
HAL Id: hal-03337263
https://hal.science/hal-03337263

Submitted on 7 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Explaining ethical planning using ASP
Martin Jedwabny, Pierre Bisquert, Madalina Croitoru

To cite this version:
Martin Jedwabny, Pierre Bisquert, Madalina Croitoru. Explaining ethical planning using ASP. XLoKR
2020 - 1st International Workshop on Explainable Logic-Based Knowledge Representation, Nov 2020,
Rhodes, Greece. �hal-03337263�

https://hal.science/hal-03337263
https://hal.archives-ouvertes.fr


Explaining ethical planning using ASP

Martin Jedwabny,1 Pierre Bisquert,1, 2 Madalina Croitoru1

1LIRMM, Inria, Univ Montpellier, CNRS, Montpellier, France
2IATE, INRAE, Institut Agro, Montpellier, France

martin.jedwabny@lirmm.fr, pierre.bisquert@inrae.fr,
madalina.croitoru@lirmm.fr

Abstract

Ethical planning requires explanation capabilities. We demonstrate in this pa-
per how to formalise consequentialist ethical planning with answer set program-
ming (ASP) in order to benefit from ASP explanation approaches.

1 Introduction
In this paper we place ourselves in the context of single agent planning and investigate
the problem of how to take into account an ethical dimension to this problem. Our re-
search hypothesis is that a logic based implementation of the problem could help foster
potential for explain-ability in ethical planning. To this end this paper will explain how
we can capture planning for single agents using an answer set programming (ASP)
implementation.

2 Planning background
State transition systems [1] are a simple yet powerful model to represent planning do-
mains. Formally, it is a structure 〈S,A,R〉 in which: S is a (non-empty) set of “states”,
A is a (non-empty) set of transition labels (also called “actions”), and R is a set of tran-
sitions i.e. R ⊆ S×A× S. A transition system can be depicted as a labelled directed
graph. Every state s in S is a node of the graph. Labelled directed edges of the graph
are the tuples (s,e,s′) of R, which represents that the execution of action e in state s
leads to the state s′.

Typically, action languages [2, 3, 4, 5] such as STRIPS, ADL, PDDL, A, B, C,
C+ and such, define the states as combinations of value assignments for a finite set
of propositional (or ground first-order) symbols called “fluents”. They specify a lan-
guage of fluent symbols and action symbols, and their respective domains. Then, states
become combinations (or conjunctions) of these symbols assigned with a member of
their domains. Actions are essentially a set of assignments of action symbols to their
domains.

1



A planning task is a 4-tuple T = 〈V,s0,s∗,O〉 that describes all the relevant infor-
mation that characterizes the states of the world, the changes actions bring in the form
of transitions between states, the starting state and the conditions of a world in which
the task is satisfied.

More precisely:

• A fluent (or state variable) v is a grounded first-order atom e.g location(r1). V is
a finite set of fluents where each of them has an associated finite domain Dom(v)
of possible values. We call a partial state a function from members of a subset of
V to their respective domains. A state is a (total) function from each fluent v in
V to a member of its domain.

• s0 is the initial state, expressed as a (total) state,

• s∗ is the goal condition, expressed as a partial state, and

• O is a finite set of operators, also called actions, of the form of a tuple a =
〈apre,ae f f 〉, which are respectively, the partial states denoting the preconditions
and the effects of the action (fluents to modify in the next state).

We denote Pre(a) = apre the preconditions and E f f (a) = ae f f the effects of the
action a. We will not consider derived fluents or conditional operators as in (Helmert,
2006). Given a state s and an action a, the successor state succ(s,a) obtained applying
a = 〈apre,ae f f 〉 is defined iff apre ⊆ s. We call these the “possible” actions in situation
s, and denote it Poss(s). If an action is indeed possible, for every fluent v ∈V , if there
is some d ∈ Dom(v) such that v = d ∈ ae f f , then v = d ∈ succ(s,a), otherwise there
must exist some d′ ∈ Dom(v) such that v = d ∈ apre∩ s.

Then, a plan π = [a1,a2, ...,an] with n≥ 0 is a sequence of actions ai ∈O, such that
s∗ ⊆ succ(an, ...succ(a2,succ(a1,s0))). The embedded state transition system by such
a planning task is a directed graph S(T ) where T is a task defined as above where:

• The nodes correspond to the set of states V , and

• There is an edge (s,a,s′) with if and only if there exists an action a = 〈apre,ae f f 〉
in T such that s′ = succ(s,a).

3 Ethical planning
In the context of AI decision making and planning, ethics captures the moral elements
to be considered when taking an action [6, 7]. As such, an ethical framework extends
the process of taking action with considerations coming from one or more ethical theo-
ries to proscribe behaviours deemed as unethical and favor those that exhibit adequate
moral characteristics. This is strongly related to the concept of normative ethics [8], the
branch of philosophical ethics that investigates the questions that arise when consid-
ering how one ought to act, morally speaking. The three main branches of normative
ethics are consequentialist, deontological and virtue ethics. All of them have been stud-
ied to some degree in the context of AI planning and decision making. Here we will
consider consequentialist ethics mainly.

2



In consequentialist ethics, actions are evaluated upon their consequences. The pre-
cise method to determine which action is right varies between branches of consequen-
tialist ethics. Some of the most prominent contrast points are the way in which conse-
quences are determined, the perspective from which consequences are evaluated, and
how consequences are compared.

In this work, actions and consequences are predetermined by the planning formal-
ism. The perspective from which consequences are determined will be the welfare
of society, also called utilitarianism. Utilitarianism specifies that the right action is
the one that creates the most good for society, another branch being egoism, which
tries to create the most good for oneself. Lastly, the way in which consequences are
compared will be along the lines of plain consequentialism. Plain consequentialism
advocates that the only action that is right is the one with the best consequences. Other
branches are: expected consequentialism (similar to plain consequentialism, but takes
uncertainty and beliefs into account) and rule consequentialism (instead of comparing
outcomes of an action, it compares the action’s adherence to a set of ethical rules).

In our planning task model T = 〈V,s0,s∗,O〉, given an action a ∈ O, the conse-
quences of a is the set E f f (a) of effects (defined above) of the action.

Due to the fact that consequentialist ethics focuses on the consequences of actions
only, the way in which actions are compared to one another depends solely on their
consequences. This can be captured simply by a preference relation ≺ as in (Bon-
nemains et al., 2016) which we will call the consequentialist base, that compares sets
of fluent assignments i.e. action consequences. A consequentialist base≺c is a total or-
der (binary, antisymmetric, transitive and connex relation) on sets of fluent assignments
(v = d) with d ∈ Dom(v).

One practical way to define this preference relation is by introducing utilities. Util-
ities measure in a concrete manner the level of desireness of a consequence and assigns
it a numerical value. This idea has been previously applied in the context of AI plan-
ning in (Berreby et al., 2017; Lindner et al., 2019, 2017): Given v∈V and d ∈Dom(v),
an utility function u(v = d) ∈ R for V , maps an effect (assignment of a fluent) to a real
number.

An utilitarian base ≺u is defined as a consequentialist base that takes into account
an utility function u(v = d) and extends it to compare sets of consequences. An ac-
tion is right, or permitted if and only if its consequences are the best with respect to
all other possible actions. We model this as follows. Given a planning domain T , a
consequentialist base≺c of T , a situation s of T , and an action a ∈ Poss(s), we say that
a is permitted iff there is no action a′ ∈ Poss(s) such that E f f (a)≺c E f f (a′).

4 Answer Set Programming
Answer set programming (ASP) [9] is a well-known form of logic programming ori-
ented towards hard search problems that relies on what is called answer set semantics
to solve normal logic programs.

A normal logic program is one that is composed f rules (clauses) of the form:
r = A0 ← A1, · · · ,An,not An+1, · · · ,not An+m(n,m ≥ 0), where each Ai (i = 0, · · · ,n+
m) is an atom from a first-order language with function symbols, and “not” is inter-

3



preted as negation by failure. We denote head(r) = A0, body+(r) = {A1, · · · ,An} and
body−(r) = {An+1, · · · ,An+m}.

Let P be a ground normal logic program and X be a set of grounded atoms. The
reduct PX is the set of clauses obtained from P as PX = {head(r)← body+(r)|r ∈
P,body−(r)∩X = /0}.

In other words, it deletes any clause in P that has a condition ‘not Ai’ in its body
where Ai ∈ X and deletes every condition of the form ‘not Ai’ in the bodies of the
remaining clauses.

If we denote the minimal Herbrand model (i.e. a minimal set of grounded atoms
coming from the program that satisfies all clauses) of a program as M(P), we define
the stable models SM(P) of a normal program P as the sets of grounded atoms X such
that M(PX ) = X .

A program P is locally stratified if there exists a partition B1, . . . ,Bm of its Herbrand
base such that for each grounded rule r ∈ P: if head(r) = H and A in body+(r), then A
in Bi, H in B j and i≤ j, and if head(r) = H and A in body−(r), then A in Bi, H in B j
and i < j. It has been shown that if a program is locally stratified, then a stable model
exists and is unique.

An ASP solver finds the stable models of a normal logic program, typically with
numerous extensions such as disjunctions (called choice) and cardinal constraints,
amongst others. It has been shown all STRIPS problems can be translated into ASP
[10], see:
https://github.com/potassco/plasp.

In this case fluents are modeled by the “fluent/1” predicate, action by “action/1”,
and operators by “pre/2”, “add/2” and “del/2”. The initial situation is captured by
“init/1” and the different sub-goals by “query/1”. Then, planning in this case is imple-
mented using inference in a predefined number of steps that make the sub-goals hold
at a future state (successive states being modeled by timepoints). This definition is
inspired by the event calculus.

As explained earlier, an action is permissible for a utilitarian base if and only if it’s
consequences are as least as preferred as those of any other action that is possible to
take in the given situation. In order to implement this idea, we added the following
predicates:

• actionOverallUtility(Action, Utility): specifies the Utility of an Action.

• actionPositiveUtility(Action, Utility): same but only positive utilities.

• actionNegativeUtility(Action, Utility): same but only negative utilities.

• permitted(Action, State, EthicBase): denotes that Action is permitted at State
according to EthicBase.

• forbidden(Action, State, EthicBase): denotes that Action is forbidden at State
according to EthicBase.

The full implementation of consequentialist ethics for the trolley dilemma problem
can be found at:
https://github.com/martinjedwabny/asp-consequentialist-ethics

4

https://github.com/potassco/plasp
https://github.com/martinjedwabny/asp-consequentialist-ethics


Once the ASP approach has been formalised we can use explanation methods de-
signed for explaining the derivation of a literal (as overviewed in [11] ), or for explain-
ing derivation for the consistency of assuming the literal or why a literal is not included
in any answer set (as proposed in [12]).

5 Conclusion
Ethical decision making and planning (EDMP) has recently received much attention
from the Artificial Intelligence community [7, 13, 14, 15, 16, 17, 18]. The trolley prob-
lem has been widely investigated (despite many complaints of it not being relevant for
practical autonomous vehicle applications). Most of these approaches boil down to
translating ethical constraints (as also seen in this paper) into utilities or preferences.
The question arises of what is the real technical difficulty of EDMP problems with re-
spect to preference based decision making and planning [19]. We hypothesise that the
EDMP problems distinguish themselves by a critical need for explanation capabilities
[20]. In this short paper we demonstrated how an consequentialist ethical planning
problem can be expressed using ASP. While dedicated explanation techniques for ASP
have been designed [11, 12], this work can be taken forward by employing an argumen-
tation based approach to explanation such as [21] (that decomposes each derivation of
an atom into a part whether only assumptions to derive an atom are considered and
define attack tree justification to give an overall explanation). An interactive dialogue
can be constructed over this process to further improve the user experience [22].

References
[1] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory and

practice. Elsevier, 2004.

[2] Tom Bylander. The computational complexity of propositional strips planning.
Artificial Intelligence, 69(1-2):165–204, 1994.

[3] Edwin PD Pednault. Adl: Exploring the middle ground between strips and the
situation calculus. Kr, 89:324–332, 1989.

[4] Maria Fox and Derek Long. Pddl2. 1: An extension to pddl for expressing tem-
poral planning domains. Journal of artificial intelligence research, 20:61–124,
2003.

[5] Michael Gelfond and Vladimir Lifschitz. Action languages. 1998.

[6] Colin Allen, Wendell Wallach, and Iva Smit. Why machine ethics? IEEE Intelli-
gent Systems, 21(4):12–17, 2006.

[7] Michael Anderson and Susan Leigh Anderson. Machine ethics. Cambridge Uni-
versity Press, 2011.

[8] Shelly Kagan. Normative ethics. Routledge, 2018.

5



[9] Vladimir Lifschitz. Answer set programming. Springer International Publishing,
2019.

[10] Yannis Dimopoulos, Martin Gebser, Patrick Lühne, Javier Romero, and Torsten
Schaub. plasp 3: Towards effective asp planning. In International Conference
on Logic Programming and Nonmonotonic Reasoning, pages 286–300. Springer,
2017.

[11] Jorge Fandinno and Claudia Schulz. Answering the” why” in answer
set programming-a survey of explanation approaches. arXiv preprint
arXiv:1809.08034, 2018.

[12] Jérémie Dauphin and Ken Satoh. Explainable asp. In International Conference on
Principles and Practice of Multi-Agent Systems, pages 610–617. Springer, 2019.

[13] Sofia Panagiotidi, Juan Carlos Nieves, and Javier Vázquez-Salceda. A Frame-
work to Model Norm Dynamics in Answer Set Programming. In MALLOW, 2009.

[14] Naveen Sundar Govindarajulu and Selmer Bringsjord. On automating the doc-
trine of double effect. arXiv preprint arXiv:1703.08922, 2017.

[15] Fiona Berreby, Gauvain Bourgne, and Jean-Gabriel Ganascia. A declarative mod-
ular framework for representing and applying ethical principles. 2017.

[16] Vincent Bonnemains, Claire Saurel, and Catherine Tessier. How Ethical Frame-
works Answer to Ethical Dilemmas: Towards a Formal Model. In EDIA@ ECAI,
pages 44–51, 2016.

[17] Felix Lindner, Robert Mattmüller, and Bernhard Nebel. Moral permissibility of
action plans. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 7635–7642, 2019.

[18] Miles Brundage. Limitations and risks of machine ethics. Journal of Experimen-
tal & Theoretical Artificial Intelligence, 26(3):355–372, 2014. Publisher: Taylor
& Francis.

[19] Meghyn Bienvenu, Christian Fritz, and Sheila A McIlraith. Specifying and com-
puting preferred plans. Artificial Intelligence, 175(7-8):1308–1345, 2011.

[20] Tim Miller. Explanation in artificial intelligence: Insights from the social sci-
ences. Artificial Intelligence, 267:1–38, 2019.

[21] Claudia Schulz and Francesca Toni. Justifying answer sets using argumentation.
Theory and Practice of Logic Programming, 16(1):59–110, 2016.

[22] Abdallah Arioua and Madalina Croitoru. Formalizing explanatory dialogues. In
International Conference on Scalable Uncertainty Management, pages 282–297.
Springer, 2015.

6


	Introduction
	Planning background
	Ethical planning
	Answer Set Programming
	Conclusion

