑥𝑥 𝑓 + ∫ 𝑢 𝑥𝑥 + 𝑢 3 𝑥𝑥 𝑢 𝑥𝑥 𝑓 ′ + 𝑢 𝑥𝑥 + 𝑢 3 16 9 𝑥 𝑢 5 𝑓 ∫ 𝑥𝑥 𝑢 𝑥𝑥 𝑓 ′ + 5 𝑢 8 𝑓 ′ -5 𝑢𝑢 2 𝑥 𝑢 𝑥𝑥 𝑓 ′ -1 4 ∫ 𝑢 4 𝑥 𝑥 𝑓 + 45 ∫ 𝑢 3 𝑢 3 𝑥 𝑓 + 45 4 ∫ 𝑢 4 𝑢 2 ∫ 𝑢 2 𝑢 𝑥 𝑢 𝑥𝑥𝑥 𝑓 ′ + 𝑥 𝑥 𝑓 + 3 ∫ 𝑢 5 𝑢 𝑥𝑥 𝑓 ′ ∫ 𝑢 2 𝑢 2 𝑥𝑥 𝑓 ′ 2 ∫ 𝑢 𝑥𝑥 + 𝑢 3 𝑥 𝑢𝑢 2 𝑥 𝑓
	+ 5 = -1 2 (5.5.26) (5.5.9) = -1 (5.5.10) -∫ (5.5.27) 2 + 5 (5.5.11) = -3 2 (5.5.28) = -1 (5.5.12) + 9 ∫ ∫ ∫ ∫ ∫ ∫ 16 (5.5.29) 2 + 15 ∫ 𝑢𝑢 2 𝑢 2 𝑢 𝑥𝑥 + 𝑢 3 𝑢 2 𝑥𝑥𝑥 𝑓 ′ + ∫ 𝑢 2 𝑥𝑥𝑥 𝑓 ′ + ∫ 𝑥 𝑢 𝑥𝑥 𝑓 ′ + 1 4 𝑢 2 𝑢 𝑥𝑥𝑥𝑥 𝑢 𝑥 𝑓 + 5 𝑥𝑥 𝑢 𝑥 𝑓 -𝑢 𝑥𝑥 + 𝑢 3 3 2 𝑢 3 𝑥𝑥 𝑢 𝑥𝑥𝑥 𝑓 + 𝑥𝑥 𝑢 𝑥𝑥 𝑓 ′ + ∫ 𝑢 𝑥𝑥 + 𝑢 3 9 16 ∫ 𝑢 𝑥𝑥 + 𝑢 3 ∫ 𝑢 8 𝑓 ′ -5 𝑥 𝑢 5 𝑓 𝑥𝑥 𝑢 𝑥𝑥 𝑓 ′ + 5 ∫ 𝑢 2 𝑢 𝑥 𝑢 𝑥𝑥𝑥 𝑓 ′ + ∫ 𝑢 𝑥𝑥𝑥 𝑢𝑢 2 𝑥 𝑓 + 5 ∫ 𝑢 2 𝑢 2 𝑥𝑥 𝑓 ′ ∫ 𝑢 4 𝑥 𝑓 ′ + 3 2 ∫ 𝑢 5 𝑢 𝑥𝑥 𝑓 ′ + 45 ∫ 𝑢 3 𝑢 3 𝑥 𝑓 -45 ∫ 𝑢 3 𝑢 3 𝑥 𝑓 -45 ∫ 𝑢 4 𝑢 2 𝑥 𝑓 ′ 4 ∫ 𝑢 3 𝑥 𝑢𝑢 2 𝑥 𝑓 ∫ 𝑢 2 𝑢 3 𝑥𝑥 𝑢 𝑥 𝑓 -3 2 ∫ 𝑢 𝑥𝑥𝑥 𝑢 5 𝑓 -3 𝑢 2 𝑥𝑥𝑥 𝑓 ′ -∫ 𝑢 𝑥𝑥𝑥 𝑢 𝑥𝑥 𝑓 ′′ + 4 ∫ 𝑢 2 𝑥𝑥 𝑢 2 𝑓 ′ + 5 ∫ 𝑢 2 𝑥 𝑢𝑢 𝑥𝑥 𝑓 ′ -5 ∫ 𝑢 2 𝑢 𝑥 𝑢 𝑥𝑥𝑥 𝑓 ′ ∫ 𝑢 3 𝑥 𝑢 5 𝑓 2 𝑢 2 𝑥𝑥𝑥 𝑓 ′ + ∫ 𝑢 𝑥𝑥 + 𝑢 3 𝑥𝑥 𝑢 𝑥𝑥 𝑓 ′ + ∫ 3𝑢 𝑥𝑥 𝑢 2 + 6𝑢 2 𝑥 𝑢 𝑢 𝑥𝑥𝑥 𝑓 + 5 ∫ 𝑢 8 𝑓 ′ + 1 4 ∫ 𝑢 4 𝑥 𝑓 ′ + 3 2 ∫ 𝑢 5 𝑢 𝑥𝑥 𝑓 ′ -45 ∫ 𝑢 4 𝑢 2 𝑥 𝑓 ′ 4 ∫ 𝑢 𝑥𝑥𝑥 𝑢𝑢 2 𝑥 𝑓 𝑢 3 𝑥 𝑢 3 𝑓 + 5 ∫ 3 2 ∫ 𝑢 𝑥𝑥𝑥 𝑢 5 𝑓 -9 (5.5.13) = -3 2 ∫ 𝑢 2 𝑥𝑥𝑥 𝑓 ′ + 9 ∫ 𝑢 2 𝑥𝑥 𝑢 2 𝑓 ′ + 15 ∫ 𝑢 2 𝑥 𝑢𝑢 𝑥𝑥 𝑓 ′ + 9 16 ∫ 𝑢 8 𝑓 ′ + 1 ∫ 𝑢 4 𝑥 𝑓 ′ 4 ∫ 𝑢 𝑥 𝑢 7 𝑓 2 + 3 2 ∫ 𝑢 5 𝑢 𝑥𝑥 𝑓 ′ -45 4 ∫ 𝑢 4 𝑢 2 𝑥 𝑓 ′ -

∫

𝑢 𝑥𝑥𝑥 𝑢 𝑥𝑥 𝑓 ′′ + 5 ∫ 𝑢 2 𝑢 𝑥 𝑢 𝑥𝑥 𝑓 ′′

(5.5.30) 

 

Because 𝑦 1 (𝑡) → +∞, by taking 𝑇 0 larger if needed, 𝑂(𝑦 1 (𝑡) 2 ) can be bounded above by any positive constant multiplied by |𝑦 1 (𝑡)|, so by taking this constant small enough (by taking 𝑇 0 large enough) and combining both previous inequalities (4.2.186) and (4.2.187), we obtain:

Therefore, we have obtained a better bound for 𝑦 1 (𝑡) in the case when 𝑃 𝑗-1 is a soliton. Therefore, we may conclude that in any case, for 𝑡 ≥ 𝑇 0 , for 𝑇 0 large enough,

Then, we deduce from (4.2.64) that From 𝑣 = 𝑤 + 𝑃 𝑗-1 -𝑃 𝑗-1 , we deduce: Proof of Theorem 1.4. We suppose that 𝑣 1 > 0. Let 𝑝 be the associated multi-breather given by Theorem 1.2. Let 𝑢 be a solution of (mKdV) such that

From Proposition 4.10, we deduce that there exists a constant 𝐶 > 0 and a constant 𝜛 > 0 such that for 𝑡 large enough

This implies that 𝑢 satisfies the assumptions of Proposition 1.5. Thus, 𝑢 = 𝑝 and Theorem 1.4 is proved.

□

Appendix

The first two subsections of the Appendix show that a soliton has similar properties as a "limit breather" of parameter 𝛼 = 0. Firstly, the corresponding elliptic equation is satisfied by a soliton. Secondly, the corresponding quadratic form is coercive for a soliton, and we see that its kernel is spanned by 𝜕 𝑥 𝑄 and 𝜕 𝑐 𝑄. In the third subsection, we prove that it is possible for 𝜖 to be orthogonal to 𝑄 and 𝜕 𝑥 𝑄 (instead of 𝜕 𝑥 𝑄 and 𝜕 𝑐 𝑄) in order to satisfy a coercivity for the quadratic form. We will use this fact for the proof of the existence, as well as for the first part of the proof of the uniqueness. In the fourth subsection, we prove that we can have coercivity for quadratic forms when the orthogonality condition is not exactly satisfied. We will use this result for the proof of the uniqueness. The last subsection is about computations for the third conservation law. It will be useful for the monotonicity property for localized 𝐹 that we need in the proof of the uniqueness. 

Proof. In order to derive this equation, we will use the equation that defines a soliton (and that is satisfied by 𝑄 at any time):

We will also need the following equation:

that can be derived by taking the space derivative of 𝑄 2 𝑥 -𝑐𝑄 2 + 1 2 𝑄 4 , and by showing that this derivative is zero. From this, we deduce that 𝑄 2 𝑥 -𝑐𝑄 2 + 1 2 𝑄 4 is constant, and by taking its limit when 𝑥 → ±∞, we see that this constant is zero. More precisely, the derivative of 𝑄 2 𝑥 -𝑐𝑄 2 + 1 2 𝑄 4 is:

From now on, the derivation of (5.1.1) is straightforward. It is sufficient to take space derivatives of 𝑄 𝑥𝑥 = 𝑐𝑄 -𝑄 3 and to inject them into the right hand side of the equation (5.1.1), which we want to prove to be equal to zero. By doing this, we make the maximal order of a derivative of 𝑄 present in the right hand side equation lower. At the end, we have only, zero and first order derivatives. To have only a polynomial in 𝑄, we have to use 𝑄 2 𝑥 = 𝑐𝑄 2 -1 2 𝑄 4 , and the calculations show that this polynomial is zero. □ 5.2. Study of coercivity of the quadratic form associated to a soliton. In this article, we adapt the argument for the breathers in [START_REF]Nonlinear stability of MKdV breathers[END_REF] to the soliton case. We consider:

Firstly, we prove, by simple calculations, as in the previous section, that 𝑄 𝑥 and 𝑄 + 𝑥𝑄 𝑥 are in the kernel of this quadratic form. It is easy to see, by asymptotic study that these two functions are linearly independent.

The self-adjoint linear operator associated to this quadratic form is:

Therefore, by making linear combinations of these two inequalities, using triangular and Cauchy-Schwarz inequalities, we obtain that

(5.4.9)

We can take space derivatives of (5.4.6). And thus, we obtain, for 𝜈 small enough, that 1 2 

We observe that if we take 𝜈 small enough, the claim of the lemma is proved.

□

We prove in the same way that we have a similar lemma for solitons: where 𝑅 𝑐,𝜅 denotes the soliton of parameter 𝑐 and sign 𝜅 or any of its translations. □

And even