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ON THE UNIQUENESS OF MULTI-BREATHERS OF THE MODIFIED KORTEWEG-DE
VRIES EQUATION

ALEXANDER SEMENOV

ABSTRACT. We consider the modified Korteweg-de Vries equation (mKdV) and prove that given any
sum P of solitons and breathers of (mKdV) (with distinct velocities), there exists a solution p of (mKdV)
such that p(t) — P(t) — 0 when t — +co, which we call multi-breather. In order to do this, we work at
the H? level (even if usually solitons are considered at the H! level). We will show that this convergence
takes place in any H® space and that this convergence is exponentially fast in time.

We also show that the constructed multi-breather is unique in two cases: in the class of solutions
which converge to the profile P faster than the inverse of a polynomial of a large enough degree in time
(we will call this a super polynomial convergence), or (without hypothesis on the convergence rate),
when all the velocities are positive.

1. INTRODUCTION

1.1. Setting of the problem. We consider the modified Korteweg-de Vries equation on IR:

(mKdV)

U+ Uy + 1) =0 (t,x) € R?
u(0) = ug u(t,x) e R

The (mKdV) equation appears as a model of some physical problems as plasma physics [41, 9],
electrodynamics [40], fluid mechanics [23], ferromagnetic vortices [48], and more.

In [26], Kenig, Ponce and Vega established local well-posedness in H?, for s > 1, of the Cauchy

problem for (mKdV), by fixed point argument in LZL? type spaces. Moreover, if s > 1, the Cauchy

problem is globally well posed [12]. Recently, Harrop-Griffiths, Killip and Visan [22] proved local
well-posedness in H® for s > —1/2. However, in this paper, we will only use the global well-
posedness in H2.

(mKdV) is an integrable equation (like the original Korteweg-de Vries equation) and thus it has
an infinity of conservation laws, see [39, 1]. We will use three of them (the first two of them are
called mass and energy):

(@) Mlu](t) := %/}Ru2(t,x)dx,
2 E[u](t) := %/}Rug(t,x)dx—ifﬂzu‘l(t,x)dx, and
(3) Flu](t) := %/}Ru%x(t,x)dx—g/ﬂ{uz(t,x)uﬁ(t,x)dx+i/mﬁ(t,x)dx.

Observe that if u is a solution of (mKdV) then —u and, for any x9 € R, (¢,x) = u(t,x — xp) are
solutions of (mKdV) too.

(mKdV) is a dispersive nonlinear equation that is a special case of a more general class of equa-
tions: the general Korteweg-de Vries equation (gKdV), where the nonlinearity u> is replaced by
f(u) for some real valued function f. The particularity of (mKdV) in comparison to other (gKdV)
equation is that it admits special non linear solutions, namely breather solutions.

The most simple nonlinear solutions of (mKdV) are solitons, i.e. a bump of a constant shape
that translates with a constant velocity without deformation, that is, solutions of the form u(t, x) =
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Qc(x — ct), where c is the velocity and Q. is the profile function that depends only on one variable.
Q. € HY(R) should solve the elliptic equation:

(4) ¢ =cQc—Q

We can show that necessarily ¢ > 0 and that, if ¢ > 0, (4) has a unique solution in H'(R), up to
translations and reflexion with respect to the x-axis. Actually, one has the explicit fomula

1

®) 00 [—2 )
S | cosh? (c/2x) |
Observe that we chose Q. so that it is even and positive.
A soliton is a solution of (mKdV), parameterized by a velocity parameter ¢ > 0, a sign parameter
k € {—1,1} and a translation parameter xo € R (it corresponds to the initial position of the soliton)
that has the following expression:

(6) Re(t, x;x0) := kQc (x — x0 — ct).

When x = -1, this object is sometimes called antisoliton. Notice that solitons are smooth and
decaying. The generalized Korteweg-de Vries equation also admit soliton type solutions, and the
focusing nonlinear Schrodinger equation (NLS) as well. Solitons have been extensively studied, in
particular their stability. Cazenave, Lions and Weinstein in [46, 7, 8, 47] were interested in orbital
stability of (gKdV) and (NLS) solitons in H!. A soliton of (mKdV) is indeed orbitally stable, i.e. if
a solution is initially close to a soliton in H(R), then it stays close to the soliton up to a translation
for all times in H'(R). General results about orbital stability of nonlinear dispersive solitons are
presented by Grillakis, Shatah and Strauss in [21]. The result about orbital stability of a soliton can
be improved in a result of asymptotic stability, as it was done in the works by Martel and Merle
[30, 32, 31], see also [18].

A breather is a solution of (mKdV), parameterized by a, > 0, x1, x2 € R that has the following
expression:

(7) Ba,ﬁ(t, X, X1, xZ) = Zﬁax [arCtan (E COSh(,ByZ)

where
y1:=x+06t+x1 and yr:=x+yt+x,
with 6:=a®*-38% and 7y :=3a>-p%

It corresponds to a localized periodic in time function (with frequency a, and exponential local-
ization with decay rate ) that propagates at a constant velocity —y in time. Like solitons, breathers
are smooth and decaying in space. Unlike solitons, breathers” velocities can be positive, zero or neg-
ative. a, § are the shape parameters and x1, x, are the translation parameters of a breather. Note that
if we replace the parameter x1 by x1 + I, we transform B, g(-, -; x1, x2) in —Bq (-, *; x1, x2) (therefore,
we do not need to talk about “antibreathers”).

Breathers were first introduced by Wadati in [44], and they were already used by Kenig, Ponce
and Vega in [25] to prove that the flowmap associated to (mKdV) equation is not uniformly contin-
uous in H* for s < 1 : the point is that two breathers with close velocities can be very close at t = 0
and can separate as fast as we want in H® with s < 1, if a is taken large enough.

(mKdV) breathers and their properties, as well as breathers for other equations, are well studied
by Alejo and Mufioz and co authors in [5, 3, 6, 4, 2].

Let us singularize a result of H? orbital stability for breathers established in [5], and improved to
H' orbital stability in [2]. In this last paper, a partial result of asymptotic stability is also given, for
breathers traveling to the right only, with positive velocity —y > 0; asymptotic stability for breathers
in full generality is still an open problem.

When a — 0, By tends to a solution of (mKdV) called double-pole solution [45], the methods
employed in this article as well as the proof of orbital stability made by Alejo and Mufioz seem not
to apply for this limit, which is expected to be unstable according to the numerical computations in

[19].
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An important result regarding the long time dynamics of (mKdV) is the soliton-breather resolu-
tion: it asserts that any generic solution can be approached by a sum of solitons and breathers when
t — +oo. Together with their stability properties, the soliton-breather resolution shows why solitons
and breathers are essential objects to study. This resolution was established for initial conditions in
a weighted Sobolev space in [10] (see also Schuur [42]) by inverse scattering method; see also [42]
for the soliton resolution for (KdV). Observe that (mKdV) breathers do not decouple into simple
solitons for large time (it is a fully bounded state as it is called in [5]); therefore, it must appear in the
resolution. The soliton-breather resolution is one of the motivations of the study of multi-breathers,
which we define below.

There are works in the literature about a more complicated object obtained from several solitons:
a multi-soliton. A multi-soliton is a solution 7(t) of (mKdV) such that there exists 0 < ¢1 < ¢ < ... <
CN, K1, .., kKN € {-1,1} and x1, ..., xy € R, such that

N
®) lim () - Z Re,p,(t, 5 %)) = 0.
j=1 HI(R)

This definition is not specific to (mKdV) and makes sense for many other nonlinear dispersive
PDEs as soon as they admit solitons. This object is introduced by Schuur [42] and Lamb [27], see
also [42, 38], where explicit formulas are given: these were obtained by inverse scattering method
thanks to the integrability of the equation. Multi-soliton were first constructed in a non integrable
context by Merle [36] for the mass critical (NLS). Martel in [29] constructed multi-solitons for mass-
subcritical and critical (gKdV) equations and proved that they are unique in H'(IR), smooth and
converge exponentially fast to their profile in any Sobolev space H®. Similar studies were done for
other nonlinear dispersive PDEs. Martel and Merle [33] have proved the existence of multi-solitons
for (NLS) in H!, Cote, Martel and Merle extended this construction to mass supercritical (gKdV)
and (NLS) in [16]. Friederich and Cote in [14] proved smoothness, and uniqueness in a class of
algebraic convergence. Cote and Mufioz constructed in [17] multi-solitons for the nonlinear Klein-
Gordon equation. Ming, Rousset and Tzvetkov have constructed multi-solitons for the water-waves
systems in [37]. Valet has proved in [43] the existence and uniqueness of multi-solitons in H! for
the Zakharov-Kuznetsov equation, which generalizes (gKdV) to higher dimension.

1.2. Main results. We prove in this article that given any sum of solitons and breathers with distinct
velocities, there exists a solution of (mKdV) whose difference with this sum tends to zero when
time goes to infinity. This solution will be called a multi-breather. Let us make the definition more
precise.

Let ] € N and K, L € IN such that | = K + L. We will consider a set of L solitons and K breathers:

e the breather parameters are ax > 0, fx > 0, x?k € R and xgk eRforl <k<K.
e the solitons parameters are c; > 0, x; € {-1,1} and xgl eRforl1<I<L.
We define for 1 < k < K, the kth breather:

) Bi(t, %) := Bay (8, %, %7, x5 )i
and for 1 < I < L, the [th soliton:
(10) Ry(t, x) := Rey (£, x; xg,l).
We now define the velocity of our objects. Recall that for 1 < k < K, the velocity of By is
(11) vp = =Yk = Bt — 30},
and for 1 < I < L, the velocity of R; is
(12) v} = .

The most important assumption we make is that all these velocities are distinct:
b b b
(13) Vk# kK vl #v], Vi#l v #vj, Vk, I v, # 0.

These implies for any two of these objects to be far from each other when time is large, and this
assumption is essential in our analysis.
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It will useful to order our breathers and solitons by increasing velocities. As these are distinct,
we can define an increasing function

(14) vi{l,..,J} — {0}, 1<k<K}U{ov},1<I<L}

The set {v1, ..., vy} is thus the (ordered) set of all possible velocities of our objects. We define P;,
for 1 < j <], as the object (either a soliton R; or a breather By) that corresponds to the velocity v;.
Hence, Py, ..., Pj are the considered objects ordered by increasing velocity.

We will need both notations: the indexation by k and [, and the indexation by j, and we will
keep these notations to avoid ambiguity.

We will denote by x; the center of mass of P;, that is

e if P; = By is a breather, we set x;(t) := —xg,k +0jt;
e if P; = R, is a soliton, we set x;(t) := xg,l +vjt.
We denote:
L K J
(15) R:ZRI, B:ZBk, P:R+B:ZPJ.
1=1 k=1 =1

We can now define a multi-breather: as solitons are objects which can be studied naturally in
H(R), it turns out that breathers are best studied in H?(RR); therefore, it is in this latter space that
we develop our analysis.

Definition 1. A multi-breather associated to the sum P given in (15) of solitons and breathers is a
solution p € C([T*, +o0), H*(IR)), for a constant T* > 0, of (mKdV) such that

(16) Jim [p(t) = P = 0.

We will prove two results in this article. The first one is the existence and the regularity of a
multi-breather, the second one is the uniqueness of a multi-breather in the case when all velocities
are positive.

Theorem 2. Given solitons and breathers (9), (10) whose velocities (11) and (12) satisfy (13), there exists a
multi-breather p associated to P given in (15). Moreover, p € C* (R X R)NC* (R, H*(R)) for any s > 0
and there exists © > 0 such that for any s > 0, there exists As > 1 and T* > 0 such that,

(17) Ve T, p(t) = P()llns < Ase™.

Remark 3. We will also show that 0 does only depend on the shape parameters of our objects:
ak, Pr, c1. Moreover, if there exists D > 0 such that for all j > 2, x;(0) > x;-1(0) + D, then A; and T*
0 ,0 .0

do not depend on x; ,, x, , X, but only on ay, k,¢; and D. Finally, if D > 0 is large enough with

respect to the problem data, then (17) is true for T* = 0. See Section 3.2 for further details.

Theorem 4. Given the same set of solitons and breathers as in Theorem 2 whose velocities satisfy (13) and
v1 > 0 (so that all velocities are positive), the multi-breather p associated to P by Theorem 2, in the sense of
Definition 1, is unique.

We will also prove a version of Theorem 4 that does not have any assumption on the sign of the
considered velocities. However, the uniqueness is obtained in a narrower class.

Proposition 5. Given the same set of solitons and breathers as in Theorem 2 whose velocities satisfy (13),
there exists N > 0 large enough such that the multi-breather p associated to P by Theorem 2 is the unique
solution u € C([Tp, +o0), H*(R)) of (mKdV) such that

(18) |[u(t) = P(t)||g2 = O (tiN) , as t — +oo.

In [45], there exists a formula for a multi-breather, obtained by inverse scattering method, that
in some sense already gives the existence of a multi-breather. However, it is seems unclear how to
derive from this formula the convergence to a sum of solitons and breathers uniformly in space and
how to show that this convergence is exponential (local convergence around the center of mass of
each object is already rather involved).
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In this paper, we give here a different approach to prove the existence of a multi-breather and we
clearly show that we have convergence of the constructed multi-breather to the corresponding sum
of solitons and breathers in H® and that this convergence is exponentially fast in time, and that the
constructed multi-breather is smooth. In any case, uniqueness of multi-breathers is new.

In this paper, we adapt the arguments given by Martel and Merle [33], by Martel [29] and by Cote
and Friederich [14] to the context of breathers. To do so, one needs to understand the variational
structure of breathers, in the same fashion as Weinstein did in [46] for (NLS) solitons. Such results
were obtained by Alejo and Mufioz in [5]: a breather is a critical point of a Lyapunov functional at
the H? level, whose Hessian is coercive up to several (but finitely many) orthogonal conditions, see
Section 2 for details. As we see from [5], the H? regularity level is the most natural setting to study
breathers, and the H! regularity level is natural for the study of solitons, as we see in [29, 33]. One
important issue we face is therefore to understand soliton variationnal structure at H 2 level, and to
adapt the Lyapunov functional in [5] to accommodate for a sum of breathers (and solitons). Notice
that arguments based on monotonicity may be adapted only if we suppose that all the considered
velocities are positive. Because [33, 14] are not based on monotonicity (these are results for (NLS)
which is not well suited for monotonicity), we can adapt their arguments to obtain existence and
uniqueness results for our case without any condition on the sign of velocities. The uniqueness
result obtained in this setting is however weaker than the one that is obtained with monotonicity
arguments.

1.3. Outline of the proof. The proof of Theorem 2 (the existence of multi-breathers) is split into
two main parts: the construction of an H? multi-breather and the proof that this multi-breather is
smooth.

1.3.1. An H? multi-breather. Let us start with the first part. We consider (T},) an increasing sequence
of Ry with T, — +oo, and for n € N, let p,, the unique global H? solution of (mKdV) such that
pn(Ty) = P(T,) (recall that the Cauchy problem for (mKdV) is globally well-posed in H?).

We will prove the following uniform estimate:

Proposition 6. There exists T* > 0, A > 0, @ > 0 such that, for all n € N such that T, > T",
(19) Vt e [T, T, lpa(t) = P(®)ll2 < Ae™%.

With this proposition in hand, we can construct an H? multi-breather which converges exponen-
tially fast to its profile, which is the first part of Theorem 2, as stated below.

Proposition 7. There exists T* € R, A > 0, 0 > 0 and a solution p € C([T*, +0), H*(R)) of (mKdV) such
that,

(20) VE =T, |lp(t) = P(t)||g2 < Ae™9".

Proof of Proposition 7 assuming Proposition 6. The sequence (p,(T*)), is L?>-compact, in the following
sense:

Lemma 8. Ve > 03R > 0 such that

(21) Vn e N p2(T", x)dx < ¢
[x|>R

An analogous lemma has already been proved on p. 1111 of [29], which is the proof of formula
(14) (and can also be found in [33]). The same proof works here. We need to use Proposition 6 for
T, large enough and then make a time variation to obtain the result in T*. We can first find R that
works for P2(ty) instead of p2(T*) for a fixed to > T* large enough. From Proposition 6, we see that
if we take t( large enough, we obtain the desired lemma for p2(ty) instead of p2(T*). To finish, with
the help of a cut-off function, we control time variations of x|>R p2(t)dx, where R is taken larger if
needed. That is why we obtain the result at t = T".

As a consequence of the Proposition 6 above, (||p,(T*)||52) is a bounded sequence. Thus, there
exists p* € H?(R) such that, up to a subsequence,

(22) pn(T*) = p* in HZ
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Thus, from Lemma 8, there holds the strong convergence

(23) pn(T*) — p* in L%
Therefore, we obtain by interpolation:

(24) pn(T*) — p* in H'.

Now, let us consider the global H! (even H?) solution p of (mKdV) such that p(T*) = p*. As
shown in [29], the Cauchy problem for (mKdV) has a continuous dependence in H! on compact sets
of time. Let t > T*: by continuous dependence, we deduce that p,(t) — p(t) in H. (p,(t) — P(t)) is
a bounded sequence in H2, which admits a unique weak limit and so

(25) pa(t) = P(t) = p(t) = P() in H2.
By weak convergence and from Proposition 6, we obtain
(26) Ip(t) = P(O)l 12 < liminf [|py (£) = P(E)l] 2 < Ae™.
As this is true for any ¢t > T*, this ends the proof of the Proposition 7. O

It remains to prove Proposition 6, for which we rest on a bootstrap argument. More precisely, we
will reduce the proof to the following proposition:

Proposition 9. There exists T* > 0, A > 0, 0 > 0, such that for all n € N such that T, > T", for all
t* € [0, T,], if

(27) VEe[t, Tul,  llpa(t) = POl < Ae™?,
then

A
(28) VEE[t, Tl llpa(t) = P(t)llpe < Se™.

The proof of Proposotion 6 then follows from a simple continuity argument.

Proof of Proposition 6 assuming Proposition 9. We define t;, in the following way:
(29) o =inf{t* € [T, T,), Vte[t', T, lpa(t)—Pt)llmp < Ae™9}.

The map t — ||pu(t) — P(t)||2 is a continuous function and ||p,(T,) — P(T,)||g2 = 0. This means
that there exists T* < t* < T, such that

(30) Vte [t T, lpa(t) =Pl < Ae™%.
Therefore, we have
(31) T < t; <T,.

We would like to prove that t; = T*. Let us argue by contradiction and assume that ¢;, > T*. The
Proposition 9 allows us to deduce that

) VEE 18, T, lpu) POl < S

This means that

* * A -0t
(33) Ipa(t) = P(E) 12 < Se™,

which means that t;, could be chosen smaller, by continuity. This is a contradiction. O

Hence, we are left to prove Proposition 9, which will be done in Section 2.
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1.3.2. The H? multi-breather is smooth. We now turn to the second part of Theorem 2, which is
strongly adapted from [29]. The heart of this part is to prove uniform estimates in H® for p, — P, for
any s > 0

Proposition 10. There exists T* > 0, O > 0, such that for any s > 0, there exists As > 1, such that for any
n € N such that T,, > T*

(34) Vi€ [T, Tl llpa(t) = P(H)llms < Ase™®.

With this improved version of Proposition 6, one can prove by the same reasonning as in the
proof of the Proposition 7, that for any s > 0, p actually belongs to L*([T*, +o0), H*(IR)) and that the
convergence of p(t) — P(t) occurs in H® with an exponential decay rate. More precisely,

Theorem 11. Forall s > 2, p € C([T*, +o0), H*(R)), and furthermore,
(35) Vi> T, p(t) = P()llme < Ase™.
It remains to prove Proposition 10, which will be done in Section 3.

1.3.3. The uniqueness result. We denote p the multi-breather constructed in the previous sections, the
existence of which is established. Let u be a solution of (mKdV) such that

(36) llu = P2 =20

Equivalently, there holds

(37) lu = pllg: P
We denote
(38) zZ:=u-p.

The goal is to prove that z = 0. We prove it in two configurations: when all the velocities are
positive (Theorem 4), and without any assumption on velocities (Proposition 5), but in this last case
we need to assume a stronger convergence than given in (36).

The proof of Theorem 4 will be carried out in two steps.

We start with Proposition 5, which is adapted from [14]. For this, we do not study u — P anymore,
we deal only with z = u — p. z is the difference of two solutions of (mKdV), which is much more
precise than u — P. Thus, we do not modulate parameters of the solitons, as it is needed in other
parts of the proof in order to deal with the soliton part of the linear part of the Lyapunov functional,
and we avoid some difficulty. In order to prove our inequalities, we need again to use coercivity

of the same type of quadratic forms. In order to do this, we replace z by z = z + Z§=1 ¢;jK;, where

K;, j =1,...,] is a well chosen basis of the kernel of the quadratic form in order to have z orthogonal
to any K;. A important idea is to use slow variations of localized functional with adapted cut-off
function of the form ¢ (¥52), which provides an extra O(1/t) decay when derivatives fall on the

cut-off, and ultimately explain why algebraic decay comes into play.

In the context of Theorem 4, we actually prove that u — P converges exponentially fast to 0: this
is the purpose of Proposition 43, which uses some ideas of [29]. Due to Proposition 5, we deduce
immediately from there that an exponential convergence is trivial, that is z = 0.

To prove Proposition 43, we use monotonicity properties combined with coercivity of an energy
type functional very similar to that used for the existence result. This is why we also need to
modulate, and the choice of the orthogonality condition is essential: it allows to bound linear terms
in w that appear in the computations. An issue in the context of mixed breather/solitons context
is that one cannot build a functional adapted to all the nonlinear objects at once, as it is done in
[29]. Instead, we carry out an induction and we argue successively around each object, soliton or
breather, separately.

1.3.4. Organisation of the paper. Sections 2 and 3 are devoted to the proof of the existence of a multi-
breather: Proposition 9 is proved in Section 2, Proposition 10 is proved in Section 3. Section 4
gathers the proofs of the uniqueness results: Section 4.1 is devoted to the proof of Proposition 5,
and Section 4.2 and 4.3 are devoted to the proof of Theorem 4.
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2. CONSTRUCTION OF A MULTI-BREATHER IN HZ(IR)
We set
39) pi=min{fr, 1 <k <K}U{+Ve,1<I<L},  t:=min{os-0;,1<j<]-1}

Our goal in this section is to prove Proposition 9.

2.1. Elementary results. Let us first collect a few basic facts that will be used throughout the article.
One may check an exponential decay result for any of our objects:

Proposition 12. Let j =1, ..., ], n,m € IN. Then, there exists a constant C > 0 such that for any t,x € R,
(40) 029" P;(t, x)| < CePlruitl,
Corollary 13. Let r > 0. For t, x such that vjt +r < x < vj41t —r, we have
(41) |P(t,x)| < Ce™P".
The same is true for any space or time derivative of P.
We will also use the following cross-product result:

Proposition 14. Let i # j € {1, ..., ]} and m,n € IN. There exists a constant C that depends only on P, such
that forany t € R,

< Ce PTt/2,

@2) ‘ [opar,

There is also an orthogonality result for breathers that will be useful:

Lemma 15. Let B := B, g be a breather. We denote By := dy, B and By := dx,B. Then,

(43) / BB; = / BB, =0.

Proof. Note that Span(By, Bo) = Span(By, B;). Therefore, it is enough to prove that

(44) / BB, = / BB; = 0.

Firstly,
1
(45) /BBx = 5/ (B*), =0.
Secondly,
_1 2y _1d 2 _
(46) /BBt—Z/(B)t—Zdt/B =0,
by mass conservation and because a breather is a solution of (mKdV). O

2.2. Almost-conservation of localized conservation laws. From now on, we will fix n € IN. This
is why, for the simplicity of notations, we can write T for T, and p for p,. The goal will be to
find constants T*, A > 1, 0 that do not depend on #, nor on the translation parameters of the given
objects, to be chosen later (T* will depend on A and 0), such that Proposition 9 is verified. We will
take a t* € [T*,T], and we will make the following bootstrap assumption for the remaining of the
article:

(47) vt €[t T], llp(t) = P()llgz < Ae™,
where p(T) = P(T).
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Remark 16. We have the following property for solutions of (mKdV): there exists Cy > 0 such that,
for any solution w of (mKdV), w is global and

(48) VteR |lw(t)llg2 < Collw(T)llg2-

Therefore,
J

(49) VteR |p(H)llg2 < CollP(T)lp2 < Coz IP(T)llg2 < CoC,
=1

where C is a constant that depends only on problem data (because the H*-norm of solitons or
breathers can be easily bounded).

Let 0 := g—; Let min(1, 7) > 6 > 0 be a constant to be chosen later.
This part of the proof is adapted from [33].
Let 1(x) be a C3 function such that

50) 0<yY<1 onR, Y(x)=0 for x < -1, Y(x)=1 for x>1, Y'>0 on R,
and satisfying, for a constant C > 0,
(51)

WP <Cpx),  WEMP<Cl-pr),  EP2<CY(x)  forallxeR.

Note that it is enough to take 1 that is equal to (1 + x)* on a neighbourhood of —1 and that is
equal to 1 — (=1 + x)* on a neighbourhood of 1.

These conditions on 1 will be needed for the proof of Proposition 30.

Forallj=2,..], let

(52) 0j = %(U]'_l +U]').
Forany j=2,..,]-1,let
x—ojt X —0j+1t
(53) @j(t/x) 321#( ot )—ED(T),
_ —ort
(54 P(t,x) :=1—¢(x 5f2t), P(t,) :=¢(x — )

so that the function @; corresponds obviously to the object P;. We will also use notations ¢; and goZ,

which represent the same functions, and where @] corresponds to the soliton R; and qji corresponds
to the breather By.
We will also denote, for j =2,...,] -1,

X - G‘t X—0j+ t
o P1i(t, %) =’ (T]) 4 (a—t]l)
— —ojt
0 P1a(t, x) := =y’ (x(S—tGZt) ;o eyt x) =y (x 6;7] ) :

Of course, notations (pll’ » goi | OF @2, will be used, with similar obvious definitions.
We have that, forj =1, ..., ],

(57) o1l < Cp?™

Remark 17. If 6 < ,
ojt+ot ojt+ot
/ e—2ﬁ|x—vjt| — e—Zﬁvjt/ e2BX 4y

— 2ie—Zﬁtheﬁ(vj+Uj,1)er‘B(§t

< CePrtp2pot

(58) < Ce P12,
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+00
(59) / e—2ﬁ|x—vjt| < Ce—ﬁTt/Z/
(fj+1t—6t

for the same reason, and if i # j, e.g. j > i,

Uj+1t+6i Gj+1t+§t
/ e—2ﬁ|x—v,'t| — p2puit / e~ 2B qy
(Tjt—bt th—ét

< zieZﬁvite—ﬁ(0j+vj_1)t82‘56t

< Ce Pt p2Bot
(60) < Ce P2,

And finally, we set forall j =1, ..., J:
(61)

M;(t) :=/%p2(t,x)(pj(t,x)dx = M;[pl(t),  E;j(t) :=/( 2, x)——p4(t x) | @i(t, x)dx =: E;[p](t).

Notations MS M;{’, Els, E}lz will also be used.

These are local versions of the mass and the energy of the solution p considered (localized around
each breather or soliton). We will prove the following result for the localized mass and energy:
Lemma 18. There exists C > 0 and T; := T;(A) such that, if T* > T}, then for all j = 1,...,], for all

€[t T],
C -
(62) IM(T) = Mj(£)] + |E{(T) = Ej(1)] < = A%e™20.

Proof. We will use the results of the computations made on the bottom of page 1115 and on the
bottom of page 1116 of [29] to claim the following facts:

dtZ/ pf= /( SPx 410) ’—/pxpf”
(63) % [;pi 27 ]f /[——(pxx+p) — Yy +3pip ]f,_/pxxpr”

where f is a C? function that does not depend on time.
X— (7] )

M;(t) is a sum of quantities of the form 3 f PP (=5
d1l o, (X Ot 1/ 5 4\, (X0t 1 / , [X—ojt
dt 2 /P l’b( ot ) ot LEN 4p i (6t)? PP\ 5t

1 x—oijt
()

s it,0t + 0jt). Thus, for x € Q;(t), |3| < |oj| +16] <
|oj| +1, this means that || is bounded by a constant (that depends only on the given parameters).

We can deduce that
LS < (L Lo L)
-5 [ PY
dt 2 ot 52t Q](t) Q](t) Q](t)

We bound fQ_ © p* by the following way:
U

/ P4<||P||2m/ p?
Q1) (1)

]

(65)

< C|l p||é1 /Q " pz by Sobolev embedding
j t
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(66) <C p? by Remark 16.
Thus, we have for any t € [t*,T],

Q;(t)
d1l x—ojt C 2 »
(67) ——/ 2 (—)<— / x+/ .

E;(t) is a sum of quantities of the form f[% ]gl}(x ojt ).

A x_aft_l/_l 32 _ 2 2 | (X205t
i [P P]IP( 5t | o (P +P7)" = P #3920 | ¥ | —5;

X—0j 1 1 x o, x—ojt
(68) (5t)2/pxxpx ( ) /[Epyzc P4] (31‘217[} ( 5t )

We deduce from this, by using similar arguments as for the mass, that for any f € [t*,T],

) %/[1%2{ 1p4]¢(x (;] )‘ 5 (/Q](t) /Q](t) /Q](t) )

Now, we write p(t) = P(t) + (p(t) — P(t)), and we use the triangular inequality

70) / PP+ P24 pR) <2 / (P2 + P2+ P2) +2]p - PIP,
Q;(t) Q;(t)

We have assumed that ||p — P||12L12 < A%e729 we need to study P on Q;(t). The following compu-
tations work also for the derivatives of P.

/Q](t) p? = /Q/(t) (Z Pult, x))

(71) <C / e—ﬁlx—vmtle—ﬁlx—vlﬂdx,
] Q;(t)

1<m,I<]

> /Q Pu(t, x)Pi(t, %)

1<m, i<y ¥ i)

where we use the Proposition 12.
We assume that m > j (we argue similarly if m < j —1). Then,

x € Qj(t) & —0t +o0jt <x <Ot +o0jt
(72) © =0t +(0j =)t < x— vyt < Ot +(0j —vp)t.

We note that 0; — v, < —%T < 0, we can thus deduce from the condition on 6 that o; —v,, +6 <
—}IT < 0. We deduce that x — vt is negative for x € Q;(t).

Similarly, if m < j—1, x — vt is positive for x € Q;(t).

We will now make calculations for different cases.

Ifm,l<j-1,
/ pBlx—ontl ,~Blx-utl g < / o ~Blr=ont) y=Blx—o1t) 15
Q;(t) Q;(t)
1
— _— PH(=vj=vj_1+0m+0)) ( ,2B0t _ ,—2B0t
2ﬁe (e e )
< Ceﬁt(—v,—v/,1+vn1+vz+2(§)
(73) < Ce PHt/2,

Similarly, if m, [ > j,

(74) / e_ﬁlx_vmtle_ﬁ'x_vltldx < Ce—‘g”(f/z.
Q;(t)



12 ALEXANDER SEMENOV
And, if m <j-1,0>j,

/ o Blr—omtl p=Blr—oitl g / o BGout) JBlx—0it) g
Q;(t) Qj(t)

< Zéteﬁt(vm_vl)

(75) <Ce 7.
Thus,
(76) / P2 < Ce 7,
Q;(t)

and the same is valid for the derivatives of P.

Thus, for t € [t*,T],
d1 ’ X—G]'t d 1 » 1 4 X—G]'i'
dtz/plp( 5F )‘Jr‘dt/[z TPV T

j=1
< %AZ 0y Lot
< %(AZ + 6—261‘)6—261‘
(77) < éAze—zet.

Thus, forj=1,...,],t € [t*,T],
|M;(T) — M;(t)| + |E;(T) — E;(¢)]

T
< / £A2€_265d5
¢ 625

C T
_AZ / e—Z@Sds
2t ),

C AZi(e—ZQt _ 20Ty

N

o2t 20
C 2 ,-20t

2.3. Modulation.

Lemma 19. There exists C > 0, T; = T;(A) such that, if T* > T;, then there exist unique Cl functions
Xk [ T] > R, xpp : [t5,T] > Rfor 1 < k < Kand xo; : [t*,T] = R, co; : [t,T] = R, such that if
we set

(79) e(t,x) = p(t, x) - B(t,x) = R(t, x) = p(t,x) — P(¢, x)
where
—_~ K —~— —~—
(80) B(t/ X) = Z Bk(t)r Bk(t, X) = Bak,ﬁk(t/ X; x?,k + xl,k(t)r x(z),k + .'X'Q,k(t)),
k=1
—_~ L —~ ~
(81) R(t,x) := Z Ri(t), Ri(t,x) = Repyeg ity (t, X; xg,l +x0,(t)) for1 <I<L,
=1
(82) P(t) := R(¢t) + B(t),
and
o~ ] o~
(83) P(t) := Z P;(t)

=1
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where there is the usual correspondence between l;] and FB; or El,
then, e(t) satisfies, forall k =1,...,K, forall 1 = 1,...,L and for all t € [t*,T],
(84)

/ Ri(0)e(t) | (1) = / 2R (D3 (1) = / o B (De(t)pl(t) = / 2 BrB)e(HJl(t) = 0

Moreover, for all t € [t*,T],

K L
83)  lle®llr+ > (1o + 22, () + > (%0, (D) + 1x0.(t) + co ()] + [co(t)]) < CAe™,
k=1 I=1

and
K L

(86) Z(IXLk(t)I +[x , (B)]) + Z(Ixé,l(t) +cf (O + g, (D)) < Clle(t)]l 2 + Ce™".
k=1 =1

Finally, p(T) = P(T) = P(T) and &(T) = x0(T) = x1,4(T) = x04(T) = co(T) = 0.
Proof: see for example [13] for reference. Let, for t € [t*, T],
(87) Fi : L*(R) x R?K x R?L — R2K+2L

(wl X1,kr X2,ks X0,1, CO,Z)

— (/ A /(pz(t,xwxlBak,ﬁk(t,x; x?,k + X1k, Xg,k +X2,k)
K L

.40 0 .0
w - Z Ba, g, (£, ;X7 ) + X1,m, X+ Xom) — Z Re,veq i, (8 x5 %0, + X0) |,

m=1 pr=1
(Pk( ,X) X2 ak,ﬁk( Y xl,k + X1k, lek + xZ,k)
K L

.40 0 .0
w - Z Ba, g, (£, ;X7 ) + X1,m, X )+ Xom) = Z Re,veq i, (8 %5 %0, + X0) |,

m=1 r=1
/ 1\ (Pls (t, x)achﬁcO,,,iq (tz X, xg,l + xO,l)'
K L

.40 0 .40
w0 = Bayp (b, 2550 31, X8+ X2) = D Repregy iy (b, %25, +%0,) |,

m=1 p=1
/ \’ (Pls (tl x)RC]+C0,],KZ (t/ x; xg,l + xO,l)'
K L
(88) Jw - Z Ba, pu(t, x; x(l)’m + X1m, xg,m + Xom) — Z Rey+eop i, (E X; xg,p + Xxo,p)
m=1 p=1

13

We observe that F; is a C! function and F;(P(t),0,0,0,0) = 0. Now, let us consider the matrix
which gives the differential of F; (with respect to x1, X2k, X0, o) in (P(¢),0,0,0,0) (we consider

diagonal and extra-diagonal terms for each bloc):

1 3
B,é/k B,ﬁ/k X X X X X X
By . Biy 1>< ;< X X X X
X X Blé,’k, Blz(,,k, X X X X
(89) pr=| X % Bew Bew o0 X X
X X X X R” Rll X X
X X X X R?l RZ, X X
X X X X X X Ry, R},
X X X X X x R3, 6 R

,r r
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(90)
2 2
Bll<,k = _/ (axlBak/,Bk) (Pi/ Bi,k = _/ (8x2Bak/,Bk) (Pif Bi,k = _/ax1Bak,ﬁkaszak/l3k\/(P]b<r

(91) Rll,l = _/(aXRCI,K/)z gols’ Rlz,l = _/RCI,KIaCRC/,Kt\/(PSI

(92) R?,l 3:_/Rcl,1qach11q (Pls/ R?,l ::_‘/aXRCZ,KlacRCﬂq (P?/

where crosses stand for exponentially decaying terms when t — +o0, and we consider variables
in the fOHOWing order: X1,1,X%X2,1,X1,2,X2,2,%1,3,%2,3, .-+, X1,K, X2,K, X0,1,€0,1, --+ X0,L, CO,L and we order the
coefficients of the function in the similar way. This is a matrix with dominant diagonal blocs.

Note that Bi , is exponentially close to — f (8x]Bak,,;k)2, because if P; = By is a breather,

9 ; gjt+ot 9 +00 )
/(8xlBakﬁk) (1_ gok) <‘[ (8xlBak/ﬁk) +/ (axlBakrﬁk)

) 0j1t+06t

ojt+ot +00
< C/ exp (—2B |x —v;t|) +/ exp (—2B |x —v;t|)

[+ (Tj+1t+(5t
_br
(93) < Ce 7,

and the same is true for the other dominant diagonal terms of the matrix (we can get rid of ¢s).
Therefore, the determinant of the matrix is exponentially close to:

K

2
det(DPt) = l_l (/(axlBak,/ik(t/ X; x?,k’ x(z)’k))z/(aﬁqBak,ﬁk(t/ X; x?,k' xg,k))z - (/ axlBak,ﬁkaszak,ﬁk) )

k=1

L
(94) '1—[(/(8XRC[,K](t/x;x8,l))2/RCI,KlgcRC[,KI_/axRC[,K]aCRCI,K[/RCZ,KIaxRC[,KI)'
I=1

By Cauchy-Schwarz inequality and the fact that dy, By, g, (t, x; x?/k, xg,k) and dy, B, g, (t, x; x?/k, xg,k)
are linearly independent as functions of the x variable, for all time ¢ fixed, we see that the first
product is positive. Since, each member of the product is periodic in time, then the first product is
bounded below by a positive constant independent on time and translation parameters.

For the second product, we observe that / Re,x,9xRe, «; = 0. That means that to minorate it, it is
enough to minorate / (FxRe, i, (E, x; xgll))2 / Re,x,;9cR, ;- We derive, by calculation with the formula
of R, «,, that we have

1
2¢y
This is why, by integration by parts, if 4 denotes the soliton with ¢ =1, i.e. 4 = Qq,

1 1
/RCI,KIaCRC/,Kl = 2_CI/REI,KZ+2_CZ/XRC/,K18;7€RC/,K]

1 2 1 2
= 2—Cl RCZ/KI + 4_Cl xax (RCZIKI)

1 2 1 2
= 2¢; oKl 4¢; RCIrKI
1 1
96 = R2 = 2
(96) 4c; c1,K1 4\/C_l / q

by scaling. Again, by scaling,

(97) / (OxRep)* = ;" / ()%

(95) IR, = (RC,,KZ + (x —x), - c,t) 8xRCZ,K,) — t9xRe ;-
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Therefore,

1 1 .
(98) /(&CRCI,KI(t,x;ng))Z/RCI,KZ&RCI,KI = ch/qu(%)z > me{cp,l <p< L}/QZ/fﬁ'

This means that the second product is bounded below by a positive constant independent on
time and translation parameters.

This means that if T} is large enough, the matrix considered is invertible.

Now, we may use the implicit function theorem. If w is close enough to P(t), then there exists
(%1%, X2,k, X0,1, €o,1) such that Fy(w, x1 k, X2k, X0,1, co,1) = 0, where (X1, X2k, X0,1, Co,1) depend in a regular
C! way on w. It is possible to show that the “close enough” in the previous sentence does not depend
on ¢; for this, it is required to use a uniform implicit function theorem. This means that for T large
enough (depending on A), Ae~% is small enough for ¢t € [t*,T], thus for t € [t,T], p(t) is close
enough to P(t) in order to apply the implicit function theorem. Therefore, we have for t € [t*,T],
the existence of x1 k(t), x2k(t), x0,(t) and co,(t). It is possible to show that these functions are C! in
time. Basically, this comes from the fact that they are C! in p(t) and that p(t) has a similar regularity
in time; (see [13] for more details).

Now, we will prove the inequalities (85) and (86). We can take the differential with respect to p(t)
of the implicit functions, for t € [t*, T]. For this, we differentiate with respect to p(t) the equation

(99) Fi(p(t), x1,k(p(t)), x2,4(p(t)), x0,1(p(t)), co,1(p(t))) = 0.
We know that the matrix that gives the differential of F; (with respect to x1x, x2,x, X0,1, Co,1) in
(100) (P(t)/ xl,k(p(t))/ x2,k(p(t))/ Xo,1 (p(t)l CU,l(p(t)))

is invertible and its inverse is bounded with respect to the time. The differential of F; with respect
to the first variable is also bounded. Thus, by the mean-value theorem:

(101) 216l < Cllp — Pl < CAe™®,

the same is true for the other implicit functions, and using the fact that xo;(t) + co,(f)t corresponds
to the position of each soliton, it works also for this parameter.

By applying the mean-value theorem (inequality) for By, g, with respect to x1x and x2x, we
deduce that

(102) 1Bk(t) = Bi())llz2 < C(1x1(B)] + 2k (E)]).
We recall that
(103) Ri(t) = Rep(6,5%0 ), Ri(t) = Repwey iy (5 %0, + X0,1(H))-

We need to be a bit more careful with the solitons, because unlike breathers their velocity is mod-
ified. Let us apply mean-value theorems step-by-step. Firstly, we compare solitons with different ¢
parameter, but to do this we center them at the same point,

(104) ”RC]+CO,](t),K1(t/ ‘y xg,l + X0,1 (t)) - RC],K[(t/ * xg,l + xO,l(t) + CO,l(t)t)”Hz < C|C0,l(t)|'

Secondly, we compare solitons with the same c parameter, but with different translation param-
eters,

(105) IRy i, (8, 5 %0 + x0,1(8) + cop(t)E) = Reyy (£, x8,1)||H2 < Clxo,i(t) + cou(t)t].
Thus, we see that,

(106) IRi(t) = Ri(®)ll 2 < € (|eo(B)] + [xo(E) + cou(t)t]) -
Finally, by triangular inequality,

le(®)llz < lo@)llgz + IP(E) = P32
K L
<ol +C | Y (xae(®)] + lxar(B)) + Y (x01(t) + cos(t)t] + co(t)])
k=1 I=1

(107) < Cllo(t)|lg2 < CAe™ 9,
This completes the proof of (85).
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For (86), we will take time derivatives of the equations f 8X1FB;(t)e(t) (pi(t =0, f 8XZ§;(t)€(t) (pz(t) =
0, f&xlz(t)e(t)‘ /(p,s(t =0 and f]%(t)e(t), /(pls(t = 0. From now on, we write By, for o”xlﬁ and By,

for 0_’x2§l;- Firstly, we write the PDE verified by ¢ (knowing that p, By, ..., Bk, Ry, ..., Ry, are solutions
of (mKdV):

j=1 h#iori#j

J J

A N e

ij=1 N
K K L L

(108) = D X (DB = ) (DB = D x) (DR, = > ¢ (DR

k=1 k=1 1=1 1=1

Now, we will take the time derivative of the equation f By &+ /(pZ = 0 (and perform an integration
by parts):

/(Bk J1x€ +x1k(t)/Bkllg\/7+x2k(t)/Bklzf\/7
11 1+3Z§;ﬁ)\7—7k+/3k1x5(6 +3¢ z]:ﬁ’jq’hz]:lﬁ;ﬁ)\/;i

h,i=1 (pk

+@ Bk1€(€ + 3¢

i

b
§01 k 1 — 901 k 1 1,k

+L B -
25t k1€ xx\/7 25t klx x\/7 25t klxx \/—b
Pk

Biy (PhPP 1/ ¢! 25t2/ P

h#ior g#h

K
= Y6, 0 [ Babsfo}
m=1
K L
IRHD [ BaBuafol= Y, (s, 0 e, 00) [ Bl foh
d 2

(1)

(109) + Z T o) By (R, + (= 3, = x0,(0) = (¢ + cop (D) £) Ry ) Jot

Similarly, taking the time derivative of f Broé+ /(pi =0:

/(Bk )ax € +x1k(t)/Bk123\/ +x2k(t)/Bk22€\/
1 [— I ——\ 97 I U
. . b
o Bkze(e +3s§ Pi+3 § PhP)T+/Bk2x5(€ +3¢ § P,+3h§ 1PhP,),/gok

i=1 h,i=1 (pk

b
— (P1 k 1 — 901 k 1 Pk

1
+ﬁ Byoe xx\/7 25t kaéx\/7 25t Bkaxé\/?
k

/Bk2 Z PhPP 1/ b ZétZ/Bkzsx
h#ior g#h 1[
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K
= 2 540) [ BBy}
m=1
K L
PIRFD [ BBl = Y (35,004, 00) [ By, foh
- 24

¢, (t) —_ —
(110) +Z T i"’cop(t) Bia (R, + (= 3, = x0,(0) = (¢ + cop0) £) Ry, | )

Similarly, taking the time derivative of f R x(B)e(t)\Jo; =0:

—/(EB)ME <pi+%/(Ex+(x—xg,,—xo,z(t)—(cz+60,z(t))t)1€zxx)€ ¢

(xoz(t)+c01(t)t /Rlxx€\/7 25t/R1x8 e? +3¢ Z]: 3213;:131)

h,i=1

/_ (Pll 1 (Pll
/Rlxxg(g +3SZP +3 Z Php) /Rlx Exx—F/— Rlxx b p—
25t ,/ 25t ‘/

h,i=1

1 ~ Pl ~~~ [ (Pll
+E Rlxxxg\/— Rlx Z (PhPin ? 25t2/ Ix€

h#ior g#h

_ZL: (xé,p(t)+c6,p(t)t) /E,xl’{
=
L Op(t) o O N S
' ; 2 (cp+cop(t) /sz (Rp ’ (x = xp, = ¥op(t) = (e + co, (1)) t) Rpx) \/(?z

K K
W)+ Y 5,0 [ RBuroi + Y 32,0) [ RiBuzyoi
m=1 m=1

Finally, taking the time derivative of f Eﬁd(p? =0:

_/(ﬁﬁ)x(g (p?+%/(ﬁl+(x—x8 = x0,1() = (c1 + cou(t)) )sz)e ®;
) &y

J
(xOI(t)+COI(t)t /R;x \/7 zét/Rle(e + 3¢ ZP
) s
/Rlxe(e + 3¢ Zf 3213711?)\/7 26t/Rl quolls_%/ﬁl ng(%ls
!

M\

h,i=1
1 ~ (Pll ——~
o [Riee—2— [ R Y (PuPiPy) \Joi -5
20t V h#ior g#h 26t V
L
Z(xop(t)+cop(t)t /RZR Jo:
r=1

= (t) o N
+ ; e ipc()p(t)) /Rz (Rp + (x =X, = Xo0,p(t) = (cp + cop(t)) t) R,,x) %

(112) K x1 (t)/Rlelf me(t)/Rlezf
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By the Proposition 21 below (that follows from the first part of the lemma we prove) and it’s
corollary, several terms of the equalities (109), (110), (111) and (112) are bounded by Ce~%; other
terms are O(||¢||2). We remind that O(||¢]|;2) < CAe%. From the basic properties of ¢; (see
Section 2.2), 31_] is bounded. Because of the compact support of ¢;, 3 \/_
on x and t. Using these bounds, and after several linear combinations, we obtain the desired
inequalities. m|

is bounded independently

Remark 20. As a consequence of Lemma 19, there exists a constant C > 0 such that,

K L
(113) Vi £, T] ) ()] + lxak®)) + Y (xos(H)] +leos(t)) < CAe™T
k=1 I=1

This means, that if we take T eventually larger (which we will assume in the following of the
article), we may extend Proposition 12 to P; in the following way, by integration of the bounds given
by modulation (the constant C is a bit larger in a controled way, we write 5 £ because the shape of the

. . . g 1 . pr
solitons is a bit modified in a controled way, and we write ¢ 2! because the velocity of the modulated
solitons is a bit modified in a controled way):

Proposition 21. Let j = 1,...,], n € N. If T* > T7, then, there exists a constant C > 0 such that for any
t,x €R,

(114) |8§13dj(t,x)| < Ce~ st 55t
We will also use that any ||8§I7]~|| 12 is bounded by C.

Corollary 22. Leti # j € {1,...,J} and m,n € N. If T* > T;, then there exists a constant C that depends
only on P, such that for any t € R,

(115) ’ / M P;9"P;| < Ce P8,

2.4. Study of coercivity. In [5], the Lyapunov functional that was introduced to study the orbital
stability of a breather was the following conserved-in-time functional:

(116) Fp](t) +2(8> = a®)E[p](t) + (a® + B2’ M[p](t)
The functional that we will consider here is adapted from the latter. For t € [t*,T]:

(117)
L

K
HIplt) = Flplt)+ Y (263 - aDELpI(E) + (o + BDEMLIpI(0)) + ) ReiES[p)(t) + EM;[p](1)
k=1

I=1
For the simplicity of notations, for j € {1,..., ]}, a; will design ay if P; is the breather By or 0 if

P; is a soliton, and b; will design B if P; is the breather By or cll/ 2 if P; is the soliton R;. With these
notations, we may write:

J
(118) HIpl(t) = FIpl() + ) (263 = a)E,[p](t) + (a? + b2 M, [p](1))
j=1

We would like to study locally this functional around the sum considered of breathers and
solitons. The aim of this section will be to prove two following propositions:

Proposition 23 (Expansion of H? conserved quantity). There exists T, > 0 such that if T* > Ty, for all
t € [t*,T], we have

J
Hiplt) = ), (FIPI0) + 2062~ a) ELPN() + (@3 + BMIP )

j=1
(119) + Hy[e](t) + O(lle(D)]7,.) + Oe 2% [|e(t)llp2) + O(e 72,
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1 2 S [5.2.5 [5. 55 2,15 =4
e](t) .—2/8” 2/P €x+2/Px£ +5 [ PPyye” + 1 Pe
] ] 1
2_ 2 2 P22 2,224 [ 2
(120) +]Z:1:(b]. —a].)(/ X Pj 3/P € (p])+]Z:1:(aj +b].) 2/& ®j.

Proposition 24 (Coercivity of Hy). There exists u > 0, T; = T;(A) such that, if T* > T;, for all t € [t",T],

(121) Halel(t) > ulleI, ( [ B )

The Propositions 23 and 24 will be used in the next concluding subsection to prove the Proposi-
tion 9.
Firstly, let us prove the Proposition 23.

where

Proof of Proposition 23. We would like to compare H[P + ¢](t) and H[P](t) (recall that p = P + ¢) by
studying the difference asymptotically when ¢ is small. Firstly, let us see how we could simplify the

expression of H[P](t).
Step 1:
Claim 25. If T* is large enough, for all t € [t*,T], we have
]
22)  HPIE) = 3 (FIFIO) +207 = aEPI0) + (0] + BPMIBI(0) + O,
j=1

Proof. We prove that for t € [t*,T], we have

(123) H(DP] - (P[z?j]+z(b]2—a]2)5[1'5j]+(a]2.+b]2.)2M[1'5]-]) < Ce 20t

-
Il —
—_

Let us compare F; [13] and F[P;].

(124) Fi[P] = / (;P2 —§P2P2+1P6) @i(t, x)dx,
~ 1-~2 5~2~2 1~
(125) F[Pj]_/(ipjxx 5P Pi+ 7P )dx.

We compare the corresponding terms of these equalities. Let us start by the first one:

‘ [(Poen-5) < [F-oeol+ Y, [|Pufu

(r,8)#(j.j)

< C/E 2|x v]t|e32t|1 QD](t x)|+CZ/e 2|X U;t|632 (p (t x)

i#j
ojt+0t +00 gir1t+0t
pr 7 Bl _Blyep, 7 _Bly_o
< Ce?! / e 2l ”ft|dx+/ e 2l ”1t|dx+2/ e~ zlvitl gy
—00 Gj+1t—5t (T]'t—ét

i#j

Pi(t, x)

(126) < CePrtlle,

by Proposition 21 and Remark 17.
For the other terms of the difference to be bounded, we reason in a similar way. This completes
the proof of the claim. O

Step 2:
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Therefore, when we manage to compare Hlpl(t) and H[P P](#), we are also able to compare

H[p](t) and Zﬁzl(F[ ](t)+2(b2—a2)E[ ](t)+(a +b2)2M[ 71(t)).
7{[13+g]=1/(13+g)§x——/(13+e)2(13+s)§+1/(13'+g)6
+ (bz—a2)( (P+e)3p;—= (P+s)4(p) (a +bz)2 (P+e)2(p]
S o5-ah [0 ote-3 [0t S35} [0
—/P2 ——/PZP2 /P6 /P(4x)e+5/PP2£+5/P2Pxxe+;/PS
/ xx——/P252+ /P252+5/PP”5 +145/P4t2+0(||5(t)|| )
+Z(b2_a2)(/ ¢]__/134(Pj_2/13xx5§0j
—Z/ﬁxe(p]-,x—2/133egoj+/ei(p]-—3/§282(p]-)
] —_ —_~
(127) +jzzl(a]2+b]2)2% (/P2g0j+2/P£(pj+/52(pj).

We can observe that the sum (127) is composed of 0-order terms in ¢, of 15'-order terms in ¢, of
2"_order terms in ¢. 3" and larger-order terms in ¢ are contained in O(||e(t)||13_12). The sum of the

/

0-order terms is actually 7—([13]. The sum of 2"-order terms in ¢ is Ha[e](t).
Let us study for closely the 1-order terms:

Hy = / Bianye +5 / PP2% +5 / PPove+ 3 / B5e

/

J
(128) +Z(b]2—a]2) (2/13xgx<pj—z/§3g(pj)+Z(a]2.+b]2)z/j5€¢j.
j=1

j=1
From [5], we know that a breather A = A, 4 satisfies for any fixed t € R, the following nonlinear
equation:

(129) Aax) —2(8% — a®)(Axx + A%) + (o + B?)?A + 5AAZ + 5A% Ay + §A5 =0.

This equation is also satisfied for A = By with @ = ay and g = B for any k = 1, ..., K (the key
parameters of a breather are not changed by modulation).

For a soliton Q = R, we know from Q,, = cQ — Q3 that Q satisfies for any fixed t € R, the
following nonlinear equation (see Section 5.1 (Appendix)):

(130) Quan = 20(Que + Q) + 2Q + 5003 +5Q°Que + 507 =

This equation is not exactly satisfied for Q = R; for any [ =1, ..., L (the key parameters of a soliton

are changed by modulation). The exact equation satisfied by Q = R; is:
(131)

Quax) =261 (Qur + Q) +¢7Q +5QQ5 +5Q*Qux + §Q5 =200, (t) (Qur + Q°) = 2c1004()Q = co1(1)*Q

We will compare H; and

3 =5
H; /P(4x)e+SZ/PP] e+SZ/P1x [ 5 /Pj e
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J _ _ ] _
(132) —Zg(bf—af) (/ijxg+/pj3g)+;(a]?+b]2)2/pjg.

~— ~ ~2
Firstly, let us compare fPP%e and Z;zl /Pijxe.

J Y
[Ee= [\ Y 5|25 «
j=1 j=1
I, L
(133) => / PiPre+ Y [ PuPiPje.
j=1 h#iori#j

Therefore, we need to find a bound on a term of the type f F;:Ip;ixl;jxe where h # i or i # j.
We can perform the following upper bounding (where without loss of generality, we suppose that
i#j):

e Bt B 4 .
‘ Pth’xije < CEEt/e—ﬂx—v,ﬂe ap v]t||€|
<C||‘€||L°"e€_2t/e‘g|x‘vi’/‘|e_§Ix—vjtl
(134) < ClellmeF,

by Sobolev embedding and Proposition 14.

The bounding is quite similar for /13213“8 and /1356. We observe that —fl;jxxe = fﬁjxex.
To compare f ﬁx ex@; and /]R 17]-xex, and for similar terms, we can use computations that we have
already performed at the beginning of this proof. Therefore,

(135) ‘/ﬁxgx(Pj_/I’;jxgx
R

That enables us to bound the difference between H; and H{:

_Btt
< Clle||gee™ ™.

, _ Bt
(136) |Hy — Hj| < Clle(t)llpze™ 5.

Now, because our objects are not only breathers, H] is not equal to 0. Actually, we have

L L L
(137)  H =2 ,(t)( Ry R’ )—2 1) [ Rie=Y coit)? | Ree.
1 ;COZ / I €+/ 1 € ;CZCOI / 1€ Zlcol / 1€

1

Now, we introduce
(138)
L

L L
H = ZZCO,l(t) (/ Exx€J¢7f+/E3€J¢7?) _2ZClCo,l(f)/ES\/EZS_ZCO'ZU)Z/EZ(?\/;ZS'
=1 =1 =1

By reasonning the same way as for H; and H’, we see that

(139) |H, - HY| < Clle(®)]|gze 27"

Because of (84) and because of the elliptic equation satisfied by a soliton, we have that
(140) H =0.

Thus,
(141) |Hi| = |H1 = Hi| + |H] = Hy'| + |H{'| < Clle(t)ll2e %",

The proof of Proposition 23 is now completed. m|
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Now, we would like to study the quadratic terms in ¢ of the development of H[P + ¢]. They are
contained in Hp[e](t).

Let A = B, be a breather (we note Ay := dy,A and Ay := dy,A). We define a quadratic form
associated to this breather:

b ._1/2_5/225/22 / 2E/42
Q, glel = 5[ €5 A €+ Ase"+5 | AAxe™ + 1 Ae
(142) +(B* - a?) ( / e;-3 / A262)+(a2+ 52)2% / €® =: Qqplel.

From [5], we know that the kernel of this quadratic form is of dimension 2 and is generated
by dx,Bap and dx,Bap, and that this quadratic form has only one negative eigenvalue that is of
multiplicity 1:

Proposition 26 (Proposition 4.11, [33]). There exists yZ g >0 that depends only on «, B (and does not
depend on time), such that if e € H*(R) is such that

(143) /Ale = /Aze =0,

then
1 2
(144) Q. glel > uh gllell?, — —— ( / eA) :
tua,ﬁ

Remark 27. /,LZ ¢ 1s continuous in &, f. Note that translation parameters are implicit in QZ g

Let Q = R« be a soliton. We define a quadratic form associated to this soliton:

aleli= [&.-F [ [@ers [aaue+ ] [
(145) +c (/ €2 - 3/Q2€2) + CZ% / €2 = Q) clel-

By the same techniques, such as those presented in [5], adapted to the quadratic form of a
soliton, we may establish that the kernel of this quadratic form is of dimension 2, and is generated
by dxQ and J.Q, and that this quadratic form does not have any negative eigenvalue (see Section
5.2 (Appendix)). After that, from Seciton 5.3 (Appendix), we deduce that the coercivity still works
when we are orthogonal to Q and J,Q. More precisely,

Proposition 28. There exists uS > 0 that depends only on ¢ (and does not depend on time), such that if
€ € H%(R) is such that

(146) /Qe = /Qxe =0,

then
(147) Qle] = pillell?,

Remark 29. ui is continuous in c¢. Note that translation and sign parameters are implicit in the
notation Q3.

We would like to find a similar minoration for H, (which is a generalization of Q).
For j =1,...,], let us define for € € H?,

, 1 5 [~ 5 [~ — 15 [~
Qle] = E/ejzcx(p]-—E/P2e§¢j+E/P%ez(p]-+5/PPxxez(pj+Z/P‘Lez(pj

~ 1
(148) + (b]z - Ll]z) (/ G?((P] -3 / Pzez(p].) + (a]2 + [7]2)2E / €2§0]‘,
such that

J
(149) Hole(t)] = ) @le(t)].
j=1
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Let us define

1 5 ~2 5 ~2 ~ ~ 15 ~4
Q]'[G] = E/eix@j—if x§07 /ij€2g0j+5/Pijxx€2§0j+Z/P]' €2§0]'
(150) +(b]2—a]2) (/ei(pj—S/fj ez(pj)+(ﬂ]2+b]2)2%/€2(pj-

’ ’
Notations QZ, (Qf) , Q; and (QIS) will also be used.
We note that the support of ¢; increases with time, so that Q; is near a ng g Or a Q:, when
time is large (note that Qb is the canonical quadratic form associated to the breather FB\;;, but the

canonical quadratic form assoc1ated to the soliton R, is Q° )) However, firstly, let us study the

cr+co,(t
difference between Q; and Q. Using the computations carried out at the beginning of this part

(those done for the linear part) and Sobolev inequalities, we obtain:

(151) Qile] - Qjlell < Ce™*"lell?

HA(R)*

Lemma 30. There exists u > 0 such that for p > 0, there exists T; such that, if T* > T, forall € € H?(R),
forall t € [t*,T],

if
(152) [Baweyoi = [ Batrefoin -0,
then
2
(153) Qllel /(e e +exx)(pk(t)——(/eBk(t) @k(t)) ~pllel2,

Proof of Lemma 30. The idea is to write Qb[ | as a Qu p,l € /(pb ] plus several error terms. Let j such

that P; = By. We will note @1 ; := ¢/(52) — /(522 and @y = 9”(52) — (2222, which will
be useful to write the derivatives of (p j. We recall that they have the same support and bounding
properties as ¢;. We have

2 (pz. 2 goz. 2 (p 2 @2, (P
2 _ 2 € "1 e "y 1 € 1] 1 € P21,
J o= [ [ o 1) Gnie; 16 Gt (8

(p/
€xy €y 1 €xy€ (P1] €x€ P1,jP2 1 €€ 901]
154 +2 + -= .
(159 S [ Gz [ Gt o 1P
We observe that, for T; large enough and by using the inequalities that define 1), the error terms
can be bounded by 57 ||e|| < 100 ||€|| . The computation for the other terms is similar and the
same bound can be used for the error terms.
Now, € /(pZ satisfies the orthogonality conditions.
This means that we can apply Proposition 26, and we have
1 _\2
(155) Quypile @il > lley o}l - " ( / e\/fpin) :
k
To finish, || /(pi“ip is [(e?+ €2 + €2,)pl(t) plus several error terms as in (154). O

Lemma 31. There exists u > 0 such that for p > 0, there exists T; such that, ifT" > T3, forall € € H2(R),
forall t € [t*,T],
if

(156) [ Riveoi = [ Rutefoi -
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then
157) and>u/X¥+é+én¢ﬁw—Mﬂ;

Proof. As in the previous proof, we write Q/[€] as Q, [e,/(pf] (with Q = R)) plus several error terms,
that are all bounded by p||e||2 , if T} is chosen large enough. However, Q;, [ew/(p?] is not appropriate

. . s 5 o .
in order to have coercivity, it is with Q° e [e,/ ] that we have coercivity. That is why, we need

to bound the difference between Q¢ [e4/¢}] and @ |e\/#7]- This difference is

cr+co,(t)

~2 1
(158) co,(t) (/ G?C(Pj_3‘/Rl ez(Pj)+Clc0'l(t)/€2(Pf+CO’l(t)2§/€2(P]‘,

which can, because of the bound of co,(t), for T} large enough (depending on A), be bounded by

pllel2.
Now, e4/¢] satisfies the right orthogonality conditions, and as in the previous proof we may
apply coercivity. m|

Proof of Proposition 24. We will now use the Lemma 30 and it’s version for solitons for € = &(¢). From
this, we deduce that for p > 0 small enough,

J

(159) 2. Qle®] > ulle®)l? UlmmJj

j=1

for a suitable constant u > 0. This means that for T large enough, by taking, if needed, a smaller
constant y,

(160) Hale(t) > pllel, (/EmJ_)

The proof of Proposition 24 is now completed. O

2.5. Proof of Proposition 9 (Bootstrap). We recall that p, from Proposition 9 is denoted by p and
T, is denoted by T in what follows, in order to simplify the notations. We do the proof that follows
under the assumption (47), so that the Propositions proved above are true for t € [t*, T].

The aim of this subsection is to complete the proof of Proposition 9 by using the Propositions 23
and 24.

We note that by Lemma 18, the conservation of F[p](t) and the definition of H[p], we have for
allt € [t*,T],

2

(161) [HIPI(T) ~ HIp)(e) < Some

Thus, for all t € [£*,T],

CA? —26t‘

(162) HIpl(e) < HIpIT) + 5

From Proposition 23:

HIP + €](t) - Z(F (t)+2(b2—a2)E[ i1() + (a7 +b2)2M[ i1(t)) — Ha[e](t)
j=1
< Ce 20t 4 C||e||H2e—29f +Cllell3,

< —26t
(163) Ce + 100 || |2,

To obtain the last line, we use ||&(t)||2 < CAe‘Gt and by taking T* > T for T; large enough
(depending on A), ||¢||pz < C and Clle(t)||z2 < 100, and thus C||€(t)|| < 100||e€(t‘)||
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We remark that if P; = By is a breather, then F[ il E[P ] and M[I;]] are all constants in time. If
P; = R; is a soliton and we denote g the basic ground state (i.e. the ground state for ¢ = 1), we have
the following:

(164) MIRI(t) = (c1 + co()> M[q],
(165) E[R/](t) = (c1 + co (1)) Elq],
(166) FIR/1(E) = (c1 + co(t))”* Fq].

Using that, we can simplify R;(t) := F[E](t) + ZCZE[EZ](t) + CIZM[EI](t) as follows:

Ri(t) = (cr + cos(t)) > Flq +2c1 (er + cos(t)) > Elgl + 2 (c1 + cos(8) > M[q]

5/2 3/2 1/2
t t t
(167) =C15/2 (1+—C0’é( )) Flq] +2c, A2 (1+—C0’2()) E[é]]+c15/2 (1+—Co’é()) Mlq].
1 1 1
Note that from Lemma 19, |cq(t)|> < CA3e%¢ =20, That is why, if we take T: eventually larger,

co,(#)]® < Ce™2%. For this reason, we will do Taylor expansions of order 2 of (167)

5/2 )
co,(t 5co1(t)  15c¢q,(t
(168) (1+ o,Czl()) 143 Oclz()+§ o,zc(2) £0 (2%,
l
3/2 2
co,i(t 3coi(t) 3colt
e 1) =g o,
)
1/2 ’
co,i(t 1coi(f) 1colt
(170) (1+ O'Cll()) =140 1o o)
l

That allows us to write
Ri0) =} (Flql + 26lg)-+ Migl) + ) cost)3Flal + 3Elg) + Mg

3

(171) ¢, %o, (1)? ( Flgl+Elq]- éM[q]) +0 (7).

Now, c5/ 2 (Flq] + 2E[ ]+ M[q]) is constant in time. For both other terms, we use that M[q]
Elq]l =-% and Flq] = and we see that 51—“[q] +3E[q] + %M[q] =0and 1—85F[q] + %E[q] - %M[q]
That allows us to wr1te

4

2
0.

(172) Ri(t) = 126/ +0 (7%

From this, we deduce that
(173) Ri(t) = Ri(T) = O (e72%").

By using that H[p]|(T) = H[P](T) = [~](T), the equations (163) and (162), Claim 25, and the
fact that for t > T, O(Jle(®)|I? ) < 100”6”H2, we have

J
Hale](t) < Hp](t) - ;G[Pj](t) +2(67 = @)EIP]1(E) + (a? + B3P MIP (1) + Ce ™2 + o le(b) |2

PY(T) - Z(P Py1(t) +2(b7 = a})E[P;1(t) + (a7 + b7)>M[P;](t))

A2 —26t
+C (@ +1) 100||8(t)||
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J
< HIPIT)~ Y (FIPI(T) +2(67 ~ a?)E[P;(T) + (a3 + b2’ M[P|(T))
j=1

A? —20t [ 2 \
e (@ +1) O+ D5 (RiD) = R0

A? oot , H 2
a74)  <C|5+1] e+ o le®Ia.

From Proposition 24, we deduce (by taking a smaller constant u):

AZ B 1 K ~ 2
a75) el <€ (G +1) e+ 25 [ Bt
k=1

We will now need to establish a result close to Lemma 18.
Wesetforall j=1,...,]:

1
(176) mj(t) := / Epz(t,x),/(pj(t,x)dx = mi[p](t).
Lemma 32. There exists C > 0, T, = T)(A) such that, if T* > T}, forall j = 1,...,], for all t € [t*, T],
(177) |mj(T) —m;(t)| < L p2p-20t

o2t
Proof.

Loy oo L [(32,8 )P 1 2

2
1 Y1, 1 ) X 91
17 — [ pp—L = [ p T
(178) +4(6t)2/p p(P?/z 4/p 52\

From the inequalities that define i, we find

d 1 C
(179) a / L2 ) Joitt 0dzl < _/ 2 497 + 5.
dt zp (p] 62t Q/(t)UQj+l(t) Px p P
From now on, we can follow the proof of Lemma 18. |

Now, we observe the following;:

(180) /(13+ 8)2\/;2=/73;2+2/E8\/¢72+/82\/¢72+Err,

where Err designates the other terms of the sum, which we consider as error terms, and for which
we will show now that they are bounded by Ce~%.
For i # j and any h (if P; = By is a breather),

o 6t+0]'+1t 8
’/Piph\/(p]’ < C/ e 2ot gy

5f+(7]'t
(181) < Ce ™9,

and
~ ~2
el <[ 7o) ([ 4
< Ce %t |e]| 2
(182) < CAe 9e=2t < Ce®,

where T* > T7 with T} being large enough depending on A.
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If we use the calculations we made in the proof of Claim 25,

~2 =~2
/Pj—/pj\/aj<Ce9f

That proves the bound for the error terms. Now, we study the variations of (180).
~2 —~2
We know that f P, = f By has no variations.

We can apply Lemma 32 for / (13 + 8)2\/@ .
By writing the difference of the equation (180) between t and T, and recall that ¢(T) = 0, we

deduce, for T* > max(T, T;),
A? -6t 2
SC(@-I-l)e +||€||H2

I

(183)

Az —Qt
< i
18) (g 1)+ ighele
Thus,
] 2
A? _ 1 ~
ullell?, < C((52 ) 29t+—2(/ EP]'\/(P]‘)
t U =
A4 29t
oA i}
89) C (g 1) 2+ 5,
Therefore,
4
(186) le(®)I?, < C A ) e,
B o4t

Before finishing the proof, we need to find a better bound for |cg(t)| than CAe~2% given by the
modulation. For this, we study the localized mass around R;:

Mi0) =5 [ 000 0
1 _ 2
-5 [ (Fo+e0) gi
=5 [ Forgio+ [Foctgin g [ cwieio
= %/El(f)2+/§z(t)€(t)gols(t)+0 (€72) + O (lle®)llze %) + O (||s(t)||§p)
_ 1/2 A_4 20t
(187) = (c1+cou(t)) " M[q]+ O ST +1]e ,

by modulation assumptions and (186).
That is why,

M3(T) = M5 (¢) = :(c, +co(T)* = (c1 + co,,(t))”z] M[q]+0O (((’3% + 1) e—%’f)

= :cll/2 — (a1 + co,z(t))l/Z] M[gq]+0O ((:S% + 1) —29t)

1 2 A* 20t
(188) = _Ecl colz(t) + 0 (co(t) )] M[q]+O ((6T + 1) ) )

On the other hand, from Lemma 18,

(189) MS(T)— MS(t) = O (A_Ze—zet)
l l - 52t ’
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We note that

1 _
5 Peoit) + O (con(t))

= |cou(t)] ‘—%‘”2 +0 (coy(t))

(190) |COI( >| i ,2,

if T; is eventually larger, with respect to A. Therefore,

4
(191) |cos(t)] < C (%+1) e720t,

By using (186), the mean-value theorem and Lemma 19, for t € [t*, T],

lp() = P®)llr2 < lle(®)llggz + IP() = P(#)l| 2

K L
<C (\/ (;% + 1) e % +C (Z(|x1,k(t)| +[x0k(t)]) + Z(|xo,l(t) +co(t)t| + |Co,l(t)|))
=
A ) T,
/6T+1) 6t+CZ( / xz,k(s)ds)

<c (
+C ZL: [T (x('),l(s) + cé/l(s)s) ds /tT co,1(s)ds /tT cé/l(s)ds

=1

<C (E + 1) e %1+ C (/ lle(s)| g2ds +/ e_esds)
t t

A4
(192) <C (E + 1)

We take A = 4C (where C is a constant that can be used anywhere in this proof) and

T :=max(T},T;, T;, Ty, T2, T, T3, T§)

xlrk(s)ds +

+ +

|

(depending on A), where T; := T;(A) is such that for t > T; 4 < 1. And thus, for all f € [t*,T],
P & 8 8

87 5%t
(193) C A—4 +1 2C = é
o4t 27

which is exactly what we wanted to prove.

3. p IS A SMOOTH MULTI-BREATHER

Our goal here is to prove Proposition 10.

3.1. Estimates in higher order Sobolev norms. Firstly, we notice that the proposition is already es-
tablished for s = 2. We note also that if this proposition is proved for an s > 2 with a corresponding
constant A, then this proposition is also valid for any s’ < s with the same constant A;. This means
that A can possibly increase with s and that this proposition is already established for 0 < s < 2.
From now on, we can denote (as before) p, by p, T,, by T and p, — P by v, and make sure that the

constant A, that we will obtain in the proof does not depend on n (although it will depend on s).

For the constant 6, we will take the usual value: 6 := g—; For the constant T*, we will also take the

constant T* that works for Proposition 6.

We will prove the proposition by induction on s (it is sufficient to prove the proposition for any
integer s). We assume that for any s > 3, the proposition is true for all 0 < s’ < s —1. And we prove
the proposition for s.

Let us deduce from the (mKdV) equation the equation satisfied by v:

J
vt = py _ijt
=1
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] )
=- Pxx+P3-ZPfxx-ZPf)
j=1 =

J
j=1

X

]
(194) = —| 0y + 03 +302P + 30P% + P? — Z Pf') .
=)

Firstly, we compute 4 f (d5v)? by integration by parts:

& [@wr =2 [@oiao)

]
=-2 / 5 vyy + 0% +30%P + 30P? + P3 - Z Pf) (d50)
j=1

J
= 2= [ 9T PP- ) PP lo-2 [ 357(0%)(d50)
Ja{p-ga)e-
(195) 6 / 357 (02P)(350) — 6 / 357 (0P?)(350),

because [(95+30)(d5v) = — [(95+20)(9510) = 0.
We will now majorate each of the terms of the obtained sum.

] )
/aJZCsH (p3ZP]3)U < ||Z7||L°°/ a>2cs+1 (P3ZP?)
j=1

=1
< Cllollgie ™% Sobolev embedding and cross-product result
< CAe % P™/2 by Proposition 6
(196) < CAe™ < CAZ e,

where C is a constant that depends only on s.
We observe that

8;+1(y3) = 3(8§C+1U)02 +6(s + 1)(d50)vxv + Z1(v, vy, ..., ai_lv),
(197) a;+1(02p) = 2(8;+1U)UP +2(s + 1)(350)(vP)y + Z2(v, vy, ..., 8;—101 PP, .. aiﬂp)l

where Z1 and Z; are homogeneous polynomials of degree 3 with constant coefficients.
Now, let us look for a bound for / 231(03)(d50). Firstly, by integration by parts,

[oream =3 [ (@), +a6+1) [@ereh+ [@oz

6(s+1)-3
(198) -2 D22 [@oped.+ [ Gz
Then, we majorate each of the terms of the obtained sum:
[@0r@| < Clielslioalis [ @502

< Clol, / (@507

< C(lIpl + IPll) A" / (@507

29
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(199) < CCoAe™% / (50)? < CAs_1e™% / (d30)2.

We have actually shown in the computation above that ||v||12LI2 can be bounded above as ||v||g2, and

therefore the degree of ||v||y2 can be lowered without harm in the upper bound. We will use this
fact again for the rest of the proof. In fact, all what it means is that, for several terms, what we have
is more than what we need.

By the Cauchy-Schwarz and Gagliardo-Nirenberg-Sobolev inequalities,

s—1
‘ [@on|<c [ |a;v|( |a;'v|3)
0

s'=

1/2 s-1 1/2
<c(/|a;v|2) Z(/w;’mﬁ)

s’=0
1/2 s-1 1/2
<[] 3 ([ 1or)( [ 1or)
s'=0
s—1
<c . ([uor) ( [iaors [100700)
s’=0
(200) < CA? e+ CA;qe7” / 19502,

Similarly, we bound f d31(v2P)(d5v). By integration by parts,
/8;”(222P)(8§v) = / ((8§v)2)x vP +2(s + 1)/(8§v)z(vp)x + /(8;0)22
(201) =(2s+1) / (50)*(vP), + / (050)Z,.

We majorate each of the terms of the obtained sum.

' [@oren,

(202) < CAe™% / (350)%.

< ol + [on]li) / (@507

The upper bound of | / (8§0)Z2| is similar to (200) above:

(203) ‘ [@oz:

< CA?_le_zet +CAg_1e7% / |8§v|2.

f 21 (vP?)(d5v) remains to be bounded.
By integration by parts,

[artoriao = - [ aerorte)
- [@m)ertor -+ [ (@07) 0o,

—(Hz)zﬁ / (950) (95710) (P?),, + / (9370) Z5(0, 0, ., 93 70)

=3 [ (@or), 2+ +1) [@rore,

_ S(SZ - / (057 "0)), (P)xx + / (0370) Z3(v, 0x, -, 35 10)

2s 2* 1 / (920)2(P2), + / (35710) Z3(0, 05, - 910,

(204) =
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where Zg and Z3 are homogeneous polynomials of degree 1 whose coefficients are polynomials in
P and its space derivatives. We have: |Z3| < C (Zi;lo |8§/v|).
Therefore,

(205) ' / (95710) Z5

Thus, by taking the sum of all those inequalities, we obtain:

& [@oreses ey [@oped,

< CAZ e

(206)

< CA?_le_zet +CAg_1e7% / |8fcv|2.
.. . d s—1.,\2p2.
Next, we perform similar computations for 7 [(d3 ™ v)"P*:

% / (7 1v)?P? =2 / (57 10;)(0Sw)P? + 2 / (57 10)*P, P

J
=-2 / J (vxx +9% +30%P + 30P? + P2 - Z Pf) (05 1o)P?

=1
]
(207) -2 / (957 10)2 | Py + pr P.

j=1

Let us study each of the obtained terms.

Firstly,
-2 [@mo@ or =2 [ @ ot +2 [0 e,
-3 / (@0)2(PY), ~2 / (@50)( 0P
(208) -3 / (@0)2(PY), + / (@102 (P .
Indeed,
(209) ‘ / (95710)2(P?)xax| < CA%e ™21,
Secondly,
J
(210) / J3| P3 - Z Pf (957 '0)P? < CA2 o720
=1

can be obtained similarly to the first part of the proof (by starting by an integration by parts to have
d572v at the place of 95710).
Thirdly,

/8; (v%) (95 'v)P? = 3/(8iv)(8§_1v)02P2 +/Z4(v, Uy, oy 05 10)P?
(211) = —% / (@510 (0*P?), + / Z4P?,

where Z4 is a homogeneous polynomial of degree 4 with constant coefficients. Both terms are easily
bounded by CAZ_ ¢~29.

Fourthly, for [ 95 (v?P) (957 'v)P? and [ 5 (vP?) (95~ 'v)P2, we reason similarly.
Fifthly,

J
(212) l / (95 1) (Pxx + Z P]?’) P| < CA2 720!
X

=1

is clear.



32 ALEXANDER SEMENOV

Therefore,

(213) % / (5 1v)*P? +3 / (950)*(P?)y| < CAZ 729,
We set

(214) E(t) := / (v)* — (25 +1) / (057 10)2P2,

By putting the both parts of the proof together:

(215) ‘%F(t)

< CAg_le_ZGt +CAg_1e™ % / |950]2.
Because | f (8§‘1v)2P2| < CA%e729t we can write the following upper bound:
(216) / (950)* < |F(t)| + CA% 729",
Therefore, we have, for a suitable constant C > 0 that depends only on s,

(217) ‘%F(t)

< CA? e + CAsqe” Y |F(t)).
For t € [T*,T], by integration between t and T (we recall that F(T) = 0),

T
F0)) = P £l =| [ o

/
<
t

aF(U)

do

T T
<CAZ / e 29946 + CAs4 / e 99|F(0)|do
t t

T
(218) < CA? e+ CAs,4 / e 99|F(0)|do.
t

By Gronwall lemma, for all ¢ € [T*,T],

T o
|F(t)] < CA% e + CAs4 / e 97CA? e exp ( / CAs_le‘G”du)da
t t

T
< CA? e+ CA? [exp —Cf;s_l e‘et) [ e™3%% exp (——CAgs_l e_e") do

A T
< CA?_le_ZQt + CAg_1 exp %) / e 30945
t

< CAg_le_zet + CA?_1 exp %) e 30t

0
(219) < CAf:’_1 exp (%) e 20t
Therefore,
(220) / (v)* < Age™20t,

where A := CA;”_1 exp (%) with C is a constant large enough that depends only on s.

This conclude the proof of Proposition 10, and so of Theorem 2
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3.2. Uniformity of constants. We conclude this section with an explanation regarding Remark 3.

In the proof above, the constants that we obtain A, T*, 0 do depend on P;(0) (1 < j < ]). Actually,
we may characterize this dependence. In fact, they do not depend on the initial positions of our
objects in the case when our objects are initial ordered in the right order and sufficiently far from
each other.

Theorem 33. Given parameters (9), (10), (11) and (12) which satisfy (13), there exists D > 0 large enough
that depends only on ay, B, c; such that if

(221) Vi>2, x;(0) > x;-1(0)+D,

then the following holds. We set 0 := g—;, with B and T given by (39) and p(t) the multi-breather associated
to P by Proposition 7. There exists As > 1 for any s > 2 that depend only on ay, f, c; and D such that

(222) VE>0, |lpt)—P(t)|lgs < Ase™?".

First, we prove that for any D > 0, if (221) is satisfied then the constants A; and T* do depend
only on ay, Bk, c; and D. At the end, we will prove that if D > 0 is large enough with respect to the
given parameters, then we can take T* = 0.

To establish the validity of this theorem, it is enough to read again the whole article and to
make sure that on any step of the proof, there is no dependence on initial positions of our objects
when our objects are initially far from each other for the constants C and then A and T* (but, these
constants may depend on D). This is the case, but we should change a bit the way we write our
results.

For Proposition 3, we should write

(223) |29} Pj(t, x)| < Ce Plr=uit=x0,

Therefore, in Proposition 4, we have nothing to change, but the constant C do depend on D. This

will also be the case in the following propositions and lemmas of this proof.

We should replace o;t for the definition of ¢; by o;t + M

tions. More precisely, we will have for any j =2,...,] -1,

x—ojt— M) (x — ot — xj(0)+;]'+1(0)

to take account of initial posi-

(224) @it x) = ¢( — = ,

and similarly for other definitions.
After having done the modulation with C and T* depending on D, for Proposition 15, we should
write:

~ B pr
(225) |91P;(t, x)| < CemzPuit=x10lezt,

Therefore, with these adaptations, the same proof works to prove that A; and T* do depend only
on Dék,ﬁk, C| and D.

Now, given ay, i, c;, we choose Dy > 0 in an arbitrary maner. Therefore, we get As;(Dy) and
T*(Do) associated to Dy. Let A := v; —v; the maximal difference between two velocities. We set
D := Do+ A-T*(Dy). Therefore, if we suppose (221) in t = 0 for D, then we have (221) in t = =T*(Dy)
for Dy. Therefore, by appliying the intermediate result for Dy, we obtain the desired conclusion
where A; = As(Dy).

4. UNIQUENESS

p is the multi-breather constructed in the existence part. The goal here is to prove that if a solu-
tion u converges to p when t — +oo (in some sense), then u = p (under well chosen assumptions).
We prove here two propositions. For both of them, we assume that the velocities of all our objects
are distinct (this was also an assumption for the existence). The first proposition does not make
more assumptions on velocities of our objects, but it is a partial uniqueness result as we restrict our-
selves to the class of super polynomial convergence to the multi-breather. The second proposition
assumes that the velocities of all our objects are positive (that is a new assumption and it is needed
because this proof uses monotonicity arguments).
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4.1. A solution converging super polynomialy to a multi-breather is this multi-breather. The goal
of this subsection is to prove Proposition 5.

Remark 34. Note that in Proposition 5, we don’t make any assumption on the sign of v or v,. This
uniqueness proposition has the same degree of generality as Theorem 2.

Proof of Proposition 5. Let p(t) be the multi-breather associated to P by Theorem 2. Recall that for
any s,

(226) lp(t) = P()]
for a suitable 6 > 0.

Let N > 2 to be chosen later. We take u(t) an H? solution of (mKdV) such that there exists Co > 0
such that for t large enough,

4 =0 (),

C
(227) lut) = P(0)l2 < -

From that, we may deduce that for ¢ large enough (namely, t > 2Cy along with the previous
condition),

229 ) = POl < 557

Our goal is to find a condition on N that do not depend on u, such that the condition (228) on u
for t large enough implies that u = p.
Because of (226), the condition (228) for t large enough is equivalent to: for ¢ large enough,

1
(229) ||u(t) —P(f)”Hz < NI

We denote z(t) := u(t) — p(t). Our goal is to find N large enough that do not depend on z, for
which we will be able to prove that z = 0, given

1
(230) Izl 2 < NTT

for t large enough.
Because z is a difference of two solutions of (mKdV), we may derive the following equation for
z:

(231) zZt+ (zex +(z+p) = p7), =0.

We divide our proof in several steps.
Step 1. Modulation on z.
For j =1,..,],if P; = By is a breather, we denote

Oy, B
(232) K;:= ( 8,;82 )

if P; = R; is a soliton, we denote
(233) K; = dyR;.
We may derive the following equation for K;:
(234) (K), + ((K7) o + 3P]?I<j)x =0,

For j =1,..,], if P; = By is a breather, let ¢j(t) € R? defined for t large enough and if P; = R; is a
soliton, let c;(t) € R defined for ¢ large enough such that for

J
(235) () =2t + ) (K (t),
j=1

where ¢;K; is either a product of two numbers of R or a scalar product of two vectors of R?, the
following condition is satisfied. For any j =1, ..., ], for ¢ large enough,

(236) / ZOK,(OJei(t) = 0,
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where ¢; is defined in Section 2.2 (in this proof, it is OK to take 6 = 1).
It is possible to do so in a unique way, because the Gram matrix associated to K;(t)/@;(t),

1 < j <], is invertible; which is the case because K;(t)/@;(t), 1 < j < ], is linearly independent.
This is why cj(t), 1 < j < ], are defined in a unique way. For the same reason, c;(t) is obtained

linearly from f Ki(£)z(t)\/pr(t), 1 < k < ], with coefficients that depend only on Ky, 1 < k < J. This
is why, from Cauchy-Schwarz, we may deduce that

Lemma 35. Forany j =1,...,], for t large enough, there exists C > 0 that do not depend on z, such that
(237) i ()] < Cllz(t)]l 12,
(238) IZ()ll 2 < Cllz(E)l] 2.

Moreover, the Gram matrix is C! in time and invertible. This is why, it’s inverse is C Lin time.
Because f K;z+/@; are C! in time, we deduce by multiplication that c;(t) are C! in time.
By differentiating in time the linear relation that defines c;(t), we see that c;(t) is obtained linearly

from ka(t)z(t)\/(pk(t), 1 < k < ], with coefficients that depend on Ky, 1 < k < | (and their
derivatives) and linearly from % f Ki(t)z(t)\pk(t), 1 < k < ], with coefficients that depend on K,

1 < k < ]. Because it is easy to see that % /Kk(t)z(t)\/(pk(t) may still be bounded by C||z(t)]|;2, we
deduce that for any j =1, ..., ], for t large enough, there exists C > 0 that do not depend on z, such
that

(239) (O] < Cliz(D)]l 2.

We may derive the following equation for z:

(240) i+ (Zux +32p%), = — (32%p + 2°) +ch(t)Kk—3ch(t) (P2 - p))Ky). -

Step 2. A bound for |c;(t)| The goal here is to improve (239).

Lemma 36. Forany j =1,...,], for t large enough, there exists C > 0 and 6 > 0 that do not depend on z,
such that

(241) {0 < CIZ(H) g2 + Ce™ " lz(B)ll g2 + Cllz (817,
Proof. We may differentiate (236):

O— — [ ZK; \/—
- / 2k + 200, v7+ [ 7K (v

J
— - [ 33, K- [ G2+ ), K+ Y, [ (0K Ky
k=1
J
=3 alt) / (cx(t)- (P2 = p)K)., ) K/ - / 2 ((Kpr +3K,P2) iy + / 2K (Vo
k=1

We know that (\/(T] ) and ( \VP; ) are bounded (from inequalities established in Section 2.2). This
x t
is why, f zK; (\/@) is bounded by C||z(t)||p;2. For the same reason, after eventually doing an in-
t
tegration by parts, f (Zxx +32p?), Kj/@;j and fE ((K]-)xx + 3K]-P]2)x \@; are bounded by C||z(t)|| -

/ (322p + z3)x Kj+/@j is clearly bounded by C||z(t)||f{2. Finally, we see that (Pi — p?)Ky is exponen-
tially bounded in time (in Sobolev or L* norm), and using Lemma 35, we deduce that

(242) / (cx(®)- (P2 - pP)Ke), ) K7

is bounded by Ce™%||z(t)|| 2, for a suitable O > 0 that do not depend on z.
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This is why, we deduce that for any j = 1,...,], for t large enough, there exists C > 0 and 6 > 0
that do not depend on z, such that

J
> [ e k) ki
k=1

We recall that for any (vq,v2) € (IR)2 or (IR2)2,03 € R or R?, we have the following equality
between two elements of R or IR? (where vectors are denoted as a colon)
T
(244) (01-v2)v3 = (vf (v203))",
where T denotes the transpose.
First of all, because f KkK]T\/gTJ converges exponentially to / KkK].T, for k #j f KkK].T is expo-

nentially decreasing, and from (239), we may write that for any j = 1, ..., ], for t large enough, there
exists C > 0 and 6 > 0 that do not depend on z, such that

T
(c;.(t)T / KjK].T)

Now, in the case when K; € RR?, using that it's components are linearly independent, using
Cauchy-Schwarz inequality, we deduce the desired lemma. O

(243) < ClIZ()llg2 + Ce™ " Nzl + Cllz(D1F

(245)

< ClZONlgz + Ce™ " Izl + Cllz()II3,2,

Step 3. Coercivity.
We define the following functional quadratic in Z:

1 5 15
H(t) =5 Eﬁxx—zfpziz /Px /prxw T /P“EQ
2 2“'2 : 221
+Z b —a Zp; -3 Z2°Q; +Z(a +b) 22;.
=

We will prove the followmg lemma:

Lemma 37. There exists C > 0 that do not depend on z, such that for t large enough,

2
(216) 012, _CH<t>+cZ( IR

j=1

Proof. We denote Q; the quadratic form associated to P;. We remind that

2 15
/ Exx /12 2+ / ]) &2 5‘/1]'(1]‘)“82 4 /1;’182
+ bz—a2 e2 -3 [ pP?¢? + a2+b2)2 —1 &2
j J‘ x j j ) ’

In any case, we have that for any j = 1,...,], there exists u; > 0, such that if ¢ € H? satisfies
f Kje =0, then we have

1 2
(247) Qe = el - ( / gpj) |

Here, we apply this coercivity result with ¢ = Z/@; for which the orthogonality conditions are
satisfied. Thus,

2
(248) Ey 1 < CQENFI+C ( / zpj\/aj) |

We denote

Qle] := /xm——/pex(m /px€¢]+5/mxe(m+—/w(m
+(b]2—a]2) (/ e%goj—3/p2£2goj) (u +b2) E/S ©j
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and we observe that
J
(249) H(t) = Z Q[z()]

In Q’r(t) we may replace p by P; with an error bounded by Ce “0H1Z(H)|1? +2, because of (226)

mainly. After that, the expression obtained may be replaced by Q;[z(t)y/¢;(t)] with an error
bounded by 3 SlIz@)|1? o (cf. calculations done in the proof of Lemma 30). For the same reason,

lzy/o; II? 7 May be replaced by f Z2 +72 + 722 )g0] with an error bounded by 7 ||z(t)||2 Therefore,
because of

(250) ||Z||H2—Z [@+242)0,

because of the fact that P;/¢; converges exponentlally to P;, and the fact that & may be as small as
we want if we take t large enough, we deduce the desired lemma. O

Step 4. Modification of H for the sake of simplification.
We define

—~ 1 5( - — — ~ —
H(t) :=/[ZE§X 2((Z+P)2(Z+P)§—Pzpi—ZZPpi—szp2px)+ ((Z+P)6—P6—62P5)]

1 22
E (J 1/2901

||z(t)||“;’{2). We can thus claim:

I

J

2 (b;_a;)/

=1

1~2_1 ~ 4 4 =3
B (E+p) -p-") | @)

We observe that the difference between H and H is bounded by O

—

Lemma 38. There exists C > 0 that do not depend on z, such that for t large enough,

2
(251) IZ(4)]2, < CH(t)+C Z ( / ZPj) :

Step 5. A bound for %
Lemma 39. There exists C > 0 and 0 > 0 that do not depend on z, such that for t large enough,

dH

(252) -

—IIZ(t)II +Ce M ZONm Nzl + CIIZO 2201,

Proof. We develop the expression of H(t), we differentiate each term obtained and we use (240),
the fact that p is a solution of (mKdV) and the fact that (¢;), = =% (¢;),, where ¥ is bounded
independently from z because of the compact support of ¢;. We obtain several sorts of terms after
doing several integrations by parts and several obvious simplifications.

Several terms are clearly bounded by one the bounds of the lemma, because z or z appears
with a degree larger than 2. As an example, we show how to deal with f ZxxxZZxxP. We use that

z=7Z— Z;zl ¢jK;, and we obtain

] J
/Zxxxzzxxp = ‘/Exxxﬁxxp - /Exxx (Z C]'Kj)zxxp - / (Z Cj (Kj)xxx)zzxxp
. =

j=1

j j
+ / (Z cj (Kf)xxx) (Z Cfo)ExxP~

It is easy to see that any of those terms is bounded as we want in the lemma (several of them are
bounded by ? |IZ(¢)]2,,, the last one is bounded by C||Z(t)|| 2 ||z(t)||§{2), because of Lemma 35 and of
(230).

H2’
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Other terms contain Z quadratically and contain (¢;) . And, (¢;), is bounded by <. This is why
that sort of terms is bounded by %||E(t)||f{2.

Several other terms can be, by doing suitable integrations by parts transformed in two following
expressions:

253 6] = 2(p2 = a2 3 2b22 5pp? 4 52 3 5
(253) ]Z‘ S (j—aj)(pxx+p)+(aj+ ].) pH PP+ 5P Prx ¥ 5P| P

J - ) i
~ 2 2 3 2,32 2 2 3 5
(254) 3;/2 Px »pxxxx—Z(b]‘ —aj) (pxx +p )+(aj +b].) p +5pps +5p pxx+§p _ @)

To deal with these two expressions, we use the elliptic equation satisfied by P;:

2 3
@55)  (Pj) gy ~2 (87 = 02) ((P)) o+ P3) + (a2 4 2) Py+5P; ()} + 5P (), +5P7 =0,

2
and the fact that [pxxxx -2 (bJZ - a]?) (pxx +9°) + (a}z. + bf) p +5pp2 +5p2pxx + 3p° | @j converges ex-

xx

2
. 2 .
ponentially to (P,),. ~2 (b2 = a2) ((P)),, + P}) + (a2 +b3)" P;+5P; (P))} +5P2 (P)),, +}P?, which
is a direct consequence from (226). This is why that sort of terms is bounded by %HZ(t)HEZ.
Other terms contain ((P]2 - pz) K]-), which is bounded exponentially, with ¢; bounded by ||z|| 2.

Those terms are obviously bounded by Ce=%||Z(t)||211z(£)]] p2-
Other terms contain Ky (or a derivative) and ¢; with j # k. In this case, this product gives an

exponential decreasing, and such a term is bounded by Ce~%||Z(t)||2]|z(t)|| 112, using (239).
Therefore, we are left with the following terms:

/

, - - - - - 15  _
ch(t)/[(K]-)xxzxx—101<]-zxppx—51<]-zp§—1o (1<]-)x,zp;gx—5(1<]-)xzxpz+Zszp‘1
j=1

+2 (b]z - a?) (Kj) zx =6 (b]2 -~ a]g) Kizp* + (a]g + b?)z K]E] @;.

We may replace p by P; in the preceeding expression with an error of Ce 1z 2 llz(D)l 2,
because of (239) and (226). This is acceptable, knowing the result we want to prove.
By integration by parts, we obtain several terms of the form c/(t) [ (K;j)..Zx (¢;) ,, which are

bounded by %|c;.(t)| Iz(t)]| z2- Now, from Lemma 36, we deduce that they are bounded by %HE(t)H%{Z +

Ce % ZWO 2 llz(O)l g2 + C||E(t)||Hz||z(t)||12L12, which is exactly the bound we want. And, we are left
with the following terms:

]
’ 2 15
2 Cf(t)/ [(Kj)xxxx +10 (K;), P; (Pj), +5K; (P), +10K;P; (Py) . +5 (Kj) ., P + —KiP}
j=1
2
2 (12— a2) (Ky),, - 6 (12 - a2) KPP+ (a2 4 02) K]-] Z0;

The last expression equals zero, because of the elliptic equation satisfied by K;, which we may
derive by differentiating (255). O

Step 6. A bound for 4 [ZP;.

Lemma 40. There exists C > 0 and 6 > 0 that do not depend on z, such that for t large enough, for any
i=1..,],

d [_
(256) ‘E / ZP;

< Ce™lz(t)lm2 + Cllz(B)I132-
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Proof. We observe that

257 [ENEDXILS
k=1

First, for k = j,

(258) JEE
for k # j,
(259) oo [am)| = [rpivan [ s pam [,

and it is obvious, from Lemma 35 and (239), that this is bounded by Ce=%|z(t)]| 2.
It is left to bound % / zP;. We use (231) and we obtain

(260) %/zpj:—/(zxx+(z+p)3—p3)xpj—/z((Pj)xx+P]3)x.

2

Several terms are immediately boundable by C||z(t)]| T2

parts and we are left with

(261) / z (pz —Pf) (Pj),

which is obviously bounded by Ce~%||z(t)||2, because of (226). O

we Kkill several others by integration by

By differentiation of a square, we obtain that

Lemma 41. There exists C > 0 and 6 > 0 that do not depend on z, such that for t large enough, for any

i=1..,],
2
d —

Step 7. A bound for ||z(t)||f2 in function of z(t).
Because we have chosen N > 2, because of (230), we may claim that for t large enough, the
integral

(262) < Ce”ZWD Nzl + CIZ® 212D

+00
263) [ 126 lieds
t
is finite.
Because of Lemma 35 and (230), we deduce that
(264) ¢j(t) =100 0.

Knowing this, from Lemma 36, we deduce by integration that

+00
1< [ lejelds
t
+00 +00 +oo
SC/ ||E(s)||szs+C/ e'es||z(s)||szs+/ ||z(s)||12qzds.
t t t

Knowing this and using (235), we may deduce that

+00

+00 +o0
12Ol < CIEE 2 +C / () ladds + C / e |2(5) | ods + / I2s)I1 s
t t t

+00 +oo
< CIE® 2 +C / IE(5) ladds + C sup 12(5) e + C sup (1)l / 12(8) leds,
t t

s>t s>t
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which implies, because ft+°° 1z(s)|| g2ds, sup,, lz()]|2e =% and sup,.; [1z(s)l 2 ft+°° ||z(s)||g2ds are
decreasing in time, that

(265)

+00 +oo
sup [l2(s) 12 < C sup [Z(s)]lp2 + C / () ladts + C sup 12(5)lze " + C sup [12(5)ll 2 / 12(5) l2ds,
s>t s>t s>t s>t t

and because ¢~ and ft |z(s)||2ds may be as small as we want for ¢ large enough (dependent on
z), we may deduce that

Lemma 42. There exists C > 0 that do not depend on z, such that for t large enough,

+00
(266) 2Ol < sup [|z(s)ll2 < Csup [[Z(s)llm2 + C/ 1Z(s)l[ z2ds.
t

s>t s>t

Step 8. Conclusion.
By integration, from Lemmas 38, 39 and 41, for ¢ large enough (depending on z), with constants
C and 0 that do not depend on z,

+00 +00 +00
IZONF2 < C/ —IIZ(S)Ilz dS+C/ E_HS”E(S)”HZ”Z(S)”HZdS+C/ I1Z(5) 1122 112(5) 117,25
t t

+a>1 +00 os
< Csup [[2(6) |2 / E(s)leds + C sup 17(5) / e |2(5) | 2dls

s>t s>t

+
+Csup E6)le [ 6.
s>t
~ (o8} ~ ~ +oo
Because sup,, ||z(s)||Hzft UIZ(s)llr2ds, supgs, 1Z() I [ e % [|z(s)||p2ds and
sup, s, |1z(s)l 2 / ||z(s)||%{2ds are decreasing in time, we deduce after taking the supremum of the
previous inequality and after simplification, that for ¢ large enough,

+00 400 +00
sup )l <€ [ SIEGmds +C [ e laelinds +C [ IR
t t

s>t

+00 1 +oo
<C [ SO leds +Csup a6l lme ™ + Csupla@le [ I=lieds,
t s>t s>t
and using (230), the fact that N =1 > 1 and the fact that e=% is decreasing faster than tNL_z, we
deduce that for t large enough,

+00 4
(267) sup [|2(8)[| 2 < C/ —IIZ(S)IIszS + C — sup [|z(s)|lu2,

s>t s>t

and using Lemma 42,

1 1 1 e
(268) sup [|z(s)llg2 < C/ SIZ(S)llpzds + C xm sup IZ(s)lp2 + Cxs / 1Z(s) | pz2ds,

s>t s>t

and because tN%Z can be as small as we want for ¢ large enough, we deduce that for ¢ large enough

and for a constant C > 0 that do not depend on z or on N,

+00

_ _ e 1 _
(269) IZ()|| 2 < sup [[2(s)| 2 < C/ EIIZ(S)IIszs + CtN—_2 1z(s) ]| g2ds.
t t

s>t

Let us pick T > 0 large enough such that for t > T, the inequality (269) works.
From (235) and Lemma 35, we know that for t > T (by taking T larger if needed),

~ C
@70) E®) e < -
This is why, the following quantity is well defined:

(271) A = sup{tV|Z(t) |2},
t>T
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which means that fort > T,

— A
(272) IZ(D)ll 2 < N

Now, using (270) and (272), we deduce from (269) that for t > T, with C > 0 that do not depend
onz,on NorondA,
— CA 1 CA 1 CA 1
(273) ”Z(t)”H2 = N —1N-1 + N —2 $2N-4 < N —2 tN-17

if we assume that N > 3.
Now, from (271), we deduce that there exists T* > T such that

74) (TN ET e = 5

This is why, by evaluating (273) in t = T*, we find that

A < CA 1
2N N =2 (N
which, if we assume that A > 0, after simplification yields
(276) N-2<2C.

This means that if we assume that N > 2C +2 and N > 3, the assumption A > 0 leads to a
contradiction. Therefore, A = 0 under that assumption on N, which implies ||z(t)||;2 = 0, and from
Lemma 42, this implies that z = 0. This means that the condition that we have esatblished for N:

(275)

(277) N > max(2C +2,3),
that do not depend on z, allows us to deduce that under (230), we may establish that z = 0. The
Proposition 5 is now proved. i

4.2. A solution converging to a multi-breather converges exponentially to this multi-breather, if
the velocities are positive.

Proposition 43. Let u(t) be an H? solution of (mKdV) on [T, +0), for T € R. We assume that

(278) lu(t) = p(Oll 2 —>t-+00 0,

where p is the multi-breather constructed in Section 2. If v1 > 0, then there exists y > 0, Ty > T and C > 0
such that for all t > Ty,

(279) lu(t) = p()lly2 < Ce™".

Proof. We set z(t) := u(t) —p(t), such that ||z(t)|| 2 —t—+c 0. From the fact that # and p are solutions
of (mKdV), we can write the equation of z(t):

(280) zp = — (zxx+ (z+p)3—p3)x.
We denote:
(281) W(x) := %arctan (exp (—\/59(/2)) ,

where ¢ > 0 is small enough (with precise conditions that will be mentioned throughout the proof).
By direct calculations,

’ _ _\/E
(282) V> = 27 cosh (vox/2)
Thus,
(283) [W'(x)| < Cexp(=Volx|/2).

We have the following properties: lim;o W = 0, lim_oW =1, forall x € R W(-x) = 1 -¥(x),
W(x) < 0, W7 (x)] < LW ()], [97(x)] < F7 )], (W) < LW and [W(x)] < L1 -W).
For j =2,...,], let m; be such that

) Uj-1 + Uj
(284) mj = =
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Let us denote 79 > 0 the minimal distance between a v; and a m;.
From this, we define for j =2, ..., ],

(285) D;(t, x) := W(x —mjt).

We may extend this definition to j =1 and j = | + 1 in the following way: @1 := 0 and ®j4; := 1.

Thus, the function that allows us to study properties around each breather (for j = 1,...,]) are
)(]' = CD]-+1 — (Dj.

The goal is to prove that:

(286) Izl < Ce™,

where y > 0 is a constant to be deduced from the constants of the problem, and for t large enough.

Let y > 0 be deduced from the constants of the problem with respect to the needs of the following
proof.

We will prove this by induction. We will prove, for j = 2,..,] + 1, that / (22 +22+22,) D; <
Ce™2! for t large enough, knowing that / (22 + 22 +22,) ®;1 < Ce " for t large enough (note that
this assumption is empty when j = 2). This implies the desired inequality.

Let us write the j-th step of our reasoning by induction (where j € {2,...,] +1}). Thus, j is fixed
in the rest of the proof.

We assume that

(287) / (22 + 23 +2%,) Djq < Ce ™!

We divide our proof in several steps.

Step 1. Almost-conservation of localized conservation laws. We define quantities that are similar
to quantities defined in Section 2.2. We note that we localize around the first j — 1 breathers (or
solitons), not only around the (j — 1)-th breather (or soliton). Notations defined in Section 2.2 should
not be considered in the following proof and should be replaced by notations we define here:

1
(288) M;(t) = 5 / u?(H)0;(t),
1, 14
(289) Ej(t) = Uy ——<U (D]'(t),
2 4
1 5 1
(290) Fi(t) := / [21432“—514 uy +4u ]CDj(t).
Lemma 44. Let wy, we > 0, as small as desired. There exists Ty > T and C > 0 such that for t > T,
j-1
(291) M[P;] - M;(t) > —Ce ™",
i=1
j-1
(292) Z (E[P;] + @aM[P;]) - (Ej(t) + waM;(t)) > —Ce™",
i=1
j-1
(293) D (FIP] + weMIPi]) = (Fj(t) + weM;(t)) > —Ce 2",

i=1
Proof. We will use the results of the computations made at the bottom of page 1115 and at the
bottom of page 1116 of [29], as well as in Section 5.5 (Appendix) to claim the three following facts:

dtz/ u*f = /(——u + u)f+ /uzf”’,
frag [

(294) 4 [lqu - %u‘l] f= /[— (U + 1°)? = U2, + 3u2u?
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3 9 1 3 45 ,
= / (—Eu?cxx +9u2 u? + 15uuu,, + Eug + Zuﬁ + Euxxu5 - Zu‘*u% f
1
(295) +5 / Mzuxuxxf” + E / uazcxfm'
where f is a C? function that does not depend on time.
For the mass:
Ifj<]J,
d 2 2_3 4 2
(296) 2%M]-(t) =— Buy +mju” — Sl Djx(t) + [ u Djxx(t).
We recall that
297) Dol < Y 100], 10l < Tyl By <0,
where we can choose ¢ as small as desired. For this proof, we would like to ask for o:
(298) 0<o<v <m.
Thus,
d 30 3
(299) ZEM]'(t) > / (314% + ZMZ - §u4 |@(1)|.

By Corollary 13, for r > 0, if ¢, x satisfy v;_1t + 7 < x < v;t — 1, then
|u(t, )| < [P(t, )| + [|z(D)]| L=
(300) < Ce™P + Cllz(t)l 2,

the same could be said for u,.

We can thus deduce that for r large enough and for T large enough, for x € (vj_1t +7,v;t —7),
we can obtain that |u] is bounded by any fixed constant, that can be taken as small as desired. Here,
we will use the latter to bound 3u? by <.

Fort > Ty and x < vj_1t +7 or x > v;t —r, we have |x —m;t| < 1ot — r, and therefore for such ¢, x:

|Djx(t, x)| < Cexp (—\/Elx - m]-tl/Z)
(301) < Cexp (—\/Efcot/2) exp (\/EV/Z) .

Because f u* is bounded by a constant for any time and exp (v/or/2) is a fixed constant (r is
already chosen), we have, for t > Tj,

d
(302) M) > / (%uz + %uz) [@px(8)] = Ce™" > —Ce™",

where y is chosen as a suitable function of ¢ and 7.
By integration, we deduce that for any ¢; > ¢, with a constant C > 0 that does not depend on t1,
we have:

(303) M;(t1) — M;(t) > —Ce ",

We note that this conclusion is immediate when j = | + 1, because we have exactly the conserved

quantity.
j-1
Lol [P L [ PPo 2
Z 5| Pi-3 j(t)] + 5 i(t) — [ u®@i(t1)
i=1

We have:
<
1
< Ce—K(ﬂ,o,To)tl + E / |p2 — lelq)j(tl)

j-1
ZM[PJ — M;(t1)
i=1

(304) < Ce®Pomh 4 C / |P? — 4% >4 5100 0.
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This means that when we take the limit of (303) when f; — +co, we obtain, for t > Ti:
-1
(305) M[P;] - M;(t) > —Ce™",

i

—.

Il
—_

which is exactly what we wished to prove.
For the energy:

Ifj<],

d 2 1 1
ZEE]'(t):/[— (ttx + %) _2u§x+6u§u2] cpjx(t)—mj/(u,%_iu4) cp].x(t)+§/u§q>jxxx(t)

(306) > /

We can do the same reasoning as for the mass, to majorate %uz by w1, a constant that we
can choose as small as desired, and to majorate 6u* by §. We obtain that if Ty is large enough
(dependently on the chosen constant w1):

30 m;
(vx + u3)2 +2u2, —6ulu® + qu - 7u ] |Djx (t)].

(307) Z%Ej(t) > / [(uxx +ud) 4202+ %uﬁ - a)luz] D ()] — Ce™".

By using what we have performed for the mass, we have that if we take w; small enough with
respect to 3

a4 (Ej + w2M;) (t) > —Ce™".

308
(308) 7

Then, by integration and similarly as for the mass, we obtain the desired conclusion that is true
for any j.

For F:

Ifj<],

d

9 ¢ 1 4
2Fi(t) = / (—3u§xx +18u2 u” + 30U Uty + gus + = Us + Bty u’ — ;u‘*uﬁ) Dj(t)

2

1
_mj‘/(ufx—5u2u§+§u ) ]x(t)+10/u Uyx Uy ]xx(t)+/ 2 @jxxx(t)

4 9 1
/ (3uxxx + ;u u? —18u2, u* — 15u2u? — 15u2u2,, - gus Euﬁ - gu,%xu4 - —u(’) |CD]-x(t)|

(309)
o [ (oo Gue = smuid) (0,015 [ 210,00 =5 [ 022 0ma(0)] = [ 11010

By the same reasoning as for the energy and the mass, if we set w3, w4, ws > 0 constants that we
can take as small as desired, and if Tj is large enough dependently on these constants, for t > 1i:

d 45 3¢
(310)  2—Fj(t) > / (3u§xx + ?,,,4,,[2 n Zuxx + %m — w32, — wgu® - a)SuZ) |@x(t)| - Ce ™.

By using what we have carried out for the mass, we have that if we take ws, w4, ws small enough,

d
- (Fj + weM;) (t) > —Ce 2.

Then, by integration and similarly as before, we obtain the desired conclusion that is true for any
j O

(311)

Remark 45. If j = | + 1, we have that:

J
(312) D MIPi] - My (t) =
i=1
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(313) E[P;] - Ej(t) =0,

M-

1l
—_

1

(314)

J
F[P;] = Fy(t) = 0.
=

i
Step 2. Modulation. Notations that were defined in Section 2.3 should not be taken into consid-
eration in the following proof and should be replaced by notations we define here.

Lemma 46. There exists C > 0, T, > T, such that there exist unique C 1 functions y1,y» : [To, +00) — R
such that if we set

(315) w(t,x):=u-"P,
where
—_~ ] —~
(316) P(t,x) = ) Pilt, ),
i=1
fori#j-1,
(317) Pi(t, x) := Py(t, x),
and if Pj_1 = R« (t, x; x0) is a soliton,
(318) Pi1(t, %) 1= Reayy (et X X0 + 12(1),
if Pi-1 = Bag(t, x; x1, x2) is a breather,
(319) Pioa(t,x) 1= Bag(t, x; x1 + y1(£), x2 + 12(1)),
in the case when Pj_y is a breather we denote:
(320) lazl(t/ x) = 8y115;j1/ Iazz(t/ x) = ayzl’j;—-iI
then, w(t) satisfies, for all t € [T, +00),
(321) / Pi oy, ()w(t) = / P, (t)w(t) =0,
if Piyisa breather, and
622) [ Pt = [ 7,00 =0,

if Pj_1 is a soliton.
Moreover, for all t € [T, +o0),

(323) lw )2 + ly1(O)] + |y2()] < Cllz(®) g2,
and if Piyisa breather,

1/2
(324) lyi ()] +|vi)| < C ( / w(t)chj) +Ce™",
1:ij_1 is a soliton,
(325) ly2(t) + y1(t)t] < Cllz(t)l g2,
1/2
(326) lvi ()] + |y5(t) + v ()t < C (/ w(t)ZCI)]-) +Ce .

Proof. The proof that has to be performed is similar to the proof of Lemma 19, which is a conse-
quence of the implicit function theorem. The proof of (324) is also similar, as in the proof of Lemma

19; we take the time derivative of f]g:ll(t)w(t) = flsj\:lz(t)w(t) =0. O

Step 3. Quadratic approximations of localized conservation laws.
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Lemma 47. Let w > 0 as small as we want. There exists C > 0,13 > T such that the following hold for
t > T3.’

(327) < Ce™ 2t

Mf(t)_iM[E]_i‘/Ew—%/wz(bj
i=1 i=1

- 01713 [ [P Pl - [ b - o
i=1 i=1

(328)

; <Ce'27t+w/w2®j,

j-1 j-1
~ ~ ~~2 35
Fj(t)_ZF[Pi]_Z/ [Pixxwxx_5pipixw_5pl szwx+ ZPz ]
i=1 i=1

< Ce™2! +w/ (w? +w?2) D;.

1 5 = ~ = 5~ 15~
(329) - / [2 ,%x—szp,%—mpwpxwx—§P2w§+zp4w2] D;(t)

Proof. For the mass:

1 — 2
M;(t) = E/(P+w) 0
(330) = E P q)]' + qu)]‘ + E w (D]‘.

As in Step 1, we can show that 3 f 132CD]~ converges exponentially (we choose y with respect to

this exponential convergence) to ij M|[P;]. Similarly, the difference between / Pw®; and ZZ: Piw
converges exponentially to 0 (the velocity of a soliton is not modified a lot by modulation, this is
why it works in any cases).

For E and F, we perform similar basic computations with the only difference that there will also
be terms of degree 3 or more in w. We know that ||w(t)||g2 —t—+e O, this is the reason why for ¢
large enough, such terms are boundable by w f w®; or w f w2d;. O

Step 4. Approximation of the Lyapunov functional. By analogy with the existence part, we
introduce the following Lyapunov functional:

2
(331) Hi() = i) +2 (02 — a2, ) Byl + (a2, + 02 ) My (o).
We will use the previous step to approximate H;(t).

Lemma 48. There exists Ty > T such that the following hold for t > T,

i-1 -1 i-1
%(t):]ZF[ﬁ]+2(b2 ]._1)] E[I?i]+(a]2_l+b]2_l)2] MIP;]
i=1 i=1 i=1
(332) +Hj(t)+0(e-2Vf)+o(/ (w? +w?) cpj),
where
Hj(t)::/[%wﬁx Wb, +zw Py +5w2P, 1Py %5@0213]_’14} O;(t)
(333) + (02, -2 / |2 - 302P | cpj(t)+%(a]2_l+b]2_l)2 / W2D(t).

Proof. This lemma is obtained from the summation of the facts established in the previous lemma.
We get rid of the linear terms in the following way, by integrations by parts:

o ~ =~ =2 ~2~ 3~5
Z PixxWyy —5P;Pi,w —5P; Piywy + EPi w
i=1
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- j
3 2 —~
+2 ( )Z/( ixWy — P w) + (”]2—1 +b]2_1) Piw
i=1 i
j-1

~ ~~2 3~5
=) (Pixxxx+5PiPix+5/Pl Pivy +5Pi7 |w )

i=1

(334) +2 (b]?_1 - a]?_l) Ji / (_p‘l,xx 3 E3) w + (a]?_l + b}z_ )2 Ji Piw.
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If we consider that this sum goes from i = 1 to j — 2, we see that for 1 < i < j -2, this sum is
exponentially bounded by induction assumption (we use that for i < j —2, a polynomial in P; and
its derivatives is bounded by C®;_; and that w = z + (Pj_l - I;]:)) It is left to consider the sum of
the terms with i = j — 1.
For i = j—1, we have nearly the elliptic equation satisfied by 15:1 It is actually exactly this

equation in the case when P;_; is a breather. When P;_; is a soliton, it’s shape parameter is modified
by modulation. That is why, in this case, the sum of the terms with i = j —1 is equal to

— — 3 — —
(335) 2y1(t) / (<Pt = Pt ) w+ 262 1) / Praw + i ()2 / P aw,

which vanishes because of the orthogonality condition from the modulation and the elliptic equation
satisfied by a soliton.
Hj; is obtained as the sum of the quadratic parts of the previous lemma and its form is slightly

modified by integration by parts, and by the fact that for i > j, Eq)j(t) is exponentially decreasing,

and the fact that for i < j -2, / Piw? is exponentially decreasing by the induction assumption.
Therefore, H; corresponds to the sum of the quadratic parts of previous lemma to which we have

toadd 5 f w21513x®]~x, which is bounded exponentially. |

2

Step 5. Bound from above for H;(t). Because v; > 0, we have that b]z._1 —a > 0. By taking

wy and we small enough (with respect to (a}z._l + b}z._l)z), we obtain, by summation of the facts of
Lemma 44, the following inequality:

j-1 j-1 5 -1
(336) Hy(H) -y F[Pi] -z( ) E[P ( D ) M[Pi] < Ce™2".
i=1

i=1 i

—

Il
—_

From Lemma 48, for t > T3,
Hy(t) < FIPj1] - FIP 1 +2 (62, = a2 ) (E[Pj-] - ELP; 1))
(337) + (a}_l + b}_l)z (M[Pj_l] - M[ﬁ]:]) CCe D +w / (w? +w?) D,
In the case if P;_; is a breather, we have immediately
(338) Hj(t) < Ce ™'+ a)/ (w? + w?) D;.

The case when P;_; is a soliton needs more inspection. As in the existence part, we have the
following relations:

_ 1/2
(339) MIPI®) = (62, + () Mig),

3/2

(340) EIPI(E) = (2, + (1)) Elg),

— 5/2
(341) FIPAI) = (B2, + 18] Flql
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We set R;_1(t) := F[Is]\:l](t) + Zb?_lE[IST_l](t) + b?_lM[ISj\:l](t), and we simplify it as follows:

, 5/2 , 3/2 ; 1/2
(342) Rj_l(t):bf_l(uyl—()) P[q]+2b]5._1(1+3212—()) E[q]+b§_1(1+yblz—()) MIgql.

2
b j-1 j-1 j-1

After making a Taylor expansion as in the existence,
(343) Rj-1(t) = F[Pj-1] = 2b7 | E[Pj-1] = b} M[Pj-1] = O(1(t)°).

Therefore, if Ty is large enough, [|z(t)||2 can be as small as we want, and for ¢t > Ty and P;1 a
soliton, we may write:

(344) Hj(t) < Ce™' + w / (w? + w3) D; + wyr(t)*.

Step 6. Coercivity. H; can be seen as the quadratic form associated to 15:1 and evaluated in
w+/®@;, modulo several terms that can be bounded by C+/o f (w? + w2 + w3,) ®; (because these terms
depend on derivatives of ®;). Let us prove that we can apply Section 5.4 (Appendix) for w/®;.

More precisely, we need to prove that for v > 0 small enough (from Section 5.4), ‘ f w,/CID]-I;]:l‘ +

/w‘/q)],ﬁ;_ilz < v||lw+/®j|| 2 if Pj-1 is a breather or that ‘/ w\@jﬁ;’ + ‘/ wd@ﬂﬁx < V||wA/Dj | 2
if Pj_ is a soliton. In any case, the proof is the same and let us write K at the place of 15:11, 137_12,
15]4\:1 or Is;x. This means that we want to bound f wA/D;K.

From (321), (322), we see that it is enough to bound f w(l - @)K by v||w\/a]- llg2. The reason-
ning that follows works for j < J, for j = | +1 the result is immediate because @1 = 1. ®; is a

translate of W, and, using the Taylor expansion when z — 0, V1 +z =1+ O(z),
1-VW=1-V1+¥-1

=1-+1-W(-x)
(345) = O(Y(-x)),

which means that 1 - \/@ < Cmin(1, exp(vo(x — m;t)/2)). We may deduce now that

o |

1- 3,

< SN
Vo |
(346) < CeVotm=oit|g ||l 12,

if % < g And so, if t is large enough, we get the bound we want.

Thus, there exists u > 0 such that for t > T5 (where T is large enough and depends on o):

2
1 —
[u||w1/(13]-||12q2 < Hj(t) + C\/a/ (w2 +w? +w,2(x) D; + ﬁ (/ P]'_1w,/CD]')

<Ce‘z?’t+w/(w2+W§)®j+CV5/(w2+w32c+w32cx)q)j

2
(347) +a)y1(t)2+i(/ Iﬁw\/aj) ,

— 2 —
where the term % ( / Pj_lww/qu) is present only if P;_; is a breather and the term wy1(t)? is present

only if 15:1 is a soliton.
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For ¢ small enough and @ small enough, we deduce that:

2
(348) / (w* + wi +wk) D) < Ce ™'+ wyr(t)* +C (/15]\:171)1 /(Dj) .

We set Ty := max(Ty, Tp, Tz, Ty, T5).

Step 7. Bound from above for ‘ / 13]\:110\/3] ‘ (to do in the case if 13]: is a breather). We would like
to prove that f lg]zw\/CIT] is exponentially decreasing.To do so, we would like to get rid of \/6] .

It is clear that f 15]\_/110 (1 - \/3]) is exponentially decreasing. Thus, it is enough to prove that

/ P;_qw is exponentially decreasing.
If i <j-2, we know that f Piw is exponentially decreasing by the induction assumption. Thus,

it is enough to prove that Z:;i f Piw is exponentially decreasing.
From the mass approximation of Lemma 47 and Lemma 44, we observe that, for t > Ty:

j-1 j-1
~ 1
§ /Piw = 0™+ M;(t) - § M[Pi]—E/uﬂq)j
i=1 i=1
X e - E w ]

(349) < Ce™21,

Now, we use the fact that the sum of the linear parts of our localized conservation laws is
exponentially decreasing, which we have established in the proof of Lemma 48. Therefore, the

linear terms of F; +2(b]2._1 a;_ 2 )Ej are O(e™ @) — ( + b2 ) Zf: fﬁw

Now, from the energy and F approximation of Lemma 47 and Lemma 44, we observe that (we
recall that b}z._1 - a]2._1 > 0), for t > Ty:

1
~ (a2, +02,) 22/1)@() O ny)+0(/ w? + w2 q>])+Fj(t)+z(b]2_1—a]2._1)15j(t)

j-1 j-1
+Ej(t) +06M;(t) = Y FPi] - ws Y M[P]
i=1 i=1
j-1

j-1
+2(02, - a2, ) lE]-(t) +anM(t) = Y E[P] -2 Y M[Pi]
i=1

i=1

+ (w5 + 202 (02, - a24)) (ZM M;(t))

1 5 = ~ = 5~ 15~
-~ / [Ew’%x — ~w?P2 — 10PwP,w, — EP2w§ + Z134@02] P,

2

1 3~
2 2 2 2.2
—Z(b]._l—aj_l)/[—zwx——P w }(Dj
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<Ce‘27t+C/(w2+w§)<Dj

(350) ~ (we + 202 (82, -2, )

and therefore, for w, and we small enough,

j-1
(351) —Z/Piw <Ce™@t+ c/ (w? + w?) D;.
i=1
We thus deduce the following bound:

[

Because ||w(f)||2 —t—+0 0, we deduce that:
2
(353) (/ 13;:1@01 /CDj) =o(e™ 40 (/ (w? + w?) Q)]-) .
Step 8. Conclusion. From (348) and (353), we deduce for t > Ty,

(354) / (w? + w3 + wh) @ = O(e™) + 0 (ya(t)*) + 0 (/ (w? +w )(D])
This means that if we take Ty large enough, we have:

(355) / (@ + w? +wk,) ©; = 0 (y1(t)?) + O™,

(352)

< Ce™ 27”+C/(w +w?) @ ;.

where the term o (y1(t)?) is present only if P;_; is a soliton.
Before finishing the proof, we need to find a better bound for y;(¢) than just a convergence to 0
given by the modulation (in the case when P;_; is a soliton). For this, we study M;(t):

M;(t) = %/uz(t)q)]'(t)
= %/(13(t)+w(t))2cbj(t)
- %/P(t)zq)j(t)+/§(t)w(t)®j(t)+%/W(t)Z(Dj(t)

-

_ 1.
- %Z /Pi(t)z + ;/Pi(t)w(t) +0 (e7") + % / w(t)*D;(t)

i=1

j—2
(356) - % / Pty + / Pa(hw(t) + O (e72) +% / w(t)2®j(t)+%; / Pi(t),
from the induction assumption, then
j—2
(357) M;(t) = %/Pj_l(t)%o (e7") +%/w(t)2®j(t)+%;/Pi(t)z,

from the orthogonality condition obtained in the modulation. Therefore,

1/2 iz
(358) M;(t) = (b]?_1 +y1(t)) M[q]+0 (e72) + % / w(t)2®j(t)+%; / P(t)2.

Now, if we take t; > t, we obtain from (355),
(359)

1/2 1/2
M;(t) — M;(t) = [(bf_l + yl(l‘l)) - (b?—l + yl(t)) ] M[q]+0 (e7") + 0 (y1(t)*) + 0 (y1(1)?) -
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By doing a Taylor expansion of order 1, as in the existence part, we obtain:

(360) (bjz._l + y1(t1)) = b] 1 ( ;y;( ) +0 (yl(tl)z) .

j-1

Therefore,
1/2 1/2
@) (B ) - (2 yl(f)) th_ (1(t2) = y1(8) + O (y2(t2)*) + O (31(1)?) .

Now, we recall that when t; — 400, we have y;(t;) — 0. Therefore, by taking the limit of the
previous formula when t; — +co, we obtain:

12 (t)
(362) b - (02, +310) = ~5p + O (7).
Therefore, from (359), with {; — +oo,
W yi(t)
1 -2y
(363) D MIP] =M1 = =3 =MIg]+ O () +O (7).

i=1

The second step is to study E;(t) (and to do the same reasonning as for M;):
1 1
Ei(t) = / [;& - 1“4] (1)

(364) :/[%ﬁﬁ—ifﬂ] q>j(t)+/[f5xwx—f53w] q>j(t)+o(/w2cbj(t)),

and after simplications by ®; due to exponential convergences, induction assumption and orthogo-
nality conditions,

j—2
Ej(t) = E[P;=1(1)] +ZE 2Vf)+o(/w2q>j(t))
i=1

j-2
= (b]z._1 + yl(t))?)/2 Elq] + Z E[P ZVf) +0 (/ w2®j(t))
j=
(365) (2 30) " Ela+ 3 EIPI 5O () w0 (1),
i=1

from (355). And then, by taking the difference for t; > ¢,

3/2 3/2
(366) Ej(h) ~Ej(t) = [(b?_l ft) = (b +w(0) ] Elq]+0 (") +0 (11(1)*) +0 (1))

By taking a Taylor expansion of order 1, we obtain:

3/2 3 yi(t)
(367) (bjz'—l + yl(tl)) = b?—l (1 + Ebz—_l +0 (y1(t1)2) .
Therefore, after taking t; — +o0, we obtain:
N 3 =2yt 2
(368) Z E[Pi] - Ej(t) = —5bj-y1(tE[9] + O (™) + 0 (n(t)?).

That is why, from (363), (368) and Lemma 44, we obtain

()

(369) i

Mq]+ O (e + O (y1(t)*) = —Ce 2",

and

(370) —gbj_lyl(t)E[q] +0 (e™") + O (y1(t)?) > —Ce 2.



52 ALEXANDER SEMENOV

Because M[g] = 2 and E[q] = —%, we rewrite both previous inequalities (369) and (370) in the
following way (and we pass O (e72”*) on the other side of each inequality):

t
(371) O 0 (uit?) > —ce?,
j-1
and
(372) bisaya(t) + O (y1(t)?) > —Ce 2.

Because y1(t) — +oo, by taking Ty larger if needed, O (y1(t)?) can be bounded above by any
positive constant multiplied by |y1()|, so by taking this constant small enough (by taking Ty large
enough) and combining both previous inequalities (371) and (372), we obtain:

(373) |ya(t)] < Ce™".

Therefore, we have obtained a better bound for y;(t) in the case when P;_ is a soliton. Therefore,
we may conclude that in any case, for t > Tj for Ty large enough:

(374) / (w? + w} +wi,) @i(t) = O (e72").
Then, we deduce from (324) that:

(375) [y (O] + ly5(D)] = Oe™),

in the case when I;]: is a breather, and

(376) v (D] +|y5®) +y1 ()t = O (7)),

in the case when 157_1 is a soliton. In this case, we have also |y1(t)] = O (e™*).
Because |y1(t)| + |y2(t)| —¢—+c0 0, we obtain by integration in the case when P;_; is a breather:

(377) (D)) + ly2(t)] = O(e ™).

Because |y1(t)| + [y2(t) + y1(t)t] —=¢—+e 0, we obtain by integration in the case when 13:1 is a
soliton:

(378) ly1(B)] + [y2(t) + ya(£)t] = O (7).

And, so, by the mean-value theorem,
(379) [P = Pia], < € (@1 + 1w20001) < ce,
when P;_; is a breather, and
(380) [P =P < € (a1 + a0y + rere)) < ce,

when P;_; is a soliton.
From z = w + Pj—1 — Pj-1, we deduce:

/(zz+z§+z§x)®j<C/(w2+w§+w§x)®j

— 2 — 2 —_— 2
+ C/ [(P]'_l _Pj—l) + (P]'_l - P]'_l)x + (P]'_l - P]'_l) x] (D]'
(381) < Ce ™1,

and this finishes the induction. O
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4.3. Proof of Theorem 4.

Proof of Theorem 4. We suppose all the velocities of our objects positive, i.e. we suppose that v1 > 0.
Let p be the associated multi-breather given by Theorem 2. Let u be a solution of (mKdV) such that

(382) lu(t) = p(D)llg2 —t-+00 0.

From Proposition 43, we deduce that there exists a constant C > 0 and a constant y > 0 such that
for t large enough

(383) lut) - p(t) 1z < Ce™.

This implies that u satisfies the assumptions of Proposition 5. Thus, # = p and Theorem 4 is
proved.
O

5. APPENDIX

The first two subsections of the Appendix show that a soliton has similar properties as a “limit
breather” of parameter a« = 0. Firstly, the corresponding elliptic equation is satisfied by a soliton.
Secondly, the corresponding quadratic form is coercive for a soliton, and we see that it’s kernel is
spanned by d,Q and d.Q. In the third subsection, we prove that it is possible for € to be orthogonal
to Q and d,Q (instead of d,Q and J.Q) in order to satisfy coercivity for the quadratic form. We
will use this fact for the proof of the existence, as well as for the first part of the proof of the
uniqueness. In the fourth subsection, we prove that we can have coercivity for quadratic forms
when the orthogonality condition is not exactly satisfied. We will use this result for the proof of
the uniqueness. The last subsection is about computations for the third conservation law. It will be
useful for the monotonicity property for localized F that we need in the proof of the uniqueness.

5.1. Elliptic equation satisfied by a soliton.

Lemma 49. A soliton Q = R« satisfies for any time t € R, the following nonlinear elliptic equation:

(384) Qe = 26(Que + Q%)+ ¢°Q +5003 +5Q°Qur + 5Q° =0

Proof. In order to derive this equation, we will use the equation that defines a soliton (and that is
satisfied by Q at any time):

(385) Qxx =¢cQ - Q3~

We will also need the following equation:

(386) Q%= Q- 50"

that can be derived by taking the space derivative of Q2 — cQ? + Q% and by showing that this
derivative is zero. From this, we deduce that Q2 — cQ? + %Q“ is constant, and by taking its limit

when x — +o0o, we see that this constant is zero. More precisely, the derivative of Q2 — cQ? + 1Q*
is:

(387) 2Q:Qux —2¢QQx +2Q%Q: = 2Qy (Qur —cQ + Q%) = 0.

From now on, the derivation of (384) is straight forward. It is sufficient to take space derivatives
of Qux = cQ - Q3 and to inject them into the right hand side of the equation (384), which we want
to prove to be equal to zero. By doing this, we make the maximal order of a derivative of Q present
in the right hand side equation lower. At the end, we have only, zero and first order derivatives. To
have only a polynomial in Q, we have to use Q2 =cQ?- %Q‘l, and the calculations show that this
polynomial is zero. O



54 ALEXANDER SEMENOV

5.2. Study of coercivity of the quadratic form associated to a soliton. In this article, we adapt the
argument for the breathers in [5] to the soliton case. We consider:

S / xx——/QZe% /Q e +5/QQMe2+§/Q%2
(388) +c(/ e§—3/QZe2)+c2§/ez =: Q yzlel.

Firstly, we prove, by simple calculations, as in the previous section, that Q, and Q + xQy are in
the kernel of this quadratic form. It is easy to see, by asymptotic study that these two functions are
linearly independent.

The self-adjoint linear operator associated to this quadratic form is:

Li[e] = €ux) —2cexy + c%e +5Q%€ 4 + 10QQ+€x
(389) + (5Q§ +10Q0Qq + 12—5Q4 — 6cQ2) €,
so that Qi[e] = /e£§ [e].

L7 is a compact perturbation of the constant coefficients operator:
(390) M{e] = €x) — 2c€xx + c’e.

A direct analysis involving ODE shows that the null space of M is spawned by four linearly
independent functions:

(391) etVEX | yeVex,
Among these four functions, there are only two L?-integrable ones in the semi-infinite line

[0, +0). Therefore, the null space of L |ps(R) is spanned by at most two L?-functions.
Therefore,

(392) ker(L;) = Span(d.Q, Q + x9:Q).
Lemma 50. The operator L does not have any negative eigenvalue.
Proof. L3 has

(393) Z dim ker W[Qy, Q + xQx](t, x)
x€R
negative eigenvalues, counting multiplicity, where W is the Wronskian matrix:
Qv Q+xQx
394 W X7 + X t/ =
(394 [ Q + 2051, ) [Qxx (Q +xQu)x

For this result, see [20], where the finite interval case was considered. As shown in several articles
[24, 28], the extension to the real line is direct.

Thus, it is sufficient to see that det W[Q,, Q + xQx](t, x) is never zero. For this, let us simply
calculate this determinant:

Qx(2Qx + xQxx) = (Q + ¥Qx)Qux = 2Q% — QQxx
=2cQ?-Q*-Q(cQ-Q%
(395) = Q%> 0.

5.3. Coercivity of the quadratic form associated to a soliton. For Q = R, |

Qlel:=; [ -3 [@ete /Q6+5/QQxx€+—/Q“
(396) +C(/€§—3/Q2€2)+625/€2

Lemma 51. There exists y. > 0 such that for any € € H? such that feQ = /eQx = 0, we have
(397) Q:lel > pcllellf
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Proof. From Section 6.2, we know that if f €0d,Q = / €d.Q =0, then, for a constant v, > 0, we have
(398) Q:[e] > Vc”e”ip-

Let € € H? be such that feQ = fe&xQ = 0. There exists 4 € R and €, € Span(dxQ,d.Q)* such
that

(399) €=ad.Q+e,.
From f €Q =0, we have that

(400) o [2.0-0+ [e0=0,

thus

(401) : / Q* + / .0 =0,

which allows us to derive
f €.Q
Jesn

(402) a=-2

Because d.Q is in the kernel of QZ, we have

(403) Q:lel = Qler] > velleLlFn-
Now, from
/GJ_Q
(404) €= —ZWQCQ +€,,
we have by trinagular and Cauchy-Schwarz inequality that
|/ Q]
lellie < llew +2/—2||acQ||Hz
Q1%
19 Qll 2
< el + 2= lleL|lr2
ST T
d
(405) < (1 + 2&) lle L llg2-
Q2
Therefore, we may derive a constant p. (independent on €) such that
(406) Q:le] > ucllell7.-

O

5.4. Coercivity with almost orthogonality conditions (to be used for the uniqueness). For B :=
By or any of its translations, we define the canonical quadratix form associated to B:

1 5 5 15
in/ﬁ[e]:z5/6,%,(—E/Bze§+E/B§e2+5/BBxxez+Z/B4ez
1
(407) + (8% - a?) (/ e§—3/32e2)+(a2+ﬁ2)2§/62,

and we know that dy, B and dy, B is the kernel of Qz 4~ More precisely, there exists yZ g >0 such that
if € is orthogonal to dy, B and dy, B, we have

2
1
(408) Q. slel >l llell?. — o (/ eB) :
ap

We would like to prove the following lemma (adapted from the Appendix A of [34]):
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Lemma 52. There exists v := v g > 0 such that, for € € H*(R), if

(409) ‘/(3xlBa,ﬁ)€ + /(8sza,ﬁ)€ < V”(’:“HZ/
then
ub 4 2
(410) ag,ﬁ[e] > 4’5 ffz‘yT ( / eBa,ﬁ) ,
a,p

where B, g denotes the breather of parameters a, B or any of its translations (in space or in time).

Proof. Take v > 0 (we will find a condition on v later in the proof) and take € satisfying the assump-
tion of the lemma. Then (by denoting B = B, )

(411) €=¢€1+aB1+bBy, = €1+ ¢,

where /€1B1 = fe1B2 = /6162 =0.
By performing a L2-scalar product of (411) with By and B, we obtain, by assumption,

(412) /B2+b/B1B2 vllell e,
(413) B1B2+b/B§ < vlellye.

Therefore, by making linear combinations of these two inequalities, using triangular and Cauchy-
Schwarz inequalities, we obtain

(414) la| +1b] < Cv|le]| 2.

We can take space derivatives of (411). And thus, we obtain, for v small enough, , that will be
useful in the last section of this article

(415) Sl < lleal < 20l
Because /BBl = fBBz =0,
(416) /GB:/GlB.
By bilinearity,
leﬁ[ €]l = Qaﬁ[el]+Qbﬁ[ez] /ellxxez,xx—S/Bzellxezlx+5/B,2C61e2+10/BBxxelez

(417) + 12—5 / Bteien + (‘32 — a2) (2/61,x€2,x - 6/ B2€1€2) + (az +ﬁz)2 / €162

We know from the coercivity of QZ 8 that

2
1
@l gler) > gl = - ( / elB)

ap

Haﬁ 2
(418) et ( / eB).

ap
Also, if we denote by LZ g the self-adjoint operator associated to the quadratic form QZ Y

Q. yleal = *Q) 4[B1] +b°Q;, 4[Ba] + 2ab / L} ;[B1]Bs
(419) < Cv2lellFp,

actually in this case Qz’ﬁ[ez] = 0, because €5 is in the kernel of Qg,ﬁ (but, when we adapt this proof
for solitons, we can only write the bound).
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Now, we recall that f €1€2 = 0, and study the other terms by using Cauchy-Schwarz:

‘/ €1,xx€2,xx - 5 / B2€1,x€2,x + 5 / B32C€1€2 + ].0 / BBxxé‘le
15 4 2 2 2
(420) S B*eiex+(B°—a”) |2 | e1x€2x—6 | B ere2

We observe that if we take v small enough, the claim of the lemma is proved. m|

< C(lal +1bD)llerlly> < Cvllell?

HA(R)*

We prove in the same way that we have the similar lemma for solitons:

Lemma 53. There exists v := v > 0, such that, for € € H*(R), if

(421) ‘ / (eRe)e| + / (@xRer)e| < Vi€l
then
(422) Qilel> Ko jel,,

where R, denotes the soliton of parameter c and sign « or any of its translations.
And even,

Lemma 54. There exists v := v > 0, such that, for € € H2(R), if
/RC,Ke / (0xRc i) €
then

(424) Qle] > ||€||Hz,

where R, denotes the soliton of parameter c and sign « or any of its translations.

(423) + < V||€||H2,

5.5. Computations for the third localized integral (to be used for the uniqueness).

Lemma 55. Let f : R — R be a C3 function that do not depend on time and u a solution of (mKdV). Then,
d 1 5 1
a (Eu?cx - EMZM% + Zué) f

3 9 1 3 45
= / (—Euﬁxx +9u2 u? + 15uun ., + 16u + 4u + Zuxxu5 - Zu4u2)f

(425) +5/u Usthyr f7 + / u f.
Proof. We perform by doing integrations by parts when needed and basic calculations.
d 1”;204 - §u2u2 + 1u6 f= /utxxuxxf -5 utuu)%f —5/u2utxuxf +§ utu5f
dt 2 4 2
3
- —/ (tax + 1) taxf +5/ (tax +1°) uuif +5 / u? (e + 1) uxf — 5 / (txx +u°) uf
- / (tax +1%)  tax f +/ (tax +1%)  tn f +5/ (tax + 1) uuif
3
+5/u2 (uxx + u3)xx Uy f — > / (Mxx + u3)x qu

=—%/u§xxf’+/(u3)xxuxxxf+/(uxx+u3)xxuxxf’+5/uxxxuu,%f+5/(u3)xuu,7;f
+5/u uxxxxuxf+5/ 2(u3)xxuxf—§/uxxxu5f—§/(uS)xu5f

1

= _E/u?cxxfl"_/ (uxx +u3)xx uxxfl+/ (3uxxu2 +6u32cu) uxxxf+5/uxxxuu§f
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+15/ 3f+5/u uxxxxuxf+5/u2 (3uxxu2+6u)2cu)uxf—%/uxxxu5f—§/uxu7f
:—%/”a%xxf/+/(”xx+u) U f’ +3/u uxxuxxxf"'S/“z”xxxX”xf
+11/uu§uxxxf+45'/ f+15/M uxuxxf_g/uxxxu f+ / 8f
=—%/u§xxf’+/(uxx+u ) oy taxf + / 8~ /M UxUxxx f
+/uu§uxxxf—5/uzuxuxxxf’+45/ 3f+15/u uxuxxf—§/u5uxxxf

S PN (REALY sy S
+/uu§uxxxf+45/u uxf+15/u uxuxxf—g/uf’uxxxf
=_%/”;2cxxf,+/(”xx+” ) x xxf' + = / ik /” Uyl f' +/ chxf/’LZ/””x”chxf
—/uiuxxf—2/uuxu§xf—/uu}%uxxf’+4_5/ 3f+15/u uxuxxf—gfu5uxxxf
=3 [ [ i) s+ oo [0 =5 [unes'+ [wider
—/uu%uxxf'—i/(uﬁ)xf+45/u3u$f+Z/u4(u§)xf+§/u5uxxf'
=—%/“;2cxxf/+/(”xx+” ) gy tax f'+ 9/ Wik /” Uty f' +/ i f’
/uu U f/+ = / urf' += /u5uxxf’+45/u3u,3€f—45/u3u;°§f—%/u‘lu%f'
=3 [ = [ s +4 [y o5 [t =5 [ s

+19_6 ugf’+31/u§f’+%/uSuxxf'—§/”4”ach’

:—E/uixxf’+9/ 2f +15/u Ul f'+ — 9 / 8f + = /uﬁf’
+g/uSuxxf’—%/u‘lu%f'—/uxxxuxxf”+5/u2uxuxxf”

= / (—%uf;xx +9u2 u? + 150Uy, + 19—6u + iu + zuxxus - %u“uz) f
(426)
+5/u Uller f7 + 1/ ul f.
which is exactly the desired expression. O
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