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ON THE UNIQUENESS OF MULTI-BREATHERS OF THE MODIFIED KORTEWEG-DE
VRIES EQUATION

ALEXANDER SEMENOV

ABSTRACT. We consider the modified Korteweg-de Vries equation (mKdV) and prove that given any
sum P of solitons and breathers of (mKdV) (with distinct velocities), there exists a solution p of (mKdV)
such that p(t) — P(f) — 0 when t — +oco, which we call multi-breather. In order to do this, we work at
the H? level (even if usually solitons are considered at the H! level). We will show that this convergence
takes place in any H® space and that this convergence is exponentially fast in time.

We also show that the constructed multi-breather is unique in two cases: in the class of solutions
which converge to the profile P faster than the inverse of a polynomial of a large enough degree in time
(we will call this a super polynomial convergence), or (without hypothesis on the convergence rate),
when all the velocities, except possibly one, are positive.

1. INTRODUCTION

1.1. Setting of the problem. We consider the modified Korteweg-de Vries equation on IR:

{ Ui+ (thyy + 43, =0 (£, x) € R2

(mKdV) u(0) = u u(t,x) € R

The (mKdV) equation appears as a model of some physical problems as plasma physics [39, 9],
electrodynamics [38], fluid mechanics [22], ferromagnetic vortices [46], and more.
In [24], Kenig, Ponce and Vega established local well-posedness in H, for s > 1, of the Cauchy

problem for (mKdV), by fixed point argument in LﬁL? type spaces. Moreover, if s > %, the Cauchy
problem is globally well posed [12]. Recently, Harrop-Griffiths, Killip and Visan [21] proved local
well-posedness in H® for s > —1/2. However, in this paper, we will only use the global well-
posedness in H2.

(mKdV) is an integrable equation (like the original Korteweg-de Vries equation) and thus it has
an infinity of conservation laws, see [37, 1]. We will use three of them (the first two of them are
called mass and energy; the third is sometimes called second energy):

(1.1.1) M[u](t)::%/uz(t,x)dx,
R
(1.1.2) E[u](t) ::%/Ruﬁ(t,x)dx—i/]l{u“(t,x)dx, and
(1.1.3) Flu](t) ::%/Ru%x(t,x)dx—g/}Ruz(t,x)uf;(t,x)dx+%/}Ru(’(t,x)dx.

Observe that if u is a solution of (mKdV) then —u and, for any xo € R, (¢,x) — u(t,x — xp) are
solutions of (mKdV) too.

(mKdV) is a dispersive nonlinear equation that is a special case of a more general class of equa-
tions: the general Korteweg-de Vries equation (gKdV), where the nonlinearity ud is replaced by
f(u) for some real valued function f. The particularity of (mKdV) in comparison to other (gKdV)
equation is that it admits special non linear solutions, namely breather solutions.

The most simple nonlinear solutions of (mKdV) are solitons, i.e. a bump of a constant shape
that translates with a constant velocity without deformation, that is, solutions of the form u(t, x) =
Qc(x = ct), where c is the velocity and Q. is the profile function that depends only on one variable.
Q. € HY(R) should solve the elliptic equation:

(1.1.4) /=cQc—-Q2
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We can show that necessarily ¢ > 0 and that, if ¢ > 0, (1.1.4) has a unique solution in H!(R), up to
translations and reflexion with respect to the x-axis. Actually, one has the explicit formula:
1

2
2c
(1.1.5) Qcx)=————]| .
‘ cosh? (c1/2x)

Observe that we chose Q. so that it is even and positive.

A soliton is a solution of (mKdV), parameterized by a velocity parameter ¢ > 0, a sign parameter
k € {-1,1} and a translation parameter xo € R (it corresponds to the initial position of the soliton)
that has the following expression:

(1.1.6) Req(t, x;x0) := kQc(x — x¢ — ct).

When « = -1, this object is sometimes called antisoliton. Notice that solitons are smooth and
decaying. The generalized Korteweg-de Vries equation (gKdV) also admit soliton type solutions,
and the focusing nonlinear Schrodinger equation (NLS) as well. Solitons have been extensively
studied, in particular their stability. Cazenave, Lions and Weinstein in [45, 7, 8, 44] were interested
in orbital stability of (gKdV) and (NLS) solitons in H 1. A soliton of (mKdV) is indeed orbitally
stable, i.e. if a solution is initially close to a soliton in H!(RR), then it stays close to the soliton,
up to a space translation defined for any time, in H!(R). General results about orbital stability of
nonlinear dispersive solitons are presented by Grillakis, Shatah and Strauss in [20]. The result about
orbital stability of a soliton can be improved in a result of asymptotic stability, as it was done in the
works by Martel and Merle [29, 33, 31], see also [17].

A breather is a solution of (mKdV), parameterized by a, > 0, x1, x € R that has the following
expression:
B sin(ayr)

(1‘1‘7) Ba,ﬁ(t,x;xl,xz) = 2\/§ax[arCtan (EM)]’

where
y1:=x+0t+x1 and yr:=x+yt+x,
with 6:=a?-38% and y:=3a%-p

It corresponds to a localized periodic in time function (with frequency «, and exponential local-
ization with decay rate f) that propagates at a constant velocity —y in time. Like solitons, breathers
are smooth and decaying in space. Unlike solitons, breather’s velocities can be positive, zero or neg-
ative. a,  are the shape parameters and x1, x; are the translation parameters of a breather. Note that
if we replace the parameter x; by x; + X, we transform By g(-, ; X1, x2) in =B g(-, *; X1, x2) (therefore,
we do not need to talk about “antibreathers”).

Breathers were first introduced by Wadati in [42], and they were already used by Kenig, Ponce
and Vega in [25] to prove that the flowmap associated to (mKdV) equation is not uniformly contin-
uous in H® for s < }I : the point is that two breathers with close velocities can be very close at t =0
and can separate as fast as we want in H® with s < %, if ar is taken large enough.

(mKdV) breathers and their properties, as well as breathers for other equations, are well studied
by Alejo and Mufioz and co-authors in [3, 2, 5, 6, 4].

Let us singularize a result of H 2 orbital stability for breathers established in [3], and improved to
H! orbital stability in [4]. In this last paper, a partial result of asymptotic stability is also given, for
breathers traveling to the right only, with positive velocity —y > 0; asymptotic stability for breathers
in full generality is still an open problem.

When @ — 0, B, tends to a solution of (mKdV) called double-pole solution [43], the methods
employed in this article as well as the proof of orbital stability made by Alejo and Mufioz seem not
to apply for this limit, which is expected to be unstable according to the numerical computations in
[18].

An important result regarding the long time dynamics of (mKdV) is the soliton-breather resolu-
tion [10]: it asserts that any generic solution can be approached by a sum of solitons and breathers
when t — +4co (up to a dispersive and a self-similar term). Together with their stability properties,
the soliton-breather resolution shows why solitons and breathers are essential objects to study. This
resolution was established for initial conditions in a weighted Sobolev space in [10] (see also Schuur
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[40]) by inverse scattering method; see also [40] for the soliton resolution for (KdV). Observe that
(mKdV) breathers do not decouple into simple solitons for large time (it is a fully bounded state as it
is called in [3]); therefore, it must appear in the resolution. The soliton-breather resolution is one of
the motivations of the study of multi-breathers, which we define below.

There are works in the literature about a more complicated object obtained from several solitons:
a multi-soliton. A multi-soliton is a solution 7(t) of (mKdV) such that there exists 0 < ¢; < ¢ < ... <
CN, K1,...,kN € {—1,1} and x4, ..., xNy € R, such that

=0.
HY(R)

This definition is not specific to (mKdV) and makes sense for many other nonlinear dispersive
PDEs as soon as they admit solitons. This object is introduced by Schuur [40] and Lamb [26], see
also Miura [36], where explicit formulas are given: these were obtained by inverse scattering method
thanks to the integrability of the equation. Multi-solitons were first constructed in a non integrable
context by Merle [34] for the mass critical (NLS). Martel [28] constructed multi-solitons for mass-
subcritical and critical (gKdV) equations and proved that they are unique in H'(R), smooth and
converge exponentially fast to their profile in any Sobolev space H®. Similar studies were done for
other nonlinear dispersive PDEs. Martel and Merle [32] have proved the existence of multi-solitons
for (NLS) in H!, Cote, Martel and Merle extended this construction to mass supercritical (gKdV)
and (NLS) in [15]. Friederich and Cote in [14] proved smoothness, and uniqueness in a class of
algebraic convergence. Cote and Mufioz constructed in [16] multi-solitons for the nonlinear Klein-
Gordon equation. Ming, Rousset and Tzvetkov have constructed multi-solitons for the water-waves
systems in [35]. Valet has proved in [41] the existence and uniqueness of multi-solitons in H' for
the Zakharov-Kuznetsov equation, which generalizes (gKdV) to higher dimension.

N
F(E)= )" Repy(t %))

=1

(1.1.8) lim

t—+o00

1.2. Main results. We prove in this article that given any sum of solitons and breathers with distinct
velocities, there exists a solution of (mKdV) whose difference with this sum tends to zero when
time goes to infinity. This solution will be called a multi-breather. Let us make the definition more
precise.
Let ] e N and K, L € IN such that | = K+ L. We will consider a set of L solitons and K breathers:
o the breather parameters are ax > 0, fx > 0, x?{k € R and xg,k eRforl <k<K.
e the solitons parameters are ¢; > 0, x; € {-1,1} and xg,l eRforl<I<L.

We define for 1 < k < K, the kth breather:

(1.2.1) B(t, X) := Buyp, (£, %; X 1, x5 1);
and for 1 <[ < L, the Ith soliton:
(1.2.2) Ry(t, x) := Re e, (t, x; xg,l)'
We now define the velocity of our objects. Recall that for 1 < k < K, the velocity of Bj is
(1.2.3) vy = —yk = B} — 3%,
and for 1 <[ < L, the velocity of R; is
(1.2.4) v} =l
The most important assumption we make is that all these velocities are distinct:
(1.2.5) Vk#k' ol #vb, VI#l of#v5,  VkI ol #0).

These implies for any two of these objects to be far from each other when time is large, and this
assumption is essential in our analysis.

It will be useful to order our breathers and solitons by increasing velocities. As these are distinct,
we can define an increasing function:

(1.2.6) v:{1,..,J} — {0}, 1<k<K}U{v{,1<I<L}

The set {vy,...,v1} is thus the (ordered) set of all possible velocities of our objects. We define P;,
for 1 < j <], as the object (either a soliton R; or a breather By) that corresponds to the velocity v;.
Hence, Py, ..., P are the considered objects ordered by increasing velocity.
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We will need both notations: the indexation by k and I, and the indexation by j, and we will
keep these notations to avoid ambiguity.
We will denote by x; the center of mass of P;, that is

e if P; = By is a breather, we set x;(t) := —xgk +0jt;
e if P; = R, is a soliton, we set x;(t) := xgll +vjt.
We denote:
L K J
(1.2.7) R:ZR,, B:ZBk, P:R+B:ZP]-.
I=1 k=1 =1

We can now define a multi-breather: as solitons are objects which can be studied naturally in
HY(R), it turns out that breathers are best studied in H*(R); therefore, it is in this latter space that
we develop our analysis.

Definition 1.1. A multi-breather associated to the sum P given in (1.2.7) of solitons and breathers is
a solution p € C([T*, +o0), H*(R)), for a constant T* > 0, of (mKdV) such that

(1.2.8) Jim lp(t) = P(#)lly2 = 0.

We will prove two results in this article. The first one is the existence and the regularity of a
multi-breather, the second one is the uniqueness of a multi-breather. The uniqueness is established
in two settings: in the case when all velocities (except possibly one) are positive, and without any
assumption on the sign of the considered velocities. However, in the last case, the uniqueness is
obtained in a narrower class of functions.

Theorem 1.2. Given solitons and breathers (1.2.1), (1.2.2) whose velocities (1.2.3) and (1.2.4) satisfy (1.2.5),
there exists a multi-breather p associated to P given in (1.2.7). Moreover,

p e C°RXR)NC*(R, H*(R))
for any s > 0 and there exists O > 0 such that for any s > 0, there exists As > 1 and T* > 0 such that
(1.2.9) VE> T, |lp(t) = P(t)||lgs < Ase .

Remark 1.3. We will also show that 0 does only depend on the shape parameters of our objects:

ak, Bk, c1. Moreover, if there exists D > 0 such that for all j > 2, x;(0) > x;-1(0) + D, then A; and T*
do not depend on x? ” xg k,xg ; but only on ai, Bk, ¢; and D. Finally, if D > 0 is large enough with
respect to the problem data, then (1.2.9) is true for T* = 0. See Section 3.2 for further details.

Theorem 1.4. Given the same set of solitons and breathers as in Theorem 1.2 whose velocities satisfy (1.2.5)
and vy > 0 (so that all the velocities, except possibly one, are positive), the multi-breather p associated to P
by Theorem 1.2, in the sense of Definition 1.1, is unique.

Proposition 1.5. Given the same set of solitons and breathers as in Theorem 1.2 whose velocities satisfy
(1.2.5), there exists N > 0 large enough such that the multi-breather p associated to P by Theorem 1.2 is the
unique solution u € C([Tp, +o0), H*(R)) of (mKdV) such that

(1.2.10) llu(t)—P(t)|lg2 = O(th), as t — +oo.

In [43], there exists a formula for a multi-breather, obtained by inverse scattering method, that in
some sense already gives the existence of a multi-breather. However, the proof of the theorem 1.2
from this formula is rather involved.

In this paper, we give here a different approach to prove the existence of a multi-breather and
we clearly show that we have convergence of the constructed multi-breather to the corresponding
sum of solitons and breathers in H®, that this convergence is exponentially fast in time and that the
constructed multi-breather is smooth. To do this, we use the variational structure of solitons and
breathers. This is why, we give a proof that is potentially generalizable to non integrable equations,
and that uses similar type of techniques as in the proof of the uniqueness (the latter cannot be
deduced from the formula). In any case, uniqueness of multi-breathers is new.

In this paper, we adapt the arguments given by Martel and Merle [32], by Martel [28] and by Cote
and Friederich [14] to the context of breathers. To do so, one needs to understand the variational
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structure of breathers, in the same fashion as Weinstein did in [45] for (NLS) solitons. Such results
were obtained by Alejo and Mufioz in [3]: a breather is a critical point of a Lyapunov functional at
the H? level, whose Hessian is coercive up to several (but finitely many) orthogonal conditions, see
Section 2 for details. As we see from [3], the H? regularity level is the most natural setting to study
breathers, and the H! regularity level is natural for the study of solitons (as we see in [28, 32]). One
important issue we face is therefore to understand soliton variational structure at H 2 level, and to
adapt the Lyapunov functional in [3] to accommodate for a sum of breathers (and solitons). Notice
that arguments based on monotonicity may be adapted only if we suppose that all the considered
velocities, except possibly one, are positive. Because [32, 14] are not based on monotonicity (these
are results for (NLS) which is not well suited for monotonicity), we can adapt their arguments to
obtain existence and uniqueness results for our case without any condition on the sign of velocities.
The uniqueness result obtained in this setting is however weaker than the one that is obtained with
monotonicity arguments.

1.3. Outline of the proof. The proof of Theorem 1.2 (the existence of multi-breathers) is split into
two main parts: the construction of an H? multi-breather and the proof that this multi-breather is
smooth.

1.3.1. An H? multi-breather. Let us start with the first part. We consider an increasing sequence (T},)
of R, with T, — +o0, and for n € N, let p, the unique global H? solution of (mKdV) such that
pn(T,) = P(T,,) (recall that the Cauchy problem for (mKdV) is globally well-posed in H?).

We will prove the following uniform estimate:

Proposition 1.6. There exists T* > 0, A > 0, 0 > 0 such that, for any n € N such that T,, > T~,
(1.3.1) Vt € [T, Tu),  lpn(t) = P(t)ll2 < A%

With this proposition in hand, we can construct an H 2 multi-breather which converges exponen-
tially fast to its profile, which is the first part of Theorem 1.2, as stated below.

Proposition 1.7. There exists T* € R, A > 0, 0 > 0 and a solution p € C([T*, +o0), H*(R)) of (mKdV)
such that

(1.3.2) VE>T*, |lp(t) = P(t)||lg2 < Ae7.

Proof of Proposition 1.7 assuming Proposition 1.6. We show that the sequence (p,(T*)) is L?>-compact,
in the following sense:

Lemma 1.8. For any ¢ > 0, there exists R > 0 such that

(1.3.3) Vn e N p%(T*,x)dx <e.
|x|>R

An analogous lemma has already been proved on p. 1111 of [28], which is the proof of formula
(14) (and can also be found in [32]). The same proof works here. We need to use Proposition 1.6 for
T, large enough and then make a time variation to obtain the result in T*. We can first find R that
works for P2(tq) instead of p2(T*) for a fixed ty > T* large enough. From Proposition 1.6, we see that
if we take t( large enough, we obtain the desired lemma for p2(to) instead of p2(T*). To finish, with
the help of a cut-off function, we control time variations of >R p2(t) dx, where R is taken larger if
needed. This is why, we obtain the result at t = T".

As a consequence of the Proposition 1.6 above, (||p,(T*)||52) is a bounded sequence. Thus, there
exists p* € H?(R) such that, up to a subsequence,

(1.3.4) pu(T*) = p* in H?,
Thus, from Lemma 1.8, there holds the strong convergence:
(1.3.5) pn(T) = p* in L%
Therefore, we obtain by interpolation:

(1.3.6) pu(T) — p* in H.

Now, let us consider the global H! (even H?) solution p of (mKdV) such that p(T*) = p*. As
shown in [28], the Cauchy problem for (mKdV) has a continuous dependence in H! on compact sets
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of time. Let t > T*. By continuous dependence, we deduce that p,(t) — p(t) in H'. (pu(t) — P(t)) is
a bounded sequence in H?, which admits a unique weak limit and so
(1.3.7) pu(t) = P(t) = p(t) - P(t) in H2.
By weak convergence and from Proposition 1.6, we obtain:
(1.3.8) lp(t) = P())llp2 < lim infllpu(t) = P(t) ]|z < Ae™
As this is true for any t > T*. This ends the proof of the Proposition 1.7. m]

It remains to prove Proposition 1.6, for which we rest on a bootstrap argument. More precisely,
we will reduce the proof to the following proposition:

Proposition 1.9. There exists T* > 0, A > 0, 0 > 0, such that for any n € N such that T, > T", for any
t* e [T, T, if

(1.3.9) Vi e[t Tul, llpa(t) —P(t)llge < Ae™?,
then

* A ot
(1.3.10) Vte[t', Tul, |pn®)—P®)llg2 < e

The proof of Proposotion 1.6 then follows from a simple continuity argument.
Proof of Proposition 1.6 assuming Proposition 1.9. We define t;, in the following way:
(1.3.11) t=inf{t* € [T, T,), Vte[t, T, |pat) =Pt < Ae Y.

The map t — |[|p,(t) — P(t)||42 is a continuous function and ||p,(T,,) — P(T,,)||z2 = 0. This means that
there exists T* < t* < T, such that

(1.3.12) vt e [t5T,], lpa(t)—P(t)|lp2 < Ae™".
Therefore, we have that
(1.3.13) T <t, <T,.

We would like to prove that t; = T*. Let us argue by contradiction and assume that ¢;, > T*. The
Proposition 1.9 allows us to deduce that

(1.3.14) Vi elt;, Tl llpa(t) = PE)llg2 < ée‘ef.

This means that

(1315 Ipat5) = P < 5 e™0%,

which means that ¢, could be chosen smaller, by continuity. This is a contradiction. m]

Hence, we are left to prove Proposition 1.9, which will be done in Section 2.

1.3.2. The H? multi-breather is smooth. We now turn to the second part of Theorem 1.2, which is
strongly adapted from [28]. The heart of this part is to prove uniform estimates in H® for p,, — P, for
any s > 0:

Proposition 1.10. There exists T* > 0, 0 > 0, such that for any s > 0, there exists A; > 1 such that for any
n € IN such that T,, > T",

(1.3.16) Vi e [T, T, llpa(t) = P(t)lls < Ase™ "

With this improved version of Proposition 1.6, one can prove by the same reasonning as in the
proof of the Proposition 1.7, that for any s > 0, p actually belongs to L*([T", +o0), H°(R)) and that
the convergence of p(t) — P(t) occurs in H® with an exponential decay rate. More precisely,

Theorem 1.11. For any s > 2, we have that p € C([T*, +o0), H*(R)), and furthermore,
(1.3.17) Vt> T, |lp(t) = P(t)||lgs < Ase™ .

It remains to prove Proposition 1.10, which will be done in Section 3.
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1.3.3. The uniqueness result. We denote p the multi-breather constructed in the previous sections, the
existence of which is established. Let u be a solution of (mKdV) such that
(1.3.18) || = Pllg2 =¢—+00 0.
Equivalently, there holds:

(1.3.19) |l —pllgz =t—+00 0.
We denote
(1.3.20) zZ:=u-p.

The goal is to prove that z = 0. We prove it in two configurations: when all the velocities, except
possibly one, are positive (Theorem 1.4), and without any assumption on velocities (Proposition
1.5), but in this last case we need to assume a stronger convergence than given in (1.3.18).

The proof of Theorem 1.4 will be carried out in two steps.

We start with Proposition 1.5, which is adapted from [14]. For this, we do not study u — P
anymore, we deal only with z = u —p. z is the difference of two solutions of (mKdV), which
is much more precise than u — P. Thus, we do not modulate parameters of the solitons, as it is
needed in other parts of the proof in order to deal with the soliton part of the linear part of the
Lyapunov functional, and we avoid some difficulty. In order to prove our inequalities, we need
again to use coercivity of the same type of quadratic forms. In order to do this, we replace z by

zZ=z+ Z]._ ciKi, where K;, j = 1,...,] is a well chosen basis of the kernel of the quadratic form,
j=1 €% jr ] q

in order to have z orthogonal to any K;. A important idea is to use slow variations of localized
functionals with adapted cut-off functions of the form ¢(%2), which provides an extra O(1/t)
decay when derivatives fall on the cut-off, and ultimately explain why algebraic decay comes into
play.

In the context of Theorem 1.4, we actually prove that

(1.3.21) vi=u—-"P

converges exponentially fast to 0: this is the purpose of Proposition 4.10, which uses some ideas of
[28]. Due to Proposition 1.5, we deduce immediately from there that an exponential convergence is
trivial, thatis z = 0.

To prove Proposition 4.10, we use monotonicity properties combined with coercivity of an energy
type functional very similar to that used for the existence result. This is why, we also need to
modulate, and the choice of the orthogonality condition is essential: it allows to bound linear terms
in w that appear in the computations. An issue of the mixed breathers/solitons context is that one
cannot build a functional adapted to all the nonlinear objects at once, as it is done in [28]. Instead, we
carry out an induction and we argue successively around each object, soliton or breather, separately.

1.3.4. Organisation of the paper. Sections 2 and 3 are devoted to the proof of the existence of a multi-
breather: Proposition 1.9 is proved in Section 2, Proposition 1.10 is proved in Section 3. Section 4
gathers the proofs of the uniqueness results: Section 4.1 is devoted to the proof of Proposition 1.5,
and Sections 4.2 and 4.3 are devoted to the proof of Theorem 1.4.

1.4. Acknowledgments. The author would like to thank his supervisor Raphaél Cote for suggesting
the idea of this work, for fruitful discussions and for his useful advice.

2. CONSTRUCTION OF A MULTI-BREATHER IN H%(R)

We set
B:=min{Bi, 1 <k < K}U{yc,1<I<L},

2.0.1
( ) 7:=min{vj;1 -v;,1<j <] -1}

Our goal in this section is to prove Proposition 1.9.
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2.1. Elementary results. Let us first collect a few basic facts that will be used throughout the article.
One may check an exponential decay result for any of our objects:

Proposition 2.1. Let j =1,...,], n,m € IN. Then, there exists a constant C > 0 such that for any t,x € R,

2.1.1) 029" Pj(t, x)| < Ce Poitl,
Corollary 2.2. Let r > 0. For t, x such that vjt + r < x <vj41t —r, we have that
(2.1.2) |P(t,x)| < Ce .

The same is true for any space or time derivative of P.
We will also use the following cross-product result:

Proposition 2.3. Let i # j € {1,...,]} and m,n € IN. There exists a constant C that depends only on P,
such that for any t € R,
/ dy PidyP;

There is also an orthogonality result for breathers that will be useful:

Lemma 2.4. Let B := By g be a breather. We denote By := dy, B and By := d.,B. Then,

(2.1.4) /BBl :/BBZ:O.

Proof. Note that Span(By, By) = Span(By, B¢). Therefore, it is enough to prove that

(2.1.5) /BBX=/BBt=O.

(2.1.3) < Ce P2,

Firstly,
(2.1.6) /BBx - 1/(132) - 0.
2 x
Secondly,
_1 2y _1d 2 _
2.1.7) /BBt—z/(B)t—zdt/B =0,
by mass conservation and because a breather is a solution of (mKdV). |

2.2. Almost-conservation of localized conservation laws. From now on, we will fix n € IN. This
is why, for the simplicity of notations, we can write T for T, and p for p,. The goal will be to
find constants T*, A > 1, 0 that do not depend on 1, nor on the translation parameters of the given
objects, and that will be chosen later (T* will depend on A and 0), such that Proposition 1.9 is
verified. We will take t* € [T*,T], and we will make the following bootstrap assumption for the
remaining of the article:

(2.2.1) vt e [t5,T], |lp(t)—P(t)|lz < Ae™%,
where p(T) = P(T).

Remark 2.5. We have the following property for solutions of (mKdV): there exists Cyp > 0 such that
for any solution w of (mKdV), w is global and

(2.2.2) VteR, |lw(®)llg2 < Collw(T)l|g2-
Therefore,
]
(2.2.3) VteR, |lp(Ollgz < CollP(T)[[m2 < Co Z”Pj(T)”HZ < CoC,

j=1
where C is a constant that depends only on the problem data (because the H*-norm of solitons or
breathers can be easily bounded).
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Let O := g—; Let min(1, ) > 6 > 0 be a constant to be chosen later.
This part of the proof is adapted from [32].
Let ¥(x) be a C3 function such that

0<¢y<1 onR, >0 onR,
P(x)=0 forx<-1, ¢Y(kx)=1 forx>1,

and satisfying, for a constant C > 0, for any x € R,

(2.25) WP <Cyx), @) <C-v@), [P < Cy'().

Note that it is enough to take ¢ that is equal to (1 + x)* on a neighbourhood of —1 and equal to
1 - (-1 + x)* on a neighbourhood of 1.

These conditions on 1 will be needed for the proof of Proposition 2.19.

Foranyj=2,..,], let

(2.2.4)

(2.2.6) 0j:= %(0]‘_1 +Z)]‘).
Foranyj=2,..,]-1,let
x—ojt X —0j+1t
(227) Pi(t,x) = w( — )—w(T),
— —ogt
(2.2.8) o1t x) =1 —¢(x ;zt), )t x) = ¢(x 51&01 )

so that the function ¢; corresponds obviously to the object P;. We will also use notations ¢; and (p,b(,

which represent the same functions, and where @] corresponds to the soliton R; and qoZ corresponds
to the breather By.
We will also denote, for j =2,...,] -1,

X ojt X Oj+1t
_ — ot
(2.2.10) oua(t, x) == —z,b’(xé—fzt), o1t x) = ¢'(x 6?’ )

Of course, notations (pi’ » (pi | OF @2, will be used, with similar obvious definitions.
We have that, forj =1, ..., ],

3
(2.2.11) lp1,;] < C(p]f*.
Remark 2.6. 1f 6 < ,

ojt+ot ojt+ot
/ e—2ﬁ|x—vjt| dx = e—Zﬁvjt/ e2Bx gy

(e} —00

(2.2.12) _ ie—Zﬁvjteﬁ(z;j+vj_1)tezﬁ5t
2
< CeBrte2Bot < ComBrt/2
and
+00
(2.2.13) / o 2Bl0t] gy < CoP2
Oj+1t—§t

for the same reason, and if i # j, e.g. j > i,

J]‘+1t+5t Gj+1t+6t
/ e~ 2lx=vitl gy = p2Poit / e 2P* dx
Oji—(Si O']'t—ét

(2.2.14)

< zieZﬁvite—ﬁ(vﬁvj_l)teZﬁét

< Ce—ﬁ'[teZﬁ(St < Ce—ﬁ'rt/Z‘
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And finally, we setforall j =1, ..., J:

Mi(0)= [ 3931t 1 dx = MIpI0),
(2.2.15) 1 )
E;(t) ::/(—Pi(t,X)—ZP‘*(t,X) @jt, x)dx =2 Ej[p](¢).

Notations MS Mf{’, Els, Eb will also be used.

These are local Ver51ons of the mass and the energy of the solution p considered (localized around
each breather or soliton). We will prove the following result for the localized mass and energy:

Len[lma 32.7. There exists C > 0 and T, := T;(A) such that, if T* > T}, then for any j = 1,...,], for any
telt’,T],

(2.2.16) |M;(T) = M;(t)| + |E{(T) - E(t)|< ¢ A2 —20¢,

Proof. We will use the results of the computations made on the bottom of page 1115 and on the
bottom of page 1116 of [28] to claim the following facts:

dtZ/ pif = /( )f’—/z?xpf”,
(2.2.17) % sz i ]f /[ S(Pxx + %V = Pix +3p3p ]f’
—/pxxpr”,

where f is a C? function that does not depend on time.
X— ij

Mi(t) is a sum of quantities of the form % f p*(—;-). This is why, we compute:

dil » x—ojt 1 32 4 ,(x—ojt
az/?t(—at )‘ﬁ/( SRt

1 x—ojt 1 x [fx—ojt
g o () E/PZW( o )

l,b’( - ) is zero outside of Q;(t) := (-0t + 0;t, 6t + 0;t). Thus, 1+16] < lojl +1,
this means that |#]| is bounded by a constant (that depends only on the glven parameters). We can
deduce that

(2.2.19) ;t;/pz¢(x 61%0] )' 62t(/Q(t) /Q(t) /Q(t) )

We bound | ® p* by the following way:
]

/ P‘*SIIPIIim/ p’
Q](t) Q](t)

(2.2.20) <C| pllil1 / p? by Sobolev embedding
Q;(t)

it

(2.2.18)

< C/ p? by Remark 2.5.
Qj(t)

Thus, we have for any t €

€t T],
d1l X —0j
By Ty |
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XU]

Ej(t) is a sum of quantities of the form / % - }I ]lp( ). So, we compute:

at [2” p]‘l’( ot
_1 __( T v T X —ojt
5t szx p Pxx PxP 5t

1 . x—a]-t 1 x x—a]-t
o frn ) -l

We deduce from this, by using similar arguments as for the mass, that for any ¢ € [t*,T],

d 1 ’ 1 4 .’X—O]
(22.23) g/[sz‘ﬂ’ ]‘l’( ot )‘ 5%(/9]@ /Q](t) /m) )

Now, we write p(t) = P(t) + (p(t) — P(t)), and we use the triangular inequality:

(2.2.24) / (p*+pi+p3) <2 / (P*+P;+P%,) +2|lp - Pl
Q;(t) Q;(t)

(2.2.22)

We have assumed that ||p — PIIiI2 < A%e729% 50 we need to study P on Qj(t). The following compu-
tations work also for the derivatives of P:

/Q (t)PZ /Q m(me(t x)) dx = Z / ](t)Pm(t,x)Pl(t,x)dx

1<m,l<]

<C / e~ Pl=ontlp=plx=oit] gy,
Z Qi)

1<m,I<]

(2.2.25)

where we use the Proposition 2.1.

We assume that m > j (we argue similarly if m < j —1). Then,

x € Qj(t) & —ot+ojt <x < oOt+ojt
(2.2.26)
© =0t +(0j =)t < X —vpt < Ot +(0j — vt

We note that 0; — v, < —%T < 0, we can thus deduce from the condition on 6 that ¢; — v, +6 <
—17 < 0. We deduce that x — v,,t is negative for x € Q;(t). Similarly, if m < j -1, x — vt is positive
for x € Q;(t). We will now make calculations for different cases. If m,l <j -1,

/ e Blx—vmtl p=plx-vit] 75 < / e ~Plae—vmt) p=Px=vit) 7,
Qi(t) Q;(t)

1
(2227) — Eeﬁt(—v]'—vj_1+"0m+"U])(62ﬁ(5f _ e—Zﬁét)
< Ceﬁt(—vj—vj,1+vm+vl+25) < Ce_‘BTt/Z.

Similarly, if m,[ > j,
(2.2.28) / p~Blx=omtl y=Blx—otl 1 < Cop-PTt/2
Qi)

And,ifm<j-1,12],

/ e—ﬁlx—vmtle—ﬁlx—vltl dx < / e—ﬁ(x—vmt)e/i(x—vlt) dx
(2.2.29) Q;(t) Q;(t)

prt

< 26teftom=) < Co='7 .
Thus,
(2.2.30) / P2 <ce7,
Qi(t)

and the same is valid for the derivatives of P.
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Thus, for t € [t*,T],

d1 5 [X— Gjt d 1 1 4 X — U]'t

dt2/y7¢( 5t )%Wdt/Wpr i Ly

< £A2€—26t + ie—% < £(A2+e—29t)€—26t < £A2€—26t‘
5%t o2t o2t 5%t

Thus, forj=1,...,], t € [t*,T],

|M;(T) = M;(£)] + |E;(T) - E;(£)]

r C 2,-20 C 2 r 20
< | A% ds < —A 205 g
(2.2.32) —[ 525 ¢ S—yt‘[e °

_C
T 52

(2.2.31) =

AZ%(E_ZQt _ e—ZQT) < %AZe—ZQt'

2.3. Modulation.

Lemma 2.8. There exists C > 0, Tz* = Tz* (A) such that, if T* > Tz*, then there exist unique Cl functions
X6 [t5T] = R, xok : [t°,T] > Rfor 1 <k < Kand xo; : [t,T] = R, coy : [t",T] = R, such that if
we set

(23.1) e(t,x) = p(t,x) = B(t, x) = R(t, x) = p(t, x) = P(t, %),

where, for 1 < k <K,

K
(232) E(t, X) = Z FB\IQ(”/ FB\]Z(t/ X) = Bak,ﬁk (tr X; x?,k + xl,k(t)/ xg,k + xZ,k(t))/
k=1
for1<I<L,
L
(2.3.3) R(t,x) := Z Ri(t), Ri(t,x) := x1Qu; 0y (X = Xy, + xou(t) = cit),
=1
(2.3.4) P(t) := R(t) + B(t),
and
_~ ] —_~
(2.3.5) Mﬂ:}hﬁm
j=1

where there is the usual correspondence between l;] and E; or R, B
then, &(t) satisfies, for any k = 1,...,K, forany | =1, ..., L and for any t € [t*,T],

[ Retnfoio = [oRkimewfeio =o
[ouBweenfoio = [ onBienyoin o

Moreover, for any t € [t*,T],

(2.3.6)

K L
(237) le(®)llz + > (e e®)] + [xa () + > (Ixos(t)] + leou()]) < CAe™,
k=1 I=1
and
K L
(2.3.8) D0 B+ x5, (O + D (g (O] + g (D)) < Clle(@)llp2 +Ce™".
k=1 I=1

Finally, p(T) = P(T) = P(T) and &(T) = x0,1(T) = x1k(T) = x24(T) = c(T) = 0.
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Proof: see for example [13] for reference. Let, for t € [t*,T],
(2.3.9) Fi : L*(R) x R?X x R?" — R?K+2L)
such that

(w, X1k, X2,k Xo,1, C0,1)

— (/ ,/(pi(t,)()&xlBak,ﬁk(t,x; x(l),k + xllk,xg’k + X2 k)€,

(2310) / Y (PZ(t/ x)ax2Bak,ﬁk (t/ X; x?,k + X1,k, xg,k + xZ,k)er
[ A€ 02m1 Qa6 = 8, 2= e,

[ o100 38y 4301 citre|

where

K

— .40 0
€ =w-— Z Ba,, . (t, X; X X1m, Xy X2.m)

=1

(2.3.11) "
L
0
- Kch,,+co,n (x - xO,n + Xo,n — Cnt)-
n=1

We observe that F; is a C! function and that F;(P(t),0,0,0,0) = 0. Now, let us consider the matrix
which gives the differential of F; (with respect to x1, X2k, Xo,1, co;) in (P(t),0,0,0,0) (we consider
diagonal and extra-diagonal terms for each bloc):

Kk Ckk

X X B}c/’k, Bi,,k, X X X X
(23.12) DR | X X B Buw X X xox

X X X X Rz,z Rz,z X X

X X X X R?,z Rzz,z X X

X X X X X X R},’l, R?,’l,

X X X X X X R?,’l, R},
where

2
Bllc,k = _/ (axlBaklﬁk) (PZ’ Bi,k = _/(aszak,ﬁk)z‘\/(Plbc’

(2.3.13)
Bli,k = _/axlBak,ﬁkaszak,ﬁk\/ (Pir
Rll,l = _/ (axQCl(yg,l))z (PS/ R?,l = _/ch(yg,l)achz(]/gll)\/(PIS/
1 S
(2.3.14) R}, := % / Qc,(yg’,,)(Qc,(yg,z)+y8,13ch,(y8,l))\/(pl,

1
R?,l = _2_Cl / achl(ygll)(ch(ygll) + ygllaxQC](ygll)) \/(P([SI

denoting yg,l = x - xg,l —cit, and crosses stand for exponentially decaying terms when t — +oo,
and where we consider variables in the following order: x11,x2,1, X12,X22, X13,X23, -, X1,K, X2,K,
X0,1,€o,1, ---» X0,L, Co,.. and we order the coefficients of the function in the similar way. This is a matrix
with dominant diagonal blocs.
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Note that B}(,k is exponentially close to — f (ax1Bak,ﬁk)2r because if P; = By is a breather,

N B A OO o gy O

00 0j+1t+0t
ajt+6t +00
(2.3.15) < C/ e—Zﬁlx—vjt|+/ e—Zﬁlx—vjtl
—00 0j+1t+0t
_bt
< Ce 7t

and the same is true for the other dominant diagonal terms of the matrix (we can get rid of ¢s).
Therefore, the determinant of the matrix is exponentially close to:

det(D Pt)
K

2 2
(/(8x1Bak,ﬁk(t,x;x?/k,xg,k)) /(8,(2Bak,ﬁk(t,x;x?/k,xg,k))
k=1
(2.3.16) 2
- axlBak,ﬁkaszak,ﬁk

L1
H(z_cz/ QCIWS,I)(ch(yS,z)+y8,18qu(y8,l)) / (8ch,(y8,l))2),

because fQC](yg,l)achl(ygll)dx =0.
By Cauchy-Schwarz inequality and the fact that

.0 .0 .0 0
BXIBak,ﬁk(t,x,xllk,lek) and 8szak,ﬁk(t,x,x1’k,x2,k)

are linearly independent as functions of the x variable, for any time ¢ fixed, we see that the first
product is positive. Since each member of the product is periodic in time, then the first product is
bounded below by a positive constant independent from time and translation parameters.

For the second product, by translation of the variable in the integrations, for any time t fixed, we
see that we can replace yg,l by x. Then, by integration by parts,

(2.3.17) /xQC,(x)QxQCZ(x)dx :—%/ch(x)2 dx.

By scaling, if g denotes the soliton with c =1, i.e. ¢ = Q1,

(2.3.18) / Q% =+ / q° / 0xQ2 =cl% / 0z

Therefore,

1
s | Qurb(Qutu8)+ 18,0:Qutel) [ 0.Qut8)”

(2.3.19) = im / 7 / (9x)*

zimin{anSnsL}/qz/’ﬁ-

This means that the second product is bounded below by a positive constant independent from time
and translation parameters.

This means that if T} is large enough, the considered matrix is invertible.

Now, we may use the implicit function theorem (actually, we use a quantitative version of the
implicit function theorem, see [11, Section 2.2] for a precise statement). If w is close enough to P(t),
then there exists

(2.3.20) (X1,k, X2,k, X0,1, C0,1)
such that
(2321) Ft (w/ X1,ks X2,k, X0,1, CO,l) = 0/



ON THE UNIQUENESS OF MULTI-BREATHERS OF THE MODIFIED KORTEWEG-DE VRIES EQUATION 15

where (2.3.20) depends in a regular C! way on w. It is possible to show that the “close enough”
in the previous sentence does not depend on t; for this, it is required to use a uniform implicit
function theorem. This means that for T} large enough (depending on A), Ae% is small enough
for t € [t*,T], thus for t € [t*,T], p(t) is Close enough to P(f) in order to apply the implicit function
theorem. Therefore, we have for t € [t*,T], the existence of x1 k(t), x2k(t), x0,(t) and co (t). It is
possible to show that these functions are C! in time. Basically, this comes from the fact that they are
Clin p(t) and that p(t) has a similar regularity in time (see [13] for more details).

Now, we prove the inequalities (2.3.7) and (2.3.8). We can take the differential of the implicit
functions with respect to p(t) for t € [t*,T]. For this, we differentiate the following equation with
respect to p(t):

(23.22) Fi(p(8), 114 (1), %2, (p(8), X0, (p(8), cor (p(1))) =
We know that the matrix that gives the differential of F; (with respect to x1x, X2, X0,1, co,1) in
(23.29) (P8, 21, (P ), %2 (p(8)), 301 (p(), 0 (p (1)

is invertible and its inverse is bounded in time (from the formula giving the inverse of a matrix
from the comatrix and the determinant). The differential of F; with respect to the first variable is
also bounded. Thus, by the mean-value theorem:

(2.3.24) |x1k] < Cllp - P|| < CAe™?".

The same is true for x,k, xo; and cq.
By applying the mean-value theorem (inequality) for Q., with respect to xo; and co, or for By, g,
with respect to x1 x and x2 x, we deduce that

(2.3.25) IP;(t) = Pi()l> < C(Ixne(E)] + [x2k(t)]),
if P; = By is a breather, and
(2.3.26) IPi(t) = Pi(t)ll2 < C(1x0,(E)] + leos(t)]),

if P; = R; is a soliton.
Finally, by triangular inequality,

le@®lle < p#) = Pz + IP(E) = POl < llp(t) = Pl

K L
(2.3.27) + C(Z (Ix1 ()] + [x26®)]) + > (|0, (F)] + ICo,l(t)l))

k=1 I=1
< Cllp(t) = P(t)|| 2 < CAe™",
This completes the proof of (2.3.7).
For (2.3.8), we will take time derivatives of the equations (2.3.6). From now on, we write FB\;Zl for

axl'B‘; and E;z for 9x2§;- Firstly, we write the PDE verified by ¢ (knowing that p, By, ..., Bk, Ry, ..., Ry
are solutions of (mKdV)):

J ]
01 = —Exyx — |:€(€2 +3€ZP]- +3 Z PiP]')

=1 i,j=1 x
K ~ K ~ L _
(2.3.28) - Z X} (H)Bjy = Z x5 ((H)Bra = Z x) (DRI
k=1 k=1 I=1

i e ilfz)(t)) (Rl + yO,l(t)ﬁlx) - Z (P~hﬁzﬁ])x

h#i or i#j
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where yo(t) = x — xgl + x0,1(t) — cyt.
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Now, we will take the time derivative of the equation

/ FB\;le, /(pZ = 0 (and perform an integration by parts):

-J ()
+ ) k(t)/ Bk12€\/7

]
/Bklxe(e + 3¢ Z

b

1 -~ Pk
2.3.29 —
( ) + 25t Bklgxx -
Pr
+x1 k(t)/BknEw,
K —~— —~—
+ Z xé,m(t)/BmBmz
m=1
L o)
N Z _ ‘o /

Similarly, taking the time derivative of

/ ()

J
/BkZXe(e + 3¢ Z
1 7
= 1k
(2330) — 2_6t Bka Ex——+ —

ol

#3,(0) [ Buze \Jo} =

Co,u(t) ) /

— 2(cp + con(t)

-7 S

- [ 3

Phpipg) @
h#i or g#h *

] ]
26t/Bk1€(€ + 3¢ Zﬁ Z: hﬁ;)

b
k

(Plf,k
N

b

Pk
thp)./ 26t2 Brex b
=1 (Pk
b
1 'B‘* (plk 1 (plk
T 25t kxéx——

\/7 25F klxxg\/(P—Ib(
xlm(t)/Blemlf

L
J?z #3550 [ R}

n=1

b

§;1 (Rj + yo,n(t)ﬁ;x) P

/FB\;zé‘\/ib:()Z

(PrPiPg) ol
h#i or g#h *
I /.o (P?k
26t/Bk2€(€2+3€ZP1‘+3Z hpi)_,
i=1 =1 @Y
] 1 b
=5 1,k
Z hPi)\/(P,b(‘i'ﬁ Bkzexx—b
=1 /qok
1 [— (Plk 1 Brex P
2

201 | Braweé /— 2612
K — —

D %40) [ BraBn o}
m

=1

Bia

—

R\;"‘yo,n(t)ﬁ;x) P
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Similarly, taking the time derivative of f R (B)e(t)yJo; =0:

_‘/(1?13)3”(‘g @?+%/(ﬁlx+yo,l(t)ﬁlxx)f\/;f
+x01(t)/R1xxs\/7 26t/R1xs(s +3€ZP1 Zjl 171?)

J J
+/Rlxx€ 2 + 3¢ E P;+3 E Phpl‘)1l(pls——2/R1x£x ,
i=1 h,i=1 26t V S

~ oy 1 ~ (Pll 1 ~ oy

Rlxgxx\/— 26t Rixy€ x\/— 26t Rixxx€ \/—
L
_/vax Z (Phﬁpg) Zx n(t)/Rlanx\/7

h#i or g#h n=1

L n(t) S (5 o s
’ ; 2(cy —Orco (1)) Rix (R” * yo’"(t)R"x)\/(?l

+mi:1xl (t)/sz ml\/( me(t)/Rlx m2\/7

Finally, taking the time derivative of / Ii‘lswl(pl =0:

_/(Es)xg (pf+%/(ﬁz+ym(t)ﬁzx>€ (Pls

S

(2.3.31) + 25f

1 (= Py 1 (= Py 1 = ¢
(2.3.32) +o= [ Rie—= - o =

/Rl Z P, D;P ) \/7 ZxOn(t)/Ranxf

h#i or g#h

L
' nZ‘ 2(ca inc(:,)q(t) R(Ro w0 o

K K
#2251, 0) [ R o+ Y %6, 0) [ Ry
m=1 m=1

17

By the Proposition 2.10 below (that follows from the first part of the lemma we prove) and its
corollary, several terms of the equalities (2.3.29), (2.3.30), (2.3.31) and (2.3.32) are bounded by Ce~%;
other terms are O(||¢||;2). We remind that O(]|¢||;2) < CAe~%. From the basic properties of @j (see

Section 2.2), z/l_] is bounded. Because of the compact support of ¢;, § 3(1’7’ is bounded independently

on x and t. Using these bounds, and after several linear combinations, we obtain the desired

inequalities.

O
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Remark 2.9. As a consequence of Lemma 2.8, there exists a constant C > 0 such that
K L

(23.33) VEe[r, T ) (Il +rar(®)l) + . (lxoa(H)] +leoi()]) < CAe~T

k=1 1=1
This means, that if we take T eventually larger (which we will assume in the following of the
article), we may extend Proposition 2.1 to 13; in the following way, by integration of the bounds

given by modulation (the constant C is a bit larger in a controled way, we write g because the shape
of the solitons is a bit modified in a controled way):

Proposition 2.10. Let j = 1,...,], n € N. If T* > T}, then there exists a constant C > 0 such that for any
t,x €R,

(2.3.34) |91Pi(t, x)| < Ceshvjtl,
We will also use that any ||8J’Z13;|| i is bounded by C.

Corollary 2.11. Leti #j € {1,...,J} and m,n € N. If T* > T, then there exists a constant C that depends
only on P, such that for any t € R,

(2.3.35) ‘ / IMP;JMPj| < Ce PTB,

2.4. Study of coercivity. In [3], the Lyapunov functional that was introduced to study the orbital
stability of a breather was the following conserved-in-time functional:

(2.4.1) E[p](t) +2(82 - a®)E[p](t) + (a2 + B2)*MIp](1).

The functional that we will consider here is adapted from the latter. For t € [t*,T], we set

Hpl(t) = Flpl(t) + Z (2(82 - ) ELIPIE) + (a2 + B2)*MLIpI(1)
(2.4.2)
s (205 [p)(8) + IM][p1(0))-
I=1
For the simplicity of notations, for j € {1, ..., ]}, a;j will denote ay if P; is the breather By or 0 if P;

is a soliton, and b; will denote B if P; is the breather By or cll/ 2 if Pj is the soliton R;. With these
notations, we may write:

(24.3) H[p](t) = F (t)+Z( 262 = a)Eylp]() + (a2 + 02)°M; [p]()

We would like to study locally th1s functional around the considered sum of breathers and
solitons. The aim of this section will be to prove two following propositions:

Proposition 2.12 (Expansion of H? conserved quantity). There exists T, > 0 such that if T* > T, for all
€ [t*,T], we have that

J
Hipl(t) = ) (FIP]() +2(67 - ) E[P] (1) + (a2 + 1) "M [P] (1))
(24.4) =

+ Hy[e](t) + O(||g(t)||?{2) + 0(6_26t||€(t)||H2) + O(e_zet),

Hy[e](t) := 1/Six—§/§2£§+;/ﬁ§€2+5/§§xx82+§/§482
] N J .
Z b? —a (/sﬁ(pj—B/PZsz(pj)+Z(a]2.+b]2) E/sz(pj.
j=1

j=1

where

(2.4.5)
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Proposition 2.13 (Coercivity of Hp). There exists yu > 0, T; = T;(A) such that, if T* > T;, we have for any
t e[t T],

K
(2.4.6) Holel(t) = ulle(®)?, - i > ( / e%?\/(pi)
k=1

The Propositions 2.12 and 2.13 will be used in the next concluding subsection to prove the Propo-
sition 1.9.
Firstly, let us prove the Proposition 2.12.

2

Proof of Proposition 2.12. We would like to compare H [P + ¢](t) and H[P](¢) (recall that p= P+e¢)
by studying the difference asymptotically when ¢ is small. Firstly, let us see how we could simplify

the expression of H|[P](t).

Step 1:
Claim 2.14. If T is large enough, for all t € [t*,T], we have that
_ . 2_ 2\r [P, 2,42 .
0 H[P(t) = ; (P [Pj](5) +2(0% - a?)E[P] (1) + (a? + 1) M[P]](t))
+0(e72%).
Proof. We prove that, for t € [t*,T],
(2.4.8) 'W[P] - Z (F [Pj] +2(b7 - a?)E[P;] + (a? +b7)"M [Pj]) < Ce™20t,
j=1
Let us compare F; [13] and F [l;]-]:
~ 1~ 5~~ 1=
(2.4.9) Fi[P] = / (Ep;’;x - EPf’-P,% + ZPﬁ)(pj(t, x)dx,
~ l1-=2 5-2-2 1-=¢
(2.4.10) F[Pj] :/(Epjxx_zpj ij+1 j )dx.

We compare the corresponding terms of these equalities. Let us start by the first one:

/ (E‘?Mi(h x) - ls}ix)

S/Eix|1_¢j(t/x)|+ Z /‘ls;xxls;xx

(r,8)#(j.j)

< C/e_gb‘_”f”e%th—(p]-(t,x)|dx

(2.4.11) +CZ/e—élx—wtle%t(pj(t,x)dx

i#]
ojt+6t +00 P
/ +/ e~ 20t gy
—00 0j+1t—0t

0j1t+0t 5
o

i#j v ojt-ot

@j(t, x)

8
< Cem!

< Ce—ﬁ’[t/l6,

by Proposition 2.10 and Remark 2.6. For the other terms of the difference to be bounded, we reason
in a similar way. This completes the proof of the claim. O

Step 2:
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Therefore, when we manage to compare H[p](t) and H[P P](t), we are also able to compare
H[p](t) and

b _ _
(24.12) > (FIPi] ) +2(02 = a)E[P] (6 + (a2 + 02)°M[ By] 1)
j=1

We compute the Taylor expansion of H|[p] = HIP + ¢):

HP+el =3 [ Pel=3 [P+ Prefeg [(Pref

1 [~ .
:E/Px /P2P2 /P +/P(4x)s+5/PP§-e
(2413) + ﬁzﬁxxg'i‘z/PSE'i‘E/&'xx—E/Pzé'i
_— 15 [ ~
P§52+5/PP”52+Z/P462+O(Ile(t)||§;z)

We can observe that the sum (2.4.13) is composed of 0-order terms in ¢, of 1%t-order terms in ¢,
of 2"_order terms in ¢; 3" and larger-order terms in ¢ are contained in O(||e(t)||i12) The sum of

the 0-order terms is actually HI[P]. The sum of 2"-order terms in ¢ is Ho[¢](t).
Let us study more closely the 15'-order terms:

~ — _ 3 [~
H, :/P(4x)g+5/PP§s+5/P2Pxxe+E/PSE
] _ ~ ] L f~
2_ 2 3 22
+Z(b].—a].)(2/Pxex(pj—2/P e(pj)+ (a].+b].) /Pe(pj.
j=1 j=1

From [3], we know that a breather A = A, 4 satisfies for any fixed ¢ € IR, the following nonlinear
equation:

(2.4.14)

(2.4.15) Ay = 2(B* = %) (Ary + A%) + (a? + 2)° A + 5442 + 5A%A,, + g A5 =0.

This equation is also satisfied for A = Ek with @ = ay and g = B for any k = 1,...,K (the shape
parameters of a breather are not changed by modulation).

For a soliton Q = R, we know from Q,, = cQ — Q? that Q satisfies for any fixed t € R, the
following nonlinear equation (see Section 5.1 (Appendix)):

(2.4.16) Q) = 2¢(Qux + Q%) +?Q +5Q0Q% +5Q%Q .y + %QS =
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This equation is not exactly satisfied for Q = R; for any | =1, ..., L (the shape parameters of a soliton
are changed by modulation). The exact equation satisfied by Q = R; is:

Quin) = 261(Qer + Q%) + 7Q +5QQ3 +5Q°Que + 50Q°
= 200,(t)(Qux + Q%) = 2¢1¢04(£)Q — c0,1(£)*Q.

(2.4.17)

We will compare H; and

H! /P(4x)g+5Z/PP “52/ Pjct ;Z/

j=1

—2]2]1: F—a (/ ]xxe+/P]e)+Z]:a+b2 / €.

j=1

—~

(2.4.18)

Firstly, let us compare /PPZS and Z /P ijez

(2.4.19)

j=1 h#i or i#j

To succeed, we need to find a bound for a term of the type / P1,P; xls}xs where h #iori # j. We can
perform the following upper bounding (where without loss of generality, we suppose that i # j):

Bt B g —By_p,
Sceﬁt/e—ﬂx—v,tle 5lx v]t||€|

(2.4.20) < C”E”L“eq_ /e—glx—vitle—glx—vjtl

< Clle]lpze P8,
by Sobolev embeddings and Proposition 2.3.
The bounding is quite similar for f 13213“5 and f P3¢. We observe that — f I;jxxe = f I;jxex.
To compare f P, ex@j and f]R Igjxsx, and for similar terms, we can use computations that we have
already performed at the beginning of this proof. Therefore,

/ﬁxgx(pf_/ls}xgx
R

This enables us to bound the difference between H; and Hj:

[P

Bt
(2.4.21) < Clle|lpe™T .

, _Btt
(2.4.22) |Hi — Hj| < Clle(t)l|ze™ .

Now, because our objects are not only breathers, H] is not equal to 0. Actually, we have that

L
, ~ ~3
Hl :zzco,l(t)(/Rlxx€+/Rl 5)
=1
L _ L _
—2ZC1C011(t)/R1€— Co,l(t)Z/Rle.
1=1

I=1

(2.4.23)
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Now, we introduce:

L
H{':ZZCO,l(t)(/EZxxE\/;?+/E3£\/(P715)
I=1
L L
_2chc0,l(t)/ﬁzeﬁ—zco,l(t)z/ﬁlg\/(pfls.
I=1 =1

By reasonning the same way as for H; and H’, we see that

(2.4.24)

(2.4.25) |H; — HY| < Clle(t)| e 29"
Because of (2.3.6) and because of the elliptic equation satisfied by a soliton, we have that
(2.4.26) H{ =0.
Thus,
(2.4.27) |Hi| = |Hy - Hj| + [H] — H}| + |H| < Clle(t)||g2e 27"
The proof of Proposition 2.12 is now completed. m]

Now, we would like to study the quadratic terms in ¢ of the development of H[P + ¢]. They are
contained in Hp[e](t).

Let A = B, be a breather (we note A; := d; A and Aj := d,,A). We define a quadratic form
associated to this breather:

1 5 5 15
leﬁ[e] = E/eix—E/A2€§+§/A§€2+5/AA“€2+Z/A‘*ez

+(ﬁz—az)(/ei—3/Azez)+(a2+52)2%/€2 =t Quglel.

From [3], we know that the kernel of this quadratic form is of dimension 2 and is spanned by dx, By s
and BXZBM;, and that this quadratic form has only one negative eigenvalue that is of multiplicity 1:

(2.4.28)

Proposition 2.15 (Proposition 4.11, [32]). There exists yZ 5 >0 that depends only on o and p (and does
not depend on time), such that if € € H*(R) is such that

(2.4.29) /Ale = /A2€ = 0,

then

2
1

(2.4.30) Q glel = ygﬁnengz—#T( / eA) .
ap

Remark 2.16. [uZ 8 is continuous in «a, . Note that translation parameters are implicit in QZ g

Let Q = R« be a soliton. We define a quadratic form associated to this soliton:

srop._ L 2 5 22,9 2.2 2 15 4.2
Qleli= [ &~ [+ [@iers [oouer+ T [at

+c(/e§—3/Q262)+c2%/62 = Q clel-

By the same techniques, such as those presented in [3], adapted to the quadratic form of a soliton,
we may establish that the kernel of this quadratic form is of dimension 2, and is spanned by d,Q
and d.Q, and that this quadratic form does not have any negative eigenvalue (see Section 5.2 (Ap-
pendix)). After that, from Section 5.3 (Appendix), we deduce that the coercivity still works when €
is orthogonal to Q and d,Q. More precisely:

(2.4.31)

Proposition 2.17. There exists ui > 0 that depends only on c (and does not depend on time), such that if
€ € H%(R) is such that

(2.4.32) /Qe = /Qxe =0,
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then
s s 2
(2.4.33) Qle] = pillells,

Remark 2.18. ug is continuous in c. Note that translation and sign parameters are implicit in the
notation Q:.

We would like to find a similar minoration for H, (which is a generalization of Q).
For j =1,...,], let us define for € € H?,

1 5 ~2 5 ~2
Qj[é‘] — E/eix(pj—E/Pj G?‘(Pj+§/ij€2(Pj

~ ~ 15 [ ~4
(2.4.34) +5 / P]-P]-xxe-’-(pj+Z / P; e*p;

+(b?—a?)(/ei(pj—?;/ﬁ-zezqo]-)+(a?+bf)2%/€2(pj,

and
) 1 5 [~ 5 [~
Qlel = E/eixqo]-—E/Pzef;qo]-+§/P,%ezqo]-
_ 15 [ ~
(2.4.35) +5 / PPxxezgo]-JrZ / Pte’;
~ 1
+(b]z'_“]z')(/eyzc(Pj—3/P2€2(pj)+(a]g+b]2-) E/ez(Pj-
We have that
J
(2.4.36) Ha[e(t)] :ZQ [e()].
j=1

Notations QZ, (QZ)’, Q; and (Q;)" will also be used.
We note that the support of ¢; increases with time, so that Q; is near a QZk g, Or @ Q:, when

time is large (note that ng B is the canonical quadratic form associated to the breather By, but the

canonical quadratic form associated to the soliton R, is @ ). However, firstly, let us study the

cj+co,(t)
difference between Q; and Q]’. . Using the computations carried out at the beginning of this part

(those done for the linear part) and Sobolev inequalities, we obtain:
(2.4.37) |Qile] - Qle]| < Ce 29*II€IIH2(R)

Lemma 2.19. There exists y > 0 such that for p > 0, there exists T; such that, if T* > T;, for any € € H 2(R),
forany t € [t*,T],

f
(2.4.38) [ Baveyoio = [ Byl =0
then
2
(2439 Qftel> [ (e2+e§+e§x>(pz<t>—§( [ B qo,i<t>) ~ pllell,

Proof of Lemma 2.19. The idea is to write Qb[ | as Qu, gl €4 /qob ] plus several error terms. Let j such

that P; = By. We will denote @1 := ¢/(55) — ¢/(C5F2) and @a; = 9"(l) — (522), as
defmed by (2.2.9) and (2.2.10), which will be useful to write the derivatives of @;j. We recall that

XG]
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they have the same support and bounding properties as ¢;. We have that

2 @? 2 @2 2 @t

2 » € T1j 1 e” Ty 1 € 1,

erJoi). = | €.+ + +—= [ ——=
/( (p])xx / xPj (01)? @; (6t)4 p; 16 (5t)* (P?

1 €2 (P2,j(P1,j exxex
2.4.40 - —=—+2
(2440 i) o T [ S5en [ G

2
1 exx€ Y1, €x€ P1jP2; 1 [ ece (Pl,j

+ = .
O ¢ ) G e 2) Grp g2
We observe that, for T* large enough and by using the inequalities that define ¢, the error terms

can be bounded by 5 ||e|| o < 100 ||e|| . The computation for the other terms is similar and the
same bound can be used for the error terms.

Because €, /qoZ satisfies the orthogonality conditions, we can apply Proposition 2.15, and obtain

that
b b oI 1 bR ’
(2.4.41) Qu, [e (pk] > ti|ley i), 5| [ € @Bk | -
Hi
To finish, ||e /qoZH%{Z is / (€ +e + eix)qoi(t) plus several error terms as in (2.4.40). O

Lemma 2.20. There exists y > 0 such that for p > O, there exists T; such that if T* > T;, then for any
€ € H%(R), for any t € [t, T, we have that

if
(2.4.42) [Refeion = [ Rutefeio =o
then
(2.4.43) Qle] > ;1/ (ez+e,% +e§x)<pi(t)—pllelléz

Proof. As in the previous proof, we write Q€] as Q¢ [e/¢]] (with Q = R) plus several error terms,
that are all bounded by p||e||2 , if T} is chosen large enough. However, Q¢ [€4/¢]] is not appropriate
in order to have coercivity, the appropriate quadratic form is QC reos () [ey/¢]]. This is why, we need

to bound the difference between Q7 [e4/¢]] and QCZ+COI ® levo; Thls difference is

~2 1
(2.4.44) Colz(t)(/ei(pj—3/Rl GZ(P]‘)+Clc0/l(t)/€2(Pj+corl(t)2§/€2(pj,

which can, because of the bound for cg,(t), for T; large enough (depending on A), be bounded by
P ”6”?{2

Now, e4/¢] satisfies the orthogonality conditions we need, and as in the previous proof we may
apply coercivity. m]

Proof of Proposition 2.13. We will now use the Lemma 2.19 and its version for solitons (Lemma 2.20)
for € = ¢(t). From this, we deduce that for p > 0 small enough we have that

(2.4.45) ZQ, e 2 lle)I2, ( / e(t)Brn 9! )

for a suitable constant u > 0. This means that for T; large enough, by taking, if needed, a smaller
constant y,

(2.4.46) HOle()] = el ( [ Bt )

The proof of Proposition 2.13 is now completed. O



ON THE UNIQUENESS OF MULTI-BREATHERS OF THE MODIFIED KORTEWEG-DE VRIES EQUATION 25

2.5. Proof of Proposition 1.9 (Bootstrap). We recall that p, from Proposition 1.9 is denoted by p
and T, is denoted by T in what follows, in order to simplify the notations. We do the proof that
follows under the assumption (2.2.1), so that the Propositions proved above are true for t € [t*,T].
The aim of this subsection is to complete the proof of Proposition 1.9 by using the Propositions
2.12 and 2.13.
We note that by Lemma 2.7, the conservation of F[p](t) and the definition of H|[p], we have for
any t € [t*,T], that

2
@5.) [HIpI(T) ~ Hp)o)| < Some "
Thus, for any ¢ € [t*,T],
CA2 —20t
(2.5.2) HIpI(t) < HIp)(T) + —-e 72"
From Proposition 2.12,
H [P +e|(t) - Hole](t)
] ~ o~ ~
(2.5.3) - Z; (F [B1]() +2(b - a2)E[B}] (1) + (a? + b3)*M [ P}] (t))'
p

20t 20t 3 o6t , H 2
< Ce + Cl|el|gee +Cllell7, < Ce +ﬁ”€”H2'

In order to obtain the last line, we use the fact that ||e(f)||;2 < CAe™ %, and we take T* > T: for
T: large enough (depending on A) so that ||¢[[p2 < C and Clle(t)||p2 < %, and thus C||£(t)||§’j,2 <
1
A lle®I2,.
We remark that if P; = By is a breather, then F[P;], E[P;] and M[P;] are all constants in time. If

Pj = R, is a soliton and we denote g the basic ground state (i.e. the ground state for ¢ = 1), we have
the following:

(2.5.4) MIR))(t) = (c1 + coy(t)) 7 M[q],
(255.5) E[R1(#) = (c1 + coy()) 2E[q],
(25.6) FIRIN(#) = (1 + coa(t)*Flg].

Using that, we can simplify R;(t) := F[E](t) + 2CZE[E](t) + ch[E](t) as follows:
3
Ri(t) = (c1+coa(t)**FLa] +2¢1(c1 + cou() 2E[q]
+ cf(cl + coll(t))l/zM[q]

5/2 3
t t)\?
(2.5.7) _ c?/z(l N Cozl( )) Fla] +2cf’/2(1 N COZZ( )) Elq]

1/2
t
+c?/2(1+ Co’é( )) M]q].
!

Note that from Lemma 2.8, |cq(t)]> < CA3e=% =29, That is why, if we take T; eventually larger,
lco,i(#)]® < Ce™29%. For this reason, we will do Taylor expansions of order 2 of (2.5.7):

/2 2
co O\ Beou(t) | 15cou(t) o0
(2.5.8) (1 = ) =1+3 o "% 2 +0(e7*%),
3
co(t))? 3coi(t)  3cou(t)? iy
2.5.9 1+ ——| =1+=-—= + - +0 ,
(25.9) ( o ) i Tsoa o)
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(1 N Co_(t))l/2 14 1coi(t) 100,1(15)2

(2.5.10) +0(e72%).

C] 2 C| 8 sz

This allows us to write:

Ri(t) = cf/z(F[q] +2E[gq] + M[q]) + cl% co,l(t)(gF[q] +3E[q] + %M[q]

(2.5.11) X

el 0 Flal + ELg1 - gMig]) + O )

Now, c?/ 2(F [q] + 2E[gq] + M[q]) is constant in time. For both other terms, we use that M [q]

Elq] = —% and F[q] = %, and we see that gF[q] +3E[q] + 2M[q] 0 and 185F[q] E[ 1-zM[q] =
This allows us to write:

16 _
(2.5.12) R(t) = ch/z +0(e72%).
From this, we deduce that
(2.5.13) Ri(t) — Ri(T) = O (e72%).

By using that H[p](T) = H[P|(T) = H[P](T), the equations (2.5.3) and (2.5.2), Claim 2.14, and
the fact that for t > Ty, O(”S(t)”?{z) < 160 ||€||H2, we have that

Ha[e](t)
< Hp](t) + Ce 20 100 IIé(t)II

]
—Z( (P16 +2(62 - ) E[Bj] 1) + (a2 + b2)* M [P ()

2

< H[P|(T) + c(% + 1) —20t 4 + 159 ||e(t)||

J
(25.14) - S (FIPf) ) +2(6% - )E[F] 6) + (a3 + 03 M [Fy] 1)

j=1

~ 2
= (H[P](T)+C(% +1)e‘29f 100 lle(®)II2, +Z (Ri(T) = Ru(t))
] —_— —_— —_—
_ Z (F [P;](T) + 2(b]2 - a]?)E [P;](T) + (a]? + b]?)zM [P)] (T))
j=1

AZ 29t
< ( - I

From Proposition 2.13, we deduce (by taking a smaller constant ) that

A2 B 1 K _ 2
(2.5.15) ullel?, < C(§+1) 29t+;2(/£3k,/(p£) .
k=1

We will now need to establish a result close to Lemma 2.7. We set forany j =1, ..., J:

(2.5.16) mj(t) := / %pz(t,x),/(pj(t,x) dx := mj[p](t).

Lemma 2.21. There exists C > 0, T, = T(A) such that, if T* > T/, forany j = 1,...,], for any t € [t*,T],

(2.5.17) |mi(T) = m;(t)| < C A2 —20t
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1
Epz(t,x)1 /qo]-(t, x) dx
SO KT My
(2.5.18) 20t 4" |\p;  2(ot)? \/_
2
1 P 1 x ¢,
EEE /p"p_i] 4 / p25t2 ]
7k VoI
J
From the inequalities that define ¢, we find that

Proof. We compute:

d 1 C
(2.5.19) — / —p2(t, X)J@i(t, x) dx| < — / 2 192 4 p4).
7 | 3P (E0Ne; 7t Joy oo (px+p*+pY)
From now on, we can follow the proof of Lemma 2.7. O

Now, we observe the following:

(2.5.20) /(13'+ 5)2@:/EZ+2/55@+/52M+Err,

where Err stands for the other terms of the sum, which we consider as error terms, and we will
show that they are bounded by C e 0t
For i # j and any h (if P; = By is a breather),

—— (5i+0j+1i 5
(2.5.21) /PiPh\/(?j < C/ e~ 2lxvitl gy < Ce bt

—5t+(7jt
and

- [l (/7o) ( ]

% %)
< Ce 2t |elly2 < CAe %72t < Ce7,

where T* > T with T} being large enough depending on A. If we use the calculations we have
made in the proof of Claim 2.14, we see that

[7- [7

This proves the bound for the error terms.
~2 —2
Now, we study the variations of (2.5.20). We know that / P = / Br has no variations. We can

apply Lemma 2.21 for f (j; + 6)2\/(7]- . By writing the difference of the equation (2.5.20) between t
and T, and using that ¢(T) = 0, we deduce, for T* > max(T, T;), that

[5o

(2.5.23) < Ce™?,

A2 -6t 2
SC(T'F].)E +||€||H2

(2.5.24)
A° 1]e % + t
< _
< ¢+ + Elle®le
Thus,
J 2
A? 1
2 o201
#||€||H2SC(E ) +;Z(/€P] )
(2.5.25) j=1
At 260t
<A _
<[ +1)e I
Therefore,

4
(2.5.26) le®)II2, < c(?t + 1)e-29f.
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By using (2.5.26), the mean-value theorem and Lemma 2.8, we deduce that for t € [t*,T],
lp() = P@)l 2 < le®ll,p2 + [IP®) = PO,

< C( A—4 + 1)e_gt
o4t
K L
+ C(Z (16O + x2.(B)]) + D (Ix0u()] + |Co,l(f)|))

k=1 I=1
A4 ot K T T
(2.5.27) <C @He +CZ(/t X1 (8)ds /tlek(s)ds
k=1

L
+C Z ( [T x),(s) ds /tT OLE )

=1

+

|

+

We take A = 4C (where C is a constant that can be used anywhere in the proof above) and

(2.5.28) T =max (I}, T, T;,T,, T2, T;, T;, T3)
(depending on A), where T := T¢(A) is such that for t > Tg, {‘% < 1. And thus, for any ¢t € [t*,T],
At A
5. — <2C=—,
(2.5.29) C(54t+1)_2C 5

which is exactly what we wanted to prove.

3. p IS A SMOOTH MULTI-BREATHER
Our goal here is to prove Proposition 1.10.

3.1. Estimates in higher order Sobolev norms. Firstly, we notice that the proposition is already es-
tablished for s = 2. We note also that if this proposition is proved for an s > 2 with a corresponding
constant A, then this proposition is also valid for any s’ < s with the same constant A;. This means
that A can possibly increase with s and that this proposition is already established for 0 < s < 2.
From now on, we will denote (as before) p,, by p, T,, by T and p,, — P by v, and make sure that the
constant A, that we will obtain in the proof does not depend on n (although it will depend on s).

For the constant 0, we will take the usual value: 6 := g—; For the constant T*, we will also take the
value that works for Proposition 1.6.

We will prove the proposition by induction on s (it is sufficient to prove the proposition for any
integer s). Let s > 3. We will prove the proposition for s, assuming that the proposition is true for
any 0 <s’ <s-1.
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Let us deduce from the (mKdV) equation the equation satisfied by v:

J
(4 :Pt—ZPjt
j=1
J J
= - Pxx+P3_Zijx_ZP]3)
j=1 j=1 x
J
=— Uxx+(U+P)3—ZP]3)
j=1

]
= vy, +v3+3UZP+3vP2+P3—ZP]3) .
j=1 x

(3.1.1)

X

Firstly, we compute & / (d5v)? by integration by parts:
d

& [ e =2 [ @)@

J
=-2 / o5t (vxx +0% + 30°P + 30P% + P? - Z Pf) (950)

:2(—1)S+1/825+1(P3 ZP3)U 2/as+l( 3)(8;2))
—6/(95+1 2P as /as+1 UP2 as )

because f (25F30)(d50) = — f (2520)(95 1) =

We will now bound above each of the terms of the obtained sum. By Sobolev embedding,

Proposition 2.3 and Proposition 1.6,
] ]
/a§5+l(P3 —pr)v < ||v||Loo/ 9%+l (P3 —pr)
j=1 j=1
(3.1.3) < C”v”Hle—ﬁTt/Z
< CAe—@te—ﬁTt/Z
< CAe™ < CAZ e,

where C > 0 is a constant that depends only on s.
We observe that

5 (0%) = 3(9510)v? + 6(s + 1)(950)vx0 + Z1 (v, U, ..., 5 10),
(3.1.4) ajsc+1 (UZP) — 2(8§+lv)vP +2(s + 1)(8;0)(013))(
+Z5(0,0y, ..., 510, P, Py, ..., 5°1P),

where Z1 and Z; are homogeneous polynomials of degree 3 with constant coefficients.
Now, let us look for a bound for f 2571(03)(d50). Firstly, by integration by parts,

[t @)@ =3 [ (@) 4361 [ @067, + / (#50)21
:6(s+21)—3/ /

(3.1.2)

(3.1.5)
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Then, we bound above each of the terms of the obtained sum:

J@0redn] = Clellallel [ @207
< Clolfe [ sy
< Cllplhe + 1Ple) e [ (50)°

< ccer—Qf/(a;v)2 < CAS_le-Qf/(a;v)z.

We have actually shown in the computation above that ||v ”%12 can be bounded above by |[v||y2 (with
a constant that depends only on problem data), and therefore the degree of ||v||g2 can be lowered
without harm in the upper bound. We will use this fact again for the rest of the proof. In fact, all
what it means is that, for several terms, what we have is more than what we need.

By the Cauchy-Schwarz and Gagliardo-Nirenberg-Sobolev inequalities,

‘ / (250)Z1

(3.1.6)

s—1

< c/|a;v|(2|a§;v|3)

s’=0

1/2 s-1 1/2
ot 5 e

s’=0

1/2 s-1

e fot] "S5 st f o]
< cZ( [l 2)( [1a5of + /Wﬂv'z)

s'=0

_ _ 2
< CA?_le 20t L CAq_qe 9*/|8ch| .

(3.1.7)

IA

Similarly, we bound f 251(v2P)(d5v). By integration by parts,

/ 3571 (62P) (950) = / (930)%) 0P+ 265 +1) / (320)2(0P). + / (950)Zs
:(2s+1)/(a;v)2(vp)x+/(a;v)zz.

We bound above each of the terms of the obtained sum, starting by

[ @ p),| < Cliolis + i) [ @20)°
< CAe—Gf/(a;v)z.

The upper bound of | / (8§U)Z2| is similar to (3.1.7) above:

[ @)z,

(3.1.8)

(3.1.9)

(3.1.10)

_ - 2
< CAZ e+ CAyqe 9f/|a;v| :
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f 231 (vP?)(d5v) remains to be bounded. By integration by parts,
/(95+1 UP2 (95 /(95+2 UP2 as 1 )
- [ @) 0o rt - 42 [ 3570)030) (P,
—(S-'-z)zﬁ/(8§v)(8§_1v)(P2)xx+/(8§_lv)Zg(v,vx,...,8;‘10)
-2 [ ((es0)?) P2 1) [ (950)*(P?
=5 [ (@) Pro+D) [ (930)*(PY),
SELRRY / ((@10)) (P?),, + / (3510) 2%(0, 03, . 35 10)
X
- 25;1 / (950)%(P?), + / (05710) Z5(0, vy, ..., 85 10),

where ZO and Z3 are homogeneous polynomials of degree 1 whose coefficients are polynomials in
P and its space derivatives. We have that |Z3| < C(}23/_ |<9S v|). Therefore,

/ (95710)Z5

Thus, by taking the sum of all those inequalities, we obtain:

;t/(as ) +3(25+1)/ (950)*(P?),

Next, we perform similar computations for 4 s f (957 10)?P2:

& [etorr =2 [ @)@ oz [ @ orme

J
(3.1.14) =-2 / & (vxx +0° +30”P + 30P% + P? - Z P]?’) (957 v)P?

/851 (PXX+ZP3)

Let us study each of the obtained terms.
Firstly,

(3.1.11)

(3.1.12)

< CAZ 7%,

(3.1.13)

- - 2
< CAZ e + CAsqe 9f/|a;v| :

2 / (9520) (95 10)P2 = 2 / (9510) (950) P2 + 2 / (3510) (@ 0) (P2).
(3.1.15) = —3/ (9iv)2(P2)x—2/ (950) (93 7'0) (P?)
=5 [ @ (P, + [ 050 (P,
Indeed,

(3.1.16) ' / (95710)* (P?) .

Secondly,

J
(3.1.17) ‘ / a;(pLZp]?’)(a;—lv)pz
j=1

can be obtained similarly to the first part of the proof (starting by an integration by parts to have
d372v at the place of 95710).

< CAZE_ZGt

< CAZ e
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/85 (95 1y /(85 )((9;_1?])02132+/Z4(U,Ux,...,(9;_lv)P2
:_g / (95710)? (v?P?) + / Z4P?,

where 74 is a homogeneous polynomial of degree 4 with constant coefficients. Both terms are easily
bounded by CA?  ¢=20".

Fourthly, for f d5(v?P)(d571v)P? and f d5(vP?)(d571v)P2, we reason similarly.

Fifthly,

/
(3.1.19) '/(a;—lv)z(Pxx+ZP]3) P
=1

Thirdly,

(3.1.18)

< CA2 je72%

is clear.
Therefore,

(3.1.20) ;t / (@57 10)?P2 +3 / (950)%(P?), | < cA2 720",
We set

(3.1.21) F(t) := / (@50)° - (2s +1) / (957 10)?P?

By putting the both parts of the proof together:

(3.1.22) ‘%P(t)

< CAZ e+ CAsqe™™ / EXY
Because | / (8§‘1U)ZP2| < CA2e72%, we can write the following upper bound:
(3.1.23) / (a;v)2 < |F(t)|+ CA2_e72",

Therefore, we have, for a suitable constant C > 0 that depends only on s,

(3.1.24) %F(t) < CA? (6729 + CAsqe”PE(1)).
For t € [T*,T], by integration between t and T (we recall that F(T) =
Td Tld
|F(t)| = |F(T)—F(t)| = / —F(o)do S/ —F(o)|do
p o dt . |dt
T T
(3.1.25) <CA% / e 299 dg + CAs4 / e 97 |F(0)|do
t t

T
< CA% e+ CAs,4 / e 99F(0)| do.
t
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By Gronwall lemma, for all ¢ € [T*,T],
-20
|F(t)] < CAZ 2%

T o
+CAs / e—GOCAf;_le-ZGOexp( / CAs_le_Q”du)do
t t

< CA2 je72%

T
+ CA?_1 exp (—C%S_l e‘gt) / e300 exp ( - —C%S_l 6_60) do
t

(3.1.26) )
< CA?_le_ZQt + CA?_1 exp (—C%S_l) / e 309 dg
t
< CA2 729 + CA® |exp (%)e—\”f
< CA;’_1 exp (%)e‘wt.
Therefore,
(3.1.27) / (950)* < Age™20",

where A; := CA‘E_1 exp (CAQH) and C is a constant large enough that depends only on s. This
conclude the proof of Proposition 1.10, and so of Theorem 1.2.

3.2. Uniformity of constants. We conclude this section with an explanation regarding Remark 1.3.

In the proof above, the constants that we obtain A, T*, 0 do depend on P;(0) (1 < j < ]). Actually,
we may characterize this dependence. In fact, they do not depend on the initial positions of our
objects in the case when our objects are initially ordered in the right order and sufficiently far from
each other.

Theorem 3.1. Given parameters (1.2.1), (1.2.2), (1.2.3) and (1.2.4) which satisfy (1.2.5), there exists D > 0
large enough that depends only on ay, Bk, ¢ such that if

(3.2.1) Viz2, xj(0)2x1(0)+D,

then the following holds. We set O := %, with B and T given by (2.0.1) and p(t) the multi-breather associated
to P by Proposition 1.7. There exists As > 1 for any s > 2 that depends only on ay, fi,c; and D such that

(3.2.2) VE>0, |lpt)—=P(t)|lgs < Ase™?".

Firstly, we will prove that for any D > 0, if (3.2.1) is satisfied, then the constants A; and T* do
only depend on ay, i, c; and D. Finally, we will prove that if D > 0 is large enough with respect to
the given parameters, then we can take T* = 0.

To establish the validity of this theorem, it is enough to read again the whole article and to make
sure that on any step of the proof, there is no dependence on initial positions of our objects when
our objects are initially far from each other for the constant C. This will allow to claim the same for
the constants A and T* (but, these constants may depend on D). This works, but we should change
a bit the way we write our results.

For Proposition 2.1, we should write:

(3.2.3) 1979} P;(t, x)| < CePlx—jt=x;0)]

Therefore, in Proposition 2.3, we have nothing to change, but the constant C do depend on D. This
will also be the case in the following propositions and lemmas of this proof.

We should replace ¢;t for the definition of ¢; in (2.2.7) and (2.2.8) by gt +
account of initial positions. More precisely, we will have for any j =2,...,] -1,

Y —gif— xj-1(0)+x;(0) X — it — xj(0)+x;11(0)
(3.2.4) Pji(t, x) = w( : |-y — 2 |,

xj,1(0)+xj(0) .
~———— to take into

ot ot

and similarly for other definitions.
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After having done the modulation with C and T* depending on D, for Proposition 2.10, we
should write:

(3.2.5) 101 Pi(t, x)| < Ce™ 20t =510l 5t

Therefore, with these adaptations, the same proof works to prove that A; and T* do depend only
on ay, Bk, c; and D.

Now, given ay, i, c;, we choose Dy > 0 in an arbitrary maner. Therefore, we get A;(Dp) and
T*(Dy) associated to Dy. Let A := vj —v; the maximal difference between two velocities. We set
D := Do+ A-T*(Dg). Therefore, if we suppose (3.2.1) in t = 0 for D, then we have (3.2.1) in
t = =T*(Dy) for Dy. Therefore, by appliying the intermediate result for Dy, we obtain the desired
conclusion with D and A, that depend on Dy.

4. UNIQUENESS

p is the multi-breather constructed in the existence part. The goal here is to prove that if a solution
u converges to p when t — +co (in some sense), then 1 = p (under well chosen assumptions).

We prove here two propositions. For both of them, we assume that the velocities of all our
objects are distinct (this was also an assumption for the existence). The first proposition does not
make more assumptions on velocities of our objects, but it is a partial uniqueness result as we
restrict ourselves to the class of super polynomial convergence to the multi-breather. The second
proposition assumes that the velocities of all our objects, except possibly one, are positive (this is a
new assumption and it is needed because this proof uses monotonicity arguments).

4.1. A solution converging super polynomialy to a multi-breather is this multi-breather. The goal
of this subsection is to prove Proposition 1.5.

Remark 4.1. Note that in Proposition 1.5, we don’t make any assumptions on the sign of vy or v,.
This uniqueness proposition has the same degree of generality as Theorem 1.2.

Proof of Proposition 1.5. Let p(t) be the multi-breather associated to P by Theorem 1.2. Recall that for
any s,

(411) lp(t) = P(®)ll= = Oe™™),

for a suitable 6 > 0.

Let N > 2 to be chosen later. We take u(t) an H? solution of (mKdV) such that there exists Cy > 0
such that for ¢ large enough,

(4.1.2) () = ()|l < %

From that, we may deduce that for t large enough (namely, t > 2C( along with the previous
condition),

@13) Jutt) = PO)lge < 3

Our goal is to find a condition on N that do not depend on u, such that the condition (4.1.3) on
u for t large enough implies that u = p.
Because of (4.1.1), the condition (4.1.3) for t large enough is equivalent to: for t large enough,

414) lutt) = pl6) e < -

We denote z(t) := u(t) — p(t). Our goal is to find N large enough that do not depend on z, for which
we will be able to prove that z = 0, given

1
(4.1.5) lz®)lp2 < N

for t large enough. Because z is a difference of two solutions of (mKdV), we may derive the
following equation for z:

(4.1.6) Zy + (Zxx +(z+ P)3 - p3)x = 0.

We divide our proof in several steps.
Step 1. Modulation on z.
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For j =1,..,],if P; = B is a breather, we denote

L e— aJ(.'lBk
4.1.7) K;j:= (ﬁszk ,
and if P; = R; is a soliton, we denote:
(4.1.8) Kj = d«R;.
We may derive the following equation for K;:
(4.1.9) (Kt + ((Kj)ux +3P7K;), = 0.

Forj=1,..,],if P; = By is a breather, let ¢;(t) € R? defined for ¢ large enough and if P; = R; is a
soliton, let cj(t) € R defined for ¢ large enough such that for

J
(4.1.10) Z(t) = z(H) + Z ci(DK;(t),

=1

where ¢;K; is either a product of two numbers of R or a scalar product of two vectors of R?, the
following condition is satisfied: for any j =1, ..., ], for t large enough,

(4.1.11) / Z(HK;(E)Jp;(t) =0,

where ¢; is defined in Section 2.2 (in this proof, it is OK to take 6 = 1). It is possible to do so in
a unique way, because the Gram matrix associated to Kj(t)m, 1 < j <], is invertible; which
is the case because Kj(t)m, 1 < j <], are linearly independent. This is why c;(t), 1 < j <],
are defined in a unique way. For the same reason, c;(t) is obtained linearly from / Ki(£)z(£)\/pr(t),

1 < k < ], with coefficients that depend only on Kk, 1 < k < J. This is why, from Cauchy-Schwarz,
we may deduce the following lemma.

Lemma 4.2. Forany j =1, ..., ], for t large enough, there exists C > 0 that do not depend on z, such that
(4.1.12) i ()] < Cllz(D)llr2,

(4.1.13) 122 < Cllz(®)l g2

The Gram matrix is C! in time and invertible. This is why, its inverse is C! in time. Because
/ Kjz/pj are C !'in time, we deduce by multiplication that cj(t) are C Lin time.
By differentiating in time the linear relation that defines c;(t), we see that c;.(t) is obtained linearly

from ka(t)z(t)\/(pk(t), 1 <k <], and from %ka(t)z(t)\/qok(t), 1 < k < ], with coefficients that
depend on Kj, 1 < k < | (and their derivatives). Because it is easy to see that % f Ki(£)z(t)\/ pr(t)
may still be bounded by C||z(t)||;2, we deduce that for any j = 1, ..., ], for t large enough, there exists
C > 0 that do not depend on z, such that

(4.1.14) ;O] < Cliz()]l 2.

We may derive the following equation for z:

] ]
(4.1.15) Zi+ (Zar +3297), = (322 +2°) + Z ch(H)Ky -3 Z ck(t)((P2 = pP)Ky) .
k=1 k=1

Step 2. A bound for |c}(t)|.
The goal here is to improve (4.1.14).

Lemma 4.3. Forany j = 1,...,], for t large enough, there exists C > 0 and © > 0 that do not depend on z,
such that

(4.1.16) (D)) < CIZONlz + Ce™ "zl + Cllz(B)I13,..



36 ALEXANDER SEMENOV

Proof. We may differentiate (4.1.11):
d

0= dt/zK]\/(?
:/thj\/aj+/z(Kj)t\/aj+/EKj(\/aj)t
(4117) :_/(Exx +3§P2)ij\/aj_/(322P+Z3)ij\/aj

J ]
+Z/(c;{(t)-Kk)Kj\/aj—3ZCk(t)/(Ck(t)'((PI%_PZ)Kk)x)Kf\/af
k=1 k=1
- / Z((Kj)xx +3K;P?) ) + / ZKi(/9)r-

We know that (1/@;); and (y/@;); are bounded (from inequalities established in Section 2.2). This
is why, for any t large enough,

(4.1.18) ‘ / ZKj(\[o)):

For the same reason, after eventually doing an integration by parts, for any t large enough,

/ (Zux +320%) Kiyf7| +| [ Z(Kj)sx +3K;P2) | < CIED -

f (3z%p +z%),K j/®j is clearly bounded by C ||z(t)||f{2. Finally, we see that (P,% - p?)Ky is exponentially
bounded in time (in Sobolev or L* norm), and using Lemma 4.2, we deduce that

(4.1.20) / (cx®)- (P2 = pPIK), ) K < Ce O l1z(8) 1,

for a suitable 0 > 0 that do not depend on z. This is why, we deduce that for any j = 1,...,], for ¢
large enough, there exists C > 0 and 0 > 0 that do not depend on z, such that

Z/ ci(t) - Ki) Kjf9;

We recall that for any (e1, e2) € (R)? or (R?)?,e3 € Ror R?, we have the following equality between
two elements of R or R? (where vectors are denoted as a colon)

(4.1.22) (61 . 62)63 = (6{(826;))T,

where T denotes the transpose.

First of all, because / KkK].T\/(Tj converges exponentially to / KkKjT, fork #j, / KkK].T is exponen-
tially decreasing, and from (4.1.14), we may write that for any j = 1, ..., ], for t large enough, there
exists C > 0 and 0 > 0 that do not depend on z, such that

T
(c;(t)T / KjK].T)

Now, in the case when K j € R?, using the fact that its components are linearly independent and
Cauchy-Schwarz inequality, we deduce the desired lemma. ]

< ClIz()ll 2

(4.1.19)

(4.1.21) < ClIZB)llg2 + Ce™ M lz(B)ll2 + Cllz(B)I17,,

(4.1.23) < ClIz®)llg2 + Ce™ izl + Cliz(B)I17,,

Step 3. Coercivity.
We define the following functional quadratic in z:

1 5 5
J

(4.1.24) ]

+‘1(b]2.—a]2.)(/ x(p]—B/ )+Za +b2 /z @;.

]= J=
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We will prove the following lemma:

Lemma 4.4. There exists C > 0 that do not depend on z, such that for t large enough,

] 2
(4.1.25) [EGIE CH(t)+CZ ( / EPj) :

=1

Proof. We denote Q; the quadratic form associated to P;. We remind that

1 5 5
€] :E/E;Zcx_E/P}?"EJ%+§/(Pj)§52+5/Pj(Pj)xx52
15 4.2 2 2 2 2.2 2 221 2
Pie +(bj—aj) ex=3 [ Pje +(aj+bj) 5 /¢

In any case, we have that for any j = 1,...,], there exists u; > 0, such that if ¢ € H? satisfies
ijE = 0, then we have

2
(4.1.27) Qjle] 2[1]’”5”?42_%(/813]') :
]

Here, we apply this coercivity result with ¢ = z,/@; for which the orthogonality conditions (4.1.11)
are satisfied. Thus,

2
(4.1.28) IZy@ill2. < CQiZ )] + C( / E'Pf«/@) :

We denote:

’ 1 5 5
Qj[é‘] 1:E/Eix(Pj_E/PZS;%(Pj+§/p§52(pj+5/ppxxez(pj
15 42 b2 — 42 2 22 2,12 21 2
7 [ PEei 05 -ap)| | &pi=3 [ P+ (ai+b) 5 [ €9

J
(4.1.30) H(t) = ) QIZ(1)]
=

(4.1.26)

(4.1.29)

and we observe that

In Q]’.[E(t)], we may replace p by P; with an error bounded by Ce‘9t||Az'(t)||?{2, because of (4.1.1)

mainly. After that, the expression obtained may be replaced by Q;[z(t)/@;(t)] with an error
bounded by %||'zv(t)||?{2 (cf. calculations done in the proof of Lemma 2.19). For the same reason,

Izve; ”%12 may be replaced by f (z° +22 + 22 ¥x)®j with an error bounded by T ||z(t)|| . Therefore,
because of

(4.1.31) I1Z11%, Z/ + 25 +25) 9

the fact that P;/¢; converges exponentially to P;, and the fact that % may be as small as we want if

we take t large enough, we deduce the desired lemma. m]
Step 4. Modification of H for the sake of simplification.
We define:
H(t):= / [%szx - g(Ci+ PYE+p)i - p?pz — 2Zpps - Zp’py)
1 1<
(4.1.32) Z((~+p)6—p —62p°) +§Z as +b2 /z ®;

=1

J
1 1 ~
+2Z; (b5 —“]2-)/ [5’2'5 -7 (E+ P)4—P4—4ZP3)]<PJ‘-
]:
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We observe that the difference between H and H is bounded by O (||E(t)||;2). We can thus claim:

Lemma 4.5. There exists C > 0 that do not depend on z, such that for t large enough,
/ 2
(4.1.33) IZ()11%, < CH(t) + CZ ( / ’z“pj) :
j=1

Step 5. A bound for %.
Lemma 4.6. There exists C > 0 and O > 0 that do not depend on z, such that for t large enough,
dH| _C 0o -0t 13 = 2
(4.1.34) =i | = IOl + CezO 120l 2 + ClIzMO 212012

Proof. We develop the expression of H(t), we differentiate each term obtained and we use (4.1.15),
the fact that p is a solution of (mKdV) and the fact that (¢;); = —$(¢;)x, where ¥ is bounded
independently from z because of the compact support of ¢;. We obtain several sorts of terms after
doing several integrations by parts and several obvious simplifications.

Several terms are clearly bounded by one of the bounds of the lemma, because in these terms, the

cumulated degree of z and z is larger than 2. As an example, we show how to deal with / ZxxxZZxxP-

We use the fact that z =z — Z§=1 ¢jK;, and we obtain the following:
J

‘/Zxxxzﬂfxxl7 :/Exxxzzxxp—/Exxx(;cjl(j)zxxp
(4.1.35) | ] ]
_/(ch(Kj)xxx)Exxp+/(ch(Kj)xxx)(ZCjKj)Exxp.

=1 =1 =1

It is easy to see that any of these terms is bounded as we want in the lemma (several of them are
bounded by %Hfz'(t)l%z, the last one is bounded by C||E(t)||Hz||z(t)||%{2), because of Lemma 4.2 and
of (4.1.5).

Other terms contain z quadratically and contain (¢;)s. And, (¢;), is bounded by &. This is why,
such terms are bounded by %ll’zv(t)llip.

Several other terms can be, by doing suitable integrations by parts transformed in one of the two
following expressions:

/
6 Z /?pr [pxxxx - Z(b]z - a]z)(pxx + pS) + (ajz + b]z)zp
(4.1.36) j=1

3
+5pp% +5p P + 5;95] i,

J
3 /Esz [pxxxx - 2(b]2 - a]z)(pxx + P3) + (ajz + bjz)zp
(4.1.37) =1
3
+5pp2+5p%pa + 5° |-

To deal with these two expressions, we use the elliptic equation satisfied by P;:

(Pj)xxxx - Z(b]z - ajz‘)((Pj)xx + P]?’) + (ajz + bjz‘)zpj
(4.1.38) ) 5 3 .
+5P;(P))y + 5P]- (Pj)xx + Epf =0,
and the fact that

3
(41.39) [Preex = 2067 = a})(pax +p*) + (a5 + b7)°p +5ppT +5p%pax + 5p°| @)
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converges exponentially to

(P]')xxxx - Z(b]g - ajz‘)((Pj)xx + P]?)) + (ajz + bjz‘)zpj
(4.1.40) ) 3
+5P;(Pj); + 5P (P)xx + >

which is a direct consequence of (4.1.1). This is why, such terms are bounded by %”E(t)”i{z

p?
]I

Other terms contain (sz - pZ)Kj, which is bounded exponentially, with c; bounded by ||z||yz.

Those terms are obviously bounded by Ce=% ||Z(#)|| 2 ||z(£)]] g2-
Other terms contain K (or a derivative) and ¢; with j # k. In this case, this product gives an
exponential decreasing, and such a term is bounded by Ce=%|Z(t)|| 2 ||z(t)|| g2, using (4.1.14).
Therefore, we are left with the following terms:
J
c;.(t)/ [(Kj)xxExx — 10K zxppx — 5Kj’zvp32¢

j=1
(4.1.41) ~ ~ 15 _

—10(K))Zppx = 5(K))xZep® + - KjZp*
+2(03 — a)(K)):Zx — 6% — a?)K Zp? + (a + b?)ZK;z‘] 9;.
We may replace p by P; in the preceeding expression with an error bounded by
(4.1.42) Ce "1Z()l g2 lz(t) |2,

because of (4.1.14) and (4.1.1). This is acceptable, knowing the result we want to prove. By inte-
gration by parts, we obtain several terms of the form c;(t) / (Kj)xxzx(@j)x, which are bounded by

%|c;(t)| IZ(t)]|42- Now, from Lemma 4.3, we deduce that they are bounded by
C - Ot~ ~
(4.1.43) T”Z(t)”%{z +Ce " IZONmallz(®ll 2 + CIZO 212012,

which is exactly the bound that we want. And, we are left with the following terms:

]
C;(t)/ [(Kj)xxxx +10(K;)x Pj(Pj)x +5Kj(P]')‘3‘C
=1

(4.1.44) 15
+10K;Pj(Pj)xx +5(K))xx P} + -

2 2 2 232 =
=2(b7 = a5)(Kj)xx = 6(bF — a})K;P7 + (a7 + b7YK; |Zg;.

4
K;P:

The last expression equals zero, because of the elliptic equation satisfied by K;, which we may
derive by differentiating (4.1.38). m]

Step 6. A bound for 4 fZPj.

Lemma 4.7. There exists C > 0 and 0 > 0 that do not depend on z, such that for t large enough, for any
i=1..,],

(4.1.45) ‘E/ZP]' < Ce™llz(B)llpz + Cllz(B)1F-

dt

Proof. We observe that

4146 [ENEDXILS
k=1

Firstly, for k = j,

(4.1.47) / K;P; =0,
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and for k # j,

(4.1.48) %[Ck(t)/KkP]’] :C/k(t)/KkP]'+Ck(t)/(Kk)tPj+Ck(t)/Kk(P]')t,

and it is obvious, from Lemma 4.2 and (4.1.14), that the latter is bounded by Ce=%||z(t)|| 2.
It is left to bound % / zP;. We use (4.1.6) and we obtain:

N e

2

Several terms are immediately boundable by C||z(t)]] s

parts and we are left with
(4.1.50) / z(p? —Pf)(Pj)x,

which is obviously bounded by Ce=%||z(t)||52, because of (4.1.1). O

we kill several others by integration by

By differentiation of a square, we obtain that

Lemma 4.8. There exists C > 0 and 0 > 0 that do not depend on z, such that for t large enough, for any

i=1..,],
d _ 2

Step 7. A bound for ||z(t)||g2 in function of z(t).
Because we have chosen N > 2 and because of (4.1.5), we may claim that for ¢ large enough, the

integral
+00
[ 1l ds
t
is finite.

Because of Lemma 4.2 and (4.1.5), we deduce that
(4.1.52) cj(t) =t—+400 0.

Knowing this, from Lemma 4.3, we deduce by integration that

O AT

+0o0 +0o0 +00
< C/ 1z(s)| g2 ds+C/ e~ |z(s) || 2 ds+/ ||z(s)||i[2 ds.
t t

t

(4.1.51) < Ce " IZONr izl + CIIZO N2 201

(4.1.53)

Knowing this and using (4.1.10), we may deduce that

+00 +oo
|mwmsammm+9/|MMm%+c/ e05 | 2(5) 2 ds
t t

+00
+/ I2(s)I., ds
t

+00
< Cllz(®)llg2 + C / IZ(s) |2 ds + C supllz(s)llze ™"
t

s>t

(4.1.54)

+00
+mwwwm/|mwm@
t

s>t

which implies, because

+00 +00
(4.155) / IE6) e ds,  supliz(s)llsee ", wwmwm/ 12() Il ds
t t

s>t s>t
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are decreasing in time, that

+00
supl|z(s)ll2 < Csup||z(s)lly2 + C / IZ(s) 112 ds + C supllz(s)l2e ™
st s>t t s>t

(4.1.56) .
+&wam/ 12(5)lly2 ds,
t

s>t

and because e~ and /:OO |z(s)|| g2 ds may be as small as we want for ¢ large enough (dependent on
z), we may deduce that

Lemma 4.9. There exists C > 0 that do not depend on z, such that for t large enough,

+00
(4.1.57) mmMmmmmwmsmwM@ch/ ()l ds.
t

s>t s>t

Step 8. Conclusion.
By integration, from Lemmas 4.5, 4.6 and 4.8, for t large enough (depending on z), with constants
C and 0 that do not depend on z,

— Ll B T e~
B <C [ SR ds+C [ e IO elzole b
t t
+00
@.158) +C [ B el ds
t

—~ e I _
< CowplESlhe [ (SIEMe +e IO le + 126)1E) ds
t

s>t

Because the right-hand side of the inequality above is decreasing in time, we deduce after taking
the supremum of the previous inequality and after simplification, that for ¢ large enough,

+00 +oo
suplE < C [ SIEOds+C [ e a6z ds
s>t t t
+00
+C [ a6 ds
t

+00
<C [ IOl ds + Csupla(s) e
t

s>t

(4.1.59)

+00
+mwwwm/|mwmw
t

s>t

And using (4.1.5), the fact that N —1 > 1 and the fact that e~% is decreasing faster than tN%Z, we
deduce that for t large enough,

_ e 1
(4.1.60) sup||z(s)|lp2 < C/ EHZ(S)HHZ ds + CtN—_z sup||z(s)|| g2
t

s>t s>t

And using Lemma 4.9, we deduce that

- o1 1 -
sup||z(s)l|2 < C/ =|Iz(s)ll g2 ds + C = supllz(s)l| g2
s>t t S t s>t
(4.1.61)

1 teo
+CW—_2[ ”Z(S)”HZ ds.
1

And because -z can be as small as we want for ¢ large enough, we deduce that for ¢ large enough
and for a constant C > 0 that do not depend on z or on N,

+00

— — Al 1 —
(4.1.62) IZ(Oll2 < supllz(s)llg2 < C/ SIZ()ll2 ds + CtN_—z 1z(s) | g2 dis.
t t

s>t

Let us pick T > 0 large enough such that for t > T, the inequality (4.1.62) works (i.e. T is large
enough so that every part of the preceeding proof works). From (4.1.10) and Lemma 4.2, we know
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that for t > T (by taking T larger if needed),

~ C
(4.1.63) IZ(t) |2 < N
This is why, the following quantity is well defined:
(4.1.64) A = sup{tVN T Z(t) |2},
t>T
which means that fort > T,
~ A

Now, using (4.1.63) and (4.1.65), we deduce from (4.1.62) that for t > T, with C > 0 that do not
depend on z, on N or on A,
CA 1 N CA 1 < CA 1
N —-1¢N-1 N -2N-4 = N -2¢N-1’
if we assume that N > 3. Now, from (4.1.64), we deduce that there exists T* > T such that

(4.1.66) Iz g2 <

(4.1.67) (THONYNZT)|| g2 = %
This is why, by evaluating (4.1.66) in t = T*, we find that

A CA 1
(4.1.68)

AT = N2 TV
which, if we assume that A > 0, after simplification yields:
(4.1.69) N -2 <2C.
This means that if we assume that N > 2C +2 and N > 3, the assumption A > 0 leads to a
contradiction. Therefore, A = 0 under that assumption on N, which implies ||z(t)||52 = 0, and from

Lemma 4.9, this implies that z = 0. This means that the condition that we have established for N,
namely

(4.1.70) N > max(2C +2,3),
do not depend on z and allows us to deduce that under (4.1.5), we may establish that z = 0. The
Proposition 1.5 is now proved. O

4.2. A solution converging to a multi-breather converges exponentially to this multi-breather, if
all the velocities (except possibly one) are positive.

Proposition 4.10. Let u(t) be an H? solution of (mKdV) on [T, +c0), for T € R. We assume that
(4.2.1) (GRS 0] [r——

where p is the multi-breather constructed in Section 2. If

(4.2.2) vy > 0,

then there exists @ > 0, To > T and C > 0 such that for any t > Tp,

(4.2.3) lu(t) - p(®)llg < Ce™".

Note that in the formulation of the Proposition above, we may replace p by P without changing
its content (it is a consequence from (1.2.9)).

Proof. We set v(t) := u(t) — P(t), such that ||v(t)||g2 =t—+e 0.
We denote:
(4.2.4) W(x) = %arctan (exp(—Vox/2)),

where 0 > 0 is small enough (with precise conditions that will be mentioned throughout the proof).
By direct calculations,

=

(4.2.5) V) = 2t cosh(v/ox/2)
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Thus,
(4.2.6) |W’(x)| < Cexp(—Vol|x|/2).
We have the following properties: lim;o W = 0, im W = 1, for all x € R W(-x) = 1-W¥(x),

W (x) < 0, |97 ()] < FW ()], [ (x)] < L)), W] < P and [9(x)] < F(1-W).
Forj=3,..,], let m; be such that

(4.2.7) m; = v’%”’
If v1 > 0, we may also set:

(4.2.8) my = 2 ;vz,
and if v; < 0, we set:

(4.2.9) My 1= %

and so, for any j = 2, ..., ], we have that
(4.2.10) vy >m; > 0,

and we may consider mj, j =2,..,], as part of problem data from now on. Let us denote 79 > 0 the
minimal distance between a v i and a m j-
From this, we define for j = 2,...,],

(4.2.11) @;(t, x) := W(x —mjt).

We may extend this definition to j = 1 and j = ] + 1 in the following way: ®; := 0 and ®;;; := 1.
(4.2.10) allows us to claim that, for any j, ®; moves to the right. Thus, the function that allows us to
study properties around each object P; (for j = 1,...,]) is xj := ®j41 — ;.

The goal is to prove that, for ¢ large enough,

(4.2.12) lo(t)||g2 < Ce™®,

where @ > 0 is a constant to be deduced from the constants of the problem. Proposition 4.10 follows
from this, because of Theorem 1.2.

Let ® > 0 to be deduced from the constants of the problem with respect to the needs of the
following proof.

We will prove (4.2.12) by induction. Let us denote #; the following assertion: f (0% + 02+ v%x)CDj <
Ce™2%t for ¢ large enough. We will prove, for j = 2,...,] + 1, that we have 7)]-, knowing that we have
Pj-1. Note that the assertion #; is obviously true. This implies the desired inequality. (Note that it
is OK if @ becomes smaller after a step of this induction, as long as it stays positive.)

Let us write the j-th step of our reasoning by induction (where j € {2,...,] +1}). Thus, j is fixed
in the rest of the proof. We assume that

(4.2.13) / (v* + v + 03, )Dj1 < Ce >,

for t large enough.

We divide our proof in several steps.

Step 1. Almost-growth of localized conservation laws.

We define quantities that are similar to quantities defined in Section 2.2. We note that we localize
around the first j — 1 objects, not only around the (j — 1)-th object. Notations defined in Section
2.2 should not be considered in the following proof and should be replaced by notations we define
here:

(4.2.14) M;(t) := %/uz(t)cpj(t),
4.2.15) Ei(t) :=/[%u§—}1u4]®j(t),

1, 5 1
(4.2.16) Fi(t) := / [Euﬁx—§u2u§+ Zuﬁ]cpj(t).
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Lemma 4.11. Let w», we > 0, as small as desired. There exists Ty > T and C > 0 such that for t > Tx,
i—1

~

(4.2.17) M[P;] - M;(t) > —Ce ™",
i=1
j-1
(4.2.18) (E[Pi] + @2M[P;]) — (E;(t) + @2M(t)) > —Ce ™",
i=1
j—1
(4.2.19) (F[Pi] + weM[Pi]) — (Fj(t) + wsM;(t)) = —Ce 27",

1l
—_

i
Proof. We will use the results of the computations made at the bottom of page 1115 and at the
bottom of page 1116 of [28], as well as in Section 5.5 (Appendix) to claim the three following facts:

(4.2.20) dtZ/ W2 f = / Sduze iyl /qum,

d L 1 2 2,2 u2
(4.2.21) T [Eux—zu ]f:/[—z(uxx+u) - xx+3uu]f+ uzf"”,
d L, 2,2 6
7 | (3u - 5wt )
3 9 1 3
(4.2.22) = / (— Eua%xx +9uZ u? + 1512 Uy, + Eu + 4u + zuxxu5

45
—Zu u )f +5/u Uxlyy [/ + = / u f".

where f is a C3 function that does not depend on time.
For the mass:
Ifj<j,

d 3
(4.2.23) 2an(t) =— / (3u§ +mju® - §M4)(D]‘x(t) + / U2 Djyrx (F).
We recall that

Vo

o
(4-2-24) |q)jxx| < 7|q)jx|/ |cDjxxx| < Zlq)jxlz CI)jx <0,

where we can choose ¢ as small as desired. For this proof, we would like to ask for o:

(4.2.25) 0<o0<m<m
Thus,
d 30 3
(4.2.26) 2 M(t) > / (3u§ +ul - §u4)|(13]-x(t)|.

By Corollary 2.2, for r > 0, if ¢, x satisfy v; 1t + 7 < x <v;t —r, then
lu(t, x)| < [P(t, x)| + lo(t)||L

4227
( ) < Ce P+ Cllo(t)]l 2,

the same could be said for u,.

We can thus deduce that for r large enough and for Ty large enough, for x € (v;_1t + 7,0t —7),
we can obtain that |u| is bounded by any fixed constant, that can be taken as small as desired. Here,
we will use the latter to bound %uz by {.

Fort > Ty and x < vj1t +7 or x > v;t —r, we have |x —m;t| < 1ot — r, and therefore for such ¢, x:

|Djx(t, x)| < Cexp (- Volx —m;t|/2)

(4.2.28) <C exp ( _ \/ETOt/z) exp (\/Er/2)



ON THE UNIQUENESS OF MULTI-BREATHERS OF THE MODIFIED KORTEWEG-DE VRIES EQUATION 45

Because f u* is bounded by a constant for any time and exp(y/or/2) is a fixed constant (r is
already chosen), we have, for t > Tj,

2

where @ is chosen as a suitable function of o and 7.
By integration, we deduce that for any t; > t, with a constant C > 0 that does not depend on t;,
we have:

(4.2.29) %Mj(t) > / (§u§ 4 %u2)|®jx(t)| _Ce 20 » _Ce 20t

(4.2.30) M;(t1) — Mj(t) > —Ce "
We note that this conclusion is immediate when j = | + 1, because we have exactly the conserved
quantity.

We have that
-1

D MIPi] - Mj(t)

j-1
514123 a4 f o - o
i=1

i=
1
< Co Bt 5 /|P2 — u?|Dj(ty)

<

(4.2.31)

< Ce—K(ﬁ,U,To)fl +C /|P2 — u2| —H—+00 0.

This means that when we take the limit of (4.2.30) when t; — +o00, we obtain, for t > T3,

j-1
(4.2.32) Z M[P;] - Mj(t) > —Ce™2?,
i=1
which is exactly what we wished to prove.
For the energy:
Ifj <],

2%Ej(t) = / [— (txx + u3)2 —2u2 + 6u§uz]®jx(t)

1 1
(4.2.33) - mj/ (u;’f - §u4)®jx(t) +s /uf;cpjxxx(t)
30 m;
> / [(uxx + u3)2 +2u2, — 6uu’ + Zu% - Tju‘l] |Djx ().

We can do the same reasoning as for the mass to bound above %uz by w1, a constant that we
can choose as small as desired, and to bound above 6u?2 by ¢. We obtain that if Ty is large enough
(dependently on the chosen constant w1),

(4.2.34) Z%E]-(t) > / [(uxx +1d)? 4202, + %u,% - wmz] ()] - Ce™22",

By using what we have performed for the mass, we have that if we take w; small enough with

respect to <37,

d N
(4.2.35) E(Ej + waMj)(t) > —Ce 2"
Then, by integration and similarly as for the mass, we obtain the desired conclusion that is true for
any j.

For F:
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Ifj<j,
d 2 2 .2 2 98,14 5
Z%Pj(t) = (— But,, + 18ui, u” + 30Ul + g Tt Buyyul
45 1
_ ?u‘*u,zc)q)jx(t) - mj/ (ujzcx —5u%u? + §u6)®jx(t)
+10/uzuxxuxq)jxx(t)+/u%xq)jxxx(t)

4.2.36 2 45 40 102 2 4z 22 4z22 28
(4.2.36) > Uz, + S Wiy 18uy, u” —15uzu” — 15usu;, gt
1 3 3

- Euﬁ - Euﬁxu‘l - §u6)|®jx(t)|

o
+/ (ouf;x + Eu6—5m]-u2u§)|®jx(t)| —5/u2u;7;|(13]-xx(t)|

—5/M2M§x|®jxx(t)|_/uazcx|q)]'xxx(t)|'

By the same reasoning as for the energy and the mass, if we set w3, w4, ws > 0 constants that we
can take as small as desired, and if T; is large enough dependently on these constants, for ¢t > Tj,
we have that

d 45 30 o
2%13]-(15) > / (3u§xx + ?u‘*u% + Zuix + Eu(’ — w3u2, — wyu?
(4.2.37)
- a)5u2) |Dj(1)] — Ce 22!,

By using what we have carried out for the mass, we have that if we take w3, w4, ws small enough
(with respect to ws),

d N
(4.2.38) E(Fj + weM;)(t) > —Ce 2"
Then, by integration and similarly as before, we obtain that the desired conclusion true for any
j- ]

Remark 4.12. 1f j = | +1, we have that

M-

(4.2.39) M[P;] - M]+1(t) =0,
=1
]
(4.2.40) Z E[P;]-Eja(t) =0,
i=1
]
(4.2.41) Z F[P;] - Fjaa(t) = 0.

I
—_

1

Step 2. Almost-growth of the Lyapunov functional.
Let 0 < v < 1 be close enough to 1. We set, for j = 2,...,,] +1, a functional that is close to the
Lyapunov functional that we will consider in the following steps of the proof:

(4.2.42) Fit) == Fj(t) + 2(’7,2_1 - af_l)E]-(t) + v(af_l + bf_l)ZMj(t).
The following lemma states the almost-growth of 7;:

Lemma 4.13. There exists 0 < v < 1 close enough to 1 such that there exists Ty > T and C > 0 such that for
any t > T,

(4.2.43) Fi(t) - F[Pj-1] - 2(1912_1 - af_l)E[pj_l] - v(a]z._l + b]z._l)zM[Pj_l] < Ce 20,
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Proof. 1f b]z._l - a]z_l > 0, then the Lemma 4.13 is an immediate consequence of Lemma 4.11.

For the rest of the proof, we consider the case b;.l_l - ”}2—1 < 0 (that can be relevant for j = 2). As
in the proof of Lemma 4.11, we may choose r > 0 large enough in order to be able to bound the
terms for which the degree of u is larger than 2 with a coefficient that is as small as we want that
will be denoted w > 0.

We take ¢ small enough with respect to w. We may deduce from Lemma 4.11 and its proof that

d _ 3 mj
aF]-(t)Z—Ce th+§/u§xx|®jx|+7]/M§x|q)jx|

(4.2.44)
~o [udionl-o [den-o [ o,
d _ 3 mj
_an(t) > —Ce 20t - 5 / u§x|®]’x| - 7] / M;%lq)]‘xl
(4.2.45)
_w/u3%|®jx| —a)/u2|q)]'x|,
d 20t 3 [ 2 mj 2
EMj(t) > —Ce™2@t 4 5 uz| @] + - | |Djx |
(4.2.46)
So,
d _ 3
%7—7(0 = —Ce™ + 5 /ua%xxlq)fxl
-
(3070 - a2+ 2 w) [l
(4.2.47)

3
+ (Ev(a?_l + b]?_l)Z + m]-(b]?_1 - ”]2—1) - a)) / u%ICD]-xI

mj 2 2 2 2
+ (?v(a]-_l +02) —a)) 12|,
We may choose m; small enough (with respect to v) so that
3 3.,
(4.2.48) EV(“]Z'—l + b]z_l)2 + mj(b]g_1 - a]z._l) > Ev (a]z_1 + b]z._l)z,

where 0 < v < v that is as close to 1 as we need.
We choose w small enough with respect to the previous choice so that

3 3,

(4.2.49) Ev(a;‘_l + b}?—_l)2 + mj(b}?-_l - a}?"_l) —wz 3y (a}?_l + b}?_l)z.

We may choose w even smaller (with respect to m; and v) so that

"
(4.2.50) %v(af_l +07 7 -w 20,
and
"

(4.2.51) 367, —a? )+ 7] —w 2 3(b7, - a7 ).

In the case when with the chosen values of mj, v and o, 3(b;7_1 - a;r_l) + % — w is positive, the

desired conclusion is straightforward by integration. From now on, we place ourselves in the case
when

-
(4.2.52) 307, — a7 )+ 7’ —w <0.



48 ALEXANDER SEMENOV

Now, we want to bound above f uZ,|®jx|. By integration by parts,
/”%xlq)jx' == / ux”xxx|q)]'x| _/uxuxxlq)jxxl
because |Djyy| < gI(D]-xl.

o
< \/ [uonl [ ua%xx|®jx|+§\/ [0l [ o,
We denote:
(4.2.54) X = w/ / 12| D],

and

(4.2.55) A= \// u§|c1>jx|/u,%xx|cpjx|.

So, we have that

(4.2.53)

(4.2.56) X?<A+eX,
where

Vo Vo
4257 = 5 [ 0] < Flul,

which can be as small as we want if we take ¢ small enough (for a given solution u).
We deduce that

2
(4.2.58) X < w <e+VA.
Thus,

1

o 4

JECCRE (Z\//u§|®jx|+%(/u§|®jx|/u£xx|®jx|)
+\// N \//ui-@]-xL

e
(3(17]2_1 - a]z_l) + 7] - a)) /u%xlq)ij > 3(b]2‘—1 - a]z_l)\// uZ|Djx| / U2 | Djx|

3 1
4.2.60 ! !
( ) +3(b]2_1—af_l)VU(/uﬁlq)jxl) (/uazcxx|q)]'x|)

o
#3072, ~a? ) / W20,

On the other hand, we have for a choice of vi,v,,v3 > 0 such that vi + v + v3 = v/ (Where 11
should be near to v’ and v, and v3 should be near to 0) and a choice of €1, €, > Osuch thate; +e; =1
(where €1 should be near to 1 and €, should be near to 0) that will be made with respect to the needs

(4.2.59)

So,
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3 3,
E/szcxxlq)]‘ﬂ'i‘(zv (a]z—1+b]2_1)2)/”>2c|®jX|
>3 [ 12 |0, |+(§v (@2, + b2 )2) 2|, |
= 2 1 XXX ]x 2 1 ]_1 ]_1 X ]x
236 [z o, |+(§v (a2, + b2 )2) 2| D, |
2 2 XXX JES 2 2 ]_1 ]_1 X JES
3
+ (a2, + 02, 2) / W2|Dj. |
> 24/2e (§v (@2 +b2 )2 02|Di] [ Ul | Do
= > 1 ) 1 j-1 j-1 x ¥ x xxx |¥]x
1 3
cal3e, [0z o) (1v (a2 +b2 )2) 20|
2 2 XXX JES 2 2 ]_1 ]_1 X JES
3 b 2 2.
+ V3(a 4t 1) ”xlq)]xl
23V€1V1(a]2_1+b]2'_1)\// u}%lq)jxl‘/u%xxlq)jxl
3 1
i3 2 43 2 ! 2 !
+2- 34€ v (a] 1+b]._1)2 uy|®jy| Uy | Pjx|

3
+ 51/301;7_1 +b7 ) / UZ|®jy .
This is why, we deduce that

of the proof, that

(4.2.61)

d _
Efj(t) > —Ce 20!

+ (3(b]2 1_5[] 1)+3V€1Vl(a] 1+b]2_1))\// u}%lq)jxlfu%xxlcpjxl

2 113 3 5 % 2 i
+(3(bi—1 a2 o +2-35ejv](al, +b7 1)2)(/ux|®jx|) (/uxxxlq)jxl)
+(3(b}2—1_”}2—1) + Vs(a] ) + b7 1)2)/u§|®jx|.

To finish, we need to state a condition (on v1, v3, V3, €1, €2) that will ensure that

(4.2.62)

(4.2.63) E;:= 3(b}7."_1 - a}?"_l) + 3ve1vr (a}?‘_l + b;‘_l) >0,
1 3
(4.2.64) Epi=3(b%, —a? Vo +2- 3ieivi (a2 + b]?_l)% >0,
and
(4.2.65) Es:=3(b7 , —a} l) + V3(£l] s ) >0.

We can choose €1 and v so that \/e1vq > 5. So, we have that
E
5 = (Ve + Dbr + (Vervy - ai,
3
> Eb]z'—l + (Vepv: — 1)(1]2_1.

By choosing €1 and v wisely (note that we can choose v" and v with respect to the condition on

(4.2.66)

. . . b
v1 that we need), we may ensure that [1/e;v1 — 1] is as small as we want with respect to the ratio a’—_l,
which will ensure that E; > 0.
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In order to have E; > 0 and E3 > 0, the only requirement is that €3, v, v3 > 0. This being set, it is
enough to take ¢ small enough in order to obtain the desired conclusion.

Thus,
d 20t
(4.2.67) aﬁ(t) > —Ce %!,
We obtain the desired conclusion by integration. O

Step 3. Modulation.
Notations that were defined in Section 2.3 should not be taken into consideration in the following
proof and should be replaced by notations we define here.

Lemma 4.14. There exists C > 0, T > T, such that there exist unique C! functions y1,y, : [Tp, +o0) = R
such that if we set:

(4.2.68) w(t,x):=u—"P,
where
—~ ] —~
(4.2.69) P(t, x) := Z Pi(t, x),
i=1

fori#j-1,
(4.2.70) Pi(t, x) := P;(t, x),
and either,
(4.2.71) 15:1(t, x) := K1Qe ry (1) (X = xgll +ya(t)—cit), if Pj-1 = Ry is a soliton,
or,
(4.2.72) lsyi(t,x) = Bay g (t, x; x1 6 + y1(t), X2k + y2(t)),  if Pj-1 = By is a breather,

then, w(t) satisfies, for any t € [T, +0), either,
(4.2.73) /ﬁl(t)w(t) = /lﬁz(t)w(t) =0, if Pj1 isa breather,
or,
(4.2.74) / PiLi(Hyw(t) = / Pii (Hw(t) =0, if Pj_y is a soliton,
where in the case when Pj_y is a breather we denote:
(4.2.75) Pi1y(t,x) 1= 9x,P1,  Pi,(t,x) = 95, Py 1.

Moreover, for any t € [T, +00),
(4.2.76) lw®llmz + [y ()] + ly2(H)] < Cllo()ll 52,

and, if @ is small enough,

172
(4.2.77) VAGIEIVAGIES C(/w(t)quj) +Ce @,

Proof. The proof that has to be performed is similar to the proof of Lemma 2.8, which is a conse-
quence of a quantitative version of the implicit function theorem. See [11, Section 2.2] for a precise
statement. The proof of (4.2.77) is also similar: as in the proof of Lemma 2.8, we take the time

derivative of / 157_11(t)w(t) = f ISj:z(t)w(t) = 0. To be complete, let us perform this proof.
Fort € [Ty, +0), let

(4.2.78) F; : L*(R) x R?> — R?
be such that if P;_; = By is a breather,

(u/ ]/1/ ]/2) L ( / axlBak,‘Bk(t/ X; x%k + ]/1; -xg,k + ]/2)6 d'xl
(4.2.79)

/9x23ak,ﬁk(t, X; x?/k + 1, xg/k + y2)edx |,
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where
(4.2.80) €:=U—-P+Pj1-Bypltx; x?{k + Y1, xg,k +12),

and if P;_1 = R; is a soliton,

U, yi, y2) '—>(/ K1Qc 4y (X — x8,l + Y2 —cit)edx,

(4.2.81)

/axKZQc1+y1 (x - X(O),l +Y2— Clt)e dx ’
where
(4.2.82) €:=U-P+Pj1-%xQcy (x - xg,l + vz — cit).

We observe that F; is a C! function and that F;(P(t),0,0) = 0. Now, let us consider the matrix
which gives the differential of F; (with respect to y1, y2) in (P(t),0,0).
In the case when P;_; = By is a breather, this matrix is:

—f(&xlBk)Z dx —fﬁxlBkamBk dx)

(4.2.83) DF: = (_ J9xBidxBrdx = [(0nBu? dx

whose determinant is:

2
(4.2.84) det(DF;) = /(8X1Bk)2 dx /(8XZB;<)2 dx — (/(9xlBkaszk dx) .

By Cauchy-Schwarz inequality and the fact that dy, Bx and dy, By are linearly independent as func-
tions of the x variable, for any time ¢ fixed, we see that det(DFy;) is positive. Since each member of its
expression is periodic in time, then det(DF;) is bounded below by a positive constant independent
on time and translation parameters of By.

In the case when P;_; = R; is a soliton, let us recall, denoting yo := x — xgl + y2 — c;t, that
1
(4.2.85) ayl Qc;+y1 (yo,z) = 2_Cl (ch+y1 (yo,z) + yO,lach;+y1 (yo,z))-

Thus, denoting Q,(x - xJ, — ¢1t) by Q,, and x —x), —c;t by 7,

—5 [ Qe (Qe +¥9,9xQ¢)) dx = [ Qe,0:Qe, dx)

(4.2.86) DF; = ,
CTE [ 0xQe Qe+ ¥0,0:Qc) dx — [ (9xQe,)” dx

whose determinant is:

1
(4.2.87) det(DF;) = e / Qe (Qe + y8’l8xQC,) dx/ (Qchl)z dx,
because f Q,0xQc, dx = 0. And, from the computations made to obtain (2.3.19), we have that
(4.2.88) det(DF;) = 41161 / 7 / 72,

where g denotes the soliton with ¢ =1, i.e. g = Q1.

This means that det(DF;) is bounded below by a positive constant independent on time and
translation parameters of R;. Thus, in any case, DF; is invertible.

Now, we may use the implicit function theorem. If U is close enough to P(t), then there exists
(y1,y2) such that F;(U, y1, y2) = 0, where (y1, y2) depends in a regular C! way on U. It is possible to
show that the “close enough” in the previous sentence does not depend on ¢; for this, it is required
to use a uniform implicit function theorem. This means that for T, large enough, |[v(t)||2 is small
enough for t € [T, +0), thus for t > T, u(t) is close enough to P(t) in order to apply the implicit
function theorem. Therefore, we have for t € [T, +0), the existence of y1(t) and y»(t). It is possible
to show that these functions are C! in time. Basically, this comes from the fact that they are C Lin
u(t) and that u(t) has a similar regularity in time (see [13] for more details).
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Now, we prove the inequalities (4.2.76) and (4.2.77). We can take the differential of the implicit
functions with respect to u(t) for t € [T, +o0). For this, we differentiate the following equation with
respect to u(t):

(4.2.89) Fi(u(t), y1(u(t)), y2(u(t))) = 0.
We know that the matrix that gives the differential of F; (with respect to y1, y2) in
(ue(t), yr(u(t)), y2(u(t)))
is invertible and that its inverse is bounded in time. The differential of F; with respect to the

first variable is also bounded (from its expression, F; being linear in U). Thus, by the mean-value
theorem (given (y1, y2)(P(t)) = (0,0)):

(4.2.90) ly1 D]+ ly2u(®))] < Cllu(t) = P@)I < Cllo(@)l]q2-

By applying the mean-value theorem (inequality) for Q. or By, g, with respect to y; and y», we
deduce that

(4.291) 1Pi-1(5) = Paa ()l < Cya (D] + [y (b))
Finally, by triangular inequality,
o (®)ll2 < lu(t) = P()llgz + IP(E) = POl 12
(4.2.92) < lu(®) = POl + C(lya (D] + ly2(6)])
< Cllo(®)|l 2.

This completes the proof of (4.2.76).
For (4.2.77), we will take time derivatives of the equations (4.2.73) and (4.2.74). Firstly, we may
write the PDE verified by w:

/ J
W = —Wyxy — [w(wz + 3w ZPZ- +3 Z Pipm)
i=1 im=1 X

(4.2.93)
- > (PuPiPy), -E,

h#i or i#m
where, if Pj_1 = By is a breather,
(4.2.94) E := y{(t)Bi1 + y5(t)Bra,
and if Pj_1 = R; is a soliton, denoting yo,(t) := x — xgl + y2(t) —cit

G

(4.2.95) = ————(Ri+yo1(t)Rix) + y5(£)Ryy.

2(Cl+]/1(t))( y X) yZ X

If Pj_1 = Bk, we start by taking the time derivative of / FB\;lw = 0 and perform some integrations
by parts to obtain:

—~3 , — , —
_/(Bk )1xw+yl(t)/Bk11w+y2(t)/Bk12w
(4.2.96) /Bk1xw(w +3wZP1+3 Z PhPl) /Bk1 Z (PnPiPy),

h,i=1 h#i or g#h

_—n / B + (1) / B Bra,



ON THE UNIQUENESS OF MULTI-BREATHERS OF THE MODIFIED KORTEWEG-DE VRIES EQUATION 53

then, we take the time derivative of f E;zw =0:

_/(Ef)z:cw+yi(t)/§;12w+y§(t)/§;22w
(4.2.97) /Bm (w +3wZP +3 Z PhP) /Bk2 Z (PDiPy).,

h,i=1 h#i or g#h

= y(0) / BiiBra + (1) / B

If Pj-1 = R;, we start by taking the time derivative of f Elw = 0 and perform some integrations
by parts to obtain:

— "(t — — —~
_/(Rl3)xw+y21—((:l) (Rl+y0,1(t)Rlx)w+]/é(t)/Rlxw

(4.2.98) /Rlx (w +3wZP +3 Z PhP) /Rl Z

h,i=1 h#i or g;th

t - -~ -~ —_~ o~
= 2(Cly_|1-—(yz(t))/Rl(Rl + ]/O,l(t)Rlx) + yé(t)/RlRlx,

then, we take the time derivative of / EI cw=0:

~3 yi(t) ~ — ) _
_/(Rl )xxw+21—CI (Rlx+]/O,l(t)Rlxx)w+]/2(t)/Rlxxw

(42.99) / szxw(w +3wZP1+3 Z PhPI) / R, Y. (PuPiPy),

h,i=1 h#i or g#h
Q)

:m/ﬁl"(E"LyO'l(t)ﬁ’x)+V§(t)/(ﬁzx)z

As a consequence of (4.2.76), we see that |y1(t)| + |y2(t)| tends to 0 when t — +co. This is why,
we may use Proposition 2.10 and Corollary 2.11 here, if T; is large enough. So, several terms of the

four equalities above are obviously bounded by (w(t)quj)l/ 2 or e™® for @ > 0, a constant chosen
small enough. Using these bounds, and after several linear combinations, we obtain (4.2.77). m|

Step 4. Quadratic approximations of localized conservation laws.

Lemma 4.15. Let w > 0 as small as we want. There exists C > 0,13 > T such that the following holds for

t > Ts:
4 13' 1 2 20t
(4.2.100) iw — > w ;| < Ce ™,
-1 1 ;
Ej(t)—ZE[Pi]—Z/[Pixwx—Pi w|
(4.2.101) = i
1 ~
—/ [Ew}%—%Pzwz]@j SCe‘2®t+w/w2®j,
= = 2 2 3~5
Fi(t) - > F[Pi] —Z/ | Prastns = 5PiPrw = 5P; Prws + 5P, )|
i=1 ]
42102 1 5 5~, , 15~
(4.2102) _/[E 2, = S0P~ 10Pwhw, - 2P0l + P Z]cpj(t)‘

SCe‘z‘Dt+a}/(w +w?)D;.
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Proof. For the mass:
We compute:

M]‘(t) = %/ (ﬁ-i—w)zq)]‘

1 ~ ~ 1
:—/PZCD]-+/PwCDj+—/w2CDj.

As in Step 1, we can show that 3 / P2®] converges exponentially (we choose @ with respect to thls

(4.2.103)

exponential convergence) to Z] [Pl-]. Similarly, the difference between / PwCI) and Z]
converges exponentially to 0 (the velocity of a soliton is not modified a lot by modulatlon thls is
why it works in any cases).

For E and F, we perform similar basic computations with the only difference that there will also
be terms of degree 3 or more in w. We know that ||w(t)||y2 —¢t—+w 0, this is the reason why for t
large enough, such terms are boundable by w / w?®; or w / w2®;. m]

Step 5. Approximation of the Lyapunov functional.

By analogy with the existence part, we introduce the following Lyapunov functional:

(4.2.104) Hi(t) 1= Fi(t) +2(b2y — a2, )Ej() + (a2 + b2 ) My(t).
We will use the previous steps to approximate H;(t).

Lemma 4.16. There exists T4 > T such that the following holds for t > Tj:
] ! j-1
’ ~
W(t)—ZF E[Pi]+ (a2, +b%,)" > M[P)]
(4.2.105) 1=1 =

+Hj(t)+O(e ") + o(/ (w? + wi)cbj),

where
1 5 5
Hi(t) : = / [Ewﬁx w2P;_; +2w 2Pi1, ® ¥ 5w PiL1Pi,
15 ,5— 2 2 2 25 2
(4.2.106) + 0P ]qnj(t)+ (b2, - a2,) [wx—Bw P |@i(t)

+;( i 1+b2 ) /wchj(t).

Proof. This lemma is obtained from the summation of the facts established in the previous lemma.
We get rid of the linear terms in the following way, by integrations by parts:

&5 2 2 3
Z/(Pixxwxx—5PiPixw—5Pi Pty + 5P w)

j-1
— ~3 ~
+2(b7 , a7 ,) Z/ (Pz‘xwx - D; w) + (a7, + b?—l)z Piw
i=1 '

(4.2.107) .
2o - ~ > ~  3=5
/(Pixxxx+5pipix+5/Pz Plxx+2Pl)

i=1

j-1 j-1
—~ —~3 —
+2(b}77_l —a;‘_l) (—Pixx -P; )w+ (af_l +b;‘_1)22 P;w.
i=1 i=1

If we consider that this sum goes from i = 1 to j —2, we see that for 1 < i < j -2, this sum is
exponentially bounded by induction assumption (we use that for i < j —2, a polynomial in P; and

its derivatives is bounded by C®; 1 and that w = v + (Pj_1 — 13]‘;1)) It is left to consider the sum of
the terms with i = j —1.
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For i = j—1, we have rErly the elliptic equatigrl satisfied by 15:1 It is actually exactly this

equation in the case when P;_; is a breather. When P;_; is a soliton, its shape parameter is modified
by modulation. This is why, in this case, the sum of the terms with i = j —1 is equal to

(4.2.108) 2y1(t)/ ] 1xx ] 1 )w+2b lyl(t)/ - 1w+y1(t) / -1,

which vanishes because of the orthogonality condition from the modulation (Lemma 4.14) and the
elliptic equation satisfied by a soliton (1.1.4).

H; is obtained as the sum of the quadratic parts of the previous lemma on which we have
performed some integrations by parts, and some simplifications based on the fact that for i > j,

ﬁcbj(t) is exponentially decreasing, and the fact that for i < j -2, f Piw? is exponentially decreasing
by the induction assumption (4.2.13). Therefore, H; corresponds to the sum of the quadratic parts

of previous lemma to which we have to add 5 / wzlgﬁxq)jx, which is bounded exponentially. ]

Step 6. Bound from above for H;(t).
From Lemma 4.11, we know that for any t > Ty,

(4.2.109) M;(t) = M[Pjq] < Ce™>®!

By summing this fact with the fact from the Lemma 4.13, we obtain the following inequality for any
t large enough:

Hi(t) - ZF ' —a2y) ) E[P]
=1

(4.2.110)

From Lemma 4.16, for t > T3,

Hj(t) < FIPj1] = FIP 31 +2(6, — a2 ) (ELPj1] - E[Pj )
(4.2.111)
+ (a

2, +b}_1)2(M[P]-_1] —M[15]-T1]) 4 Ce20t +a)/ (w? + w?) ;.

In the case if P;_ is a breather, we obtain immediately that
(4.2.112) Hj(t) < Ce " + a)/ (w* + w})D;.

The case when P;_ is a soliton needs more inspection. As in the existence part, we have the
following relations:

(4.2.113) M[ﬁj:](t):( )P Mig),
(42.114) ELP11(6) = (07, + ya() *Elg),
(4.2.115) FIP () = (b2, + y(1) V*Flq].

We set R;_1(t) := F[ﬁ:l](t) + 2b]2._1E[15:1](t) + b;.l_lM[P]-_l](t), and we simplify it as follows:

5/2 3
R (t) = b;’_l(l + yl—(t)) Flgl+207 (1 + yl—(t)) E[q]

b2 b?
(4.2.116) e R -1
+D2 (1+y1—()) MIq].
0

After making a Taylor expansion as in Section 2.5,
(4.2.117) Rj-1(t) — F[Pj1] - 2b}?~_1E[P]-_1] - b}*_lM[P]-_l] = O(y1(t)).



56 ALEXANDER SEMENOV

Therefore, if T} is large enough, |[o()||y2 can be as small as we want, and for t > Ty, if P;_1 a soliton,
we may write:

(4.2.118) Hj(t) < Ce " + a)/ (w? + w3)Dj + wyr ().

Step 7. Coercivity.
Hj can be seen as the quadratic form associated to P;_; and evaluated in w+/®;, modulo several
terms that can be bounded by C+/o f (w? + w2 + w%x)q)]- (because these terms depend on derivatives

of @;). Let us prove that we can apply Section 5.4 (Appendix) for w\/qu .
More precisely, we need to prove that for v > 0 small enough (from Section 5.4),

/w,/(b]-l;j\:ll + /w,/(b]-l;]:z < v|lw /Pl g2,

if Pj_1 is a breather or that
(4.2.120) '/qun]-ﬁf_l + /qun]-ﬁj‘_]x < v]|w |2,

if Pj_1 is a soliton. In any case, the proof is the same and let us write K at the place of 13]-‘;11, Pj_1,,
PjiorPjq,. This means that we want to bound / wA/D;K.

From (4.2.73), (4.2.74), we see that it is enough to bound /w(l - \/@)K by v||w\/a]||Hz The
reasonning that follows works for j < J, for j = ] + 1 the result is immediate because ®;,; = 1. ®; is

a translate of W, and, using the fact that whenv — 0, V1+v =1+ O(v),
(4.2.121) 1-VW=1-V1+W-1=1-+1-¥(-x) = O(¥(-x)),
which means that 1 - \/3] < Cmin(1, exp(vo(x —m;t)/2)). We may deduce now that

o

(4.2.119)

42122 1- ;

(42122 K| Jlwoyslie
< Ce “<mf-”ffl>f||ww/q>j||p,

if ‘/— 5. And so, if t is large enough, we get the bound we want.

Thus there exists p1 > 0 such that for t > T5 (where T5 is large enough and depends on ¢),

yllw\/quHZ <H(t)+C\/_/ (w* + w3 +wk )@ + — (/ ]1w\/7)

(4.2.123) < Ce 20t 4 a)/ (w? + w3)D; + C\/E/ (w? + w3 + w3, ) ®;

+ oy (t) + (/P] 1w\/7)

where the term %( f 15:1w,/(13]-)2 is present only if P]-_l is a breather and the term wy(t)? is present

only if 13]‘;1 is a soliton.
For ¢ small enough and @ small enough, we deduce that

2
(4.2.124) / (w? + w3 + w3, )®; < Ce > + wyy(t)* + C(‘/lg:lw1 qu]-) .

We set Ty := max(Tl,Tg,l},, Ty, T5). .
Step 8. Bound for | / Pj_1w\/a]-| (to do in the case if P;_; is a breather).
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We would like to prove that f 15:1@0\/@ is exponentially decreasing. To do so, we would like to
get rid of \/3, It is clear that / lg;w(l - \/3]) is exponentially decreasing. Thus, it is enough to
prove that f Isjtlw is exponentially decreasing.

If i <j—2, we know that f Piw is exponentially decreasing by the induction assumption (4.2.13).

Thus, it is enough to prove that Zf;} f Piw is exponentially decreasing.
From the mass approximation of Lemma 4.15 and Lemma 4.11, and from (4.2.117), we observe
that, for t > Ty,

f'i / - ) i 1 / ) )
Piw = O(e” ‘Dt) + M;(t) — M[Pi] - = | w®;+o(y1(t)")
(4.2.125) P 5 2 ]

_ 1 =
S Ce 20t _ E /w2®j+0(yl(t)2) S Ce 2ot + O(yl(t)z)l

where +0(y1(t)?) is present only of P;j_1 is a soliton.
Now, we use the fact that the sum of the linear parts of our localized conservation laws is
exponentially decreasing, which we have established in the proof of Lemma 4.16. Therefore, the

linear terms of F; + 2(b]2‘—1 - a]z_l)Ej are equal to O(e~2%%) — (a]g_1 + b]z 1)2 Z{;} /ﬁlw

From Lemma 4.11 and from (4.2.117), we observe that, for ¢t > Ty,

j-1
-(1- 1/)(91]2‘_1 + b]z_l)2 Z / Pjw = O(e~22) + O(/(w2 + w%)qbz) +o(y1(t)?)
(4.2.126) =1

-1
+ F5(t) = > (FIPi1+ 2002, — a2 )E[P;] +v(al_y + b2, 2M[P]),
i=1
where o(y1(t)?) is present only if Pj_1 is a soliton. And, from Lemma 4.13, we obtain that

j-1
(4.2.127) -(1- v)(a]?_l + b]?_l)2 Z / Piw < Ce 2%t 4 C / (w? +w2)Dy + o(y1(£)?),
i=1

where o(y1(t)?) is present only if Pj_ is a soliton. Therefore, by taking the constant C > 0 larger if
necessarily (in function of v), we obtain that

j-1
(4.2.128) —Z/ﬁiw < Ce—2®f+c/ (w? + w2)D; + o(y1(t)?),
i=1

where o(y1(t)?) is present only if Pj_ is a soliton.
Thus, we deduce the following bound:

(4.2.129) ‘ / zﬁw\/aj

Because ||w(t)||g2 —t—+00 0, we deduce that

2
(4.2.130) (/zﬁw\/qj,) :0(6_2(”)+0(/(w2+w§)®j)+o(y1(t)2).

Step 9. Conclusion.
From (4.2.124) and (4.2.130), we deduce for t > Tp, that

(4.2.131) / (w? + w3 + w3, )@ = O(e ) +o(y1(t)*) + o(/ (w? + w}%)q)j).

This means that if we take Ty large enough, we have:

< Ce 2t 4 C / (w? + w2)®; + o1 (1))

(42:132) [ (k) = ofn?) + O,

where the term o(y(t)?) is present only if Pj_ is a soliton.
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Before finishing the proof, we need to find a better bound for y;(t) than just a convergence to 0
given by the modulation (in the case when P;_; is a soliton). For this, we study M;(t):

M;(t) = % / u?()@;(t) = % / (P(t) + w(t))*®;(t)

- % / P(t2®;(t) + / ﬁ(t)w(t)qnj(t)+% / w(t )y D;(t)

1 I ~ = ~ 1
(4.2.133) = E;/Pi(t)z+;/Pi(t)w(t)+o(€_2m)+§/w(t)2CDj(t)

= %/15:1(02+/l5:1(t)w(t)+0(e_2‘°t)

j-2
7 A CEEOW ECE

by the induction assumption (4.2.13), then

j—2
L [ 5= 2 -2 1 2 1 2
(4.2.134) M;(t) = E/P]-_l(t) +0(e72) + E/w(t) <1>]-(t)+E ;_l Pi(t),
by the orthogonality condition from the modulation (Lemma 4.14). Therefore,

Mi(t) = (2, + () *Mlg] + 0 () + 5 / w(ty(t)

j-2
1 2
+3 Z; / Pi(t)?.
i=
Now, if we take t; > ¢, we obtain from (4.2.132) that
Mj(t) = M;(t) = [(bf_l Fyit) - (02, + yl(t))l/z]M[q]
+ O(e_z‘Dt) + o(yl(t)z) + o(yl(tl)z).

By doing a Taylor expansion of order 1, as in the existence part, we obtain:

1yt
i omer)

(4.2.135)

(4.2.136)

(4.2.137) (b2 +(t) ' = b4 (1 +

Therefore,
(b;l_1 + y1(t1))1/2 - (b;‘_1 + yl(t))l/z

(4.2.138)
yi(t) = y1(1)) + O (11(t1)?) + O (ya(+)?).

1
 2bj (
Now, we recall that when t; — +o0, we have y(t;) — 0. Therefore, by taking the limit of the
previous formula when t; — +co, we obtain:

12 _ ()

(4.2.139) bio1— (b7, +wm(t) " = + O (y1(t)?).
] Zb]‘_1
Therefore, from (4.2.136), with t; — +oo,
S yi(t)
(4.2.140) Z M[P;] = Mj(t) = —=——M][q] + O (™2} + O (1 (£)?).
i-1 2bj1

The second step is to study E;(t) (we do the same reasonning as for M;):
1, 1,4
Ei(t) = / [Eux - g ]cpj(t)

:/[%ﬁg_iﬁ‘l]@j(tnf[ﬁxwx—ﬁ3w]®j(t)+o(/wzcbj(t)),

(4.2.141)
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and after simplications by ®; due to exponential convergences, induction assumption (4.2.13) and
orthogonality conditions (Lemma 4.14),
j—2
E;(t) = E[Pj1()] + Z E[Pi]+ O(e™") + o(/wzqnj(t))
i=1
-2

E[q] + E[Pi]+O(e_2‘°t)+O(/w2®j(t))

NI
~.

(4.2.142) = (b7, + 1))

~.
N =

= (b7, +y1(1) E[q] + ) EIPil+ O(e™") +o(y1(t)?),

by (4.2.132). And then, by taking the difference for ¢; > t,

~.

3
2

—_

3
2

Ej(t) - Ej(t) = [(bf_1 Fn(t)E = (02 + (1) ]E[q]

+0(e™") +o(y1(t1)?) + o (y1(t)?).
By taking a Taylor expansion of order 1, we obtain:

(4.2.143)

3 3yt
(4.2.144) (b2 +ya(t)? = b3, (1 +3 y;2( D, O(yl(h)z)).
j-1
Therefore, after taking t; — +o0, we obtain:
j-1
3 _
(4.2.145) E[Pi]-Ej(t) = —Eb]-_1y1(t)E[q] +0(e™®") + O (y1(t)?).

i=1
This is why, from (4.2.140), (4.2.145) and Lemma 4.11, we obtain:

(4.2.146) —2y;](fz M[q] +0 (e—Z(Dt) +0 (]/1(15)2) > _Ce—th,
and
(4.2.147) —%bH y1(H)E[g] + O (e72®) + O (y1(t)?) = —Ce 2"

Because M[q] =2 and E[q] = —%, we rewrite both previous inequalities (4.2.146) and (4.2.147) in
the following way (and we pass O(e2?*) on the other side of each inequality):

t
(4.2.148) _%1_() + O(]/l(t)z) > _Ce—Z(Dt,
j-1
and
(4.2.149) bisiya(t) + O (ya(t)?) = —Ce .

Because yi(t) — +oo, by taking Ty larger if needed, O(yi(t)?) can be bounded above by any
positive constant multiplied by |yi(¢)|, so by taking this constant small enough (by taking Ty large
enough) and combining both previous inequalities (4.2.148) and (4.2.149), we obtain:

(4.2.150) ly1(t)] < Ce™2?",

Therefore, we have obtained a better bound for y;(t) in the case when P;_1 is a soliton. Therefore,
we may conclude that in any case, for t > Ty, for Tp large enough,

@2151) [ @+t v wtgo n = o)
Then, we deduce from (4.2.77) that
(4.2.152) [y, (5] + ly5(H)] = O(e™).

Because |y1(t)] + |y2(f)| —=¢—+00 0, we obtain by integration:
(4.2.153) [y + [ya(t)] = O(e™).
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And, so, by the mean-value theorem,
(4.2.154) 1Pj=1 = Pjall 2 < C(Ipn(®)] +ya(b)]) < Ce".

Fromov =w + 13]\_/1 — Pj-1, we deduce:
/ (v + 02 + U%x)q)]‘ < C/ (w? + w? + wix)q)]-

+C/[(157_1—P]-_1)2+(157_1—P]-_1)i+(157_1—Pj_1)§x]®j

< Ce—Z(Dt,

(4.2.155)

and this finishes the induction.

4.3. Proof of Theorem 1.4.

Proof of Theorem 1.4. We suppose that v, > 0. Let p be the associated multi-breather given by Theo-
rem 1.2. Let u be a solution of (mKdV) such that

(4.3.1) lu(t) = p(H)lln2 =1-+00 0.

From Proposition 4.10, we deduce that there exists a constant C > 0 and a constant @ > 0 such
that for ¢ large enough

(4.3.2) lu(t) = p(t)|lg2 < Ce ",

This implies that u satisfies the assumptions of Proposition 1.5. Thus, u = p and Theorem 1.4 is
proved.
O

5. APPENDIX

The first two subsections of the Appendix show that a soliton has similar properties as a “limit
breather” of parameter @ = 0. Firstly, the corresponding elliptic equation is satisfied by a soliton.
Secondly, the corresponding quadratic form is coercive for a soliton, and we see that its kernel is
spanned by d,Q and d.Q. In the third subsection, we prove that it is possible for € to be orthogonal
to Q and J,Q (instead of d,Q and d.Q) in order to satisfy a coercivity for the quadratic form.
We will use this fact for the proof of the existence, as well as for the first part of the proof of the
uniqueness. In the fourth subsection, we prove that we can have coercivity for quadratic forms
when the orthogonality condition is not exactly satisfied. We will use this result for the proof of
the uniqueness. The last subsection is about computations for the third conservation law. It will be
useful for the monotonicity property for localized F that we need in the proof of the uniqueness.

5.1. Elliptic equation satisfied by a soliton.

Lemma 5.1. A soliton Q = R satisfies for any time t € R, the following nonlinear elliptic equation:

G11) Quan ~26(Que + Q%)+ ¢°Q +500Q% +5Q°Que + 3Q° =0

Proof. In order to derive this equation, we will use the equation that defines a soliton (and that is
satisfied by Q at any time):

(5.1.2) Qux =cQ - Q%
We will also need the following equation:
(5.1.3) Qi=cQ?- %Q‘*,

that can be derived by taking the space derivative of Q% — cQ? + Q% and by showing that this
derivative is zero. From this, we deduce that Q2 — cQ? + %Q‘* is constant, and by taking its limit

when x — +co, we see that this constant is zero. More precisely, the derivative of Q2 — cQ? + %Q‘*
is:

(5.1.4) 20:Qxx —2cQQy +20%Q; = 20:(Qyy —cQ + Q%) = 0.
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From now on, the derivation of (5.1.1) is straightforward. It is sufficient to take space derivatives
of Qur = ¢cQ — Q? and to inject them into the right hand side of the equation (5.1.1), which we want
to prove to be equal to zero. By doing this, we make the maximal order of a derivative of Q present
in the right hand side equation lower. At the end, we have only, zero and first order derivatives. To
have only a polynomial in Q, we have to use Q2 = cQ? — %Q‘*, and the calculations show that this
polynomial is zero. m]

5.2. Study of coercivity of the quadratic form associated to a soliton. In this article, we adapt the
argument for the breathers in [3] to the soliton case. We consider:

sro1.. 1 2 5 22,9 2.2 2 15 4.2
Qleli=3 [&.-3 [+ [Qie+s [oouer+ L [at

+c(/€§—3/Q2€2)+c2%/62 = Qy clel-

Firstly, we prove, by simple calculations, as in the previous section, that Q, and Q + xQy are in
the kernel of this quadratic form. It is easy to see, by asymptotic study that these two functions are
linearly independent.

The self-adjoint linear operator associated to this quadratic form is:

Li[€] := €y) — 2c€xx + c?e +5Q%€x + 10QQ €y
15
+ (502 +10QQ. + Q- 6cQ?)e,
so that Qi[e] = f eL;[e]. L; is a compact perturbation of the constant coefficients operator:

(5.2.3) M(e] := €ax) — 2c€xx + c%e.

A direct analysis involving ODE shows that the null space of M is spawned by four linearly inde-
pendent functions:

(5.2.4) g Ve

Among these four functions, there are only two L2-integrable ones in the semi-infinite line [0, +o).
Therefore, the null space of L£5|ys(r) is spanned by at most two L?-functions. Therefore,

(5.2.5) ker(L;) = Span(d,Q, Q + x9+Q).
Lemma 5.2. The operator L does not have any negative eigenvalue.
Proof. L} has

(5.2.6) Z dim ker W[Qy, Q + xQy](t, x)

xeR

(5.2.1)

(5.2.2)

xetVex,

7

negative eigenvalues, counting multiplicity, where W is the Wronskian matrix:

(5.2.7) WIQx, Q+xQu](t,x) := [Sxxx (S N ;c%)x '

For this result, see [19], where the finite interval case was considered. As shown in several articles
[23, 27], the extension to the real line is direct.

Thus, it is sufficient to see that det W[Q,, Q + xQ«](t, x) is never zero. For this, let us simply
calculate this determinant:

Qx(2Qx + xQxx) = (Q + ¥Qx)Qux = 2Q% — QQux
(5.2.8) =2cQ?-Q*-Q(cQ-Q%
=cQ?>0.
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5.3. Coercivity of the quadratic form associated to a soliton. For Q = R, |

Qlel:=; [é-3 [ @+ ] [ie+s [QQue +—/Q4 :
+C(/€§—3/Q2€2)+C2%/€2

Lemma 5.3. There exists u. > 0 such that for any € € H? such that feQ = feQx = 0, we have that
(5.3.2) Q:le] = pellell.

Proof. From Section 5.2, we know that if / €d,Q = / €d.Q = 0, then, for a constant v, > 0, we have
that
(5.3.3) Q:le] = Vc”e”%{z

Let € € H? be such that feQ = feaxQ = 0. There exists 2 € R and €, € Span(d,Q, d.Q)* such
that

(5.3.1)

(5.3.4) €=ad.Q+e€,.
From / €Q =0, we have that

(5.3.5) a/&CQ-Q+/eLQ:0,

thus,

(5.3.6) % / Q2+ / €.Q=0,

which allows us to derive:
/ €.Q
Tor

Because d.Q is in the kernel of Q3, we have that

(5.3.7)

(5.3.8) Qlel = Qler] > velleLls
Now, from
(5.3.9) A .

/@

we have by triangular and Cauchy-Schwarz inequalities that

/0]

lellz < lleLllp +2=—=—19:QlI2

Q112

d
(5:3.10) <llev e + 2009 ey,

1Ql12

19:Qll 2
< (14255 e e
QN /7
Therefore, we may derive a constant y. (independent on €) such that

(5.3.11) Qle]l = pcllel?,
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5.4. Coercivity with almost orthogonality conditions (to be used for the uniqueness). For B :=
B, g or any of its translations, we define the canonical quadratic form associated to B:

/ €3x — /Bzez+ /Bzez+5/BBxxe +—/B4 2
+(,32—a2)(/e§—3/32e2)+(a2+l32) E/ez'

and we know that dy, B and dy, B span the kernel of QZ e More precisely, there exists yZ 5> 0 such

(5.4.1)

that if € is orthogonal to dy, B and dy, B, we have that

2
1
(5.4.2) Qg,ﬁ[e] > yfx,ﬁnenip - T( / eB) .
ya,ﬁ
We would like to prove the following lemma (adapted from the Appendix A of [30]):

Lemma 5.4. There exists v := v > 0 such that, for € € H*(R), if

a,p
(5.43) [@uBage| | [(@nBapie| <vielin,
then
uy 4 2
(5.4.4) Qﬁ,ﬁ[ e] > 22 |Ie|| T ( / eBa,ﬁ) ,

ap
where B, g denotes the breather of parameters o and B or any of its translations (in space or in time).

Proof. Take v > 0 (we will find a condition on v later in the proof) and take € satisfying the assump-
tion of the lemma. Then (denoting B = B, ) ,

(545) €=€1+aB1 + sz =€1+€y,

where / €1Bl /6132 = / €1€3 =
By performing a L2-scalar product of (5.4.5) with B; and Bj, we obtain, by assumption, that

/B2+b/B1B2
a/B1B2+b/B§

Therefore, by making linear combinations of these two inequalities, using triangular and Cauchy-
Schwarz inequalities, we obtain that

(5.4.8) lal +[b] < Cvll€||pp-

We can take space derivatives of (5.4.5). And thus, we obtain, for v small enough, that

(5.4.6) < vllellg2,

(5.4.7) < vlle]lp.

1
(5.4.9) Ellellf{z < lleillf < 2llellf

Because offBB1 = fBBz =0,

(5.4.10) / €B = / €1B.

By bilinearity,
QZ,ﬁ[ €] = Qa ﬁ[el] + QZ“B[Gz] + / €1,xx€2,xx — O / Bzel,xez,x

15
(5.4.11) +5/B;2¢€1€2+10/BBM€1€2+?/346162

+ (ﬁz - az)(Z/ €1xE2x — 6/ B26162) + (az +,82)2 / €162
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We know from the coercivity of QZ’ﬁ that

2
1
Q' ler] > it el - yT( / €1B)

ap
(5.4.12) b 5
”aﬁ 2
> — ||e||22——(/eB) X
2 " #Z,ﬁ

b

Also, if we denote by LZ P the self-adjoint operator associated to the quadratic form Q) Py

(5.4.13) Q; glea] = a*Q) 4[Bi] + b°Q), 4[Bo] +2ab / L} 4[B1]By < Cv2|lell7,e.

Actually, in this case, Qg,ﬁ[ez] = 0, because €5 is in the kernel of Qg,ﬁ (but, when we adapt this proof
for solitons, we can only write the bound).
Now, we recall that / e1€2 = 0, and study the other terms by using Cauchy-Schwarz:

‘ /el,xxezlxx - 5 / B2€1,x€2,x + 5 / B§€1€2 + 10 / BBxx€1€2

1
(5414) + ?5 / B4€1€2 + (‘82 — 0(2) (2 / €1,x€2,x — 6/ B2€1€2)

< C(lal + b)) lellie < Cvllel g,

We observe that if we take v small enough, the claim of the lemma is proved. ]

We prove in the same way that we have a similar lemma for solitons:

Lemma 5.5. There exists v := vS > 0, such that, for € € H?(R), if

(5.4.15) / (eRen)e| + / (@xRe,)e| < vlielie,
then

P‘i 2
(5.4.16) Qlle] > ZIIeIIHz,

where R, denotes the soliton of parameter c and sign x or any of its translations.
And even,

Lemma 5.6. There exists v := vi > 0, such that, for € € H?(R), if

(5.4.17) / Rece|+ / (@xRe)e| < Vi€l
then
(5.4.18) Qile] > %Ilellip,

where R, denotes the soliton of parameter c and sign x or any of its translations.
5.5. Computations for the third localized integral (to be used for the uniqueness).

Lemma 5.7. Let f : R — R be a C? function that do not depend on time and u a solution of (mKdV).

Then,
d Lo 5920 1%
i [ (et 3t gu)s
1
5.5.1) = / (— guﬁxx +9u2 u? + 15u% Ui, + 19—6u8 + Zuﬁ + guxxu“r’

45 !’ 174 1 1274
—Zu4u§)f +5/u2uxuxxf +§/u§xf .
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Proof. We perform by doing integrations by parts when needed and basic calculations:

(5.5.2)
d (1 2 S
7 ) (55wt 3t)s

3
:/utxxuxxf—S/utuuf;f—S/uzutxuxf+E/utqu

:—/(uxx+u3)xxxuxxf+5/(uxx+u3)xuu§f

+5/u2(uxx+u3)xxuxf—§/(uxx+u3)xu5f

:/(uxx+u3)xxuxxxf+/(uxx+u3)xxuxxf’+5/(uxx+u3)xuu;7;f
+5/u2(uxx+u3)xxuxf—§/(uxx+u3)xu5f

:—%/uﬁxxf’+/(u3)xxuxxxf+/(uxx+u3)xxuxxf’+5/uxxxuu§f+5/(u3)xuu§f
+5/u uxxxxuxf+5/ 2(”3)xx”xf_§/“xxx”5f_§/(”S)x”Sf

1

=75 / ”%xxf’ +/ (”xx + u3)xquXf, +/ (3uxxu2 + 6”;%”)uxxxf +5/uxxxuu>%f

+15/ 3f+5/u uxxxxuxf+5/u2(3uxxu2+6u§u)uxf—%/uxxxqu—g/uxu7f
:—%/u%xxf’+/(uxx+u) M f! +3/u uxxuxxxf+5/u2uxxxxuxf
+11/uu;7;uxxxf+45/ 3f+15/M uxuxxf_i/uxxxu f+ 4 / 8f
St f e o2 [
+/uu§uxxxf—5/uzuxuxxxf’+45/ 3f+15/u uxuxxf—§/u5uxxxf
:_%/”azcxxf'+/(uxx+u ) pthax f'+ / ubf’ - /”2”x”xxxjfl_/”2(“32cx)xf
+/uu;7;uxxxf+45/ 3f+15/M quxxf—%/MSMxxxf
ot [+ [ f s
+/u2u§xf’+2/uuxujzcxf—/uf;uxxf—Z/uuxu,%xf
_/uuf;uxxf’+45/ 3f+15/u uxuxxf—%/u5uxxxf
:_%/uixxf’+/(uxx+u ) ot f / ubf’ —5/u UxUyyy f' +/u2u§x
- [ =3 [d)ress [wtndr e [uttud),f o3 [utuar
=5 [t s [ o) e s g [t =5 [wtuns+ [
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3 4 ” ’
:—E/uixxf —/uxxxuxxf +4/u2 2f +5/u Ullyy f' —5/u2uxuxxxf
9 , 1 , 3 , 45 ,
T3 ubf +Z/uﬁf +§/u5uxxf —Z/u‘lu%f
3
=—§/”§xxf'+9/“xx“ 1 +15/u Ullyy f'+ — / ubf’ + = /uﬁf’
3 4 45 7’ ” 174
+§/u5uxxf —Z/u‘Luf;f —/uxxxuxxf +5/u2uxuxxf

3 9 1, 3 45
- / (_ Euﬁxx + 9u§xu2 + 151’[)%1/”’[9696 + _u + I/l + = T/lxxus - —u4M2)f

16 4 2 4
+5/u Ul 7+ = / xxf’”

which is exactly the desired expression.
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