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ON THE UNIQUENESS OF MULTI-BREATHERS OF THE MODIFIED KORTEWEG-DE
VRIES EQUATION

ALEXANDER SEMENOV

Abstract. We consider the modified Korteweg-de Vries equation (mKdV) and prove that given any
sum % of solitons and breathers of (mKdV) (with distinct velocities), there exists a solution ? of (mKdV)
such that ?(C) − %(C) → 0 when C → +∞, which we call multi-breather. In order to do this, we work at
the �2 level (even if usually solitons are considered at the �1 level). We will show that this convergence
takes place in any �B space and that this convergence is exponentially fast in time.

We also show that the constructed multi-breather is unique in two cases: in the class of solutions
which converge to the profile % faster than the inverse of a polynomial of a large enough degree in time
(we will call this a super polynomial convergence), or (without hypothesis on the convergence rate),
when all the velocities are positive.

1. Introduction

1.1. Setting of the problem. We consider the modified Korteweg-de Vries equation on R:

(mKdV)

{
DC + (DGG + D3)G = 0

D(0) = D0

(C, G) ∈ R2

D(C, G) ∈ R

The (mKdV) equation appears as a model of some physical problems as plasma physics [39, 9],
electrodynamics [38], fluid mechanics [22], ferromagnetic vortices [46], and more.

In [24], Kenig, Ponce and Vega established local well-posedness in �B , for B ≥ 1
4 , of the Cauchy

problem for (mKdV), by fixed point argument in !
?
G!

@

C type spaces. Moreover, if B > 1
4 , the Cauchy

problem is globally well posed [12]. Recently, Harrop-Griffiths, Killip and Visan [21] proved local
well-posedness in �B for B > −1/2. However, in this paper, we will only use the global well-
posedness in �2.

(mKdV) is an integrable equation (like the original Korteweg-de Vries equation) and thus it has
an infinity of conservation laws, see [37, 1]. We will use three of them (the first two of them are
called mass and energy):

"[D](C) :=
1
2

∫
R

D2(C, G)3G,(1.1.1)

�[D](C) :=
1
2

∫
R

D2
G(C, G)3G −

1
4

∫
R

D4(C, G)3G, and(1.1.2)

�[D](C) :=
1
2

∫
R

D2
GG(C, G)3G −

5
2

∫
R

D2(C, G)D2
G(C, G)3G +

1
4

∫
R

D6(C, G)3G.(1.1.3)

Observe that if D is a solution of (mKdV) then −D and, for any G0 ∈ R, (C, G) ↦→ D(C, G − G0) are
solutions of (mKdV) too.

(mKdV) is a dispersive nonlinear equation that is a special case of a more general class of equa-
tions: the general Korteweg-de Vries equation (gKdV), where the nonlinearity D3 is replaced by
5 (D) for some real valued function 5 . The particularity of (mKdV) in comparison to other (gKdV)
equation is that it admits special non linear solutions, namely breather solutions.

The most simple nonlinear solutions of (mKdV) are solitons, i.e. a bump of a constant shape
that translates with a constant velocity without deformation, that is, solutions of the form D(C, G) =
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&2(G − 2C), where 2 is the velocity and &2 is the profile function that depends only on one variable.
&2 ∈ �1(R) should solve the elliptic equation:

(1.1.4) &′′2 = 2&2 −&3
2 .

We can show that necessarily 2 > 0 and that, if 2 > 0, (1.1.4) has a unique solution in �1(R), up
to translations and reflexion with respect to the G-axis. Actually, one has the explicit fomula

(1.1.5) &2(G) :=

(
22

cosh2 (
21/2G

) ) 1
2

.

Observe that we chose &2 so that it is even and positive.
A soliton is a solution of (mKdV), parameterized by a velocity parameter 2 > 0, a sign parameter

� ∈ {−1, 1} and a translation parameter G0 ∈ R (it corresponds to the initial position of the soliton)
that has the following expression:

(1.1.6) '2,�(C, G; G0) := �&2 (G − G0 − 2C) .
When � = −1, this object is sometimes called antisoliton. Notice that solitons are smooth and

decaying. The generalized Korteweg-de Vries equation also admit soliton type solutions, and the
focusing nonlinear Schrödinger equation (NLS) as well. Solitons have been extensively studied, in
particular their stability. Cazenave, Lions and Weinstein in [45, 7, 8, 44] were interested in orbital
stability of (gKdV) and (NLS) solitons in �1. A soliton of (mKdV) is indeed orbitally stable, i.e. if
a solution is initially close to a soliton in �1(R), then it stays close to the soliton up to a translation
for all times in �1(R). General results about orbital stability of nonlinear dispersive solitons are
presented by Grillakis, Shatah and Strauss in [20]. The result about orbital stability of a soliton can
be improved in a result of asymptotic stability, as it was done in the works by Martel and Merle
[29, 33, 31], see also [17].

A breather is a solution of (mKdV), parameterized by , � > 0, G1, G2 ∈ R that has the following
expression:

(1.1.7) �,�(C, G; G1, G2) := 2
√

2%G

[
arctan

(
�



sin(H1)
cosh(�H2)

)]
,

where

H1 := G + �C + G1 and H2 := G + �C + G2,

with � := 2 − 3�2 and � := 32 − �2.

It corresponds to a localized periodic in time function (with frequency , and exponential local-
ization with decay rate �) that propagates at a constant velocity −� in time. Like solitons, breathers
are smooth and decaying in space. Unlike solitons, breather’s velocities can be positive, zero or neg-
ative. , � are the shape parameters and G1, G2 are the translation parameters of a breather. Note that
if we replace the parameter G1 by G1 + �

 , we transform �,�(·, ·; G1, G2) in −�,�(·, ·; G1, G2) (therefore,
we do not need to talk about “antibreathers”).

Breathers were first introduced by Wadati in [42], and they were already used by Kenig, Ponce
and Vega in [25] to prove that the flowmap associated to (mKdV) equation is not uniformly contin-
uous in �B for B < 1

4 : the point is that two breathers with close velocities can be very close at C = 0
and can separate as fast as we want in �B with B < 1

4 , if  is taken large enough.
(mKdV) breathers and their properties, as well as breathers for other equations, are well studied

by Alejo and Muñoz and co-authors in [3, 2, 5, 6, 4].
Let us singularize a result of �2 orbital stability for breathers established in [3], and improved to

�1 orbital stability in [4]. In this last paper, a partial result of asymptotic stability is also given, for
breathers traveling to the right only, with positive velocity −� > 0; asymptotic stability for breathers
in full generality is still an open problem.

When  → 0, �,� tends to a solution of (mKdV) called double-pole solution [43], the methods
employed in this article as well as the proof of orbital stability made by Alejo and Muñoz seem not
to apply for this limit, which is expected to be unstable according to the numerical computations in
[18].
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An important result regarding the long time dynamics of (mKdV) is the soliton-breather resolu-
tion [10]: it asserts that any generic solution can be approached by a sum of solitons and breathers
when C → +∞. Together with their stability properties, the soliton-breather resolution shows why
solitons and breathers are essential objects to study. This resolution was established for initial con-
ditions in a weighted Sobolev space in [10] (see also Schuur [40]) by inverse scattering method;
see also [40] for the soliton resolution for (KdV). Observe that (mKdV) breathers do not decouple
into simple solitons for large time (it is a fully bounded state as it is called in [3]); therefore, it must
appear in the resolution. The soliton-breather resolution is one of the motivations of the study of
multi-breathers, which we define below.

There are works in the literature about a more complicated object obtained from several solitons:
a multi-soliton. A multi-soliton is a solution A(C) of (mKdV) such that there exists 0 < 21 < 22 < ... <
2# , �1, ...,�# ∈ {−1, 1} and G1, ..., G# ∈ R, such that

(1.1.8) lim
C→+∞

A(C) − #∑
9=1

'2 9 ,� 9 (C, ·; G 9)


�1(R)

= 0.

This definition is not specific to (mKdV) and makes sense for many other nonlinear dispersive
PDEs as soon as they admit solitons. This object is introduced by Schuur [40] and Lamb [26], see
also [40, 36], where explicit formulas are given: these were obtained by inverse scattering method
thanks to the integrability of the equation. Multi-solitons were first constructed in a non integrable
context by Merle [34] for the mass critical (NLS). Martel in [28] constructed multi-solitons for mass-
subcritical and critical (gKdV) equations and proved that they are unique in �1(R), smooth and
converge exponentially fast to their profile in any Sobolev space �B . Similar studies were done for
other nonlinear dispersive PDEs. Martel and Merle [32] have proved the existence of multi-solitons
for (NLS) in �1, Côte, Martel and Merle extended this construction to mass supercritical (gKdV)
and (NLS) in [15]. Friederich and Côte in [14] proved smoothness, and uniqueness in a class of
algebraic convergence. Côte and Muñoz constructed in [16] multi-solitons for the nonlinear Klein-
Gordon equation. Ming, Rousset and Tzvetkov have constructed multi-solitons for the water-waves
systems in [35]. Valet has proved in [41] the existence and uniqueness of multi-solitons in �1 for
the Zakharov-Kuznetsov equation, which generalizes (gKdV) to higher dimension.

1.2. Main results. We prove in this article that given any sum of solitons and breathers with distinct
velocities, there exists a solution of (mKdV) whose difference with this sum tends to zero when
time goes to infinity. This solution will be called a multi-breather. Let us make the definition more
precise.

Let � ∈ N and  , ! ∈ N such that � =  + !. We will consider a set of ! solitons and  breathers:
• the breather parameters are : > 0, �: > 0, G0

1,: ∈ R and G0
2,: ∈ R for 1 ≤ : ≤  .

• the solitons parameters are 2; > 0, �; ∈ {−1, 1} and G0
0,; ∈ R for 1 ≤ ; ≤ !.

We define for 1 ≤ : ≤  , the :th breather:

(1.2.1) �:(C, G) := �: ,�: (C, G; G0
1,: , G

0
2,:);

and for 1 ≤ ; ≤ !, the ;th soliton:

(1.2.2) ';(C, G) := '2; ,�; (C, G; G0
0,;).

We now define the velocity of our objects. Recall that for 1 ≤ : ≤  , the velocity of �: is

(1.2.3) E1
:

:= −�: = �2
:
− 32

:
,

and for 1 ≤ ; ≤ !, the velocity of '; is

(1.2.4) EB
;

:= 2; .

The most important assumption we make is that all these velocities are distinct:

(1.2.5) ∀: ≠ :′ E1
:
≠ E1

:′, ∀; ≠ ;′ EB
;
≠ EB

;′, ∀:, ; E1
:
≠ EB

;
.

These implies for any two of these objects to be far from each other when time is large, and this
assumption is essential in our analysis.
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It will be useful to order our breathers and solitons by increasing velocities. As these are distinct,
we can define an increasing function

(1.2.6) E : {1, ..., �} −→ {E1
:
, 1 ≤ : ≤  } ∪ {EB

;
, 1 ≤ ; ≤ !}.

The set {E1, ..., E�} is thus the (ordered) set of all possible velocities of our objects. We define %9 ,
for 1 ≤ 9 ≤ �, as the object (either a soliton '; or a breather �:) that corresponds to the velocity E 9 .
Hence, %1, ...,%� are the considered objects ordered by increasing velocity.

We will need both notations: the indexation by : and ;, and the indexation by 9, and we will
keep these notations to avoid ambiguity.

We will denote by G 9 the center of mass of %9 , that is

• if %9 = �: is a breather, we set G 9(C) := −G0
2,: + E 9C;

• if %9 = '; is a soliton, we set G 9(C) := G0
0,; + E 9C.

We denote:

(1.2.7) ' =

!∑
;=1

'; , � =

 ∑
:=1

�: , % = ' + � =
�∑
9=1

%9 .

We can now define a multi-breather: as solitons are objects which can be studied naturally in
�1(R), it turns out that breathers are best studied in �2(R); therefore, it is in this latter space that
we develop our analysis.

Definition 1.1. A multi-breather associated to the sum % given in (1.2.7) of solitons and breathers is
a solution ? ∈ C([)∗,+∞),�2(R)), for a constant )∗ > 0, of (mKdV) such that

(1.2.8) lim
C→+∞

?(C) − %(C)
�2 = 0.

We will prove two results in this article. The first one is the existence and the regularity of a
multi-breather, the second one is the uniqueness of a multi-breather. The uniqueness is established
in two settings: in the case when all velocities are positive, and without any assumption on the sign
of the considered velocities. However, in the last case, the uniqueness is obtained in a narrower
class of functions.

Theorem 1.2. Given solitons and breathers (1.2.1), (1.2.2) whose velocities (1.2.3) and (1.2.4) satisfy (1.2.5),
there exists a multi-breather ? associated to % given in (1.2.7). Moreover,

? ∈ C∞ (R×R) ∩ C∞ (R,�B(R))(1.2.9)

for any B ≥ 0 and there exists � > 0 such that for any B ≥ 0, there exists �B ≥ 1 and )∗ > 0 such that,

(1.2.10) ∀C ≥ )∗, ‖?(C) − %(C)‖�B ≤ �B 4−�C .
Remark 1.3. We will also show that � does only depend on the shape parameters of our objects:
: , �: , 2; . Moreover, if there exists � > 0 such that for all 9 ≥ 2, G 9(0) ≥ G 9−1(0) +�, then �B and )∗

do not depend on G0
1,: , G

0
2,: , G

0
0,; but only on : , �: , 2; and �. Finally, if � > 0 is large enough with

respect to the problem data, then (1.2.10) is true for )∗ = 0. See Section 3.2 for further details.

Theorem 1.4. Given the same set of solitons and breathers as in Theorem 1.2 whose velocities satisfy (1.2.5)
and E1 > 0 (so that all velocities are positive), the multi-breather ? associated to % by Theorem 1.2, in the
sense of Definition 1.1, is unique.

Proposition 1.5. Given the same set of solitons and breathers as in Theorem 1.2 whose velocities satisfy
(1.2.5), there exists # > 0 large enough such that the multi-breather ? associated to % by Theorem 1.2 is the
unique solution D ∈ C([)0,+∞),�2(R)) of (mKdV) such that

‖D(C) − %(C)‖�2 = $

(
1
C#

)
, 0B C → +∞.(1.2.11)

In [43], there exists a formula for a multi-breather, obtained by inverse scattering method, that in
some sense already gives the existence of a multi-breather. However, the proof of the theorem 1.2
from this formula is rather involved.
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In this paper, we give here a different approach to prove the existence of a multi-breather and we
clearly show that we have convergence of the constructed multi-breather to the corresponding sum
of solitons and breathers in �B and that this convergence is exponentially fast in time, and that the
constructed multi-breather is smooth. To do this, we use the variational structure of solitons and
breathers. That is why, we give a proof that is potentially generalizable to non integrable equations,
and that uses similar type of techniques as in the proof of the uniqueness (the latter cannot be
deduced from the formula). In any case, uniqueness of multi-breathers is new.

In this paper, we adapt the arguments given by Martel and Merle [32], by Martel [28] and by Côte
and Friederich [14] to the context of breathers. To do so, one needs to understand the variational
structure of breathers, in the same fashion as Weinstein did in [45] for (NLS) solitons. Such results
were obtained by Alejo and Muñoz in [3]: a breather is a critical point of a Lyapunov functional at
the �2 level, whose Hessian is coercive up to several (but finitely many) orthogonal conditions, see
Section 2 for details. As we see from [3], the �2 regularity level is the most natural setting to study
breathers, and the �1 regularity level is natural for the study of solitons, as we see in [28, 32]. One
important issue we face is therefore to understand soliton variational structure at �2 level, and to
adapt the Lyapunov functional in [3] to accommodate for a sum of breathers (and solitons). Notice
that arguments based on monotonicity may be adapted only if we suppose that all the considered
velocities are positive. Because [32, 14] are not based on monotonicity (these are results for (NLS)
which is not well suited for monotonicity), we can adapt their arguments to obtain existence and
uniqueness results for our case without any condition on the sign of velocities. The uniqueness
result obtained in this setting is however weaker than the one that is obtained with monotonicity
arguments.

1.3. Outline of the proof. The proof of Theorem 1.2 (the existence of multi-breathers) is split into
two main parts: the construction of an �2 multi-breather and the proof that this multi-breather is
smooth.

1.3.1. An �2 multi-breather. Let us start with the first part. We consider ()=) an increasing sequence
of R+ with )= → +∞, and for = ∈ N, let ?= the unique global �2 solution of (mKdV) such that
?=()=) = %()=) (recall that the Cauchy problem for (mKdV) is globally well-posed in �2).

We will prove the following uniform estimate:

Proposition 1.6. There exists )∗ > 0, � > 0, � > 0 such that, for all = ∈ N such that )= ≥ )∗,
(1.3.1) ∀C ∈ [)∗,)=], ‖?=(C) − %(C)‖�2 ≤ �4−�C .

With this proposition in hand, we can construct an �2 multi-breather which converges exponen-
tially fast to its profile, which is the first part of Theorem 1.2, as stated below.

Proposition 1.7. There exists )∗ ∈ R, � > 0, � > 0 and a solution ? ∈ �([)∗,+∞),�2(R)) of (mKdV)
such that,

(1.3.2) ∀C ≥ )∗, ‖?(C) − %(C)‖�2 ≤ �4−�C .
Proof of Proposition 1.7 assuming Proposition 1.6. The sequence (?=()∗))= is !2-compact,
in the following sense:

Lemma 1.8. ∀� > 0∃' > 0 such that

(1.3.3) ∀= ∈ N

∫
|G |>'

?2
=()∗, G)3G < �

An analogous lemma has already been proved on p. 1111 of [28], which is the proof of formula
(14) (and can also be found in [32]). The same proof works here. We need to use Proposition 1.6 for
)= large enough and then make a time variation to obtain the result in )∗. We can first find ' that
works for %2(C0) instead of ?2

=()∗) for a fixed C0 > )∗ large enough. From Proposition 1.6, we see that
if we take C0 large enough, we obtain the desired lemma for ?2

=(C0) instead of ?2
=()∗). To finish, with

the help of a cut-off function, we control time variations of
∫
|G |>' ?

2
=(C)3G, where ' is taken larger if

needed. That is why we obtain the result at C = )∗.
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As a consequence of the Proposition 1.6 above, (‖?=()∗)‖�2) is a bounded sequence. Thus, there
exists ?∗ ∈ �2(R) such that, up to a subsequence,

(1.3.4) ?=()∗)⇀ ?∗ in �2.

Thus, from Lemma 1.8, there holds the strong convergence

(1.3.5) ?=()∗) → ?∗ in !2.

Therefore, we obtain by interpolation:

(1.3.6) ?=()∗) → ?∗ in �1.

Now, let us consider the global �1 (even �2) solution ? of (mKdV) such that ?()∗) = ?∗. As
shown in [28], the Cauchy problem for (mKdV) has a continuous dependence in �1 on compact sets
of time. Let C ≥ )∗: by continuous dependence, we deduce that ?=(C) → ?(C) in �1. (?=(C) − %(C)) is
a bounded sequence in �2, which admits a unique weak limit and so

(1.3.7) ?=(C) − %(C)⇀ ?(C) − %(C) in �2.

By weak convergence and from Proposition 1.6, we obtain

(1.3.8) ‖?(C) − %(C)‖�2 ≤ lim inf
=→+∞

‖?=(C) − %(C)‖�2 ≤ �4−�C .

As this is true for any C ≥ )∗, this ends the proof of the Proposition 1.7. �

It remains to prove Proposition 1.6, for which we rest on a bootstrap argument. More precisely,
we will reduce the proof to the following proposition:

Proposition 1.9. There exists )∗ > 0, � > 0, � > 0, such that for all = ∈ N such that )= ≥ )∗, for all
C∗ ∈ [)∗,)=], if

(1.3.9) ∀C ∈ [C∗,)=], ‖?=(C) − %(C)‖�2 ≤ �4−�C ,
then

(1.3.10) ∀C ∈ [C∗,)=], ‖?=(C) − %(C)‖�2 ≤ �

2
4−�C .

The proof of Proposotion 1.6 then follows from a simple continuity argument.

Proof of Proposition 1.6 assuming Proposition 1.9. We define C∗= in the following way:

(1.3.11) C∗= := inf{C∗ ∈ [)∗,)=), ∀C ∈ [C∗,)=], ‖?=(C) − %(C)‖�2 ≤ �4−�C}.
The map C ↦→ ‖?=(C) − %(C)‖�2 is a continuous function and ‖?=()=) − %()=)‖�2 = 0. This means

that there exists )∗ ≤ C∗ < )= such that

(1.3.12) ∀C ∈ [C∗,)=], ‖?=(C) − %(C)‖�2 ≤ �4−�C .
Therefore, we have

(1.3.13) )∗ ≤ C∗= < )= .

We would like to prove that C∗= = )∗. Let us argue by contradiction and assume that C∗= > )∗. The
Proposition 1.9 allows us to deduce that

(1.3.14) ∀C ∈ [C∗= ,)=], ‖?=(C) − %(C)‖�2 ≤ �

2
4−�C .

This means that

(1.3.15) ‖?=(C∗=) − %(C∗=)‖�2 ≤ �

2
4−�C

∗
= ,

which means that C∗= could be chosen smaller, by continuity. This is a contradiction. �

Hence, we are left to prove Proposition 1.9, which will be done in Section 2.
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1.3.2. The �2 multi-breather is smooth. We now turn to the second part of Theorem 1.2, which is
strongly adapted from [28]. The heart of this part is to prove uniform estimates in �B for ?= − %, for
any B ≥ 0:

Proposition 1.10. There exists )∗ > 0, � > 0, such that for any B ≥ 0, there exists �B ≥ 1, such that for
any = ∈ N such that )= ≥ )∗

(1.3.16) ∀C ∈ [)∗,)=], ‖?=(C) − %(C)‖�B ≤ �B 4−�C .
With this improved version of Proposition 1.6, one can prove by the same reasonning as in the

proof of the Proposition 1.7, that for any B ≥ 0, ? actually belongs to !∞([)∗,+∞),�B(R)) and that
the convergence of ?(C) − %(C) occurs in �B with an exponential decay rate. More precisely,

Theorem 1.11. For all B ≥ 2, ? ∈ C([)∗,+∞),�B(R)), and furthermore,

(1.3.17) ∀C ≥ )∗, ‖?(C) − %(C)‖�B ≤ �B 4−�C .
It remains to prove Proposition 1.10, which will be done in Section 3.

1.3.3. The uniqueness result. We denote ? the multi-breather constructed in the previous sections, the
existence of which is established. Let D be a solution of (mKdV) such that

(1.3.18) ‖D − %‖�2 −−−−−→
C→+∞

0.

Equivalently, there holds

(1.3.19) ‖D − ?‖�2 −−−−−→
C→+∞

0.

We denote

(1.3.20) I := D − ?.

The goal is to prove that I = 0. We prove it in two configurations: when all the velocities are
positive (Theorem 1.4), and without any assumption on velocities (Proposition 1.5), but in this last
case we need to assume a stronger convergence than given in (1.3.18).

The proof of Theorem 1.4 will be carried out in two steps.

We start with Proposition 1.5, which is adapted from [14]. For this, we do not study D − %
anymore, we deal only with I = D − ?. I is the difference of two solutions of (mKdV), which is
much more precise than D − %. Thus, we do not modulate parameters of the solitons, as it is needed
in other parts of the proof in order to deal with the soliton part of the linear part of the Lyapunov
functional, and we avoid some difficulty. In order to prove our inequalities, we need again to use
coercivity of the same type of quadratic forms. In order to do this, we replace I by Ĩ = I +∑�

9=1 2 9 9 ,
where  9 , 9 = 1, ..., � is a well chosen basis of the kernel of the quadratic form, in order to have Ĩ
orthogonal to any  9 . A important idea is to use slow variations of localized functional with adapted
cut-off function of the form !

(
G−EC
�C

)
, which provides an extra $(1/C) decay when derivatives fall on

the cut-off, and ultimately explain why algebraic decay comes into play.

In the context of Theorem 1.4, we actually prove that

E := D − %(1.3.21)

converges exponentially fast to 0: this is the purpose of Proposition 4.10, which uses some ideas of
[28]. Due to Proposition 1.5, we deduce immediately from there that an exponential convergence is
trivial, that is I = 0.

To prove Proposition 4.10, we use monotonicity properties combined with coercivity of an energy
type functional very similar to that used for the existence result. This is why we also need to
modulate, and the choice of the orthogonality condition is essential: it allows to bound linear terms
in F that appear in the computations. An issue of the mixed breathers/solitons context is that one
cannot build a functional adapted to all the nonlinear objects at once, as it is done in [28]. Instead, we
carry out an induction and we argue successively around each object, soliton or breather, separately.
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1.3.4. Organisation of the paper. Sections 2 and 3 are devoted to the proof of the existence of a multi-
breather: Proposition 1.9 is proved in Section 2, Proposition 1.10 is proved in Section 3. Section 4
gathers the proofs of the uniqueness results: Section 4.1 is devoted to the proof of Proposition 1.5,
and Section 4.2 and 4.3 are devoted to the proof of Theorem 1.4.

1.4. Acknowledgments. The author would like to thank his supervisor Raphaël Côte for suggesting
the idea of this work, for fruitful discussions and for his useful advice.

2. Construction of a multi-breather in �2(R)
We set

(2.0.1) � := min{�: , 1 ≤ : ≤  } ∪ {√2; , 1 ≤ ; ≤ !}, � := min{E 9+1 − E 9 , 1 ≤ 9 ≤ � − 1}.
Our goal in this section is to prove Proposition 1.9.

2.1. Elementary results. Let us first collect a few basic facts that will be used throughout the article.
One may check an exponential decay result for any of our objects:

Proposition 2.1. Let 9 = 1, ..., �, =,< ∈ N. Then, there exists a constant � > 0 such that for any C, G ∈ R,

(2.1.1) |%=G%<C %9(C, G)| ≤ �4−� |G−E 9 C |.
Corollary 2.2. Let A > 0. For C, G such that E 9C + A < G < E 9+1C − A, we have

(2.1.2) |%(C, G)| ≤ �4−�A .
The same is true for any space or time derivative of %.

We will also use the following cross-product result:

Proposition 2.3. Let 8 ≠ 9 ∈ {1, ..., �} and <, = ∈ N. There exists a constant � that depends only on %,
such that for any C ∈ R,

(2.1.3)

����∫ %<G %8%
=
G%9

���� ≤ �4−��C/2.

There is also an orthogonality result for breathers that will be useful:

Lemma 2.4. Let � := �,� be a breather. We denote �1 := %G1� and �2 := %G2�. Then,

(2.1.4)
∫

��1 =

∫
��2 = 0.

Proof. Note that (?0=(�1, �2) = (?0=(�G , �C). Therefore, it is enough to prove that

(2.1.5)
∫

��G =

∫
��C = 0.

Firstly,

(2.1.6)
∫

��G =
1
2

∫ (
�2)

G
= 0.

Secondly,

(2.1.7)
∫

��C =
1
2

∫ (
�2)

C
=

1
2
3

3C

∫
�2 = 0,

by mass conservation and because a breather is a solution of (mKdV). �
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2.2. Almost-conservation of localized conservation laws. From now on, we will fix = ∈ N. This
is why, for the simplicity of notations, we can write ) for )= , and ? for ?= . The goal will be to
find constants )∗,� > 1,� that do not depend on =, nor on the translation parameters of the given
objects, to be chosen later ()∗ will depend on � and �), such that Proposition 1.9 is verified. We will
take a C∗ ∈ [)∗,)], and we will make the following bootstrap assumption for the remaining of the
article:

(2.2.1) ∀C ∈ [C∗,)], ‖?(C) − %(C)‖�2 ≤ �4−�C ,
where ?()) = %()).
Remark 2.5. We have the following property for solutions of (mKdV): there exists �0 > 0 such that,
for any solution F of (mKdV), F is global and

(2.2.2) ∀C ∈ R ‖F(C)‖�2 ≤ �0‖F())‖�2 .

Therefore,

(2.2.3) ∀C ∈ R ‖?(C)‖�2 ≤ �0‖%())‖�2 ≤ �0

�∑
9=1

‖%9())‖�2 ≤ �0�,

where � is a constant that depends only on problem data (because the �B-norm of solitons or
breathers can be easily bounded).

Let � := ��
32 . Let min(1, �4 ) > � > 0 be a constant to be chosen later.

This part of the proof is adapted from [32].
Let #(G) be a �3 function such that

(2.2.4) 0 ≤ # ≤ 1 on R, #(G) = 0 for G ≤ −1, #(G) = 1 for G ≥ 1, #′ ≥ 0 on R,

and satisfying, for a constant � > 0,

(#′(G))4/3 ≤ �#(G), (#′(G))4/3 ≤ �(1−#(G)), |#′′(G)|3/2 ≤ �#′(G) for all G ∈ R.(2.2.5)

Note that it is enough to take # that is equal to (1 + G)4 on a neighbourhood of −1 and that is
equal to 1− (−1+ G)4 on a neighbourhood of 1.

These conditions on # will be needed for the proof of Proposition 2.19.
For all 9 = 2, ..., �, let

(2.2.6) �9 :=
1
2
(E 9−1 + E 9).

For any 9 = 2, ..., � − 1, let

(2.2.7) ! 9(C, G) := #

(
G − �9C
�C

)
−#

(
G − �9+1C

�C

)
,

(2.2.8) !1(C, G) := 1−#
(
G − �2C

�C

)
, !�(C, G) := #

(
G − �� C
�C

)
,

so that the function ! 9 corresponds obviously to the object %9 . We will also use notations !B
;

and !1
:
,

which represent the same functions, and where !B
;

corresponds to the soliton '; and !1
:

corresponds
to the breather �: .

We will also denote, for 9 = 2, ..., � − 1,

(2.2.9) !1,9(C, G) := #′
(
G − �9C
�C

)
−#′

(
G − �9+1C

�C

)
,

(2.2.10) !1,1(C, G) := −#′
(
G − �2C

�C

)
, !1,�(C, G) := #′

(
G − �� C
�C

)
.

Of course, notations !11,: , !
B
1,; or !2,9 will be used, with similar obvious definitions.

We have that, for 9 = 1, ..., �,

(2.2.11) |!1,9 | ≤ �!3/4
9

.
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Remark 2.6. If � ≤ �
4 , ∫ �9 C+�C

−∞
4−2� |G−E 9 C | = 4−2�E 9 C

∫ �9 C+�C

−∞
42�G3G

=
1

2�
4−2�E 9 C 4�(E 9+E 9−1)C 42��C

≤ �4−��C 42��C ≤ �4−��C/2,(2.2.12)

(2.2.13)
∫ +∞

�9+1C−�C
4−2� |G−E 9 C | ≤ �4−��C/2,

for the same reason, and if 8 ≠ 9, e.g. 9 > 8,∫ �9+1C+�C

�9 C−�C
4−2� |G−E8 C | = 42�E8 C

∫ �9+1C+�C

�9 C−�C
4−2�G3G

≤ 1
2�
42�E8 C 4−�(E 9+E 9−1)C 42��C

≤ �4−��C 42��C ≤ �4−��C/2.(2.2.14)

And finally, we set for all 9 = 1, ..., �:
(2.2.15)

" 9(C) :=
∫

1
2
?2(C, G)! 9(C, G)3G =: " 9[?](C), � 9(C) :=

∫ (
1
2
?2
G(C, G) −

1
4
?4(C, G)

)
! 9(C, G)3G =: � 9[?](C).

Notations "B
;
,"1

:
,�B

;
,�1

:
will also be used.

These are local versions of the mass and the energy of the solution ? considered (localized around
each breather or soliton). We will prove the following result for the localized mass and energy:

Lemma 2.7. There exists � > 0 and )∗1 := )∗1 (�) such that, if )∗ ≥ )∗1 , then for all 9 = 1, ..., �, for all
C ∈ [C∗,)],

(2.2.16) |" 9()) −" 9(C)| + |� 9()) − � 9(C)| ≤
�

�2C
�24−2�C .

Proof. We will use the results of the computations made on the bottom of page 1115 and on the
bottom of page 1116 of [28] to claim the following facts:

3

3C

1
2

∫
?2 5 =

∫ (
−3

2
?2
G +

3
4
?4

)
5 ′ −

∫
?G? 5

′′

3

3C

∫ [
1
2
?2
G −

1
4
?4

]
5 =

∫ [
−1

2
(?GG + ?3)2 − ?2

GG + 3?2
G?

2
]
5 ′ −

∫
?GG?G 5

′′(2.2.17)

where 5 is a �2 function that does not depend on time.
" 9(C) is a sum of quantities of the form 1

2

∫
?2#( G−�9 C�C ).

3

3C

1
2

∫
?2#

(
G − �9C
�C

)
=

1
�C

∫ (
−3

2
?2
G +

3
4
?4

)
#′

(
G − �9C
�C

)
− 1
(�C)2

∫
?G?#

′′
(
G − �9C
�C

)
− 1

2

∫
?2 G

�C2
#′

(
G − �9C
�C

)
.(2.2.18)

#′( G−�9 C�C ) is zero outside of Ω9(C) := (−�C + �9C, �C + �9C). Thus, for G ∈ Ω9(C), | GC | ≤ |�9 | + |� | ≤
|�9 | + 1, this means that | GC | is bounded by a constant (that depends only on the given parameters).
We can deduce that

(2.2.19)

���� 33C 1
2

∫
?2#

(
G − �9C
�C

)���� ≤ �

�2C

(∫
Ω9(C)

?2
G +

∫
Ω9(C)

?4 +
∫
Ω9(C)

?2

)
.
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We bound
∫
Ω9(C) ?

4 by the following way:∫
Ω9(C)

?4 ≤ ‖?‖2!∞
∫
Ω9(C)

?2

≤ �‖?‖2
�1

∫
Ω9(C)

?2 by Sobolev embedding

≤ �
∫
Ω9(C)

?2 by Remark 2.5.(2.2.20)

Thus, we have for any C ∈ [C∗,)],

(2.2.21)

���� 33C 1
2

∫
?2#

(
G − �9C
�C

)���� ≤ �

�2C

(∫
Ω9(C)

?2
G +

∫
Ω9(C)

?2

)
.

� 9(C) is a sum of quantities of the form
∫
[12?2

G − 1
4?

4]#( G−�9 C�C ).
3

3C

∫ [
1
2
?2
G −

1
4
?4

]
#

(
G − �9C
�C

)
=

1
�C

∫ [
−1

2
(?GG + ?3)2 − ?2

GG + 3?2
G?

]
#′

(
G − �9C
�C

)
− 1
(�C)2

∫
?GG?G#

′′
(
G − �9C
�C

)
−

∫ [
1
2
?2
G −

1
4
?4

]
G

�C2
#′

(
G − �9C
�C

)
(2.2.22)

We deduce from this, by using similar arguments as for the mass, that for any C ∈ [C∗,)],

(2.2.23)

���� 33C ∫ [
1
2
?2
G −

1
4
?4

]
#

(
G − �9C
�C

)���� ≤ �

�2C

(∫
Ω9(C)

?2 +
∫
Ω9(C)

?2
G +

∫
Ω9(C)

?2
GG

)
.

Now, we write ?(C) = %(C) + (?(C) − %(C)), and we use the triangular inequality

(2.2.24)
∫
Ω9(C)
(?2 + ?2

G + ?2
GG) ≤ 2

∫
Ω9(C)
(%2 + %2

G + %2
GG) + 2‖? − %‖2

�2

We have assumed that ‖? − %‖2
�2 ≤ �24−2�C , we need to study % on Ω9(C). The following compu-

tations work also for the derivatives of %.∫
Ω9(C)

%2 =

∫
Ω9(C)

(
�∑

<=1

%<(C, G)
)2

=

∑
1≤<,;≤�

∫
Ω9(C)

%<(C, G)%;(C, G)

≤ �
∑

1≤<,;≤�

∫
Ω9(C)

4−� |G−E< C |4−� |G−E; C |3G,(2.2.25)

where we use the Proposition 2.1.
We assume that < ≥ 9 (we argue similarly if < ≤ 9 − 1). Then,

G ∈ Ω9(C) ⇔ −�C + �9C ≤ G ≤ �C + �9C
⇔ −�C + (�9 − E<)C ≤ G − E<C ≤ �C + (�9 − E<)C.(2.2.26)

We note that �9 − E< ≤ −1
2� < 0, we can thus deduce from the condition on � that �9 − E< + � ≤

− 1
4� < 0. We deduce that G − E<C is negative for G ∈ Ω9(C).

Similarly, if < ≤ 9 − 1, G − E<C is positive for G ∈ Ω9(C).
We will now make calculations for different cases.
If <, ; ≤ 9 − 1, ∫

Ω9(C)
4−� |G−E< C |4−� |G−E; C |3G ≤

∫
Ω9(C)

4−�(G−E< C)4−�(G−E; C)3G

=
1

2�
4�C(−E 9−E 9−1+E<+E;)(42��C − 4−2��C)

≤ �4�C(−E 9−E 9−1+E<+E;+2�) ≤ �4−��C/2.(2.2.27)
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Similarly, if <, ; ≥ 9,

(2.2.28)
∫
Ω9(C)

4−� |G−E< C |4−� |G−E; C |3G ≤ �4−��C/2.

And, if < ≤ 9 − 1, ; ≥ 9,∫
Ω9(C)

4−� |G−E< C |4−� |G−E; C |3G ≤
∫
Ω9(C)

4−�(G−E< C)4�(G−E; C)3G

≤ 2�C4�C(E<−E;) ≤ �4−
��C
2 .(2.2.29)

Thus,

(2.2.30)
∫
Ω9(C)

%2 ≤ �4−
��C
2 ,

and the same is valid for the derivatives of %.
Thus, for C ∈ [C∗,)],

�∑
9=1

���� 33C 1
2

∫
?2#

(
G − �9C
�C

)����+ ���� 33C ∫ [
1
2
?2
G −

1
4
?4

]
#

(
G − �9C
�C

)����
≤ �

�2C
�24−2�C + �

�2C
4−

��C
2 ≤ �

�2C
(�2 + 4−2�C)4−2�C ≤ �

�2C
�24−2�C .(2.2.31)

Thus, for 9 = 1, ..., �, C ∈ [C∗,)],

|" 9()) −" 9(C)| + |� 9()) − � 9(C)| ≤
∫ )

C

�

�2B
�24−2�B3B ≤ �

�2C
�2

∫ )

C

4−2�B3B

=
�

�2C
�2 1

2�
(4−2�C − 4−2�)) ≤ �

�2C
�24−2�C .(2.2.32)

�

2.3. Modulation.

Lemma 2.8. There exists � > 0, )∗2 = )∗2 (�) such that, if )∗ > )∗2 , then there exist unique �1 functions
G1,: : [C∗,)] → R, G2,: : [C∗,)] → R for 1 ≤ : ≤  and G0,; : [C∗,)] → R, 20,; : [C∗,)] → R, such that if
we set

(2.3.1) �(C, G) = ?(C, G) − �̃(C, G) − '̃(C, G) = ?(C, G) − %̃(C, G)
where

(2.3.2) �̃(C, G) =
 ∑
:=1

�̃:(C), �̃:(C, G) = �: ,�: (C, G; G0
1,: + G1,:(C), G0

2,: + G2,:(C)),

(2.3.3) '̃(C, G) :=
!∑
;=1

'̃;(C), '̃;(C, G) := �;&2;+20,;(C)(G − G0
0,; + G0,;(C) − 2;C) for 1 ≤ ; ≤ !,

(2.3.4) %̃(C) := '̃(C) + �̃(C),
and

(2.3.5) %̃(C) :=
�∑
9=1

%̃9(C)

where there is the usual correspondence between %̃9 and �̃: or '̃; ,
then, �(C) satisfies, for all : = 1, ..., , for all ; = 1, ..., ! and for all C ∈ [C∗,)],

(2.3.6)∫
'̃;(C)�(C)

√
!B
;
(C) =

∫
%G '̃;(C)�(C)

√
!B
;
(C) =

∫
%G1 �̃:(C)�(C)

√
!1
:
(C) =

∫
%G2 �̃:(C)�(C)

√
!1
:
(C) = 0.
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Moreover, for all C ∈ [C∗,)],

(2.3.7) ‖�(C)‖�2 +
 ∑
:=1

(|G1,:(C)| + |G2,:(C)|) +
!∑
;=1

(|G0,;(C)| + |20,;(C)|) ≤ ��4−�C ,

and

(2.3.8)
 ∑
:=1

(|G′1,:(C)| + |G
′
2,:(C)|) +

!∑
;=1

(|G′0,;(C)| + |2
′
0,;(C)|) ≤ �‖�(C)‖!2 + �4−�C .

Finally, ?()) = %()) = %̃()) and �()) = G0,;()) = G1,:()) = G2,:()) = 20,;()) = 0.

Proof: see for example [13] for reference. Let, for C ∈ [C∗,)],
(2.3.9) �C : !2(R) ×R2 ×R2! → R2 +2!

(F, G1,: , G2,: , G0,; , 20,;)

↦−→
(∫ √

!1
:
(C, G)%G1�: ,�: (C, G; G0

1,: + G1,: , G0
2,: + G2,:)·

·
(
F −

 ∑
<=1

�< ,�< (C, G; G0
1,< + G1,< , G0

2,< + G2,<) −
!∑
==1

�=&2=+20,= (G − G0
0,= + G0,= − 2=C)

)
,∫ √

!1
:
(C, G)%G2�: ,�: (C, G; G0

1,: + G1,: , G0
2,: + G2,:)·

·
(
F −

 ∑
<=1

�< ,�< (C, G; G0
1,< + G1,< , G0

2,< + G2,<) −
!∑
==1

�=&2=+20,= (G − G0
0,= + G0,= − 2=C)

)
,∫ √

!B
;
(C, G)%G�;&2;+20,; (G − G0

0,; + G0,; − 2;C)·

·
(
F −

 ∑
<=1

�< ,�< (C, G; G0
1,< + G1,< , G0

2,< + G2,<) −
!∑
==1

�=&2=+20,= (G − G0
0,= + G0,= − 2=C)

)
,∫ √

!B
;
(C, G)�;&2;+20,; (G − G0

0,; + G0,; − 2;C)·

·
(
F −

 ∑
<=1

�< ,�< (C, G; G0
1,< + G1,< , G0

2,< + G2,<) −
!∑
==1

�=&2=+20,= (G − G0
0,= + G0,= − 2=C)

))
(2.3.10)

We observe that �C is a �1 function and �C(%(C), 0, 0, 0, 0) = 0. Now, let us consider the matrix
which gives the differential of �C (with respect to G1,: , G2,: , G0,; , 20,;) in (%(C), 0, 0, 0, 0) (we consider
diagonal and extra-diagonal terms for each bloc):

(2.3.11) ��C =

©«

�1
:,: �3

:,: × × × × × ×
�3
:,: �2

:,: × × × × × ×
× × �1

:′,:′ �3
:′,:′ × × × ×

× × �3
:′,:′ �2

:′,:′ × × × ×
× × × × '1

;,; '4
;,; × ×

× × × × '3
;,; '2

;,; × ×
× × × × × × '1

;′,;′ '4
;′,;′

× × × × × × '3
;′,;′ '2

;′,;′

ª®®®®®®®®®®®®®¬
,

where
(2.3.12)

�1
:,: := −

∫ (
%G1�: ,�:

)2
√
!1
:
, �2

:,: := −
∫ (

%G2�: ,�:
)2

√
!1
:
, �3

:,: := −
∫

%G1�: ,�:%G2�: ,�:

√
!1
:
,
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denoting H0
0,; := G − G0

0,; − 2;C,

(2.3.13) '1
;,; := −

∫
(%G&2; (H0

0,;))
2
√
!B
;
, '2

;,; := − 1
22;

∫
&2; (H0

0,;)
(
&2; (H0

0,;) + H
0
0,;%G&2; (H0

0,;)
) √

!B
;
,

(2.3.14)

'3
;,; := −

∫
&2; (H0

0,;)%G&2; (H0
0,;)

√
!B
;
, '4

;,; := − 1
22;

∫
%G&2; (H0

0,;)
(
&2; (H0

0,;) + H
0
0,;%G&2; (H0

0,;)
) √

!B
;
,

and crosses stand for exponentially decaying terms when C → +∞, and we consider variables in
the following order: G1,1, G2,1, G1,2, G2,2, G1,3, G2,3, ..., G1, , G2, , G0,1, 20,1, ..., G0,!, 20,! and we order the
coefficients of the function in the similar way. This is a matrix with dominant diagonal blocs.

Note that �1
:,: is exponentially close to −

∫ (
%G1�: ,�:

)2, because if %9 = �: is a breather,∫ (
%G1�: ,�:

)2
(
1−

√
!1
:

)
≤

∫ �9 C+�C

−∞

(
%G1�: ,�:

)2 +
∫ +∞

�9+1C+�C

(
%G1�: ,�:

)2

≤ �
∫ �9 C+�C

−∞
4−2�|G−E 9 C | +

∫ +∞

�9+1C+�C
4−2�|G−E 9 C |

≤ �4−
��
2 C ,(2.3.15)

and the same is true for the other dominant diagonal terms of the matrix (we can get rid of !s).
Therefore, the determinant of the matrix is exponentially close to:

det(��C) =
 ∏
:=1

(∫
(%G1�: ,�: (C, G; G0

1,: , G
0
2,:))

2
∫
(%G2�: ,�: (C, G; G0

1,: , G
0
2,:))

2 −
(∫

%G1�: ,�:%G2�: ,�:

)2
)

·
!∏
;=1

(
1

22;

∫
&2; (H0

0,;)
(
&2; (H0

0,;) + H
0
0,;%G&2; (H0

0,;)
) ∫
(%G&2; (H0

0,;))
2
)

,(2.3.16)

because
∫
&2; (H0

0,;)%G&2; (H0
0,;)3G = 0.

By Cauchy-Schwarz inequality and the fact that %G1�: ,�: (C, G; G0
1,: , G

0
2,:) and %G2�: ,�: (C, G; G0

1,: , G
0
2,:)

are linearly independent as functions of the G variable, for any time C fixed, we see that the first
product is positive. Since each member of the product is periodic in time, then the first product is
bounded below by a positive constant independent on time and translation parameters.

For the second product, by translation of the variable in the integrations, for any time C fixed, we
see that we can replace H0

0,; by G. Then, by integration by parts,∫
G&2; (G)%G&2; (G)3G = −

1
2

∫
&2; (G)23G.(2.3.17)

By scaling, if @ denotes the soliton with 2 = 1, i.e. @ = &1,∫
&2
2;
=
√
2;

∫
@2,

∫
%G&

2
2;
= 2

3/2
;

∫
@2
G .(2.3.18)

Therefore,
1

22;

∫
&2; (H0

0,;)
(
&2; (H0

0,;) + H
0
0,;%G&2; (H0

0,;)
) ∫
(%G&2; (H0

0,;))
2 =

1
4
2;

∫
@2

∫ (
@G

)2

≥ 1
4

min {2= , 1 ≤ = ≤ !}
∫

@2
∫

@2
G .(2.3.19)

This means that the second product is bounded below by a positive constant independent on
time and translation parameters.

This means that if )∗2 is large enough, the matrix considered is invertible.
Now, we may use the implicit function theorem (actually, we use a quantitative version of the

implicit function theorem, see [11, Section 2.2] for a precise statement). If F is close enough to %(C),
then there exists

(G1,: , G2,: , G0,; , 20,;)(2.3.20)
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such that

�C(F, G1,: , G2,: , G0,; , 20,;) = 0,(2.3.21)

where (2.3.20) depends in a regular �1 way on F. It is possible to show that the “close enough”
in the previous sentence does not depend on C; for this, it is required to use a uniform implicit
function theorem. This means that for )∗2 large enough (depending on �), �4−�C is small enough
for C ∈ [C∗,)], thus for C ∈ [C∗,)], ?(C) is close enough to %(C) in order to apply the implicit function
theorem. Therefore, we have for C ∈ [C∗,)], the existence of G1,:(C), G2,:(C), G0,;(C) and 20,;(C). It is
possible to show that these functions are �1 in time. Basically, this comes from the fact that they are
�1 in ?(C) and that ?(C) has a similar regularity in time (see [13] for more details).

Now, we prove the inequalities (2.3.7) and (2.3.8). We can take the differential of the implicit
functions with respect to ?(C) for C ∈ [C∗,)]. For this, we differentiate the following equation with
respect to ?(C):
(2.3.22) �C(?(C), G1,:(?(C)), G2,:(?(C)), G0,;(?(C)), 20,;(?(C))) = 0.

We know that the matrix that gives the differential of �C (with respect to G1,: , G2,: , G0,; , 20,;) in

(2.3.23) (?(C), G1,:(?(C)), G2,:(?(C)), G0,;(?(C), 20,;(?(C)))
is invertible and its inverse is bounded in time (from the formula giving the inverse of a matrix
from the comatrix and the determinant). The differential of �C with respect to the first variable is
also bounded. Thus, by the mean-value theorem:

(2.3.24) |G1,: | ≤ �‖? − %‖ ≤ ��4−�C ,
the same is true for G2,: , G0,; and 20,; .

By applying the mean-value theorem (inequality) for &2; with respect to G0,; and 20,; or for �: ,�:
with respect to G1,: and G2,: , we deduce that

(2.3.25) ‖%9(C) − %̃9(C)‖�2 ≤ �(|G1,:(C)| + |G2,:(C)|),
if %9 = �: is a breather, and

‖%9(C) − %̃9(C)‖�2 ≤ �(|G0,;(C)| + |20,;(C)|),(2.3.26)

if %9 = '; is a soliton.
Finally, by triangular inequality,

‖�(C)‖�2 ≤ ‖?(C) − %(C)‖�2 + ‖%(C) − %̃(C)‖�2

≤ ‖?(C) − %(C)‖�2 + �
(
 ∑
:=1

(|G1,:(C)| + |G2,:(C)|) +
!∑
;=1

(|G0,;(C)| + |20,;(C)|)
)

≤ �‖?(C) − %(C)‖�2 ≤ ��4−�C .(2.3.27)

This completes the proof of (2.3.7).
For (2.3.8), we will take time derivatives of the equations (2.3.6). From now on, we write �̃:1 for

%G1 �̃: and �̃:2 for %G2 �̃: . Firstly, we write the PDE verified by � (knowing that ?, �1, ..., � ,'1, ...,'!
are solutions of (mKdV)):

%C� = −�GGG −
� ©«�2 + 3�

�∑
9=1

%̃9 + 3
�∑

8,9=1

%̃8 %̃9
ª®¬
 G −

∑
ℎ≠8 or 8≠9

(
%̃ℎ %̃8 %̃9

)
G

−
 ∑
:=1

G′1,:(C)�̃:1 −
 ∑
:=1

G′2,:(C)�̃:2 −
!∑
;=1

G′0,;(C)'̃; G −
!∑
;=1

2′0,;(C)
2(2; + 20,;(C))

(
'̃; + H0,;(C)'̃; G

)
,(2.3.28)

where H0,;(C) := G − G0
0,; + G0,;(C) − 2;C.

Now, we will take the time derivative of the equation
∫
�̃:1�

√
!1
:
= 0 (and perform an integration

by parts):
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−
∫
(�̃:

3)1G�
√
!1
:
+ G′1,:(C)

∫
�̃:11�

√
!1
:
+ G′2,:(C)

∫
�̃:12�

√
!1
:
−

∫
�̃:1

∑
ℎ≠8 or 6≠ℎ

(
%̃ℎ %̃8 %̃6

)
G

√
!1
:

+ 1
2�C

∫
�̃:1�

(
�2 + 3�

�∑
8=1

%̃8 + 3
�∑

ℎ,8=1

%̃ℎ %̃8

)
!11,:√
!1
:

+
∫

�̃:1G�

(
�2 + 3�

�∑
8=1

%̃8 + 3
�∑

ℎ,8=1

%̃ℎ %̃8

) √
!1
:

+ 1
2�C

∫
�̃:1�GG

!11,:√
!1
:

− 1
2�C

∫
�̃:1G�G

!11,:√
!1
:

+ 1
2�C

∫
�̃:1GG�

!11,:√
!1
:

− 1
2�C2

∫
�̃:1�G

!11,:√
!1
:

=

 ∑
<=1

G′1,<(C)
∫

�̃:1�̃<1

√
!1
:
+

 ∑
<=1

G′2,<(C)
∫

�̃:1�̃<2

√
!1
:

+
!∑
==1

G′0,=(C)
∫

�̃:1'̃=G

√
!1
:
+

!∑
==1

2′0,=(C)
2 (2= + 20,=(C))

∫
�̃:1

(
'̃= + H0,=(C)'̃=G

) √
!1
:
.

(2.3.29)

Similarly, taking the time derivative of
∫
�̃:2�

√
!1
:
= 0:

−
∫
(�̃:

3)2G�
√
!1
:
+ G′1,:(C)

∫
�̃:12�

√
!1
:
+ G′2,:(C)

∫
�̃:22�

√
!1
:
−

∫
�̃:2

∑
ℎ≠8 or 6≠ℎ

(
%̃ℎ %̃8 %̃6

)
G

√
!1
:

+ 1
2�C

∫
�̃:2�

(
�2 + 3�

�∑
8=1

%̃8 + 3
�∑

ℎ,8=1

%̃ℎ %̃8

)
!11,:√
!1
:

+
∫

�̃:2G�

(
�2 + 3�

�∑
8=1

%̃8 + 3
�∑

ℎ,8=1

%̃ℎ %̃8

) √
!1
:

+ 1
2�C

∫
�̃:2�GG

!11,:√
!1
:

− 1
2�C

∫
�̃:2G�G

!11,:√
!1
:

+ 1
2�C

∫
�̃:2GG�

!11,:√
!1
:

− 1
2�C2

∫
�̃:2�G

!11,:√
!1
:

=

 ∑
<=1

G′1,<(C)
∫

�̃:2�̃<1

√
!1
:
+

 ∑
<=1

G′2,<(C)
∫

�̃:2�̃<2

√
!1
:

+
!∑
==1

G′0,=(C)
∫

�̃:2'̃=G

√
!1
:
+

!∑
==1

2′0,=(C)
2 (2= + 20,=(C))

∫
�̃:2

(
'̃= + H0,=(C)'̃=G

) √
!1
:
.

(2.3.30)

Similarly, taking the time derivative of
∫
'̃; G(C)�(C)

√
!B
;
= 0:

−
∫ (

'̃;
3)
GG
�
√
!B
;
+

2′0,;(C)
2
(
2; + 20,;(C)

) ∫ (
'̃; G + H0,;(C)'̃; GG

)
�
√
!B
;
+ G′0,;(C)

∫
'̃; GG�

√
!B
;

+ 1
2�C

∫
'̃; G�

(
�2 + 3�

�∑
8=1

%̃8 + 3
�∑

ℎ,8=1

%̃ℎ %̃8

)
!B1,;√
!B
;

+
∫

'̃; GG�

(
�2 + 3�

�∑
8=1

%̃8 + 3
�∑

ℎ,8=1

%̃ℎ %̃8

) √
!B
;

+ 1
2�C

∫
'̃; G�GG

!B1,;√
!B
;

− 1
2�C

∫
'̃; GG�G

!B1,;√
!B
;

+ 1
2�C

∫
'̃; GGG�

!B1,;√
!B
;

− 1
2�C2

∫
'̃; G�G

!B1,;√
!B
;

=

!∑
==1

G′0,=(C)
∫

'̃; G '̃=G

√
!B
;
+

!∑
==1

2′0,=(C)
2 (2= + 20,=(C))

∫
'̃; G

(
'̃= + H0,=(C)'̃=G

) √
!B
;

+
 ∑
<=1

G′1,<(C)
∫

'̃; G �̃<1

√
!B
;
+

 ∑
<=1

G′2,<(C)
∫

'̃; G �̃<2

√
!B
;
+

∫
'̃; G

∑
ℎ≠8 or 6≠ℎ

(
%̃ℎ %̃8 %̃6

)
G

√
!B
;
.

(2.3.31)
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Finally, taking the time derivative of
∫
'̃;�

√
!B
;
= 0:

−
∫ (

'̃;
3)
G
�
√
!B
;
+

2′0,;(C)
2
(
2; + 20,;(C)

) ∫ (
'̃; + H0,;(C)'̃; G

)
�
√
!B
;
+ G′0,;(C)

∫
'̃; G�

√
!B
;

+ 1
2�C

∫
'̃;�

(
�2 + 3�

�∑
8=1

%̃8 + 3
�∑

ℎ,8=1

%̃ℎ %̃8

)
!B1,;√
!B
;

+
∫

'̃; G�

(
�2 + 3�

�∑
8=1

%̃8 + 3
�∑

ℎ,8=1

%̃ℎ %̃8

) √
!B
;

+ 1
2�C

∫
'̃;�GG

!B1,;√
!B
;

− 1
2�C

∫
'̃; G�G

!B1,;√
!B
;

+ 1
2�C

∫
'̃; GG�

!B1,;√
!B
;

− 1
2�C2

∫
'̃;�G

!B1,;√
!B
;

=

!∑
==1

G′0,=(C)
∫

'̃; '̃=G

√
!B
;
+

!∑
==1

2′0,=(C)
2 (2= + 20,=(C))

∫
'̃;

(
'̃= + H0,=(C)'̃=G

) √
!B
;

+
 ∑
<=1

G′1,<(C)
∫

'̃; �̃<1

√
!B
;
+

 ∑
<=1

G′2,<(C)
∫

'̃; �̃<2

√
!B
;
+

∫
'̃;

∑
ℎ≠8 or 6≠ℎ

(
%̃ℎ %̃8 %̃6

)
G

√
!B
;
.(2.3.32)

By the Proposition 2.10 below (that follows from the first part of the lemma we prove) and its
corollary, several terms of the equalities (2.3.29), (2.3.30), (2.3.31) and (2.3.32) are bounded by �4−�C ;
other terms are $(‖�‖!2). We remind that $(‖�‖!2) ≤ ��4−�C . From the basic properties of ! 9 (see
Section 2.2),

!1,9√
! 9

is bounded. Because of the compact support of ! 9 , GC
!1,9√
! 9

is bounded independently
on G and C. Using these bounds, and after several linear combinations, we obtain the desired
inequalities. �

Remark 2.9. As a consequence of Lemma 2.8, there exists a constant � > 0 such that,

(2.3.33) ∀C ∈ [C∗,)]
 ∑
:=1

(|G1,:(C)| + |G2,:(C)|) +
!∑
;=1

(|G0,;(C)| + |20,;(C)|) ≤ ��4−�)
∗
.

This means, that if we take )∗2 eventually larger (which we will assume in the following of the
article), we may extend Proposition 2.1 to %̃9 in the following way, by integration of the bounds
given by modulation (the constant � is a bit larger in a controled way, we write �

2 because the shape
of the solitons is a bit modified in a controled way):

Proposition 2.10. Let 9 = 1, ..., �, = ∈ N. If )∗ > )∗2 , then, there exists a constant � > 0 such that for any
C, G ∈ R,

(2.3.34) |%=G %̃9(C, G)| ≤ �4−
�
2 |G−E 9 C |.

We will also use that any ‖%=G %̃9 ‖�2 is bounded by �.

Corollary 2.11. Let 8 ≠ 9 ∈ {1, ..., �} and <, = ∈ N. If )∗ > )∗2 , then there exists a constant � that depends
only on %, such that for any C ∈ R,

(2.3.35)

����∫ %<G %̃8%
=
G %̃9

���� ≤ �4−��C/8.

2.4. Study of coercivity. In [3], the Lyapunov functional that was introduced to study the orbital
stability of a breather was the following conserved-in-time functional:

(2.4.1) �[?](C) + 2(�2 − 2)�[?](C) + (2 + �2)2"[?](C)
The functional that we will consider here is adapted from the latter. For C ∈ [C∗,)]:

(2.4.2)

ℋ[?](C) := �[?](C) +
 ∑
:=1

(
2(�2

:
− 2

:
)�1

:
[?](C) + (2

:
+ �2

:
)2"1

:
[?](C)

)
+

!∑
;=1

(
22;�B; [?](C) + 2

2
;
"B

;
[?](C)

)
.

For the simplicity of notations, for 9 ∈ {1, ..., �}, 0 9 will design : if %9 is the breather �: or 0 if
%9 is a soliton, and 1 9 will design �: if %9 is the breather �: or 21/2

;
if %9 is the soliton '; . With these
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notations, we may write:

(2.4.3) ℋ[?](C) = �[?](C) +
�∑
9=1

(
2(12

9 − 02
9 )� 9[?](C) + (02

9 + 12
9 )2" 9[?](C)

)
.

We would like to study locally this functional around the sum considered of breathers and
solitons. The aim of this section will be to prove two following propositions:

Proposition 2.12 (Expansion of �2 conserved quantity). There exists )∗4 > 0 such that if )∗ ≥ )∗4 , for all
C ∈ [C∗,)], we have

ℋ[?](C) =
�∑
9=1

(
�[%̃9](C) + 2(12

9 − 02
9 )�[%̃9](C) + (02

9 + 12
9 )2"[%̃9](C)

)
+�2[�](C) +$(‖�(C)‖3�2) +$(4−2�C ‖�(C)‖�2) +$(4−2�C),(2.4.4)

where

�2[�](C) :=
1
2

∫
�2
GG −

5
2

∫
%̃2�2

G +
5
2

∫
%̃2
G�

2 + 5
∫

%̃%̃GG�
2 + 15

4

∫
%̃4�2

+
�∑
9=1

(12
9 − 02

9 )(
∫

�2
G! 9 − 3

∫
%̃2�2! 9) +

�∑
9=1

(02
9 + 12

9 )2
1
2

∫
�2! 9 .(2.4.5)

Proposition 2.13 (Coercivity of �2). There exists � > 0, )∗3 = )∗3 (�) such that, if )∗ ≥ )∗3 , for all
C ∈ [C∗,)],

(2.4.6) �2[�](C) ≥ �‖�(C)‖2
�2 −

1
�

 ∑
:=1

(∫
��̃:

√
!1
:

)2

.

The Propositions 2.12 and 2.13 will be used in the next concluding subsection to prove the Propo-
sition 1.9.

Firstly, let us prove the Proposition 2.12.

Proof of Proposition 2.12. We would like to compare ℋ[%̃ + �](C) and ℋ[%̃](C) (recall that ? = %̃ + �)
by studying the difference asymptotically when � is small. Firstly, let us see how we could simplify
the expression of ℋ[%̃](C).

Step 1:

Claim 2.14. If )∗ is large enough, for all C ∈ [C∗,)], we have

(2.4.7) ℋ[%̃](C) =
�∑
9=1

(
�[%̃9](C) + 2(12

9 − 02
9 )�[%̃9](C) + (02

9 + 12
9 )2"[%̃9](C)

)
+$(4−2�C).

Proof. We prove that for C ∈ [C∗,)], we have

(2.4.8)

������ℋ[%̃] −
�∑
9=1

(
�[%̃9] + 2(12

9 − 02
9 )�[%̃9] + (02

9 + 12
9 )2"[%̃9]

)������ ≤ �4−2�C .

Let us compare �9[%̃] and �[%̃9].

(2.4.9) �9[%̃] =
∫ (

1
2
%̃2
GG −

5
2
%̃2%̃2

G +
1
4
%̃6

)
! 9(C, G)3G,

(2.4.10) �[%̃9] =
∫ (

1
2
%̃9

2
GG
− 5

2
%̃9

2
%̃9

2
G
+ 1

4
%̃9

6
)
3G.

We compare the corresponding terms of these equalities. Let us start by the first one:����∫ (
%̃2
GG! 9(C, G) − %̃9

2
GG

)���� ≤ ∫
%̃9

2
GG

��1− ! 9(C, G)
��+ ∑
(A,B)≠(9,9)

∫ ���%̃A GG %̃B GG ���! 9(C, G)
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≤ �
∫

4−
�
2 |G−E 9 C |4

��
32 C

��1− ! 9(C, G)
��+ �∑

8≠9

∫
4−

�
2 |G−E8 C |4

��
32 C! 9(C, G)

≤ �4
��
32 C


(∫ �9 C+�C

−∞
+

∫ +∞

�9+1C−�C

)
4−

�
2 |G−E 9 C |3G +

∑
8≠9

∫ �9+1C+�C

�9 C−�C
4−

�
2 |G−E8 C |3G


≤ �4−��C/16,(2.4.11)

by Proposition 2.10 and Remark 2.6.
For the other terms of the difference to be bounded, we reason in a similar way. This completes

the proof of the claim. �

Step 2:
Therefore, when we manage to compare ℋ[?](C) and ℋ[%̃](C), we are also able to compare

ℋ[?](C) and
�∑
9=1

(�[%̃9](C) + 2(12
9 − 02

9 )�[%̃9](C) + (02
9 + 12

9 )2"[%̃9](C)).(2.4.12)

ℋ[%̃ + �] = 1
2

∫
(%̃ + �)2GG −

5
2

∫
(%̃ + �)2(%̃ + �)2G +

1
4

∫
(%̃ + �)6

+
�∑
9=1

[
(12
9 − 02

9 )
(∫
(%̃ + �)2G! 9 −

1
2

∫
(%̃ + �)4! 9

)]
+

�∑
9=1

[
(02
9 + 12

9 )2
1
2

∫
(%̃ + �)2! 9

]
=

1
2

∫
%̃2
GG −

5
2

∫
%̃2%̃2

G +
1
4

∫
%̃6 +

∫
%̃(4G)� + 5

∫
%̃%̃2

G� + 5
∫

%̃2%̃GG� +
3
2

∫
%̃5�

+ 1
2

∫
�2
GG −

5
2

∫
%̃2�2

G +
5
2

∫
%̃2
G�

2 + 5
∫

%̃%̃GG�
2 + 15

4

∫
%̃4�2 +$(‖�(C)‖3

�2)

+
�∑
9=1

(12
9 − 02

9 )
(∫

%̃2
G! 9 −

1
2

∫
%̃4! 9 − 2

∫
%̃GG�! 9

−2
∫

%̃G�! 9,G − 2
∫

%̃3�! 9 +
∫

�2
G! 9 − 3

∫
%̃2�2! 9

)
+

�∑
9=1

(02
9 + 12

9 )2
1
2

(∫
%̃2! 9 + 2

∫
%̃�! 9 +

∫
�2! 9

)
.(2.4.13)

We can observe that the sum (2.4.13) is composed of 0-order terms in �, of 1BC-order terms in �,
of 2=3-order terms in �. 3A3 and larger-order terms in � are contained in $(‖�(C)‖3

�2). The sum of

the 0-order terms is actually ℋ[%̃]. The sum of 2=3-order terms in � is �2[�](C).
Let us study for closely the 1-order terms:

�1 =

∫
%̃(4G)� + 5

∫
%̃%̃2

G� + 5
∫

%̃2%̃GG� +
3
2

∫
%̃5�

+
�∑
9=1

(12
9 − 02

9 )
(
2
∫

%̃G�G! 9 − 2
∫

%̃3�! 9

)
+

�∑
9=1

(02
9 + 12

9 )2
∫

%̃�! 9 .(2.4.14)

From [3], we know that a breather � = �,� satisfies for any fixed C ∈ R, the following nonlinear
equation:

(2.4.15) �(4G) − 2(�2 − 2)(�GG +�3) + (2 + �2)2� + 5��2
G + 5�2�GG +

3
2
�5 = 0.

This equation is also satisfied for � = �̃: with  = : and � = �: for any : = 1, ..., (the key
parameters of a breather are not changed by modulation).
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For a soliton & = '2,�, we know from &GG = 2& −&3 that & satisfies for any fixed C ∈ R, the
following nonlinear equation (see Section 5.1 (Appendix)):

(2.4.16) &(4G) − 22(&GG +&3) + 22& + 5&&2
G + 5&2&GG +

3
2
&5 = 0.

This equation is not exactly satisfied for & = '̃; for any ; = 1, ..., ! (the key parameters of a soliton
are changed by modulation). The exact equation satisfied by & = '̃; is:
(2.4.17)

&(4G) − 22;
(
&GG +&3) + 22

;
& + 5&&2

G + 5&2&GG +
3
2
&5 = 220,;(C)

(
&GG +&3) − 22;20,;(C)& − 20,;(C)2&.

We will compare �1 and

�′1 :=
∫

%̃(4G)� + 5
�∑
9=1

∫
%̃9 %̃9

2
G
� + 5

�∑
9=1

∫
%̃9

2
G
%̃9 GG� +

3
2

�∑
9=1

∫
%̃9

5
�

− 2
�∑
9=1

(12
9 − 02

9 )
(∫

%̃9 GG� +
∫

%̃9
3
�

)
+

�∑
9=1

(02
9 + 12

9 )2
∫

%̃9�.(2.4.18)

Firstly, let us compare
∫
%̃%̃2

G� and
∑�

9=1

∫
%̃9 %̃9

2
G
�.∫

%̃%̃2
G� =

∫ ©«
�∑
9=1

%̃9
ª®¬ ©«

�∑
9=1

%̃9 G
ª®¬

2

�

=

�∑
9=1

∫
%̃9 %̃9

2
G
� +

∑
ℎ≠8 or 8≠9

∫
%̃ℎ %̃8 G %̃9 G�.(2.4.19)

Therefore, we need to find a bound on a term of the type
∫
%̃ℎ %̃8 G %̃9 G� where ℎ ≠ 8 or 8 ≠ 9.

We can perform the following upper bounding (where without loss of generality, we suppose that
8 ≠ 9): ����∫ %̃ℎ %̃8 G %̃9 G�

���� ≤ �4 ��
16 C

∫
4−

�
2 |G−E8 C |4−

�
2 |G−E 9 C | |�|

≤ �‖�‖!∞ 4
��
16 C

∫
4−

�
2 |G−E8 C |4−

�
2 |G−E 9 C |

≤ �‖�‖�2 4−��C/8,(2.4.20)

by Sobolev embedding and Proposition 2.3.
The bounding is quite similar for

∫
%̃2%̃GG� and

∫
%̃5�. We observe that −

∫
%̃9 GG� =

∫
%̃9 G�G .

To compare
∫
%̃G�G! 9 and

∫
R
%̃9 G�G , and for similar terms, we can use computations that we have

already performed at the beginning of this proof. Therefore,

(2.4.21)

����∫ %̃G�G! 9 −
∫

R

%̃9 G�G

���� ≤ �‖�‖�2 4−
��C
16 .

That enables us to bound the difference between �1 and �′1:

(2.4.22)
���1 −�′1

�� ≤ �‖�(C)‖�2 4−
��C
16 .

Now, because our objects are not only breathers, �′1 is not equal to 0. Actually, we have

(2.4.23) �′1 = 2
!∑
;=1

20,;(C)
(∫

'̃; GG� +
∫

'̃;
3
�

)
− 2

!∑
;=1

2;20,;(C)
∫

'̃;� −
!∑
;=1

20,;(C)2
∫

'̃;�.
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Now, we introduce
(2.4.24)

�′′1 = 2
!∑
;=1

20,;(C)
(∫

'̃; GG�
√
!B
;
+

∫
'̃;

3
�
√
!B
;

)
− 2

!∑
;=1

2;20,;(C)
∫

'̃;�
√
!B
;
−

!∑
;=1

20,;(C)2
∫

'̃;�
√
!B
;
.

By reasonning the same way as for �1 and �′1, we see that

(2.4.25)
���′1 −�′′1 �� ≤ �‖�(C)‖�2 4−2�C .

Because of (2.3.6) and because of the elliptic equation satisfied by a soliton, we have that

(2.4.26) �′′1 = 0.

Thus,

(2.4.27) |�1 | = |�1 −�′1 | + |�
′
1 −�

′′
1 | + |�

′′
1 | ≤ �‖�(C)‖�2 4−2�C .

The proof of Proposition 2.12 is now completed. �

Now, we would like to study the quadratic terms in � of the development of ℋ[%̃ + �]. They are
contained in �2[�](C).

Let � = �,� be a breather (we note �1 := %G1� and �2 := %G2�). We define a quadratic form
associated to this breather:

Q1,�[&] :=
1
2

∫
&2
GG −

5
2

∫
�2&2

G +
5
2

∫
�2
G&

2 + 5
∫

��GG&
2 + 15

4

∫
�4&2

+ (�2 − 2)
(∫

&2
G − 3

∫
�2&2

)
+ (2 + �2)2 1

2

∫
&2 =: Q,�[&].(2.4.28)

From [3], we know that the kernel of this quadratic form is of dimension 2 and is generated
by %G1�,� and %G2�,�, and that this quadratic form has only one negative eigenvalue that is of
multiplicity 1:

Proposition 2.15 (Proposition 4.11, [32]). There exists �1,� > 0 that depends only on , � (and does not
depend on time), such that if & ∈ �2(R) is such that

(2.4.29)
∫

�1& =

∫
�2& = 0,

then

(2.4.30) Q1,�[&] ≥ �1,�‖&‖2�2 −
1

�1,�

(∫
&�

)2

.

Remark 2.16. �1,� is continuous in , �. Note that translation parameters are implicit in Q1,�.

Let & = '2,� be a soliton. We define a quadratic form associated to this soliton:

QB2 [&] :=
1
2

∫
&2
GG −

5
2

∫
&2&2

G +
5
2

∫
&2
G&

2 + 5
∫

&&GG&
2 + 15

4

∫
&4&2

+ 2
(∫

&2
G − 3

∫
&2&2

)
+ 22 1

2

∫
&2 =: Q0,

√
2[&].(2.4.31)

By the same techniques, such as those presented in [3], adapted to the quadratic form of a
soliton, we may establish that the kernel of this quadratic form is of dimension 2, and is generated
by %G& and %2&, and that this quadratic form does not have any negative eigenvalue (see Section
5.2 (Appendix)). After that, from Section 5.3 (Appendix), we deduce that the coercivity still works
when we are orthogonal to & and %G&. More precisely,

Proposition 2.17. There exists �B2 > 0 that depends only on 2 (and does not depend on time), such that if
& ∈ �2(R) is such that

(2.4.32)
∫

&& =

∫
&G& = 0,
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then

(2.4.33) QB2 [&] ≥ �B2 ‖&‖2�2 .

Remark 2.18. �B2 is continuous in 2. Note that translation and sign parameters are implicit in the
notation QB2 .

We would like to find a similar minoration for �2 (which is a generalization of Q).
For 9 = 1, ..., �, let us define for & ∈ �2,

Q′9[&] :=
1
2

∫
&2
GG! 9 −

5
2

∫
%̃2&2

G! 9 +
5
2

∫
%̃2
G&

2! 9 + 5
∫

%̃%̃GG&
2! 9 +

15
4

∫
%̃4&2! 9

+ (12
9 − 02

9 )
(∫

&2
G! 9 − 3

∫
%̃2&2! 9

)
+ (02

9 + 12
9 )2

1
2

∫
&2! 9 ,(2.4.34)

such that

(2.4.35) �2[�(C)] =
�∑
9=1

Q′9[�(C)].

Let us define

Q 9[&] :=
1
2

∫
&2
GG! 9 −

5
2

∫
%̃9

2
&2
G! 9 +

5
2

∫
%̃9

2
G
&2! 9 + 5

∫
%̃9 %̃9 GG&

2! 9 +
15
4

∫
%̃9

4
&2! 9

+ (12
9 − 02

9 )
(∫

&2
G! 9 − 3

∫
%̃9

2
&2! 9

)
+ (02

9 + 12
9 )2

1
2

∫
&2! 9 .(2.4.36)

Notations Q1
:
,
(
Q1
:

)′
, QB

;
and

(
QB
;

)′
will also be used.

We note that the support of ! 9 increases with time, so that Q 9 is near a Q1: ,�:
or a QB2; when

time is large (note that Q1: ,�:
is the canonical quadratic form associated to the breather �̃: , but the

canonical quadratic form associated to the soliton '̃2 is QB
2;+20,;(C)

). However, firstly, let us study the
difference between Q 9 and Q′

9
. Using the computations carried out at the beginning of this part

(those done for the linear part) and Sobolev inequalities, we obtain:

(2.4.37) |Q 9[&] − Q′9[&]| ≤ �4−2�C ‖&‖2
�2(R).

Lemma 2.19. There exists � > 0 such that for � > 0, there exists )∗3 such that, if )∗ ≥ )∗3 , for all & ∈ �2(R),
for all C ∈ [C∗,)],

if

(2.4.38)
∫

�̃:1(C)&
√
!1
:
(C) =

∫
�̃:2(C)&

√
!1
:
(C) = 0,

then

(2.4.39) Q1
:
[&] ≥ �

∫
(&2 + &2

G + &2
GG)!1:(C) −

1
�

(∫
&�̃:(C)

√
!1
:
(C)

)2

− �‖&‖2
�2 .

Proof of Lemma 2.19. The idea is to write Q1
:
[&] as a Q: ,�: [&

√
!1
:
] plus several error terms. Let 9 such

that %̃9 = �̃: . We will note !1,9 := #′( G−�9 C�C ) −#′(
G−�9+1C

�C ) and !2,9 := #′′( G−�9 C�C ) −#′′(
G−�9+1C

�C ), which will
be useful to write the derivatives of ! 9 . We recall that they have the same support and bounding
properties as ! 9 . We have∫

(&
√
! 9)2GG =

∫
&2
GG! 9 +

∫
&2
G

(�C)2
!2

1,9

! 9
+ 1

4

∫
&2

(�C)4
!2

2,9

! 9
+ 1

16

∫
&2

(�C)4
!4

1,9

!3
9

− 1
4

∫
&2

(�C)4
!2,9!2

1,9

!2
9

+ 2
∫

&GG&G
�C

!1,9 +
∫

&GG&

(�C)2 !2,9 −
1
2

∫
&GG&

(�C)2
!2

1,9

! 9
+

∫
&G&

(�C)3
!1,9!2,9

! 9
− 1

2

∫
&G&

(�C)3
!3

1,9

!2
9

.(2.4.40)
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We observe that, for )∗3 large enough, and by using the inequalities that define #, the error terms
can be bounded by �

�C ‖&‖2�2 ≤
�

100 ‖&‖2�2 . The computation for the other terms is similar and the
same bound can be used for the error terms.

Now, &
√
!1
:

satisfies the orthogonality conditions.
This means that we can apply Proposition 2.15, and we have

(2.4.41) Q: ,�: [&
√
!1
:
] ≥ �1

:
‖&

√
!1
:
‖2
�2 −

1
�1
:

(∫
&
√
!1
:
�̃:

)2

.

To finish, ‖&
√
!1
:
‖2
�2 is

∫
(&2 + &2

G + &2
GG)!1:(C) plus several error terms as in (2.4.40). �

Lemma 2.20. There exists � > 0 such that for � > 0, there exists )∗3 such that, if )∗ ≥ )∗3 , for all & ∈ �2(R),
for all C ∈ [C∗,)],

if

(2.4.42)
∫

'̃;(C)&
√
!B
;
(C) =

∫
'̃; G(C)&

√
!B
;
(C) = 0,

then

(2.4.43) QB
;
[&] ≥ �

∫ (
&2 + &2

G + &2
GG

)
!B
;
(C) − �‖&‖2

�2 .

Proof. As in the previous proof, we write QB
;
[&] as QB2;

[
&
√
!B
;

]
(with & = '̃;) plus several error terms,

that are all bounded by �‖&‖2
�2 if )∗3 is chosen large enough. However, QB2;

[
&
√
!B
;

]
is not appropriate

in order to have coercivity, it is with QB
2;+20,;(C)

[
&
√
!B
;

]
that we have coercivity. That is why, we need

to bound the difference between QB2;
[
&
√
!B
;

]
and QB

2;+20,;(C)
[
&
√
!B
;

]
. This difference is

(2.4.44) 20,;(C)
(∫

&2
G! 9 − 3

∫
'̃;

2
&2! 9

)
+ 2;20,;(C)

∫
&2! 9 + 20,;(C)2

1
2

∫
&2! 9 ,

which can, because of the bound of 20,;(C), for )∗3 large enough (depending on �), be bounded by
�‖&‖2

�2 .
Now, &

√
!B
;

satisfies the right orthogonality conditions, and as in the previous proof we may
apply coercivity. �

Proof of Proposition 2.13. We will now use the Lemma 2.19 and its version for solitons for & = �(C).
From this, we deduce that for � > 0 small enough,

(2.4.45)
�∑
9=1

Q 9[�(C)] ≥ �‖�(C)‖2
�2 −

1
�

 ∑
:=1

(∫
�(C)�̃:

√
!1
:

)2

,

for a suitable constant � > 0. This means that for )∗3 large enough, by taking, if needed, a smaller
constant �,

(2.4.46) �2[�(C)] ≥ �‖�‖2
�2 −

1
�

 ∑
:=1

(∫
��̃:

√
!1
:

)2

.

The proof of Proposition 2.13 is now completed. �

2.5. Proof of Proposition 1.9 (Bootstrap). We recall that ?= from Proposition 1.9 is denoted by ?
and )= is denoted by ) in what follows, in order to simplify the notations. We do the proof that
follows under the assumption (2.2.1), so that the Propositions proved above are true for C ∈ [C∗,)].

The aim of this subsection is to complete the proof of Proposition 1.9 by using the Propositions
2.12 and 2.13.

We note that by Lemma 2.7, the conservation of �[?](C) and the definition of ℋ[?], we have for
all C ∈ [C∗,)],

(2.5.1) |ℋ[?]()) −ℋ[?](C)| ≤ ��2

�2C
4−2�C .
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Thus, for all C ∈ [C∗,)],

(2.5.2) ℋ[?](C) ≤ ℋ[?]()) + ��
2

�2C
4−2�C .

From Proposition 2.12:������ℋ[%̃ + �](C) −
�∑
9=1

(�[%̃9](C) + 2(12
9 − 02

9 )�[%̃9](C) + (02
9 + 12

9 )2"[%̃9](C)) −�2[�](C)

������
≤ �4−2�C + �‖�‖�2 4−2�C + �‖�‖3

�2

≤ �4−2�C +
�

100
‖�‖2

�2 .(2.5.3)

To obtain the last line, we use ‖�(C)‖�2 ≤ ��4−�C , and by taking )∗ ≥ )∗5 for )∗5 large enough
(depending on �), ‖�‖�2 ≤ � and �‖�(C)‖�2 ≤ �

100 , and thus �‖�(C)‖3
�2 ≤

�
100 ‖�(C)‖2�2 .

We remark that if %9 = �: is a breather, then �[%̃9], �[%̃9] and "[%̃9] are all constants in time. If
%9 = '; is a soliton and we denote @ the basic ground state (i.e. the ground state for 2 = 1), we have
the following:

(2.5.4) "['̃;](C) =
(
2; + 20,;(C)

)1/2
"[@],

(2.5.5) �['̃;](C) =
(
2; + 20,;(C)

)3/2
�[@],

(2.5.6) �['̃;](C) =
(
2; + 20,;(C)

)5/2
�[@].

Using that, we can simplify ℛ;(C) := �['̃;](C) + 22;�['̃;](C) + 22
;
"['̃;](C) as follows:

ℛ;(C) =
(
2; + 20,;(C)

)5/2
�[@] + 22;

(
2; + 20,;(C)

)3/2
�[@] + 22

;

(
2; + 20,;(C)

)1/2
"[@]

= 2
5/2
;

(
1+

20,;(C)
2;

)5/2
�[@] + 225/2

;

(
1+

20,;(C)
2;

)3/2
�[@] + 25/2

;

(
1+

20,;(C)
2;

)1/2
"[@].(2.5.7)

Note that from Lemma 2.8, |20,;(C)|3 ≤ ��34−�C 4−2�C . That is why, if we take )∗5 eventually larger,
|20,;(C)|3 ≤ �4−2�C . For this reason, we will do Taylor expansions of order 2 of (2.5.7):

(2.5.8)
(
1+

20,;(C)
2;

)5/2
= 1+ 5

2
20,;(C)
2;
+ 15

8
20,;(C)2

22
;

+$
(
4−2�C ) ,

(2.5.9)
(
1+

20,;(C)
2;

)3/2
= 1+ 3

2
20,;(C)
2;
+ 3

8
20,;(C)2

22
;

+$
(
4−2�C ) ,

(2.5.10)
(
1+

20,;(C)
2;

)1/2
= 1+ 1

2
20,;(C)
2;
− 1

8
20,;(C)2

22
;

+$
(
4−2�C ) .

That allows us to write

ℛ;(C) = 25/2
;

(
�[@] + 2�[@] +"[@]

)
+ 23/2

;
20,;(C)

(
5
2
�[@] + 3�[@] + 1

2
"[@]

)
+ 21/2

;
20,;(C)2

(
15
8
�[@] + 3

4
�[@] − 1

8
"[@]

)
+$

(
4−2�C ) .(2.5.11)

Now, 25/2
;

(
�[@] + 2�[@] +"[@]

)
is constant in time. For both other terms, we use that "[@] = 2,

�[@] = − 2
3 and �[@] = 2

5 , and we see that 5
2�[@] + 3�[@] + 1

2"[@] = 0 and 15
8 �[@] + 3

4�[@] − 1
8"[@] = 0.

That allows us to write

(2.5.12) ℛ;(C) =
16
15
2

5/2
;
+$

(
4−2�C ) .

From this, we deduce that

(2.5.13) ℛ;(C) − ℛ;()) = $
(
4−2�C ) .
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By using that ℋ[?]()) = ℋ[%]()) = ℋ[%̃]()), the equations (2.5.3) and (2.5.2), Claim 2.14, and
the fact that for C ≥ )∗4 , $(‖�(C)‖3

�2) ≤
�

100 ‖�‖2�2 , we have

�2[�](C) ≤ ℋ[?](C) −
�∑
9=1

(�[%̃9](C) + 2(12
9 − 02

9 )�[%̃9](C) + (02
9 + 12

9 )2"[%̃9](C)) + �4−2�C +
�

100
‖�(C)‖2

�2

≤ ℋ[%̃]()) −
�∑
9=1

(�[%̃9](C) + 2(12
9 − 02

9 )�[%̃9](C) + (02
9 + 12

9 )2"[%̃9](C))

+ �
(
�2

�2C
+ 1

)
4−2�C +

�

100
‖�(C)‖2

�2

≤ ℋ[%̃]()) −
�∑
9=1

(�[%̃9]()) + 2(12
9 − 02

9 )�[%̃9]()) + (02
9 + 12

9 )2"[%̃9]()))

+ �
(
�2

�2C
+ 1

)
4−2�C +

�

100
‖�(C)‖2

�2 +
!∑
;=1

(ℛ;()) − ℛ;(C))

≤ �
(
�2

�2C
+ 1

)
4−2�C +

�

100
‖�(C)‖2

�2 .(2.5.14)

From Proposition 2.13, we deduce (by taking a smaller constant �):

(2.5.15) �‖�‖2
�2 ≤ �

(
�2

�2C
+ 1

)
4−2�C + 1

�

 ∑
:=1

(∫
��̃:

√
!1
:

)2

.

We will now need to establish a result close to Lemma 2.7.
We set for all 9 = 1, ..., �:

(2.5.16) < 9(C) :=
∫

1
2
?2(C, G)

√
! 9(C, G)3G := < 9[?](C).

Lemma 2.21. There exists � > 0, )∗6 = )
∗

6 (�) such that, if )∗ ≥ )∗6 , for all 9 = 1, ..., �, for all C ∈ [C∗,)],

(2.5.17) |< 9()) −< 9(C)| ≤
�

�2C
�24−2�C .

Proof.

3

3C

∫
1
2
?2(C, G)

√
! 9(C, G)3G =

1
2�C

∫ (
−3

2
?2
G +

3
4
?4

)
!1,9
√
! 9
− 1

2(�C)2

∫
?G?

!2,9
√
! 9

+ 1
4(�C)2

∫
?G?

!2
1,9

!3/2
9

− 1
4

∫
?2 G

�C2
!1,9
√
! 9

.(2.5.18)

From the inequalities that define #, we find

(2.5.19)

���� 33C ∫ 1
2
?2(C, G)

√
! 9(C, G)3G

���� ≤ �

�2C

∫
Ω9(C)∪Ω9+1(C)

(?2
G + ?2 + ?4).

From now on, we can follow the proof of Lemma 2.7. �

Now, we observe the following:

(2.5.20)
∫
(%̃ + �)2

√
!1
:
=

∫
�̃:

2 + 2
∫

�̃:�
√
!1
:
+

∫
�2

√
!1
:
+ �AA,

where �AA designates the other terms of the sum, which we consider as error terms, and for which
we will show now that they are bounded by �4−�C .

For 8 ≠ 9 and any ℎ (if %9 = �: is a breather),����∫ %̃8 %̃ℎ
√
! 9

���� ≤ � ∫ �C+�9+1C

−�C+�9 C
4−

�
2 |G−E8 C |3G ≤ �4−�C ,(2.5.21)
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and ����∫ %̃8�
√
! 9

���� ≤ √(∫
%̃8

2
! 9

) (∫
�2

)
≤ �4− �

2 C ‖�‖�2 ≤ ��4−�C 4− �
2 C ≤ �4−�C ,(2.5.22)

where )∗ ≥ )∗7 with )∗7 being large enough depending on �.
If we use the calculations we made in the proof of Claim 2.14,

(2.5.23)

����∫ %̃9
2 −

∫
%̃9

2√
! 9

���� ≤ �4−�C .
That proves the bound for the error terms. Now, we study the variations of (2.5.20).

We know that
∫
%̃9

2
=

∫
�̃:

2
has no variations.

We can apply Lemma 2.21 for
∫
(%̃ + �)2√! 9 .

By writing the difference of the equation (2.5.20) between C and ), and recall that �()) = 0, we
deduce, for )∗ ≥ max()∗6 ,)∗7 ),����∫ %̃9�

√
! 9(C)

���� ≤ � (
�2

�2C
+ 1

)
4−�C + ‖�‖2

�2

≤ �
(
�2

�2C
+ 1

)
4−�C +

�

100
‖�(C)‖�2 .(2.5.24)

Thus,

�‖�‖2
�2 ≤ �

(
�2

�2C
+ 1

)
4−2�C + 1

�

�∑
9=1

(∫
�%̃9

√
! 9

)2

≤ �
(
�4

�4C
+ 1

)
4−2�C +

�

100
‖�(C)‖2

�2 .(2.5.25)

Therefore,

(2.5.26) ‖�(C)‖2
�2 ≤ �

(
�4

�4C
+ 1

)
4−2�C .

Before finishing the proof, we need to find a better bound for |20,;(C)| than ��4−2�C given by the
modulation. For this, we study the localized mass around '; :

"B
;
(C) = 1

2

∫
?2(C, G)!B

;
(C, G)3G

=
1
2

∫ (
%̃(C) + �(C)

)2
!B
;
(C)

=
1
2

∫
%̃(C)2!B

;
(C) +

∫
%̃(C)�(C)!B

;
(C) + 1

2

∫
�(C)2!B

;
(C)

=
1
2

∫
'̃;(C)2 +

∫
'̃;(C)�(C)!B; (C) +$

(
4−2�C ) +$ (

‖�(C)‖�2 4−2�C ) +$ (
‖�(C)‖2

�2

)
=

(
2; + 20,;(C)

)1/2
"[@] +$

((
�4

�4C
+ 1

)
4−2�C

)
,(2.5.27)

by modulation assumptions and (2.5.26).
That is why,

"B
;
()) −"B

;
(C) =

[ (
2; + 20,;())

)1/2 −
(
2; + 20,;(C)

)1/2
]
"[@] +$

((
�4

�4C
+ 1

)
4−2�C

)
=

[
2

1/2
;
−

(
2; + 20,;(C)

)1/2
]
"[@] +$

((
�4

�4C
+ 1

)
4−2�C

)
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=

[
−1

2
2
−1/2
;

20,;(C) +$
(
20,;(C)2

) ]
"[@] +$

((
�4

�4C
+ 1

)
4−2�C

)
.(2.5.28)

On the other hand, from Lemma 2.7,

(2.5.29) "B
;
()) −"B

;
(C) = $

(
�2

�2C
4−2�C

)
.

We note that ����−1
2
2
−1/2
;

20,;(C) +$
(
20,;(C)2

) ���� = ��20,;(C)
�� ����−1

2
2
−1/2
;
+$

(
20,;(C)

) ����
≥ 1

4

��20,;(C)
�� 1

|2; |1/2
,(2.5.30)

if )∗7 is eventually larger, with respect to �. Therefore,

(2.5.31)
��20,;(C)

�� ≤ � (
�4

�4C
+ 1

)
4−2�C .

By using (2.5.26), the mean-value theorem and Lemma 2.8, for C ∈ [C∗,)],
‖?(C) − %(C)‖�2 ≤ ‖�(C)‖�2 + ‖%̃(C) − %(C)‖�2

≤ �
(√

�4

�4C
+ 1

)
4−�C + �

(
 ∑
:=1

(|G1,:(C)| + |G2,:(C)|) +
!∑
;=1

(|G0,;(C) + 20,;(C)C | + |20,;(C)|)
)

≤ �
(√

�4

�4C
+ 1

)
4−�C + �

 ∑
:=1

(����∫ )

C

G′1,:(B)3B
����+ ����∫ )

C

G′2,:(B)3B
����)

+ �
!∑
;=1

(����∫ )

C

(
G′0,;(B) + 2

′
0,;(B)B

)
3B

����+ ����∫ )

C

20,;(B)3B
����+ ����∫ )

C

2′0,;(B)3B
����)

≤ �
(
�4

�4C
+ 1

)
4−�C + �

(∫ )

C

‖�(B)‖�23B +
∫ )

C

4−�B3B

)
≤ �

(
�4

�4C
+ 1

)
4−�C .(2.5.32)

We take � = 4� (where � is a constant that can be used anywhere in this proof) and

)∗ := max()∗1 ,)∗2 ,)∗3 ,)∗4 ,)∗5 ,)∗6 ,)∗7 ,)∗8 )

(depending on �), where )∗8 := )∗8 (�) is such that for C ≥ )∗8 , �4

�4C
≤ 1. And thus, for all C ∈ [C∗,)],

(2.5.33) �

(
�4

�4C
+ 1

)
≤ 2� =

�

2
,

which is exactly what we wanted to prove.

3. ? is a smooth multi-breather

Our goal here is to prove Proposition 1.10.

3.1. Estimates in higher order Sobolev norms. Firstly, we notice that the proposition is already es-
tablished for B = 2. We note also that if this proposition is proved for an B ≥ 2 with a corresponding
constant �B , then this proposition is also valid for any B′ ≤ B with the same constant �B . This means
that �B can possibly increase with B and that this proposition is already established for 0 ≤ B ≤ 2.
From now on, we can denote (as before) ?= by ?, )= by ) and ?= − % by E, and make sure that the
constant �B that we will obtain in the proof does not depend on = (although it will depend on B).
For the constant �, we will take the usual value: � := ��

32 . For the constant )∗, we will also take the
constant )∗ that works for Proposition 1.6.

We will prove the proposition by induction on B (it is sufficient to prove the proposition for any
integer B). We assume that for any B ≥ 3, the proposition is true for all 0 ≤ B′ ≤ B − 1. And we prove
the proposition for B.
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Let us deduce from the (mKdV) equation the equation satisfied by E:

EC = ?C −
�∑
9=1

%9C

= − ©«?GG + ?3 −
�∑
9=1

%9GG −
�∑
9=1

%3
9

ª®¬G
= − ©«EGG + (E + %)3 −

�∑
9=1

%3
9

ª®¬G
= − ©«EGG + E3 + 3E2% + 3E%2 + %3 −

�∑
9=1

%3
9

ª®¬G .(3.1.1)

Firstly, we compute 3
3C

∫
(%BGE)2 by integration by parts:

3

3C

∫
(%BGE)2 = 2

∫
(%BGEC)(%BGE)

= −2
∫

%B+1
G

©«EGG + E3 + 3E2% + 3E%2 + %3 −
�∑
9=1

%3
9

ª®¬ (%BGE)
= 2(−1)B+1

∫
%2B+1
G

©«%3 −
�∑
9=1

%3
9

ª®¬ E − 2
∫

%B+1
G (E3)(%BGE)

− 6
∫

%B+1
G (E2%)(%BGE) − 6

∫
%B+1
G (E%2)(%BGE),(3.1.2)

because
∫
(%B+3
G E)(%BGE) = −

∫
(%B+2
G E)(%B+1

G E) = 0.
We will now majorate each of the terms of the obtained sum.������

∫
%2B+1
G

©«%3 −
�∑
9=1

%3
9

ª®¬ E
������ ≤ ‖E‖!∞

∫ ������%2B+1
G

©«%3 −
�∑
9=1

%3
9

ª®¬
������

≤ �‖E‖�1 4−��C/2 Sobolev embedding and cross-product result

≤ ��4−�C 4−��C/2 by Proposition 1.6

≤ ��4−2�C ≤ ��2
B−14

−2�C ,(3.1.3)

where � is a constant that depends only on B.
We observe that

%B+1
G (E3) = 3(%B+1

G E)E2 + 6(B + 1)(%BGE)EGE + /1(E, EG , ..., %B−1
G E),

%B+1
G (E2%) = 2(%B+1

G E)E% + 2(B + 1)(%BGE)(E%)G + /2(E, EG , ..., %B−1
G E,%,%G , ..., %B+1

G %),(3.1.4)

where /1 and /2 are homogeneous polynomials of degree 3 with constant coefficients.
Now, let us look for a bound for

∫
%B+1
G (E3)(%BGE). Firstly, by integration by parts,∫

%B+1
G (E3)(%BGE) =

3
2

∫ (
(%BGE)2

)
G
E2 + 3(B + 1)

∫
(%BGE)2(E2)G +

∫
(%BGE)/1

=
6(B + 1) − 3

2

∫
(%BGE)2(E2)G +

∫
(%BGE)/1.(3.1.5)

Then, we majorate each of the terms of the obtained sum:����∫ (%BGE)2(E2)G
���� ≤ �‖E‖!∞ ‖EG ‖!∞ ∫

(%BGE)2
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≤ �‖E‖2
�2

∫
(%BGE)2

≤ �(‖?‖�2 + ‖%‖�2)�4−�C
∫
(%BGE)2

≤ ��0�4
−�C

∫
(%BGE)2 ≤ ��B−14

−�C
∫
(%BGE)2.(3.1.6)

We have actually shown in the computation above that ‖E‖2
�2 can be bounded above as ‖E‖�2 , and

therefore the degree of ‖E‖�2 can be lowered without harm in the upper bound. We will use this
fact again for the rest of the proof. In fact, all what it means is that, for several terms, what we have
is more than what we need.

By the Cauchy-Schwarz and Gagliardo-Nirenberg-Sobolev inequalities,����∫ (%BGE)/1

���� ≤ � ∫
|%BGE |

(
B−1∑
B′=0

|%B′G E |3
)

≤ �
(∫
|%BGE |2

)1/2 B−1∑
B′=0

(∫
|%B′G E |6

)1/2

≤ �
(∫
|%BGE |2

)1/2 B−1∑
B′=0

(∫
|%B′G E |2

) (∫
|%B′+1
G E |2

)1/2

≤ �
B−1∑
B′=0

(∫
|%B′G E |2

) (∫
|%BGE |2 +

∫
|%B′+1
G E |2

)
≤ ��2

B−14
−2�C + ��B−14

−�C
∫
|%BGE |2.(3.1.7)

Similarly, we bound
∫
%B+1
G (E2%)(%BGE). By integration by parts,∫

%B+1
G (E2%)(%BGE) =

∫ (
(%BGE)2

)
G
E% + 2(B + 1)

∫
(%BGE)2(E%)G +

∫
(%BGE)/2

= (2B + 1)
∫
(%BGE)2(E%)G +

∫
(%BGE)/2.(3.1.8)

We majorate each of the terms of the obtained sum.����∫ (%BGE)2(E%)G ���� ≤ �(‖E‖!∞ + ‖EG ‖!∞)∫ (%BGE)2
≤ ��4−�C

∫
(%BGE)2.(3.1.9)

The upper bound of
��∫ (%BGE)/2

�� is similar to (3.1.7) above:

(3.1.10)

����∫ (%BGE)/2

���� ≤ ��2
B−14

−2�C + ��B−14
−�C

∫
|%BGE |2.∫

%B+1
G (E%2)(%BGE) remains to be bounded.

By integration by parts,∫
%B+1
G (E%2)(%BGE) = −

∫
%B+2
G (E%2)(%B−1

G E)

= −
∫ (

%B+2
G E

)
(%B−1
G E)%2 − (B + 2)

∫ (
%B+1
G E

)
(%B−1
G E)(%2)G

− (B + 2)(B + 1)
2

∫
(%BGE) (%B−1

G E)
(
%2)

GG
+

∫ (
%B−1
G E

)
/0

3(E, EG , ..., %B−1
G E)

=
1
2

∫ (
(%BGE)2

)
G
%2 + (B + 1)

∫
(%BGE)2(%2)G



30 ALEXANDER SEMENOV

− B(B + 1)
4

∫ (
(%B−1
G E)2

)
G
(%2)GG +

∫ (
%B−1
G E

)
/0

3(E, EG , ..., %B−1
G E)

=
2B + 1

2

∫
(%BGE)2(%2)G +

∫ (
%B−1
G E

)
/3(E, EG , ..., %B−1

G E),(3.1.11)

where /0
3 and /3 are homogeneous polynomials of degree 1 whose coefficients are polynomials in

% and its space derivatives. We have: |/3 | ≤ �
(∑B−1

B′=0 |%B
′
G E |

)
.

Therefore,

(3.1.12)

����∫ (
%B−1
G E

)
/3

���� ≤ ��2
B−14

−2�C .

Thus, by taking the sum of all those inequalities, we obtain:

(3.1.13)

���� 33C ∫ (%BGE)2 + 3(2B + 1)
∫
(%BGE)2(%2)G

���� ≤ ��2
B−14

−2�C + ��B−14
−�C

∫
|%BGE |2.

Next, we perform similar computations for 3
3C

∫
(%B−1
G E)2%2:

3

3C

∫
(%B−1
G E)2%2 = 2

∫
(%B−1
G EC)(%B−1

G E)%2 + 2
∫
(%B−1
G E)2%C%

= −2
∫

%BG
©«EGG + E3 + 3E2% + 3E%2 + %3 −

�∑
9=1

%3
9

ª®¬ (%B−1
G E)%2

− 2
∫
(%B−1
G E)2 ©«%GG +

�∑
9=1

%3
9

ª®¬G %.(3.1.14)

Let us study each of the obtained terms.
Firstly,

−2
∫
(%B+2
G E)(%B−1

G E)%2 = 2
∫
(%B+1
G E)(%BGE)%2 + 2

∫
(%B+1
G E)(%B−1

G E)(%2)G

= −3
∫
(%BGE)2(%2)G − 2

∫
(%BGE)(%B−1

G E)(%2)GG

= −3
∫
(%BGE)2(%2)G +

∫
(%B−1
G E)2(%2)GGG .(3.1.15)

Indeed,

(3.1.16)

����∫ (%B−1
G E)2(%2)GGG

���� ≤ ��24−2�C .

Secondly,

(3.1.17)

������
∫

%BG
©«%3 −

�∑
9=1

%3
9

ª®¬ (%B−1
G E)%2

������ ≤ ��2
B−14

−2�C

can be obtained similarly to the first part of the proof (starting by an integration by parts to have
%B−2
G E at the place of %B−1

G E).
Thirdly, ∫

%BG
(
E3) (%B−1

G E)%2 = 3
∫
(%BGE)(%B−1

G E)E2%2 +
∫

/4(E, EG , ..., %B−1
G E)%2

= −3
2

∫
(%B−1
G E)2(E2%2)G +

∫
/4%

2,(3.1.18)

where /4 is a homogeneous polynomial of degree 4 with constant coefficients. Both terms are easily
bounded by ��2

B−14
−2�C .

Fourthly, for
∫
%BG

(
E2%

)
(%B−1
G E)%2 and

∫
%BG

(
E%2) (%B−1

G E)%2, we reason similarly.
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Fifthly,

(3.1.19)

������
∫
(%B−1
G E)2 ©«%GG +

�∑
9=1

%3
9

ª®¬G %
������ ≤ ��2

B−14
−2�C

is clear.
Therefore,

(3.1.20)

���� 33C ∫ (%B−1
G E)2%2 + 3

∫
(%BGE)2(%2)G

���� ≤ ��2
B−14

−2�C .

We set

(3.1.21) �(C) :=
∫
(%BGE)2 − (2B + 1)

∫
(%B−1
G E)2%2.

By putting the both parts of the proof together:

(3.1.22)

���� 33C �(C)���� ≤ ��2
B−14

−2�C + ��B−14
−�C

∫
|%BGE |2.

Because
��∫ (%B−1

G E)2%2
�� ≤ ��24−2�C , we can write the following upper bound:

(3.1.23)
∫
(%BGE)2 ≤ |�(C)| + ��2

B−14
−2�C .

Therefore, we have, for a suitable constant � > 0 that depends only on B,

(3.1.24)

���� 33C �(C)���� ≤ ��2
B−14

−2�C + ��B−14
−�C |�(C)|.

For C ∈ [)∗,)], by integration between C and ) (we recall that �()) = 0),

|�(C)| = |�()) − �(C)| =
����∫ )

C

3

3C
�(�)3�

���� ≤ ∫ )

C

���� 33C �(�)���� 3�
≤ ��2

B−1

∫ )

C

4−2��3� + ��B−1

∫ )

C

4−�� |�(�)|3�

≤ ��2
B−14

−2�C + ��B−1

∫ )

C

4−�� |�(�)|3�.(3.1.25)

By Gronwall lemma, for all C ∈ [)∗,)],

|�(C)| ≤ ��2
B−14

−2�C + ��B−1

∫ )

C

4−����2
B−14

−2�� exp
(∫ �

C

��B−14
−�D3D

)
3�

≤ ��2
B−14

−2�C + ��3
B−1 exp

(
��B−1

�
4−�C

) ∫ )

C

4−3�� exp
(
−��B−1

�
4−��

)
3�

≤ ��2
B−14

−2�C + ��3
B−1 exp

(
��B−1

�

) ∫ )

C

4−3��3�

≤ ��2
B−14

−2�C + ��3
B−1 exp

(
��B−1

�

)
4−3�C

≤ ��3
B−1 exp

(
��B−1

�

)
4−2�C .(3.1.26)

Therefore,

(3.1.27)
∫
(%BGE)2 ≤ �B 4−2�C ,

where �B := ��3
B−1 exp

(
��B−1
�

)
with � is a constant large enough that depends only on B.

This conclude the proof of Proposition 1.10, and so of Theorem 1.2
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3.2. Uniformity of constants. We conclude this section with an explanation regarding Remark 1.3.
In the proof above, the constants that we obtain �,)∗,� do depend on %9(0) (1 ≤ 9 ≤ �). Actually,

we may characterize this dependence. In fact, they do not depend on the initial positions of our
objects in the case when our objects are initially ordered in the right order and sufficiently far from
each other.

Theorem 3.1. Given parameters (1.2.1), (1.2.2), (1.2.3) and (1.2.4) which satisfy (1.2.5), there exists � > 0
large enough that depends only on : , �: , 2; such that if

(3.2.1) ∀9 ≥ 2, G 9(0) ≥ G 9−1(0) +�,

then the following holds. We set � := ��
32 , with � and � given by (2.0.1) and ?(C) the multi-breather associated

to % by Proposition 1.7. There exists �B ≥ 1 for any B ≥ 2 that depend only on : , �: , 2; and � such that

(3.2.2) ∀C ≥ 0, ‖?(C) − %(C)‖�B ≤ �B 4−�C .
First, we prove that for any � > 0, if (3.2.1) is satisfied then the constants �B and )∗ do depend

only on : , �: , 2; and �. At the end, we will prove that if � > 0 is large enough with respect to the
given parameters, then we can take )∗ = 0.

To establish the validity of this theorem, it is enough to read again the whole article and to
make sure that on any step of the proof, there is no dependence on initial positions of our objects
when our objects are initially far from each other for the constants � and then � and )∗ (but, these
constants may depend on �). This is the case, but we should change a bit the way we write our
results.

For Proposition 3, we should write

(3.2.3) |%=G%<C %9(C, G)| ≤ �4−� |G−E 9 C−G 9(0)|.
Therefore, in Proposition 4, we have nothing to change, but the constant � do depend on �. This

will also be the case in the following propositions and lemmas of this proof.

We should replace �9C for the definition of ! 9 by �9C +
G 9−1(0)+G 9(0)

2 to take into account of initial
positions. More precisely, we will have for any 9 = 2, ..., � − 1,

(3.2.4) ! 9(C, G) := #

(
G − �9C −

G 9−1(0)+G 9(0)
2

�C

)
−#

(
G − �9+1C −

G 9(0)+G 9+1(0)
2

�C

)
,

and similarly for other definitions.
After having done the modulation with � and )∗ depending on �, for Proposition 15, we should

write:

(3.2.5) |%=G %̃9(C, G)| ≤ �4−
�
2 |G−E 9 C−G 9(0)|4

��
32 C .

Therefore, with these adaptations, the same proof works to prove that �B and )∗ do depend only
on : , �: , 2; and �.

Now, given : , �: , 2; , we choose �0 > 0 in an arbitrary maner. Therefore, we get �B(�0) and
)∗(�0) associated to �0. Let Λ := E� − E1 the maximal difference between two velocities. We set
� := �0 + Λ · )∗(�0). Therefore, if we suppose (3.2.1) in C = 0 for �, then we have (3.2.1) in
C = −)∗(�0) for �0. Therefore, by appliying the intermediate result for �0, we obtain the desired
conclusion where �B = �B(�0).

4. Uniqueness

? is the multi-breather constructed in the existence part. The goal here is to prove that if a solution
D converges to ? when C → +∞ (in some sense), then D = ? (under well chosen assumptions).

We prove here two propositions. For both of them, we assume that the velocities of all our
objects are distinct (this was also an assumption for the existence). The first proposition does not
make more assumptions on velocities of our objects, but it is a partial uniqueness result as we
restrict ourselves to the class of super polynomial convergence to the multi-breather. The second
proposition assumes that the velocities of all our objects are positive (that is a new assumption and
it is needed because this proof uses monotonicity arguments).
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4.1. A solution converging super polynomialy to a multi-breather is this multi-breather. The goal
of this subsection is to prove Proposition 1.5.

Remark 4.1. Note that in Proposition 1.5, we don’t make any assumption on the sign of E1 or E2.
This uniqueness proposition has the same degree of generality as Theorem 1.2.

Proof of Proposition 1.5. Let ?(C) be the multi-breather associated to % by Theorem 1.2. Recall that for
any B,

(4.1.1)
?(C) − %(C)

�B = $
(
4−�C

)
,

for a suitable � > 0.
Let # > 2 to be chosen later. We take D(C) an �2 solution of (mKdV) such that there exists �0 > 0

such that for C large enough,

‖D(C) − %(C)‖�2 ≤ �0

C#
.(4.1.2)

From that, we may deduce that for C large enough (namely, C ≥ 2�0 along with the previous
condition),

(4.1.3) ‖D(C) − %(C)‖�2 ≤ 1
2

1
C#−1

.

Our goal is to find a condition on # that do not depend on D, such that the condition (4.1.3) on
D for C large enough implies that D ≡ ?.

Because of (4.1.1), the condition (4.1.3) for C large enough is equivalent to: for C large enough,D(C) − ?(C)
�2 ≤

1
C#−1

.(4.1.4)

We denote I(C) := D(C) − ?(C). Our goal is to find # large enough that do not depend on I, for
which we will be able to prove that I ≡ 0, given

(4.1.5) ‖I(C)‖�2 ≤ 1
C#−1

,

for C large enough.
Because I is a difference of two solutions of (mKdV), we may derive the following equation for

I:

(4.1.6) IC +
(
IGG + (I + ?)3 − ?3)

G
= 0.

We divide our proof in several steps.
Step 1. Modulation on I.
For 9 = 1, ..., �, if %9 = �: is a breather, we denote

 9 :=
(
%G1�:
%G2�:

)
,(4.1.7)

if %9 = '; is a soliton, we denote

 9 = %G'; .(4.1.8)

We may derive the following equation for  9 :(
 9

)
C
+

( (
 9

)
GG
+ 3%2

9  9

)
G
= 0.(4.1.9)

For 9 = 1, ..., �, if %9 = �: is a breather, let 2 9(C) ∈ R2 defined for C large enough and if %9 = '; is a
soliton, let 2 9(C) ∈ R defined for C large enough such that for

(4.1.10) Ĩ(C) := I(C) +
�∑
9=1

2 9(C) 9(C),

where 2 9 9 is either a product of two numbers of R or a scalar product of two vectors of R2, the
following condition is satisfied. For any 9 = 1, ..., �, for C large enough,

(4.1.11)
∫

Ĩ(C) 9(C)
√
! 9(C) = 0,
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where ! 9 is defined in Section 2.2 (in this proof, it is OK to take � = 1).
It is possible to do so in a unique way, because the Gram matrix associated to  9(C)

√
! 9(C),

1 ≤ 9 ≤ �, is invertible; which is the case because  9(C)
√
! 9(C), 1 ≤ 9 ≤ �, is linearly independent.

This is why 2 9(C), 1 ≤ 9 ≤ �, are defined in a unique way. For the same reason, 2 9(C) is obtained
linearly from

∫
 :(C)I(C)

√
!:(C), 1 ≤ : ≤ �, with coefficients that depend only on  : , 1 ≤ : ≤ �. This

is why, from Cauchy-Schwarz, we may deduce that

Lemma 4.2. For any 9 = 1, ..., �, for C large enough, there exists � > 0 that do not depend on I, such that

|2 9(C)| ≤ �‖I(C)‖!2 ,(4.1.12)

‖ Ĩ(C)‖�2 ≤ �‖I(C)‖�2 .(4.1.13)

Moreover, the Gram matrix is �1 in time and invertible. This is why, its inverse is �1 in time.
Because

∫
 9I
√
! 9 are �1 in time, we deduce by multiplication that 2 9(C) are �1 in time.

By differentiating in time the linear relation that defines 2 9(C), we see that 2′
9
(C) is obtained linearly

from
∫
 :(C)I(C)

√
!:(C), 1 ≤ : ≤ �, with coefficients that depend on  : , 1 ≤ : ≤ � (and their

derivatives) and linearly from 3
3C

∫
 :(C)I(C)

√
!:(C), 1 ≤ : ≤ �, with coefficients that depend on  : ,

1 ≤ : ≤ �. Because it is easy to see that 3
3C

∫
 :(C)I(C)

√
!:(C) may still be bounded by �‖I(C)‖!2 , we

deduce that for any 9 = 1, ..., �, for C large enough, there exists � > 0 that do not depend on I, such
that

(4.1.14) |2′9(C)| ≤ �‖I(C)‖!2 .

We may derive the following equation for Ĩ:

(4.1.15) ĨC +
(̃
IGG + 3̃I?2)

G
= −

(
3I2? + I3)

G
+

�∑
:=1

2′:(C) : − 3
�∑
:=1

2:(C)
(
(%2

:
− ?2) :

)
G

.

Step 2. A bound for |2′
9
(C)|. The goal here is to improve (4.1.14).

Lemma 4.3. For any 9 = 1, ..., �, for C large enough, there exists � > 0 and � > 0 that do not depend on I,
such that

|2′9(C)| ≤ �‖ Ĩ(C)‖�2 + �4−�C ‖I(C)‖�2 + �‖I(C)‖2
�2 .(4.1.16)

Proof. We may differentiate (4.1.11):

0 =
3

3C

∫
Ĩ 9

√
! 9

(4.1.17)

=

∫
ĨC 9

√
! 9 +

∫
Ĩ
(
 9

)
C

√
! 9 +

∫
Ĩ 9

(√
! 9

)
C

(4.1.18)

= −
∫ (̃

IGG + 3̃I?2)
G
 9

√
! 9 −

∫ (
3I2? + I3)

G
 9

√
! 9 +

�∑
:=1

∫ (
2′:(C) ·  :

)
 9

√
! 9

(4.1.19)

− 3
�∑
:=1

2:(C)
∫ (

2:(C) ·
(
(%2

:
− ?2) :

)
G

)
 9

√
! 9 −

∫
Ĩ
(
( 9)GG + 3 9%2

9

)
G

√
! 9 +

∫
Ĩ 9

(√
! 9

)
C
.

(4.1.20)

We know that
(√

! 9

)
G

and
(√

! 9

)
C

are bounded (from inequalities established in Section 2.2). This

is why, for any C large enough, ����∫ Ĩ 9

(√
! 9

)
C

���� ≤ �‖ Ĩ(C)‖�2 .(4.1.21)
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For the same reason, after eventually doing an integration by parts, for any C large enough,����∫ (̃
IGG + 3̃I?2)

G
 9

√
! 9

����+ ����∫ Ĩ
(
( 9)GG + 3 9%2

9

)
G

√
! 9

���� ≤ �‖ Ĩ(C)‖�2 .(4.1.22)∫ (
3I2? + I3)

G
 9
√
! 9 is clearly bounded by �‖I(C)‖2

�2 . Finally, we see that (%2
:
− ?2) : is expo-

nentially bounded in time (in Sobolev or !∞ norm), and using Lemma 4.2, we deduce that∫ (
2:(C) ·

(
(%2

:
− ?2) :

)
G

)
 9

√
! 9(4.1.23)

is bounded by �4−�C ‖I(C)‖�2 , for a suitable � > 0 that do not depend on I.
This is why, we deduce that for any 9 = 1, ..., �, for C large enough, there exists � > 0 and � > 0

that do not depend on I, such that����� �∑
:=1

∫ (
2′:(C) ·  :

)
 9

√
! 9

����� ≤ �‖ Ĩ(C)‖�2 + �4−�C ‖I(C)‖�2 + �‖I(C)‖2
�2 .(4.1.24)

We recall that for any (E1, E2) ∈ (R)2 >A
(
R2)2 , E3 ∈ R >A R2, we have the following equality

between two elements of R or R2 (where vectors are denoted as a colon)

(E1 · E2) E3 =
(
E)1

(
E2E

)
3

) ))
,(4.1.25)

where ) denotes the transpose.
First of all, because

∫
 : 

)
9

√
! 9 converges exponentially to

∫
 : 

)
9
, for : ≠ 9

∫
 : 

)
9

is exponen-
tially decreasing, and from (4.1.14), we may write that for any 9 = 1, ..., �, for C large enough, there
exists � > 0 and � > 0 that do not depend on I, such that�����(2′9(C)) ∫

 9 
)
9

)) ����� ≤ �‖ Ĩ(C)‖�2 + �4−�C ‖I(C)‖�2 + �‖I(C)‖2
�2 ,(4.1.26)

Now, in the case when  9 ∈ R2, using that its components are linearly independent, using
Cauchy-Schwarz inequality, we deduce the desired lemma. �

Step 3. Coercivity.
We define the following functional quadratic in Ĩ:

�(C) = 1
2

∫
Ĩ2
GG −

5
2

∫
?2 Ĩ2

G +
5
2

∫
?2
G Ĩ

2 + 5
∫

??GG Ĩ
2 + 15

4

∫
?4 Ĩ2(4.1.27)

+
�∑
9=1

(
12
9 − 02

9

) (∫
Ĩ2
G! 9 − 3

∫
?2 Ĩ2! 9

)
+

�∑
9=1

(
02
9 + 12

9

)2 1
2

∫
Ĩ2! 9 .(4.1.28)

We will prove the following lemma:

Lemma 4.4. There exists � > 0 that do not depend on I, such that for C large enough,

‖ Ĩ(C)‖2
�2 ≤ ��(C) + �

�∑
9=1

(∫
Ĩ%9

)2

.(4.1.29)

Proof. We denote Q 9 the quadratic form associated to %9 . We remind that

Q 9[�] :=
1
2

∫
�2
GG −

5
2

∫
%2
9 �

2
G +

5
2

∫ (
%9

)2
G
�2 + 5

∫
%9

(
%9

)
GG
�2 + 15

4

∫
%4
9 �

2(4.1.30)

+
(
12
9 − 02

9

) (∫
�2
G − 3

∫
%2
9 �

2
)
+

(
02
9 + 12

9

)2 1
2

∫
�2.(4.1.31)

In any case, we have that for any 9 = 1, ..., �, there exists �9 > 0, such that if � ∈ �2 satisfies∫
 9� = 0, then we have

Q 9[�] ≥ �9 ‖�‖2�2 −
1
�9

(∫
�%9

)2

.(4.1.32)
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Here, we apply this coercivity result with � = Ĩ
√
! 9 for which the orthogonality conditions are

satisfied. Thus,

‖ Ĩ
√
! 9 ‖2�2 ≤ �Q 9 [̃I

√
! 9] + �

(∫
Ĩ%9

√
! 9

)2

.(4.1.33)

We denote

Q′9[�] :=
1
2

∫
�2
GG! 9 −

5
2

∫
?2�2

G! 9 +
5
2

∫
?2
G�

2! 9 + 5
∫

??GG�
2! 9 +

15
4

∫
?4�2! 9(4.1.34)

+
(
12
9 − 02

9

) (∫
�2
G! 9 − 3

∫
?2�2! 9

)
+

(
02
9 + 12

9

)2 1
2

∫
�2! 9 ,(4.1.35)

and we observe that

�(C) =
�∑
9=1

Q′9 [̃I(C)].(4.1.36)

In Q′
9
[̃I(C)], we may replace ? by %9 with an error bounded by �4−�C ‖ Ĩ(C)‖2

�2 , because of (4.1.1)

mainly. After that, the expression obtained may be replaced by Q 9 [̃I(C)
√
! 9(C)] with an error

bounded by �
C ‖ Ĩ(C)‖2�2 (cf. calculations done in the proof of Lemma 2.19). For the same reason,

‖ Ĩ√! 9 ‖2�2 may be replaced by
∫ (̃

I2 + Ĩ2
G + Ĩ2

GG

)
! 9 with an error bounded by �

C ‖ Ĩ(C)‖2�2 . Therefore,
because of

‖ Ĩ‖2�2 =

�∑
9=1

∫ (̃
I2 + Ĩ2

G + Ĩ2
GG

)
! 9 ,(4.1.37)

because of the fact that %9
√
! 9 converges exponentially to %9 , and the fact that �

C may be as small as
we want if we take C large enough, we deduce the desired lemma. �

Step 4. Modification of � for the sake of simplification.
We define

�̃(C) :=
∫ [

1
2
Ĩ2
GG −

5
2

( (̃
I + ?

)2 (̃
I + ?

)2
G
− ?2?2

G − 2̃I??2
G − 2̃IG?2?G

)
+ 1

4

( (̃
I + ?

)6 − ?6 − 6̃I?5
)](4.1.38)

+ 2
�∑
9=1

(
12
9 − 02

9

) ∫ [
1
2
Ĩ2
G −

1
4

( (̃
I + ?

)4 − ?4 − 4̃I?3
)]

! 9 +
1
2

�∑
9=1

(
02
9 + 12

9

)2
∫

Ĩ2! 9 .(4.1.39)

We observe that the difference between � and �̃ is bounded by $
(
‖ Ĩ(C)‖3

�2

)
. We can thus claim:

Lemma 4.5. There exists � > 0 that do not depend on I, such that for C large enough,

‖ Ĩ(C)‖2
�2 ≤ ��̃(C) + �

�∑
9=1

(∫
Ĩ%9

)2

.(4.1.40)

Step 5. A bound for 3�̃
3C .

Lemma 4.6. There exists � > 0 and � > 0 that do not depend on I, such that for C large enough,�����3�̃3C
����� ≤ �

C
‖ Ĩ(C)‖2

�2 + �4−�C ‖ Ĩ(C)‖�2 ‖I(C)‖�2 + �‖ Ĩ(C)‖�2 ‖I(C)‖2
�2 .(4.1.41)

Proof. We develop the expression of �̃(C), we differentiate each term obtained and we use (4.1.15),
the fact that ? is a solution of (mKdV) and the fact that

(
! 9

)
C
= − GC

(
! 9

)
G
, where G

C is bounded
independently from I because of the compact support of ! 9 . We obtain several sorts of terms after
doing several integrations by parts and several obvious simplifications.
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Several terms are clearly bounded by one the bounds of the lemma, because I or Ĩ appears
with a degree larger than 2. As an example, we show how to deal with

∫
IGGGIĨGG?. We use that

I = Ĩ −∑�

9=1 2 9 9 , and we obtain∫
IGGGIĨGG? =

∫
ĨGGG Ĩ ĨGG? −

∫
ĨGGG

©«
�∑
9=1

2 9 9
ª®¬ ĨGG? −

∫ ©«
�∑
9=1

2 9
(
 9

)
GGG

ª®¬ Ĩ ĨGG?(4.1.42)

+
∫ ©«

�∑
9=1

2 9
(
 9

)
GGG

ª®¬ ©«
�∑
9=1

2 9 9
ª®¬ ĨGG?.(4.1.43)

It is easy to see that any of those terms is bounded as we want in the lemma (several of them are
bounded by �

C ‖ Ĩ(C)‖2�2 , the last one is bounded by �‖ Ĩ(C)‖�2 ‖I(C)‖2
�2), because of Lemma 4.2 and

of (4.1.5).
Other terms contain Ĩ quadratically and contain

(
! 9

)
G
. And,

(
! 9

)
G

is bounded by �
C . This is why

that sort of terms is bounded by �
C ‖ Ĩ(C)‖2�2 .

Several other terms can be, by doing suitable integrations by parts transformed in two following
expressions:

6
�∑
9=1

∫
Ĩ ĨG?

[
?GGGG − 2

(
12
9 − 02

9

) (
?GG + ?3) + (

02
9 + 12

9

)2
? + 5??2

G + 5?2?GG +
3
2
?5

]
! 9 ,(4.1.44)

3
�∑
9=1

∫
Ĩ2?G

[
?GGGG − 2

(
12
9 − 02

9

) (
?GG + ?3) + (

02
9 + 12

9

)2
? + 5??2

G + 5?2?GG +
3
2
?5

]
! 9 .(4.1.45)

To deal with these two expressions, we use the elliptic equation satisfied by %9 :

(4.1.46)
(
%9

)
GGGG
− 2

(
12
9 − 02

9

) ( (
%9

)
GG
+ %3

9

)
+

(
02
9 + 12

9

)2
%9 + 5%9

(
%9

)2
G
+ 5%2

9

(
%9

)
GG
+ 3

2
%5
9 = 0,

and the fact that
[
?GGGG − 2

(
12
9
− 02

9

) (
?GG + ?3) + (

02
9
+ 12

9

)2
? + 5??2

G + 5?2?GG + 3
2?

5

]
! 9 converges ex-

ponentially to
(
%9

)
GGGG
− 2

(
12
9
− 02

9

) ( (
%9

)
GG
+ %3

9

)
+

(
02
9
+ 12

9

)2
%9 + 5%9

(
%9

)2
G
+ 5%2

9

(
%9

)
GG
+ 3

2%
5
9
, which

is a direct consequence from (4.1.1). This is why that sort of terms is bounded by �
C ‖ Ĩ(C)‖2�2 .

Other terms contain
((
%2
9
− ?2

)
 9

)
, which is bounded exponentially, with 2 9 bounded by ‖I‖�2 .

Those terms are obviously bounded by �4−�C ‖ Ĩ(C)‖�2 ‖I(C)‖�2 .
Other terms contain  : (or a derivative) and ! 9 with 9 ≠ :. In this case, this product gives an

exponential decreasing, and such a term is bounded by �4−�C ‖ Ĩ(C)‖�2 ‖I(C)‖�2 , using (4.1.14).
Therefore, we are left with the following terms:

�∑
9=1

2′9(C)
∫ [(

 9
)
GG
ĨGG − 10 9 ĨG??G − 5 9 Ĩ?2

G − 10
(
 9

)
G
Ĩ??G − 5

(
 9

)
G
ĨG?

2 + 15
4
 9 Ĩ?

4(4.1.47)

+2
(
12
9 − 02

9

) (
 9

)
G
ĨG − 6

(
12
9 − 02

9

)
 9 Ĩ?

2 +
(
02
9 + 12

9

)2
 9 Ĩ

]
! 9 .(4.1.48)

We may replace ? by %9 in the preceeding expression with an error of �4−�C ‖ Ĩ(C)‖�2 ‖I(C)‖�2 ,
because of (4.1.14) and (4.1.1). This is acceptable, knowing the result we want to prove.

By integration by parts, we obtain several terms of the form 2′
9
(C)

∫ (
 9

)
GG
ĨG

(
! 9

)
G
, which are

bounded by �
C |2′9(C)|‖ Ĩ(C)‖�2 . Now, from Lemma 4.3, we deduce that they are bounded by

�

C
‖ Ĩ(C)‖2

�2 + �4−�C ‖ Ĩ(C)‖�2 ‖I(C)‖�2 + �‖ Ĩ(C)‖�2 ‖I(C)‖2
�2 ,(4.1.49)
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which is exactly the bound we want. And, we are left with the following terms:
�∑
9=1

2′9(C)
∫ [(

 9
)
GGGG
+ 10

(
 9

)
G
%9

(
%9

)
G
+ 5 9

(
%9

)2
G
+ 10 9%9

(
%9

)
GG
+ 5

(
 9

)
GG
%2
9 +

15
2
 9%

4
9(4.1.50)

−2
(
12
9 − 02

9

) (
 9

)
GG
− 6

(
12
9 − 02

9

)
 9%

2
9 +

(
02
9 + 12

9

)2
 9

]
Ĩ! 9 .(4.1.51)

The last expression equals zero, because of the elliptic equation satisfied by  9 , which we may
derive by differentiating (4.1.46). �

Step 6. A bound for 3
3C

∫
Ĩ%9 .

Lemma 4.7. There exists � > 0 and � > 0 that do not depend on I, such that for C large enough, for any
9 = 1, ..., �, ���� 33C ∫ Ĩ%9

���� ≤ �4−�C ‖I(C)‖�2 + �‖I(C)‖2
�2 .(4.1.52)

Proof. We observe that ∫
Ĩ%9 =

∫
I%9 +

�∑
:=1

2:(C)
∫

 :%9 .(4.1.53)

First, for : = 9, ∫
 9%9 = 0,(4.1.54)

for : ≠ 9,

3

3C

[
2:(C)

∫
 :%9

]
= 2′:(C)

∫
 :%9 + 2:(C)

∫
( :)C %9 + 2:(C)

∫
 :

(
%9

)
C
,(4.1.55)

and it is obvious, from Lemma 4.2 and (4.1.14), that this is bounded by �4−�C ‖I(C)‖�2 .
It is left to bound 3

3C

∫
I%9 . We use (4.1.6) and we obtain

3

3C

∫
I%9 = −

∫ (
IGG +

(
I + ?

)3 − ?3
)
G
%9 −

∫
I
( (
%9

)
GG
+ %3

9

)
G

.(4.1.56)

Several terms are immediately boundable by �‖I(C)‖2
�2 , we kill several others by integration by

parts and we are left with ∫
I
(
?2 − %2

9

) (
%9

)
G

,(4.1.57)

which is obviously bounded by �4−�C ‖I(C)‖�2 , because of (4.1.1). �

By differentiation of a square, we obtain that

Lemma 4.8. There exists � > 0 and � > 0 that do not depend on I, such that for C large enough, for any
9 = 1, ..., �, ����� 33C (∫

Ĩ%9

)2
����� ≤ �4−�C ‖ Ĩ(C)‖�2 ‖I(C)‖�2 + �‖ Ĩ(C)‖�2 ‖I(C)‖2

�2 .(4.1.58)

Step 7. A bound for ‖I(C)‖�2 in function of Ĩ(C).
Because we have chosen # > 2, because of (4.1.5), we may claim that for C large enough, the

integral ∫ +∞

C

‖I(B)‖�23B(4.1.59)

is finite.
Because of Lemma 4.2 and (4.1.5), we deduce that

2 9(C) →C→+∞ 0.(4.1.60)
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Knowing this, from Lemma 4.3, we deduce by integration that

|2 9(C)| ≤
∫ +∞

C

|2′9(B)|3B(4.1.61)

≤ �
∫ +∞

C

‖ Ĩ(B)‖�23B + �
∫ +∞

C

4−�B ‖I(B)‖�23B +
∫ +∞

C

‖I(B)‖2
�23B.(4.1.62)

Knowing this and using (4.1.10), we may deduce that

‖I(C)‖�2 ≤ �‖ Ĩ(C)‖�2 + �
∫ +∞

C

‖ Ĩ(B)‖�23B + �
∫ +∞

C

4−�B ‖I(B)‖�23B +
∫ +∞

C

‖I(B)‖2
�23B

≤ �‖ Ĩ(C)‖�2 + �
∫ +∞

C

‖ Ĩ(B)‖�23B + � sup
B≥C
‖I(B)‖�2 4−�C + � sup

B≥C
‖I(B)‖�2

∫ +∞

C

‖I(B)‖�23B,(4.1.63)

which implies, because
∫ +∞
C
‖ Ĩ(B)‖�23B, supB≥C ‖I(B)‖�2 4−�C and supB≥C ‖I(B)‖�2

∫ +∞
C
‖I(B)‖�23B are

decreasing in time, that

sup
B≥C
‖I(B)‖�2 ≤ � sup

B≥C
‖ Ĩ(B)‖�2 + �

∫ +∞

C

‖ Ĩ(B)‖�23B + � sup
B≥C
‖I(B)‖�2 4−�C

+ � sup
B≥C
‖I(B)‖�2

∫ +∞

C

‖I(B)‖�23B,(4.1.64)

and because 4−�C and
∫ +∞
C
‖I(B)‖�23B may be as small as we want for C large enough (dependent on

I), we may deduce that

Lemma 4.9. There exists � > 0 that do not depend on I, such that for C large enough,

‖I(C)‖�2 ≤ sup
B≥C
‖I(B)‖�2 ≤ � sup

B≥C
‖ Ĩ(B)‖�2 + �

∫ +∞

C

‖ Ĩ(B)‖�23B.(4.1.65)

Step 8. Conclusion.
By integration, from Lemmas 4.5, 4.6 and 4.8, for C large enough (depending on I), with constants

� and � that do not depend on I,

‖ Ĩ(C)‖2
�2 ≤ �

∫ +∞

C

1
B
‖ Ĩ(B)‖2

�23B + �
∫ +∞

C

4−�B ‖ Ĩ(B)‖�2 ‖I(B)‖�23B + �
∫ +∞

C

‖ Ĩ(B)‖�2 ‖I(B)‖2
�23B

≤ � sup
B≥C
‖ Ĩ(B)‖�2

∫ +∞

C

(
1
B
‖ Ĩ(B)‖�2 + 4−�B ‖I(B)‖�2 + ‖I(B)‖2

�2

)
3B.

Because the right-hand side of the inequality above is decreasing in time, we deduce after taking
the supremum of the previous inequality and after simplification, that for C large enough,

sup
B≥C
‖ Ĩ(B)‖�2 ≤ �

∫ +∞

C

1
B
‖ Ĩ(B)‖�23B + �

∫ +∞

C

4−�B ‖I(B)‖�23B + �
∫ +∞

C

‖I(B)‖2
�23B

≤ �
∫ +∞

C

1
B
‖ Ĩ(B)‖�23B + � sup

B≥C
‖I(B)‖�2 4−�C + � sup

B≥C
‖I(B)‖�2

∫ +∞

C

‖I(B)‖�23B,(4.1.66)

and using (4.1.5), the fact that # − 1 > 1 and the fact that 4−�C is decreasing faster than 1
C#−2 , we

deduce that for C large enough,

sup
B≥C
‖ Ĩ(B)‖�2 ≤ �

∫ +∞

C

1
B
‖ Ĩ(B)‖�23B + � 1

C#−2
sup
B≥C
‖I(B)‖�2 ,(4.1.67)

and using Lemma 4.9,

sup
B≥C
‖ Ĩ(B)‖�2 ≤ �

∫ +∞

C

1
B
‖ Ĩ(B)‖�23B + � 1

C#−2
sup
B≥C
‖ Ĩ(B)‖�2 + � 1

C#−2

∫ +∞

C

‖ Ĩ(B)‖�23B,(4.1.68)

and because 1
C#−2 can be as small as we want for C large enough, we deduce that for C large enough

and for a constant � > 0 that do not depend on I or on # ,

(4.1.69) ‖ Ĩ(C)‖�2 ≤ sup
B≥C
‖ Ĩ(B)‖�2 ≤ �

∫ +∞

C

1
B
‖ Ĩ(B)‖�23B + � 1

C#−2

∫ +∞

C

‖ Ĩ(B)‖�23B.
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Let us pick ) > 0 large enough such that for C ≥ ), the inequality (4.1.69) works.
From (4.1.10) and Lemma 4.2, we know that for C ≥ ) (by taking ) larger if needed),

(4.1.70) ‖ Ĩ(C)‖�2 ≤ �

C#−1
.

This is why, the following quantity is well defined:

(4.1.71) � := sup
C≥)
{C#−1‖ Ĩ(C)‖�2},

which means that for C ≥ ),

(4.1.72) ‖ Ĩ(C)‖�2 ≤ �

C#−1
.

Now, using (4.1.70) and (4.1.72), we deduce from (4.1.69) that for C ≥ ), with � > 0 that do not
depend on I, on # or on �,

(4.1.73) ‖ Ĩ(C)‖�2 ≤ ��

# − 1
1

C#−1
+ ��

# − 2
1

C2#−4
≤ ��

# − 2
1

C#−1
,

if we assume that # > 3.
Now, from (4.1.71), we deduce that there exists )∗ > ) such that

()∗)#−1 ‖ Ĩ()∗)‖�2 ≥ �

2
.(4.1.74)

This is why, by evaluating (4.1.73) in C = )∗, we find that
�

2 ()∗)#−1
≤ ��

# − 2
1

()∗)#−1
,(4.1.75)

which, if we assume that � > 0, after simplification yields

# − 2 ≤ 2�.(4.1.76)

This means that if we assume that # > 2� + 2 and # > 3, the assumption � > 0 leads to a
contradiction. Therefore, � = 0 under that assumption on # , which implies ‖ Ĩ(C)‖�2 = 0, and from
Lemma 4.9, this implies that I ≡ 0. This means that the condition that we have established for # :

# > max(2� + 2, 3),(4.1.77)

that do not depend on I, allows us to deduce that under (4.1.5), we may establish that I ≡ 0. The
Proposition 1.5 is now proved. �

4.2. A solution converging to a multi-breather converges exponentially to this multi-breather, if
the velocities are positive.

Proposition 4.10. Let D(C) be an �2 solution of (mKdV) on [),+∞), for ) ∈ R. We assume that

(4.2.1) ‖D(C) − ?(C)‖�2 →C→+∞ 0,

where ? is the multi-breather constructed in Section 2. If E1 > 0, then there exists + > 0, )0 ≥ ) and � > 0
such that for all C ≥ )0,

(4.2.2) ‖D(C) − ?(C)‖�2 ≤ �4−+C .
Note that in the formulation of the Proposition above, we may replace ? by % without changing

its content. Indeed, we have (1.2.10).

Proof. We set E(C) := D(C) − %(C), such that ‖E(C)‖�2 →C→+∞ 0.
We denote:

(4.2.3) Ψ(G) :=
2
�

arctan
(
exp

(
−
√
�G/2

))
,

where � > 0 is small enough (with precise conditions that will be mentioned throughout the proof).
By direct calculations,

(4.2.4) Ψ′(G) = −
√
�

2� cosh
(√

�G/2
) .
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Thus,

(4.2.5) |Ψ′(G)| ≤ � exp(−
√
� |G |/2).

We have the following properties: lim+∞Ψ = 0, lim−∞Ψ = 1, for all G ∈ R Ψ(−G) = 1 −Ψ(G),
Ψ′(G) < 0, |Ψ′′(G)| ≤

√
�

2 |Ψ′(G)|, |Ψ′′′(G)| ≤
√
�

2 |Ψ′′(G)|, |Ψ′(G)| ≤
√
�

2 Ψ and |Ψ′(G)| ≤
√
�

2 (1−Ψ).
For 9 = 2, ..., �, let < 9 be such that

(4.2.6) < 9 :=
E 9−1 + E 9

2
.

Let us denote �0 > 0 the minimal distance between a E 9 and a < 9 .
From this, we define for 9 = 2, ..., �,

(4.2.7) Φ9(C, G) := Ψ(G −< 9C).
We may extend this definition to 9 = 1 and 9 = � + 1 in the following way: Φ1 := 0 and Φ�+1 := 1.
Thus, the function that allows us to study properties around each breather (for 9 = 1, ..., �) are

"9 := Φ9+1 −Φ9 .
The goal is to prove that:

(4.2.8) ‖E(C)‖�2 ≤ �4−+C ,
where + > 0 is a constant to be deduced from the constants of the problem, and for C large enough.
Proposition 4.10 follows from this, because of Theorem 1.2.

Let + > 0 be deduced from the constants of the problem with respect to the needs of the following
proof.

We will prove this by induction. We will prove, for 9 = 2, ..., � + 1, that
∫ (
E2 + E2

G + E2
GG

)
Φ9 ≤

�4−2+C for C large enough, knowing that
∫ (
E2 + E2

G + E2
GG

)
Φ9−1 ≤ �4−2+C for C large enough (note

that this assumption is empty when 9 = 2). This implies the desired inequality.
Let us write the 9-th step of our reasoning by induction (where 9 ∈ {2, ..., � + 1}). Thus, 9 is fixed

in the rest of the proof.
We assume that

(4.2.9)
∫ (

E2 + E2
G + E2

GG

)
Φ9−1 ≤ �4−2+C .

We divide our proof in several steps.
Step 1. Almost-conservation of localized conservation laws. We define quantities that are similar

to quantities defined in Section 2.2. We note that we localize around the first 9 − 1 breathers (or
solitons), not only around the (9 − 1)-th breather (or soliton). Notations defined in Section 2.2 should
not be considered in the following proof and should be replaced by notations we define here:

(4.2.10) " 9(C) :=
1
2

∫
D2(C)Φ9(C),

(4.2.11) � 9(C) :=
∫ [

1
2
D2
G −

1
4
D4

]
Φ9(C),

(4.2.12) �9(C) :=
∫ [

1
2
D2
GG −

5
2
D2D2

G +
1
4
D6

]
Φ9(C).

Lemma 4.11. Let $2,$6 > 0, as small as desired. There exists )1 ≥ ) and � > 0 such that for C ≥ )1,

(4.2.13)
9−1∑
8=1

"[%8] −" 9(C) ≥ −�4−2+C ,

(4.2.14)
9−1∑
8=1

(�[%8] + $2"[%8]) −
(
� 9(C) + $2" 9(C)

)
≥ −�4−2+C ,

(4.2.15)
9−1∑
8=1

(�[%8] + $6"[%8]) −
(
�9(C) + $6" 9(C)

)
≥ −�4−2+C .
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Proof. We will use the results of the computations made at the bottom of page 1115 and at the
bottom of page 1116 of [28], as well as in Section 5.5 (Appendix) to claim the three following facts:

3

3C

1
2

∫
D2 5 =

∫ (
−3

2
D2
G +

3
4
D4

)
5 ′ + 1

2

∫
D2 5 ′′′,

3

3C

∫ [
1
2
D2
G −

1
4
D4

]
5 =

∫ [
−1

2
(DGG + D3)2 − D2

GG + 3D2
GD

2
]
5 ′ + 1

2

∫
D2
G 5
′′′,(4.2.16)

3

3C

∫ (
1
2
D2
GG −

5
2
D2D2

G +
1
4
D6

)
5

=

∫ (
−3

2
D2
GGG + 9D2

GGD
2 + 15D2

GDDGG +
9
16
D8 + 1

4
D4
G +

3
2
DGGD

5 − 45
4
D4D2

G

)
5 ′

+ 5
∫

D2DGDGG 5
′′ + 1

2

∫
D2
GG 5
′′′.(4.2.17)

where 5 is a �3 function that does not depend on time.
For the mass:
If 9 ≤ �,

(4.2.18) 2
3

3C
" 9(C) = −

∫ (
3D2

G +< 9D
2 − 3

2
D4

)
Φ9G(C) +

∫
D2Φ9GGG(C).

We recall that

(4.2.19) |Φ9GG | ≤
√
�

2
|Φ9G |, |Φ9GGG | ≤

�
4
|Φ9G |, Φ9G ≤ 0,

where we can choose � as small as desired. For this proof, we would like to ask for �:

(4.2.20) 0 < � ≤ E1 ≤ < 9 .

Thus,

(4.2.21) 2
3

3C
" 9(C) ≥

∫ (
3D2

G +
3�
4
D2 − 3

2
D4

) ��Φ9G(C)
�� .

By Corollary 2.2, for A > 0, if C, G satisfy E 9−1C + A < G < E 9C − A, then

|D(C, G)| ≤ |%(C, G)| + ‖I(C)‖!∞
≤ �4−�A + �‖I(C)‖�2 ,(4.2.22)

the same could be said for DG .
We can thus deduce that for A large enough and for )1 large enough, for G ∈ (E 9−1C + A, E 9C − A),

we can obtain that |D | is bounded by any fixed constant, that can be taken as small as desired. Here,
we will use the latter to bound 3

2D
2 by �

4 .
For C ≥ )1 and G ≤ E 9−1C + A or G ≥ E 9C − A, we have |G −< 9C | ≤ �0C − A, and therefore for such C, G:

|Φ9G(C, G)| ≤ � exp
(
−
√
� |G −< 9C |/2

)
≤ � exp

(
−
√
��0C/2

)
exp

(√
�A/2

)
.(4.2.23)

Because
∫
D4 is bounded by a constant for any time and exp

(√
�A/2

)
is a fixed constant (A is

already chosen), we have, for C ≥ )1,

(4.2.24)
3

3C
" 9(C) ≥

∫ (
3
2
D2
G +

�
4
D2

)
|Φ9G(C)| − �4−2+C ≥ −�4−2+C ,

where + is chosen as a suitable function of � and �0.
By integration, we deduce that for any C1 ≥ C, with a constant � > 0 that does not depend on C1,

we have:

(4.2.25) " 9(C1) −" 9(C) ≥ −�4−2+C .
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We note that this conclusion is immediate when 9 = � + 1, because we have exactly the conserved
quantity.

We have:����� 9−1∑
8=1

"[%8] −" 9(C1)
����� ≤

����� 9−1∑
8=1

1
2

∫
%2
8 −

1
2

∫
%2Φ9(C1)

�����+ 1
2

����∫ %2Φ9(C1) −
∫

D2Φ9(C1)
����

≤ �4−�(�,�,�0)C1 + 1
2

∫ ��%2 − D2
��Φ9(C1)

≤ �4−�(�,�,�0)C1 + �
∫ ��%2 − D2

��→C1→+∞ 0.(4.2.26)

This means that when we take the limit of (4.2.25) when C1 → +∞, we obtain, for C ≥ )1:

(4.2.27)
9−1∑
8=1

"[%8] −" 9(C) ≥ −�4−2+C ,

which is exactly what we wished to prove.
For the energy:
If 9 ≤ �,

2
3

3C
� 9(C) =

∫ [
−

(
DGG + D3)2 − 2D2

GG + 6D2
GD

2
]
Φ9G(C) −< 9

∫ (
D2
G −

1
2
D4

)
Φ9G(C) +

1
2

∫
D2
GΦ9GGG(C)

≥
∫ [(

DGG + D3)2 + 2D2
GG − 6D2

GD
2 + 3�

4
D2
G −

< 9

2
D4

]
|Φ9G(C)|.(4.2.28)

We can do the same reasoning as for the mass, to majorate
<9

2 D
2 by $1, a constant that we

can choose as small as desired, and to majorate 6D2 by �
4 . We obtain that if )1 is large enough

(dependently on the chosen constant $1):

(4.2.29) 2
3

3C
� 9(C) ≥

∫ [(
DGG + D3)2 + 2D2

GG +
�
2
D2
G − $1D

2
]
|Φ9G(C)| − �4−2+C .

By using what we have performed for the mass, we have that if we take $1 small enough with
respect to E1

2 ,

(4.2.30)
3

3C

(
� 9 + $2" 9

)
(C) ≥ −�4−2+C .

Then, by integration and similarly as for the mass, we obtain the desired conclusion that is true
for any 9.

For �:
If 9 ≤ �,

2
3

3C
�9(C) =

∫ (
−3D2

GGG + 18D2
GGD

2 + 30D2
GDDGG +

9
8
D8 + 1

2
D4
G + 3DGGD5 − 45

2
D4D2

G

)
Φ9G(C)

−< 9

∫ (
D2
GG − 5D2D2

G +
1
2
D6

)
Φ9G(C) + 10

∫
D2DGGDGΦ9GG(C) +

∫
D2
GGΦ9GGG(C)

≥
∫ (

3D2
GGG +

45
2
D4D2

G − 18D2
GGD

2 − 15D2
GD

2 − 15D2
GD

2
GG −

9
8
D8 − 1

2
D4
G −

3
2
D2
GGD

4 − 3
2
D6

) ��Φ9G(C)
��

+
∫ (

�D2
GG +

�
2
D6 − 5< 9D

2D2
G

)
|Φ9G(C)| − 5

∫
D2D2

G |Φ9GG(C)|

− 5
∫

D2D2
GG |Φ9GG(C)| −

∫
D2
GG |Φ9GGG(C)|.(4.2.31)

By the same reasoning as for the energy and the mass, if we set $3,$4,$5 > 0 constants that we
can take as small as desired, and if )1 is large enough dependently on these constants, for C ≥ )1:

(4.2.32) 2
3

3C
�9(C) ≥

∫ (
3D2

GGG +
45
2
D4D2

G +
3�
4
D2
GG +

�
2
D6 − $3D

2
GG − $4D

2
G − $5D

2
) ��Φ9G(C)

��− �4−2+C .
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By using what we have carried out for the mass, we have that if we take $3,$4,$5 small enough,

(4.2.33)
3

3C

(
�9 + $6" 9

)
(C) ≥ −�4−2+C .

Then, by integration and similarly as before, we obtain the desired conclusion that is true for any
9. �

Remark 4.12. If 9 = � + 1, we have that:

(4.2.34)
�∑
8=1

"[%8] −"�+1(C) = 0,

(4.2.35)
�∑
8=1

�[%8] − ��+1(C) = 0,

(4.2.36)
�∑
8=1

�[%8] − ��+1(C) = 0.

Step 2. Modulation. Notations that were defined in Section 2.3 should not be taken into consid-
eration in the following proof and should be replaced by notations we define here.

Lemma 4.13. There exists � > 0, )2 ≥ ), such that there exist unique �1 functions H1, H2 : [)2,+∞) → R

such that if we set

(4.2.37) F(C, G) := D − %̃,

where

(4.2.38) %̃(C, G) :=
�∑
8=1

%̃8(C, G),

for 8 ≠ 9 − 1,

(4.2.39) %̃8(C, G) := %8(C, G),
and either,

(4.2.40) %̃9−1(C, G) := �;&2;+H1(C)(G − G0
0,; + H2(C) − 2;C) if %9−1 = '; is a soliton,

or,

(4.2.41) %̃9−1(C, G) := �: ,�: (C, G; G1,: + H1(C), G2,: + H2(C)) if %9−1 = �: is a breather,

then, F(C) satisfies, for all C ∈ [)2,+∞), either,

(4.2.42)
∫

%̃9−11(C)F(C) =
∫

%̃9−12(C)F(C) = 0 if %9−1 is a breather,

or,

(4.2.43)
∫

%̃9−1(C)F(C) =
∫

%̃9−1G(C)F(C) = 0 if %9−1 is a soliton,

where in the case when %9−1 is a breather we denote:

(4.2.44) %̃9−11(C, G) := %G1 %̃9−1, %̃9−12(C, G) := %G2 %̃9−1.

Moreover, for all C ∈ [)2,+∞),
(4.2.45) ‖F(C)‖�2 + |H1(C)| + |H2(C)| ≤ �‖E(C)‖�2 ,

and, if + is small enough,

(4.2.46)
��H′1(C)��+ ��H′2(C)�� ≤ � (∫

F(C)2Φ9

)1/2
+ �4−+C .
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Proof. The proof that has to be performed is similar to the proof of Lemma 2.8, which is a conse-
quence of a quantitative version of the implicit function theorem. See [11, Section 2.2] for a precise
statement. The proof of (4.2.46) is also similar, as in the proof of Lemma 2.8; we take the time
derivative of

∫
%̃9−11(C)F(C) =

∫
%̃9−12(C)F(C) = 0. To be complete, let us perform this proof.

For C ∈ [)2,+∞), let

�C : !2(R) ×R2 → R2(4.2.47)

such that if %9−1 = �: is a breather,

(* , H1, H2) ↦−→
(∫

%G1�: ,�: (C, G; G0
1,: + H1, G0

2,: + H2)
(
* − % + %9−1 − �: ,�: (C, G; G0

1,: + H1, G0
2,: + H2)

)
3G,∫

%G2�: ,�: (C, G; G0
1,: + H1, G0

2,: + H2)
(
* − % + %9−1 − �: ,�: (C, G; G0

1,: + H1, G0
2,: + H2)

)
3G

)
,(4.2.48)

and if %9−1 = '; is a soliton,

(* , H1, H2) ↦−→
(∫

�;&2;+H1(G − G0
0,; + H2 − 2;C)

(
* − % + %9−1 − �;&2;+H1(G − G0

0,; + H2 − 2;C)
)
3G,∫

%G�;&2;+H1(G − G0
0,; + H2 − 2;C)

(
* − % + %9−1 − �;&2;+H1(G − G0

0,; + H2 − 2;C)
)
3G

)
.(4.2.49)

We observe that �C is a �1 function and that �C(%(C), 0, 0) = 0. Now, let us consider the matrix
which gives the differential of �C (with respect to H1, H2) in (%(C), 0, 0).

In the case when %9−1 = �: is a breather, this matrix is:

��C =

(
−

∫
(%G1�:)23G −

∫
%G1�:%G2�:3G

−
∫
%G1�:%G2�:3G −

∫
(%G2�:)23G

)
,(4.2.50)

whose determinant is:

det(��C) =
∫
(%G1�:)23G

∫
(%G2�:)23G −

(∫
%G1�:%G2�:3G

)2

.(4.2.51)

By Cauchy-Schwarz inequality and the fact that %G1�: and %G2�: are linearly independent as
functions of the G variable, for any time C fixed, we see that det(��C) is positive. Since each mem-
ber of its expression is periodic in time, then det(��C) is bounded below by a positive constant
independent on time and translation parameters of �: .

In the case when %9−1 = '; is a soliton, let us recall that, denoting H0,; := G − G0
0,; + H2 − 2;C,

%H1&2;+H1(H0,;) =
1

22;

(
&2;+H1(H0,;) + H0,;%G&2;+H1(H0,;)

)
.(4.2.52)

Thus, denoting H0
0,; := G − G0

0,; − 2;C,

��C =
©«
− 1

22;

∫
&2; (H0

0,;)
(
&2; (H0

0,;) + H
0
0,;%G&2; (H0

0,;)
)
3G −

∫
&2; (H0

0,;)%G&2; (H0
0,;)3G

− 1
22;

∫
%G&2; (H0

0,;)
(
&2; (H0

0,;) + H
0
0,;%G&2; (H0

0,;)
)
3G −

∫
(%G&2; (H0

0,;))
23G

ª®¬ ,(4.2.53)

whose determinant is:

det(��C) =
1

22;

∫
&2; (H0

0,;)
(
&2; (H0

0,;) + H
0
0,;%G&2; (H0

0,;)
)
3G

∫
(%G&2; (H0

0,;))
23G,(4.2.54)

because
∫
&2; (H0

0,;)%G&2; (H0
0,;)3G = 0. And, from the computations made to obtain (2.3.19), we have

that:

det(��C) =
1
4
2;

∫
@2

∫
@2
G ,(4.2.55)

where @ denotes the soliton with 2 = 1, i.e. @ = &1.
This means that det(��C) is bounded below by a positive constant independent on time and

translation parameter of '; .
Thus, in any case, ��C is invertible.
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Now, we may use the implicit function theorem. If * is close enough to %(C), then there exists
(H1, H2) such that �C(* , H1, H2) = 0, where (H1, H2) depends in a regular �1 way on * . It is possible to
show that the “close enough” in the previous sentence does not depend on C; for this, it is required
to use a uniform implicit function theorem. This means that for )2 large enough, ‖E(C)‖�2 is small
enough for C ∈ [)2,+∞), thus for C ≥ )2, D(C) is close enough to %(C) in order to apply the implicit
function theorem. Therefore, we have for C ∈ [)2,+∞), the existence of H1(C) and H2(C). It is possible
to show that these functions are �1 in time. Basically, this comes from the fact that they are �1 in
D(C) and that D(C) has a similar regularity in time (see [13] for more details).

Now, we prove the inequalities (4.2.45) and (4.2.46). We can take the differential of the implicit
functions with respect to D(C) for C ∈ [)2,+∞). For this, we differentiate the following equation with
respect to D(C):

�C(D(C), H1(D(C)), H2(D(C))) = 0.(4.2.56)

We know that the matrix that gives the differential of �C (with respect to H1, H2) in

(D(C), H1(D(C)), H2(D(C)))(4.2.57)

is invertible and that the inverse is bounded in time. The differential of �C with respect to the
first variable is also bounded (from its expression, �C being linear in *). Thus, by the mean-value
theorem (given (H1, H2)(%(C)) = (0, 0)):

|H1(D(C))| + |H2(D(C))| ≤ �‖D(C) − %(C)‖ ≤ �‖E(C)‖�2 .(4.2.58)

By applying the mean-value theorem (inequality) for &2; or �: ,�: with respect to H1 and H2, we
deduce that

‖%9−1(C) − %̃9−1(C)‖�2 ≤ �(|H1(C)| + |H2(C)|).(4.2.59)

Finally, by triangular inequality,

‖F(C)‖�2 ≤ ‖D(C) − %(C)‖�2 + ‖%(C) − %̃(C)‖�2

≤ ‖D(C) − %(C)‖�2 + �(|H1(C)| + |H2(C)|)
≤ �‖E(C)‖�2 .(4.2.60)

This completes the proof of (4.2.45).
For (4.2.46), we will take time derivatives of the equations (4.2.42) and (4.2.43). Firstly, we may

write the PDE verified by F:

%CF = −FGGG −
[
F

(
F2 + 3F

�∑
8=1

%̃8 + 3
�∑

8,<=1

%̃8 %̃<

)]
G

−
∑

ℎ≠8 or 8≠<

(
%̃ℎ %̃8 %̃<

)
G
− �,(4.2.61)

where, if %9−1 = �: is a breather,

� := H′1(C)�̃:1 + H′2(C)�̃:2,(4.2.62)

and if %9−1 = '; is a soliton, denoting H0,;(C) := G − G0
0,; + H2(C) − 2;C,

� :=
H′1(C)

2(2; + H1(C))
(
'̃; + H0,;(C)'̃; G

)
+ H′2(C)'̃; G .(4.2.63)

If %9−1 = �: , we start by taking the time derivative of
∫
�̃:1F = 0 and perform some integrations

by parts to obtain:

−
∫
(�̃:

3)1GF + H′1(C)
∫

�̃:11F + H′2(C)
∫

�̃:12F

+
∫

�̃:1GF

(
F2 + 3F

�∑
8=1

%̃8 + 3
�∑

ℎ,8=1

%̃ℎ %̃8

)
−

∫
�̃:1

∑
ℎ≠8 or 6≠ℎ

(
%̃ℎ %̃8 %̃6

)
G

= H′1(C)
∫

�̃:
2
1 + H′2(C)

∫
�̃:1�̃:2,(4.2.64)
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then, we take the time derivative of
∫
�̃:2F = 0:

−
∫
(�̃:

3)2GF + H′1(C)
∫

�̃:12F + H′2(C)
∫

�̃:22F

+
∫

�̃:2GF

(
F2 + 3F

�∑
8=1

%̃8 + 3
�∑

ℎ,8=1

%̃ℎ %̃8

)
−

∫
�̃:2

∑
ℎ≠8 or 6≠ℎ

(
%̃ℎ %̃8 %̃6

)
G

= H′1(C)
∫

�̃:1�̃:2 + H′2(C)
∫
(�̃:2)2.(4.2.65)

If %9−1 = '; , we start by taking the time derivative of
∫
'̃;F = 0 and perform some integrations

by parts to obtain:

−
∫
('̃;

3)GF +
H′1(C)
22;

∫ (
'̃; + H0,;(C)'̃; G

)
F + H′2(C)

∫
'̃; GF

+
∫

'̃; GF

(
F2 + 3F

�∑
8=1

%̃8 + 3
�∑

ℎ,8=1

%̃ℎ %̃8

)
−

∫
'̃;

∑
ℎ≠8 or 6≠ℎ

(
%̃ℎ %̃8 %̃6

)
G

=
H′1(C)

2(2; + H1(C))

∫
'̃;

(
'̃; + H0,;(C)'̃; G

)
+ H′2(C)

∫
'̃; '̃; G ,(4.2.66)

then, we take the time derivative of
∫
'̃; GF = 0:

−
∫
('̃;

3)GGF +
H′1(C)
22;

∫ (
'̃; G + H0,;(C)'̃; GG

)
F + H′2(C)

∫
'̃; GGF

+
∫

'̃; GGF

(
F2 + 3F

�∑
8=1

%̃8 + 3
�∑

ℎ,8=1

%̃ℎ %̃8

)
−

∫
'̃; G

∑
ℎ≠8 or 6≠ℎ

(
%̃ℎ %̃8 %̃6

)
G

=
H′1(C)

2(2; + H1(C))

∫
'̃; G

(
'̃; + H0,;(C)'̃; G

)
+ H′2(C)

∫
('̃; G)2.(4.2.67)

As a consequence of (4.2.45), we see that |H1(C)| + |H2(C)| tends to 0 when C → +∞. That is why,
we may use Proposition 2.10 and Corollary 2.11 here, if )2 is large enough.. So, several terms of the
four equalities above are obviously bounded by

(
F(C)2Φ9

)1/2 and 4−+C for + > 0, a constant chosen
small enough. Using these bounds, and after several linear combinations, we obtain (4.2.46). �

Step 3. Quadratic approximations of localized conservation laws.

Lemma 4.14. Let $ > 0 as small as we want. There exists � > 0,)3 ≥ ) such that the following hold for
C ≥ )3:

(4.2.68)

�����" 9(C) −
9−1∑
8=1

"[%̃8] −
9−1∑
8=1

∫
%̃8F −

1
2

∫
F2Φ9

����� ≤ �4−2+C ,

(4.2.69)

������ 9(C) − 9−1∑
8=1

�[%̃8] −
9−1∑
8=1

∫ [
%̃8 GFG − %̃8

3
F
]
−

∫ [
1
2
F2
G −

3
2
%̃2F2

]
Φ9

����� ≤ �4−2+C + $
∫

F2Φ9 ,������9(C) − 9−1∑
8=1

�[%̃8] −
9−1∑
8=1

∫ [
%̃8 GGFGG − 5%̃8 %̃8

2
GF − 5%̃8

2
%̃8 GFG +

3
2
%̃8

5
F

]

−
∫ [

1
2
F2
GG −

5
2
F2%̃2

G − 10%̃F%̃GFG −
5
2
%̃2F2

G +
15
4
%̃4F2

]
Φ9(C)

���� ≤ �4−2+C + $
∫ (

F2 +F2
G

)
Φ9 .

(4.2.70)

Proof. For the mass:
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" 9(C) =
1
2

∫ (
%̃ +F

)2
Φ9

=
1
2

∫
%̃2Φ9 +

∫
%̃FΦ9 +

1
2

∫
F2Φ9 .(4.2.71)

As in Step 1, we can show that 1
2

∫
%̃2Φ9 converges exponentially (we choose + with respect to

this exponential convergence) to
∑9−1
8=1 "[%̃8]. Similarly, the difference between

∫
%̃FΦ9 and

∑9−1
8=1 %̃8F

converges exponentially to 0 (the velocity of a soliton is not modified a lot by modulation, this is
why it works in any cases).

For � and �, we perform similar basic computations with the only difference that there will also
be terms of degree 3 or more in F. We know that ‖F(C)‖�2 →C→+∞ 0, this is the reason why for C
large enough, such terms are boundable by $

∫
F2Φ9 or $

∫
F2
GΦ9 . �

Step 4. Approximation of the Lyapunov functional. By analogy with the existence part, we
introduce the following Lyapunov functional:

(4.2.72) ℋ9(C) := �9(C) + 2
(
12
9−1 − 0

2
9−1

)
� 9(C) +

(
02
9−1 + 1

2
9−1

)2
" 9(C).

We will use the previous step to approximate ℋ9(C).
Lemma 4.15. There exists )4 ≥ ) such that the following hold for C ≥ )4:

ℋ9(C) =
9−1∑
8=1

�[%̃8] + 2
(
12
9−1 − 0

2
9−1

) 9−1∑
8=1

�[%̃8] +
(
02
9−1 + 1

2
9−1

)2
9−1∑
8=1

"[%̃8]

+�9(C) +$(4−2+C) + >
(∫ (

F2 +F2
G

)
Φ9

)
,(4.2.73)

where

�9(C) : =
∫ [

1
2
F2
GG −

5
2
F2
G %̃9−1

2 + 5
2
F2%̃9−1

2
G
+ 5F2%̃9−1%̃9−1GG +

15
4
F2%̃9−1

4
]
Φ9(C)

+
(
12
9−1 − 0

2
9−1

) ∫ [
F2
G − 3F2%̃9−1

2]
Φ9(C) +

1
2

(
02
9−1 + 1

2
9−1

)2
∫

F2Φ9(C).(4.2.74)

Proof. This lemma is obtained from the summation of the facts established in the previous lemma.
We get rid of the linear terms in the following way, by integrations by parts:

9−1∑
8=1

∫ (
%̃8 GGFGG − 5%̃8 %̃8

2
GF − 5%̃8

2
%̃8 GFG +

3
2
%̃8

5
F

)
+ 2

(
12
9−1 − 0

2
9−1

) 9−1∑
8=1

∫ (
%̃8 GFG − %̃8

3
F
)
+

(
02
9−1 + 1

2
9−1

)2
9−1∑
8=1

%̃8F

=

9−1∑
8=1

∫ (
%̃8 GGGG + 5%̃8 %̃8

2
G + 5

∫
%̃8

2
%̃8 GG +

3
2
%̃8

5
)
F

+ 2
(
12
9−1 − 0

2
9−1

) 9−1∑
8=1

∫ (
−%̃8 GG − %̃8

3)
F +

(
02
9−1 + 1

2
9−1

)2
9−1∑
8=1

∫
%̃8F.(4.2.75)

If we consider that this sum goes from 8 = 1 to 9 − 2, we see that for 1 ≤ 8 ≤ 9 − 2, this sum is
exponentially bounded by induction assumption (we use that for 8 ≤ 9 − 2, a polynomial in %̃8 and

its derivatives is bounded by �Φ9−1 and that F = E +
(
%9−1 − %̃9−1

)
). It is left to consider the sum of

the terms with 8 = 9 − 1.
For 8 = 9 − 1, we have nearly the elliptic equation satisfied by %̃9−1. It is actually exactly this

equation in the case when %̃9−1 is a breather. When %̃9−1 is a soliton, its shape parameter is modified
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by modulation. That is why, in this case, the sum of the terms with 8 = 9 − 1 is equal to

(4.2.76) 2H1(C)
∫ (
−%̃9−1GG − %̃9−1

3)
F + 212

9−1H1(C)
∫

%̃9−1F + H1(C)2
∫

%̃9−1F,

which vanishes because of the orthogonality condition from the modulation and the elliptic equation
satisfied by a soliton.
�9 is obtained as the sum of the quadratic parts of the previous lemma and its form is slightly

modified by integration by parts, and by the fact that for 8 ≥ 9, %̃8Φ9(C) is exponentially decreasing,
and the fact that for 8 ≤ 9 − 2,

∫
%̃8F

2 is exponentially decreasing by the induction assumption.
Therefore, �9 corresponds to the sum of the quadratic parts of previous lemma to which we have
to add 5

∫
F2%̃%̃GΦ9G , which is bounded exponentially. �

Step 5. Bound from above for �9(C). Because E1 > 0, we have that 12
9−1 − 0

2
9−1 > 0. By taking

$2 and $6 small enough (with respect to
(
02
9−1 + 1

2
9−1

)2
), we obtain, by summation of the facts of

Lemma 4.11, the following inequality:

(4.2.77) ℋ9(C) −
9−1∑
8=1

�[%8] − 2
(
12
9−1 − 0

2
9−1

) 9−1∑
8=1

�[%8] −
(
02
9−1 + 1

2
9−1

)2
9−1∑
8=1

"[%8] ≤ �4−2+C .

From Lemma 4.15, for C ≥ )3,

�9(C) ≤ �[%9−1] − �[%̃9−1] + 2
(
12
9−1 − 0

2
9−1

) (
�[%9−1] − �[%̃9−1]

)
+

(
02
9−1 + 1

2
9−1

)2 (
"[%9−1] −"[%̃9−1]

)
+ �4−2+C + $

∫ (
F2 +F2

G

)
Φ9 .(4.2.78)

In the case if %9−1 is a breather, we have immediately

(4.2.79) �9(C) ≤ �4−2+C + $
∫ (

F2 +F2
G

)
Φ9 .

The case when %9−1 is a soliton needs more inspection. As in the existence part, we have the
following relations:

(4.2.80) "[%̃9−1](C) =
(
12
9−1 + H1(C)

)1/2
"[@],

(4.2.81) �[%̃9−1](C) =
(
12
9−1 + H1(C)

)3/2
�[@],

(4.2.82) �[%̃9−1](C) =
(
12
9−1 + H1(C)

)5/2
�[@].

We set ℛ 9−1(C) := �[%̃9−1](C) + 212
9−1�[%̃9−1](C) + 14

9−1"[%̃9−1](C), and we simplify it as follows:

(4.2.83) ℛ 9−1(C) = 15
9−1

(
1+

H1(C)
12
9−1

)5/2

�[@] + 215
9−1

(
1+

H1(C)
12
9−1

)3/2

�[@] + 15
9−1

(
1+

H1(C)
12
9−1

)1/2

"[@].

After making a Taylor expansion as in the existence,

(4.2.84) ℛ 9−1(C) − �[%9−1] − 212
9−1�[%9−1] − 14

9−1"[%9−1] = $(H1(C)3).
Therefore, if )4 is large enough, ‖E(C)‖�2 can be as small as we want, and for C ≥ )4 and %9−1 a

soliton, we may write:

(4.2.85) �9(C) ≤ �4−2+C + $
∫ (

F2 +F2
G

)
Φ9 + $H1(C)2.

Step 6. Coercivity. �9 can be seen as the quadratic form associated to %̃9−1 and evaluated in
F
√
Φ9 , modulo several terms that can be bounded by �

√
�
∫ (
F2 +F2

G +F2
GG

)
Φ9 (because these terms

depend on derivatives of Φ9). Let us prove that we can apply Section 5.4 (Appendix) for F
√
Φ9 .
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More precisely, we need to prove that for � > 0 small enough (from Section 5.4),����∫ F
√
Φ9 %̃9−11

����+ ����∫ F
√
Φ9 %̃9−12

���� ≤ �‖F
√
Φ9 ‖�2(4.2.86)

if %9−1 is a breather or that����∫ F
√
Φ9 %̃9−1

����+ ����∫ F
√
Φ9 %̃9−1G

���� ≤ �‖F
√
Φ9 ‖�2(4.2.87)

if %9−1 is a soliton. In any case, the proof is the same and let us write  at the place of %̃9−11, %̃9−12,
%̃9−1 or %̃9−1G . This means that we want to bound

∫
F
√
Φ9 .

From (4.2.42), (4.2.43), we see that it is enough to bound
∫
F(1 −

√
Φ9) by �‖F

√
Φ9 ‖�2 . The

reasonning that follows works for 9 ≤ �, for 9 = � + 1 the result is immediate because Φ�+1 = 1. Φ9 is
a translate of Ψ, and, using the Taylor expansion when E → 0,

√
1+ E = 1+$(E),

1−
√
Ψ = 1−

√
1+Ψ− 1 = 1−

√
1−Ψ(−G) = $(Ψ(−G)),(4.2.88)

which means that 1−
√
Φ9 ≤ �min(1, exp(

√
�(G −< 9C)/2)). We may deduce now that����∫ F(1−

√
Φ9) 

���� = �����∫ F
√
Φ9

1−
√
Φ9√

Φ9

 

�����
≤

1−
√
Φ9√

Φ9

 


!2

‖F
√
Φ9 ‖!2

≤ �4
√
�(<9−E 9−1)C ‖F

√
Φ9 ‖!2 ,(4.2.89)

if
√
�

4 <
�
2 . And so, if C is large enough, we get the bound we want.

Thus, there exists � > 0 such that for C ≥ )5 (where )5 is large enough and depends on �):

�‖F
√
Φ9 ‖2�2 ≤ �9(C) + �

√
�

∫ (
F2 +F2

G +F2
GG

)
Φ9 +

1
�

(∫
%̃9−1F

√
Φ9

)2

≤ �4−2+C + $
∫ (

F2 +F2
G

)
Φ9 + �

√
�

∫ (
F2 +F2

G +F2
GG

)
Φ9

+ $H1(C)2 +
1
�

(∫
%̃9−1F

√
Φ9

)2

,(4.2.90)

where the term 1
�

(∫
%̃9−1F

√
Φ9

)2
is present only if %̃9−1 is a breather and the term $H1(C)2 is present

only if %̃9−1 is a soliton.
For � small enough and $ small enough, we deduce that:

(4.2.91)
∫ (

F2 +F2
G +F2

GG

)
Φ9 ≤ �4−2+C + $H1(C)2 + �

(∫
%̃9−1F

√
Φ9

)2

.

We set )0 := max()1,)2,)3,)4,)5).
Step 7. Bound from above for

���∫ %̃9−1F
√
Φ9

��� (to do in the case if %̃9−1 is a breather). We would like

to prove that
∫
%̃9−1F

√
Φ9 is exponentially decreasing. To do so, we would like to get rid of

√
Φ9 .

It is clear that
∫
%̃9−1F

(
1−

√
Φ9

)
is exponentially decreasing. Thus, it is enough to prove that∫

%̃9−1F is exponentially decreasing.
If 8 ≤ 9 − 2, we know that

∫
%̃8F is exponentially decreasing by the induction assumption. Thus,

it is enough to prove that
∑9−1
8=1

∫
%̃8F is exponentially decreasing.

From the mass approximation of Lemma 4.14 and Lemma 4.11, we observe that, for C ≥ )0:
9−1∑
8=1

∫
%̃8F = $(4−2+C) +" 9(C) −

9−1∑
8=1

"[%8] −
1
2

∫
F2Φ9
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≤ �4−2+C − 1
2

∫
F2Φ9 ≤ �4−2+C .(4.2.92)

Now, we use the fact that the sum of the linear parts of our localized conservation laws is
exponentially decreasing, which we have established in the proof of Lemma 4.15. Therefore, the

linear terms of �9 + 2(12
9−1 − 0

2
9−1)� 9 are $(4−2+C) −

(
02
9−1 + 1

2
9−1

)2 ∑9−1
8=1

∫
%̃8F.

Now, from the energy and � approximation of Lemma 4.14 and Lemma 4.11, we observe that
(we recall that 12

9−1 − 0
2
9−1 > 0), for C ≥ )0:

−
(
02
9−1 + 1

2
9−1

)2
9−1∑
8=1

∫
%̃8F = $(4−2+C) + >

(∫ (
F2 +F2

G

)
Φ9

)
+ �9(C) + 2

(
12
9−1 − 0

2
9−1

)
� 9(C)

−
9−1∑
8=1

�[%8] − 2
(
12
9−1 − 0

2
9−1

) 9−1∑
8=1

�[%8]

−
∫ [

1
2
F2
GG −

5
2
F2%̃2

G − 10%̃F%̃GFG −
5
2
%̃2F2

G +
15
4
%̃4F2

]
Φ9

− 2
(
12
9−1 − 0

2
9−1

) ∫ [
1
2
F2
G −

3
2
%̃2F2

]
Φ9

= $(4−2+C) + >
(∫ (

F2 +F2
G

)
Φ9

)
+ �9(C) + $6" 9(C) −

9−1∑
8=1

�[%8] − $6

9−1∑
8=1

"[%8]

+ 2
(
12
9−1 − 0

2
9−1

) [
� 9(C) + $2" 9(C) −

9−1∑
8=1

�[%8] − $2

9−1∑
8=1

"[%8]
]

+
(
$6 + 2$2

(
12
9−1 − 0

2
9−1

)) (
9−1∑
8=1

"[%8] −" 9(C)
)

−
∫ [

1
2
F2
GG −

5
2
F2%̃2

G − 10%̃F%̃GFG −
5
2
%̃2F2

G +
15
4
%̃4F2

]
Φ9

− 2
(
12
9−1 − 0

2
9−1

) ∫ [
1
2
F2
G −

3
2
%̃2F2

]
Φ9

≤ �4−2+C + �
∫ (

F2 +F2
G

)
Φ9

−
(
$6 + 2$2

(
12
9−1 − 0

2
9−1

)) (
9−1∑
8=1

∫
%̃8F +

1
2

∫
F2Φ9

)
,(4.2.93)

and therefore, for $2 and $6 small enough,

(4.2.94) −
9−1∑
8=1

∫
%̃8F ≤ �4−2+C + �

∫ (
F2 +F2

G

)
Φ9 .

We thus deduce the following bound:

(4.2.95)

����∫ %̃9−1F
√
Φ9

���� ≤ �4−2+C + �
∫ (

F2 +F2
G

)
Φ9 .

Because ‖F(C)‖�2 →C→+∞ 0, we deduce that:

(4.2.96)
(∫

%̃9−1F
√
Φ9

)2

= >(4−2+C) + >
(∫ (

F2 +F2
G

)
Φ9

)
.
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Step 8. Conclusion. From (4.2.91) and (4.2.96), we deduce for C ≥ )0,

(4.2.97)
∫ (

F2 +F2
G +F2

GG

)
Φ9 = $(4−2+C) + >

(
H1(C)2

)
+ >

(∫ (
F2 +F2

G

)
Φ9

)
.

This means that if we take )0 large enough, we have:

(4.2.98)
∫ (

F2 +F2
G +F2

GG

)
Φ9 = >

(
H1(C)2

)
+$(4−2+C),

where the term >
(
H1(C)2

)
is present only if %9−1 is a soliton.

Before finishing the proof, we need to find a better bound for H1(C) than just a convergence to 0
given by the modulation (in the case when %9−1 is a soliton). For this, we study " 9(C):

" 9(C) =
1
2

∫
D2(C)Φ9(C)

=
1
2

∫ (
%̃(C) +F(C)

)2
Φ9(C)

=
1
2

∫
%̃(C)2Φ9(C) +

∫
%̃(C)F(C)Φ9(C) +

1
2

∫
F(C)2Φ9(C)

=
1
2

9−1∑
8=1

∫
%̃8(C)2 +

9−1∑
8=1

∫
%̃8(C)F(C) +$

(
4−2+C ) + 1

2

∫
F(C)2Φ9(C)

=
1
2

∫
%̃9−1(C)2 +

∫
%̃9−1(C)F(C) +$

(
4−2+C ) + 1

2

∫
F(C)2Φ9(C) +

1
2

9−2∑
8=1

∫
%8(C)2,(4.2.99)

from the induction assumption, then

(4.2.100) " 9(C) =
1
2

∫
%̃9−1(C)2 +$

(
4−2+C ) + 1

2

∫
F(C)2Φ9(C) +

1
2

9−2∑
8=1

∫
%8(C)2,

from the orthogonality condition obtained in the modulation. Therefore,

(4.2.101) " 9(C) =
(
12
9−1 + H1(C)

)1/2
"[@] +$

(
4−2+C ) + 1

2

∫
F(C)2Φ9(C) +

1
2

9−2∑
8=1

∫
%8(C)2.

Now, if we take C1 ≥ C, we obtain from (4.2.98),
(4.2.102)

" 9(C1) −" 9(C) =
[(
12
9−1 + H1(C1)

)1/2
−

(
12
9−1 + H1(C)

)1/2
]
"[@] +$

(
4−2+C ) + > (

H1(C)2
)
+ >

(
H1(C1)2

)
.

By doing a Taylor expansion of order 1, as in the existence part, we obtain:

(4.2.103)
(
12
9−1 + H1(C1)

)1/2
= 1 9−1

(
1+ 1

2
H1(C1)
12
9−1

+$
(
H1(C1)2

))
.

Therefore,

(4.2.104)
(
12
9−1 + H1(C1)

)1/2
−

(
12
9−1 + H1(C)

)1/2
=

1
21 9−1

(
H1(C1) − H1(C)

)
+$

(
H1(C1)2

)
+$

(
H1(C)2

)
.

Now, we recall that when C1 → +∞, we have H1(C1) → 0. Therefore, by taking the limit of the
previous formula when C1 → +∞, we obtain:

(4.2.105) 1 9−1 −
(
12
9−1 + H1(C)

)1/2
= −

H1(C)
21 9−1

+$
(
H1(C)2

)
.

Therefore, from (4.2.102), with C1 → +∞,

(4.2.106)
9−1∑
8=1

"[%8] −" 9(C) = −
H1(C)
21 9−1

"[@] +$
(
4−2+C ) +$ (

H1(C)2
)

.
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The second step is to study � 9(C) (and to do the same reasonning as for " 9):

� 9(C) =
∫ [

1
2
D2
G −

1
4
D4

]
Φ9(C)

=

∫ [
1
2
%̃2
G −

1
4
%̃4

]
Φ9(C) +

∫ [
%̃GFG − %̃3F

]
Φ9(C) +$

(∫
F2Φ9(C)

)
,(4.2.107)

and after simplications by Φ9 due to exponential convergences, induction assumption and orthogo-
nality conditions,

� 9(C) = �[%̃9−1(C)] +
9−2∑
8=1

�[%8] +$
(
4−2+C ) +$ (∫

F2Φ9(C)
)

=

(
12
9−1 + H1(C)

)3/2
�[@] +

9−2∑
8=1

�[%8] +$
(
4−2+C ) +$ (∫

F2Φ9(C)
)

=

(
12
9−1 + H1(C)

)3/2
�[@] +

9−2∑
8=1

�[%8] +$
(
4−2+C ) + > (

H1(C)2
)

,(4.2.108)

from (4.2.98). And then, by taking the difference for C1 ≥ C,
(4.2.109)

� 9(C1) − � 9(C) =
[(
12
9−1 + H1(C1)

)3/2
−

(
12
9−1 + H1(C)

)3/2
]
�[@] +$

(
4−2+C ) + > (

H1(C1)2
)
+ >

(
H1(C)2

)
.

By taking a Taylor expansion of order 1, we obtain:

(4.2.110)
(
12
9−1 + H1(C1)

)3/2
= 13

9−1

(
1+ 3

2
H1(C1)
12
9−1

+$
(
H1(C1)2

))
.

Therefore, after taking C1 → +∞, we obtain:

(4.2.111)
9−1∑
8=1

�[%8] − � 9(C) = −
3
2
1 9−1H1(C)�[@] +$

(
4−2+C ) +$ (

H1(C)2
)

.

That is why, from (4.2.106), (4.2.111) and Lemma 4.11, we obtain

(4.2.112) −
H1(C)
21 9−1

"[@] +$
(
4−2+C ) +$ (

H1(C)2
)
≥ −�4−2+C ,

and

(4.2.113) −3
2
1 9−1H1(C)�[@] +$

(
4−2+C ) +$ (

H1(C)2
)
≥ −�4−2+C .

Because "[@] = 2 and �[@] = −2
3 , we rewrite both previous inequalities (4.2.112) and (4.2.113) in

the following way (and we pass $
(
4−2+C ) on the other side of each inequality):

(4.2.114) −
H1(C)
1 9−1

+$
(
H1(C)2

)
≥ −�4−2+C ,

and

(4.2.115) 1 9−1H1(C) +$
(
H1(C)2

)
≥ −�4−2+C .

Because H1(C) → +∞, by taking )0 larger if needed, $
(
H1(C)2

)
can be bounded above by any

positive constant multiplied by |H1(C)|, so by taking this constant small enough (by taking )0 large
enough) and combining both previous inequalities (4.2.114) and (4.2.115), we obtain:

(4.2.116) |H1(C)| ≤ �4−2+C .

Therefore, we have obtained a better bound for H1(C) in the case when %9−1 is a soliton. Therefore,
we may conclude that in any case, for C ≥ )0 for )0 large enough:

(4.2.117)
∫ (

F2 +F2
G +F2

GG

)
Φ9(C) = $

(
4−2+C ) .
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Then, we deduce from (4.2.46) that:

(4.2.118) |H′1(C)| + |H
′
2(C)| = $(4−+C).

Because |H1(C)| + |H2(C)| →C→+∞ 0, we obtain by integration:

(4.2.119) |H1(C)| + |H2(C)| = $(4−+C).
And, so, by the mean-value theorem,

(4.2.120)
%̃9−1 − %9−1


�2
≤ �

(
|H1(C)| + |H2(C)|

)
≤ �4−+C .

From E = F + %̃9−1 − %9−1, we deduce:∫ (
E2 + E2

G + E2
GG

)
Φ9 ≤ �

∫ (
F2 +F2

G +F2
GG

)
Φ9

+ �
∫ [(

%̃9−1 − %9−1

)2
+

(
%̃9−1 − %9−1

)2

G
+

(
%̃9−1 − %9−1

)2

GG

]
Φ9

≤ �4−2+C ,(4.2.121)

and this finishes the induction. �

4.3. Proof of Theorem 1.4.

Proof of Theorem 1.4. We suppose all the velocities of our objects positive, i.e. we suppose that E1 > 0.
Let ? be the associated multi-breather given by Theorem 1.2. Let D be a solution of (mKdV) such
that

‖D(C) − ?(C)‖�2 →C→+∞ 0.(4.3.1)

From Proposition 4.10, we deduce that there exists a constant � > 0 and a constant + > 0 such
that for C large enough

‖D(C) − ?(C)‖�2 ≤ �4−+C .(4.3.2)

This implies that D satisfies the assumptions of Proposition 1.5. Thus, D = ? and Theorem 1.4 is
proved.

�

5. Appendix

The first two subsections of the Appendix show that a soliton has similar properties as a “limit
breather” of parameter  = 0. Firstly, the corresponding elliptic equation is satisfied by a soliton.
Secondly, the corresponding quadratic form is coercive for a soliton, and we see that its kernel is
spanned by %G& and %2&. In the third subsection, we prove that it is possible for & to be orthogonal
to & and %G& (instead of %G& and %2&) in order to satisfy coercivity for the quadratic form. We
will use this fact for the proof of the existence, as well as for the first part of the proof of the
uniqueness. In the fourth subsection, we prove that we can have coercivity for quadratic forms
when the orthogonality condition is not exactly satisfied. We will use this result for the proof of
the uniqueness. The last subsection is about computations for the third conservation law. It will be
useful for the monotonicity property for localized � that we need in the proof of the uniqueness.

5.1. Elliptic equation satisfied by a soliton.

Lemma 5.1. A soliton & = '2,� satisfies for any time C ∈ R, the following nonlinear elliptic equation:

(5.1.1) &(4G) − 22(&GG +&3) + 22& + 5&&2
G + 5&2&GG +

3
2
&5 = 0.

Proof. In order to derive this equation, we will use the equation that defines a soliton (and that is
satisfied by & at any time):

(5.1.2) &GG = 2& −&3.

We will also need the following equation:

(5.1.3) &2
G = 2&

2 − 1
2
&4,



ON THE UNIQUENESS OF MULTI-BREATHERS OF THE MODIFIED KORTEWEG-DE VRIES EQUATION 55

that can be derived by taking the space derivative of &2
G − 2&2 + 1

2&
4, and by showing that this

derivative is zero. From this, we deduce that &2
G − 2&2 + 1

2&
4 is constant, and by taking its limit

when G → ±∞, we see that this constant is zero. More precisely, the derivative of &2
G − 2&2 + 1

2&
4

is:

(5.1.4) 2&G&GG − 22&&G + 2&3&G = 2&G

(
&GG − 2& +&3) = 0.

From now on, the derivation of (5.1.1) is straight forward. It is sufficient to take space derivatives
of &GG = 2& −&3 and to inject them into the right hand side of the equation (5.1.1), which we want
to prove to be equal to zero. By doing this, we make the maximal order of a derivative of & present
in the right hand side equation lower. At the end, we have only, zero and first order derivatives. To
have only a polynomial in &, we have to use &2

G = 2&2 − 1
2&

4, and the calculations show that this
polynomial is zero. �

5.2. Study of coercivity of the quadratic form associated to a soliton. In this article, we adapt the
argument for the breathers in [3] to the soliton case. We consider:

QB2 [&] :=
1
2

∫
&2
GG −

5
2

∫
&2&2

G +
5
2

∫
&2
G&

2 + 5
∫

&&GG&
2 + 15

4

∫
&4&2

+ 2
(∫

&2
G − 3

∫
&2&2

)
+ 22 1

2

∫
&2 =: Q0,

√
2[&].(5.2.1)

Firstly, we prove, by simple calculations, as in the previous section, that &G and & + G&G are in
the kernel of this quadratic form. It is easy to see, by asymptotic study that these two functions are
linearly independent.

The self-adjoint linear operator associated to this quadratic form is:

ℒB2 [&] := &(4G) − 22&GG + 22& + 5&2&GG + 10&&G&G

+
(
5&2

G + 10&&GG +
15
2
&4 − 62&2

)
&,(5.2.2)

so that QB2 [&] =
∫
&ℒB2 [&].

ℒB2 is a compact perturbation of the constant coefficients operator:

(5.2.3) ℳ[&] := &(4G) − 22&GG + 22&.

A direct analysis involving ODE shows that the null space of ℳ is spawned by four linearly
independent functions:

(5.2.4) 4±
√
2G , G4±

√
2G .

Among these four functions, there are only two !2-integrable ones in the semi-infinite line
[0,+∞). Therefore, the null space of ℒB2 |�4(R) is spanned by at most two !2-functions.

Therefore,

(5.2.5) ker(ℒB2 ) = (?0=(%G&,& + G%G&).
Lemma 5.2. The operator ℒB2 does not have any negative eigenvalue.

Proof. ℒB2 has

(5.2.6)
∑
G∈R

dim ker,[&G ,& + G&G](C, G)

negative eigenvalues, counting multiplicity, where , is the Wronskian matrix:

(5.2.7) ,[&G ,& + G&G](C, G) :=
[
&G & + G&G

&GG (& + G&G)G

]
.

For this result, see [19], where the finite interval case was considered. As shown in several articles
[23, 27], the extension to the real line is direct.

Thus, it is sufficient to see that det,[&G ,& + G&G](C, G) is never zero. For this, let us simply
calculate this determinant:

&G(2&G + G&GG) − (& + G&G)&GG = 2&2
G −&&GG
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= 22&2 −&4 −&(2& −&3)
= 2&2 > 0.(5.2.8)

�

5.3. Coercivity of the quadratic form associated to a soliton. For & = '2,�, let

QB2 [&] : =
1
2

∫
&2
GG −

5
2

∫
&2&2

G +
5
2

∫
&2
G&

2 + 5
∫

&&GG&
2 + 15

4

∫
&4&2

+ 2
(∫

&2
G − 3

∫
&2&2

)
+ 22 1

2

∫
&2.(5.3.1)

Lemma 5.3. There exists �2 > 0 such that for any & ∈ �2 such that
∫
&& =

∫
&&G = 0, we have

(5.3.2) QB2 [&] ≥ �2 ‖&‖2�2 .

Proof. From Section 6.2, we know that if
∫
&%G& =

∫
&%2& = 0, then, for a constant �2 > 0, we have

(5.3.3) QB2 [&] ≥ �2 ‖&‖2�2 .

Let & ∈ �2 be such that
∫
&& =

∫
&%G& = 0. There exists 0 ∈ R and &⊥ ∈ Span(%G&, %2&)⊥ such

that

(5.3.4) & = 0%2& + &⊥.

From
∫
&& = 0, we have that

(5.3.5) 0

∫
%2& ·& +

∫
&⊥& = 0,

thus

(5.3.6)
0

2

∫
&2 +

∫
&⊥& = 0,

which allows us to derive

(5.3.7) 0 = −2

∫
&⊥&∫
&2

.

Because %2& is in the kernel of QB2 , we have

(5.3.8) QB2 [&] = QB2 [&⊥] ≥ �2 ‖&⊥‖2�2 .

Now, from

(5.3.9) & = −2

∫
&⊥&∫
&2

%2& + &⊥,

we have by triangular and Cauchy-Schwarz inequality that

‖&‖�2 ≤ ‖&⊥‖�2 + 2

��∫ &⊥&
��

‖&‖2
!2

‖%2&‖�2

≤ ‖&⊥‖�2 + 2
‖%2&‖�2

‖&‖!2
‖&⊥‖!2

≤
(
1+ 2

‖%2&‖�2

‖&‖!2

)
‖&⊥‖�2 .(5.3.10)

Therefore, we may derive a constant �2 (independent on &) such that

(5.3.11) QB2 [&] ≥ �2 ‖&‖2�2 .

�
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5.4. Coercivity with almost orthogonality conditions (to be used for the uniqueness). For � :=
�,� or any of its translations, we define the canonical quadratic form associated to �:

Q1,�[&] : =
1
2

∫
&2
GG −

5
2

∫
�2&2

G +
5
2

∫
�2
G&

2 + 5
∫

��GG&
2 + 15

4

∫
�4&2

+
(
�2 − 2) (∫

&2
G − 3

∫
�2&2

)
+

(
2 + �2)2 1

2

∫
&2,(5.4.1)

and we know that %G1� and %G2� is the kernel of Q1,�. More precisely, there exists �1,� > 0 such that
if & is orthogonal to %G1� and %G2�, we have

(5.4.2) Q1,�[&] ≥ �1,�‖&‖2�2 −
1

�1,�

(∫
&�

)2

.

We would like to prove the following lemma (adapted from the Appendix A of [30]):

Lemma 5.4. There exists � := �1,� > 0 such that, for & ∈ �2(R), if

(5.4.3)

����∫ (%G1�,�)&
����+ ����∫ (%G2�,�)&

���� < �‖&‖�2 ,

then

(5.4.4) Q1,�[&] ≥
�1,�

4
‖&‖2

�2 −
4

�1,�

(∫
&�,�

)2

,

where �,� denotes the breather of parameters , � or any of its translations (in space or in time).

Proof. Take � > 0 (we will find a condition on � later in the proof) and take & satisfying the assump-
tion of the lemma. Then (by denoting � = �,�)

(5.4.5) & = &1 + 0�1 + 1�2 = &1 + &2,

where
∫
&1�1 =

∫
&1�2 =

∫
&1&2 = 0.

By performing a !2-scalar product of (5.4.5) with �1 and �2, we obtain, by assumption,

(5.4.6)

����0 ∫ �2
1 + 1

∫
�1�2

���� ≤ �‖&‖�2 ,

(5.4.7)

����0 ∫ �1�2 + 1
∫

�2
2

���� ≤ �‖&‖�2 .

Therefore, by making linear combinations of these two inequalities, using triangular and Cauchy-
Schwarz inequalities, we obtain

(5.4.8) |0 | + |1 | ≤ ��‖&‖�2 .

We can take space derivatives of (5.4.5). And thus, we obtain, for � small enough, , that will be
useful in the last section of this article

(5.4.9)
1
2
‖&‖2

�2 ≤ ‖&1‖2�2 ≤ 2‖&‖2
�2 .

Because
∫
��1 =

∫
��2 = 0,

(5.4.10)
∫

&� =

∫
&1�.

By bilinearity,

Q1,�[&] = Q1,�[&1] + Q1,�[&2] +
∫

&1,GG&2,GG − 5
∫

�2&1,G&2,G + 5
∫

�2
G&1&2 + 10

∫
��GG&1&2

+ 15
2

∫
�4&1&2 + (�2 − 2)

(
2
∫

&1,G&2,G − 6
∫

�2&1&2

)
+ (2 + �2)2

∫
&1&2(5.4.11)
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We know from the coercivity of Q1,� that

Q1,�[&1] ≥ �1,�‖&1‖2�2 −
1

�1,�

(∫
&1�

)2

≥
�1,�

2
‖&‖2

�2 −
2

�1,�

(∫
&�

)2

.(5.4.12)

Also, if we denote by ℒ1,� the self-adjoint operator associated to the quadratic form Q1,�,

Q1,�[&2] = 02Q1,�[�1] + 12Q1,�[�2] + 201
∫
ℒ1,�[�1]�2 ≤ ��2‖&‖2

�2 ,(5.4.13)

actually in this case Q1,�[&2] = 0, because &2 is in the kernel of Q1,� (but, when we adapt this proof
for solitons, we can only write the bound).

Now, we recall that
∫
&1&2 = 0, and study the other terms by using Cauchy-Schwarz:����∫ &1,GG&2,GG − 5

∫
�2&1,G&2,G + 5

∫
�2
G&1&2 + 10

∫
��GG&1&2

+15
2

∫
�4&1&2 + (�2 − 2)

(
2
∫

&1,G&2,G − 6
∫

�2&1&2

)���� ≤ �(|0 | + |1 |)‖&1‖�2 ≤ ��‖&‖2
�2(R).(5.4.14)

We observe that if we take � small enough, the claim of the lemma is proved. �

We prove in the same way that we have the similar lemma for solitons:

Lemma 5.5. There exists � := �B2 > 0, such that, for & ∈ �2(R), if

(5.4.15)

����∫ (%2'2,�) &����+ ����∫ (%G'2,�)&���� ≤ �‖&‖�2 ,

then

(5.4.16) QB2 [&] ≥
�B2
4
‖&‖2

�2 ,

where '2,� denotes the soliton of parameter 2 and sign � or any of its translations.

And even,

Lemma 5.6. There exists � := �B2 > 0, such that, for & ∈ �2(R), if

(5.4.17)

����∫ '2,�&

����+ ����∫ (%G'2,�) &���� ≤ �‖&‖�2 ,

then

(5.4.18) QB2 [&] ≥
�B2
4
‖&‖2

�2 ,

where '2,� denotes the soliton of parameter 2 and sign � or any of its translations.

5.5. Computations for the third localized integral (to be used for the uniqueness).

Lemma 5.7. Let 5 : R → R be a �3 function that do not depend on time and D a solution of (mKdV).
Then,

3

3C

∫ (
1
2
D2
GG −

5
2
D2D2

G +
1
4
D6

)
5

=

∫ (
−3

2
D2
GGG + 9D2

GGD
2 + 15D2

GDDGG +
9
16
D8 + 1

4
D4
G +

3
2
DGGD

5 − 45
4
D4D2

G

)
5 ′

+ 5
∫

D2DGDGG 5
′′ + 1

2

∫
D2
GG 5
′′′.(5.5.1)
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Proof. We perform by doing integrations by parts when needed and basic calculations.

3

3C

∫ (
1
2
D2
GG −

5
2
D2D2

G +
1
4
D6

)
5 =

∫
DCGGDGG 5 − 5

∫
DCDD

2
G 5 − 5

∫
D2DCGDG 5 +

3
2

∫
DCD

5 5

= −
∫ (

DGG + D3)
GGG

DGG 5 + 5
∫ (

DGG + D3)
G
DD2

G 5

+ 5
∫

D2 (
DGG + D3)

GG
DG 5 −

3
2

∫ (
DGG + D3)

G
D5 5

=

∫ (
DGG + D3)

GG
DGGG 5 +

∫ (
DGG + D3)

GG
DGG 5

′ + 5
∫ (

DGG + D3)
G
DD2

G 5

+ 5
∫

D2 (
DGG + D3)

GG
DG 5 −

3
2

∫ (
DGG + D3)

G
D5 5

= −1
2

∫
D2
GGG 5

′ +
∫ (

D3)
GG
DGGG 5 +

∫ (
DGG + D3)

GG
DGG 5

′ + 5
∫

DGGGDD
2
G 5 + 5

∫ (
D3)

G
DD2

G 5

+ 5
∫

D2DGGGGDG 5 + 5
∫

D2 (
D3)

GG
DG 5 −

3
2

∫
DGGGD

5 5 − 3
2

∫ (
D3)

G
D5 5

= −1
2

∫
D2
GGG 5

′ +
∫ (

DGG + D3)
GG
DGG 5

′ +
∫ (

3DGGD2 + 6D2
GD

)
DGGG 5 + 5

∫
DGGGDD

2
G 5

+ 15
∫

D3
GD

3 5 + 5
∫

D2DGGGGDG 5 + 5
∫

D2 (
3DGGD2 + 6D2

GD
)
DG 5 −

3
2

∫
DGGGD

5 5 − 9
2

∫
DGD

7 5

= −1
2

∫
D2
GGG 5

′ +
∫ (

DGG + D3)
GG
DGG 5

′ + 3
∫

D2DGGDGGG 5 + 5
∫

D2DGGGGDG 5

+ 11
∫

DD2
GDGGG 5 + 45

∫
D3D3

G 5 + 15
∫

D4DGDGG 5 −
3
2

∫
DGGGD

5 5 + 9
16

∫
D8 5 ′

= −1
2

∫
D2
GGG 5

′ +
∫ (

DGG + D3)
GG
DGG 5

′ + 9
16

∫
D8 5 ′ − 2

∫
D2DGGDGGG 5

+
∫

DD2
GDGGG 5 − 5

∫
D2DGDGGG 5

′ + 45
∫

D3D3
G 5 + 15

∫
D4DGDGG 5 −

3
2

∫
D5DGGG 5

= −1
2

∫
D2
GGG 5

′ +
∫ (

DGG + D3)
GG
DGG 5

′ + 9
16

∫
D8 5 ′ − 5

∫
D2DGDGGG 5

′ −
∫

D2 (
D2
GG

)
G
5

+
∫

DD2
GDGGG 5 + 45

∫
D3D3

G 5 + 15
∫

D4DGDGG 5 −
3
2

∫
D5DGGG 5

= −1
2

∫
D2
GGG 5

′ +
∫ (

DGG + D3)
GG
DGG 5

′ + 9
16

∫
D8 5 ′ − 5

∫
D2DGDGGG 5

′

+
∫

D2D2
GG 5
′ + 2

∫
DDGD

2
GG 5 −

∫
D3
GDGG 5 − 2

∫
DDGD

2
GG 5

−
∫

DD2
GDGG 5

′ + 45
∫

D3D3
G 5 + 15

∫
D4DGDGG 5 −

3
2

∫
D5DGGG 5

= −1
2

∫
D2
GGG 5

′ +
∫ (

DGG + D3)
GG
DGG 5

′ + 9
16

∫
D8 5 ′ − 5

∫
D2DGDGGG 5

′ +
∫

D2D2
GG 5
′

−
∫

DD2
GDGG 5

′ − 1
4

∫ (
D4
G

)
G
5 + 45

∫
D3D3

G 5 +
45
4

∫
D4 (

D2
G

)
G
5 + 3

2

∫
D5DGG 5

′

= −1
2

∫
D2
GGG 5

′ +
∫ (

DGG + D3)
GG
DGG 5

′ + 9
16

∫
D8 5 ′ − 5

∫
D2DGDGGG 5

′ +
∫

D2D2
GG 5
′

−
∫

DD2
GDGG 5

′ + 1
4

∫
D4
G 5
′ + 3

2

∫
D5DGG 5

′ + 45
∫

D3D3
G 5 − 45

∫
D3D3

G 5 −
45
4

∫
D4D2

G 5
′

= −3
2

∫
D2
GGG 5

′ −
∫

DGGGDGG 5
′′ + 4

∫
D2
GGD

2 5 ′ + 5
∫

D2
GDDGG 5

′ − 5
∫

D2DGDGGG 5
′
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+ 9
16

∫
D8 5 ′ + 1

4

∫
D4
G 5
′ + 3

2

∫
D5DGG 5

′ − 45
4

∫
D4D2

G 5
′

= −3
2

∫
D2
GGG 5

′ + 9
∫

D2
GGD

2 5 ′ + 15
∫

D2
GDDGG 5

′ + 9
16

∫
D8 5 ′ + 1

4

∫
D4
G 5
′

+ 3
2

∫
D5DGG 5

′ − 45
4

∫
D4D2

G 5
′ −

∫
DGGGDGG 5

′′ + 5
∫

D2DGDGG 5
′′

=

∫ (
−3

2
D2
GGG + 9D2

GGD
2 + 15D2

GDDGG +
9
16
D8 + 1

4
D4
G +

3
2
DGGD

5 − 45
4
D4D2

G

)
5 ′

+ 5
∫

D2DGDGG 5
′′ + 1

2

∫
D2
GG 5
′′′.(5.5.2)

which is exactly the desired expression. �
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