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Abstract:  

Multidimensional population balance modelling is a powerful tool to study the dynamics of 

the precipitation and particularly the aggregation of particles. This approach involves the 

selection of internal parameters describing the particle. Among them, morphological or 

geometrical descriptors are required. In this paper, the inertia or gyration tensor is considered 

and evaluated for the modelling of aggregation. An equivalent ellipsoid to the aggregate is 

defined from the tensor. Firstly, a general expression for the inertia tensor of the aggregate 

resulting from the collision of two aggregates is presented. In this framework, the collision 

event becomes the collision between two equivalent ellipsoids and leads to a larger ellipsoid. 

Secondly, the inertia tensor and the characteristics of the equivalent ellipsoid are explicitly 

calculated in the case of shear aggregation in a two-dimensional space. An approximate 

calculation is also presented and checked. Finally, the shear aggregation of a set of disks in a 

two-dimensional space is simulated using simultaneously this modelling of the collision event 

and Monte-Carlo simulations for all the collisions. This is compared with classical Monte 

Carlo simulations where the colliding particles are clusters of disks. Physical properties of the 

cluster population as, for instance, the distribution of elongation or anisotropy factor at 

different times are presented. 
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Nomenclature 

 

a  vector between the centres of mass of two particles 

a semi-major axis of ellipse 

b semi-minor axis of ellipse 

A anisotropy factor defined by [9-10] 

Aij anisotropy factor defined by [11] 

B coefficient in Eq.35 

Df fractal dimension 

ED  diagonal matrix for ellipsoid 

ID  diagonalized inertia tensor 

,I mD  diagonalized inertia tensor after averaging 

I  inertia tensor of the particle 

k12 contribution to K12 (Eq.14) 

K12 kernel of aggregation 

L penetration length 

M particle mass 

N number of primary particles per aggregate 

P configuration probability 

p  orientation vector of ellipsoid 

Ri square root of diagonal elements of ID  
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Rg gyration radius 

Ui semi-axis i of equivalent ellipsoid 

V particle volume 

v  particle velocity 

x  position vector of particle 

x,y,z: space coordinates 

 

Greek letters 

() subscripts for configuration of two-ellipse set 

 porosity 

 solid volume fraction or density 

  shear rate 

 permeability 

 elongation 

 mass density 

 orientation angle 

 

Superscript 

app approximate 

(i) for tensor (particle i) 

 

Subscript 

X  tensor X 

eq equivalent 
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i for scalar or vector (particle i) 

i,k k component of vector (particle i) 

k,l k,l element of the tensor or matrix 

m lower integration boundary (Eq.15) 

M upper integration boundary (Eq.15) 

 

symbol 

< > average 

 

1. Introduction 

Aggregation of particles in a suspension is due to the binary collisions between two particles. 

The resulting aggregate or cluster is a branched and porous object consisting of primary 

particles, usually considered as identical. Most often, the morphology of the cluster is 

described by using the fractal theory: it is defined by the radius of the primary particle, its 

number of primary particles and the fractal dimension. The last quantity is a real number 

within the 1-3 range. It is determined from simulations of colliding particles obeying a given 

collisional mechanism or from an experimental characterization tool as X-ray scattering 

(SAXS) device. Even if the fractal hypothesis was successful for describing the dynamics of 

aggregation, the fractal dimension is not the only morphological parameter to be relevant. The 

fractal dimension of stochastic aggregates is a statistical quantity; it either refers to a 

population of aggregates (as in SAXS analysis) or to a sufficiently large single aggregate (as 

in the analysis of microscope images); in addition fractal dimension is related to several 

morphological parameters (e.g. radius of gyration or mobility radius - when measured against 

aggregate mass, or interparticle distance (pair correlation) - when using box-counting or 
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SAXS data). Moreover, the relation between its value and the nature of the collisional 

mechanism is not so obvious. 

A convex particle, as a spherical primary particle, or a non-convex one, as an aggregate, 

may be described by several morphological parameters, the relevance of which depending 

on the considered physical phenomenon. These parameters can be organized as a vector or 

as a tensor. The theory of scalar or Tensorial Minkowski Functionals (TMF) provides the 

rigorous framework for such parameter set. Mecke et al. [1,2] have applied the integral 

geometry in various fields of physics. They underlined that the inertia tensor does not 

belong to the TMF because it does not possess all the mathematical properties. However, 

inertia tensor is similar to TMF. Porosity, anisotropy and orientation of an object are 

geometrical and textural characteristics that investigators have frequently considered. 

Inertia tensor seems an interesting candidate for introducing these quantities. This is a 

more popular concept among physicists than the Minkowski functionals. 

Torres et al. [3] have, for instance, performed simulations of 3-D shear aggregation. They 

found a fractal dimension value equal to 1.83 and they observed the non spherical shape 

of the aggregate. Moreover they have calculated the inertia tensor (normalized by the 

square of the gyration radius) for clusters with a number N of primary particles smaller 

than 4100. They have observed that the semi-axes of the equivalent ellipsoid were in the 

ratio 1/1.6/3.1 whatever the origin of the particle collision (Brownian motion, shear flow, 

elongation flow). 

Investigators defined two quantities: inertia tensor [4] and gyration tensor [5]. The first 

one considers the mass and the position vector distributions inside the particle. The second 

one that has, in fact, the same definition is often used for systems, polymers or aggregates, 

consisting in monomers or identical primary particles; in this case it only depends on the 

position vector distribution. The words “inertia tensor” will be used later on in this paper. 
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One considers a set of N points with Cartesian coordinates , ,k k kx y z  or ,1 ,2 ,3, ,k k kx x x and a 

mass equal to one in a three-dimensional space. The origin of the coordinate system is the 

centre of mass. The inertia tensor is defined by the expression [4-8]: 

2 2

,2 ,3 ,1 ,2 ,1 ,3

2 2

,1 ,3 ,2 ,3

1 2 2

,1 ,2

k k k k k kN

k k k k

k

k k

x x x x x x

I x x x x

x x


   
 

   
  

       (1) 

or 

2

, , ,

1

N

i j k i k j ij k

k

I x x x


            (2a) 

The continuous formulation of the tensor component is: 

 2

,

[ ]

i j i j ij

V

I x x x dV           (2b) 

The diagonalization of I  leads to: 

2

1

2

2

2

3

0 0

0 0

0 0

I

R

D R

R

 
 

  
 
 

         (3) 

with 1 2 3R R R   

2 2

1 2,R R  and 
2

3R are the principal moments of inertia (divided by the particle mass). 

Then, the gyration radius and the anisotropy factor are defined as: 

2 2 2 2

1 2 3gR R R R            (4) 

2 2/ij i jA R R           (5) 

Otherwise Rudnick and Gaspari [9-10] define the anisotropy factor also named the 

asphericity by:  

     

 

2 2 2
2 2 2 2 2 2

1 2 1 3 2 3

2
2 2 2

1 2 32

R R R R R R
A

R R R

    


 
      (6) 
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Rg and A are rotational invariants. 

Pranami [11] et al. have built by simulation a set of clusters and have shown that the 

fractal dimension Df is not the only relevant parameter; the two anisotropy factors 31A  and 

21A  have to be considered. Researchers had previously considered fractal-like clusters 

with spherical symmetry defined by the relation between the gyration radius and the 

number of primary particles or their mass. The corresponding distribution functions of the 

two anisotropy factors in the population are very close whatever the number of primary 

particles in the clusters. As a consequence it seems that a cluster may be described as a 

spheroid rather than an ellipsoid. The authors indicate that the fractal dimension is 

qualitatively related to the anisotropy distribution: as Df value increases, the mean 

anisotropy factor decreases. 

Thus the inertia tensor and the mass are interesting candidates for describing a particle 

(particle is understood as a general term). If the orientation of the particle is not required, 

the knowledge of the three eigenvalues of the inertia tensor and of the mass or the matter 

volume is sufficient. Then one can deduce the porosity, itself defined from the gyration 

radius, and the anisotropy factors. 

Starting from this idea, we will study in this paper the change of inertia tensor and mass 

during a collision and an aggregation of two particles or clusters. We will also analyse the 

consequences on the entire aggregation dynamics. 

Section 2 presents the theoretical elements corresponding to the collision of two clusters. 

Section 3 is dedicated to its application in a two-dimensional space. Section 4 contains the 

results for the aggregation dynamics of the entire population. Section 5 concludes the 

paper. 

 

2. Change of inertia tensor during the collision of two particles 
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2.1. Theoretical background 

 

The aggregation dynamics of a suspension is studied by means of a population balance, 

the particles being described by their internal parameters. The morphological parameters 

are among these. The additivity of the parameters of two colliding particles, denoted 1 and 

2, is an important property needed for a concise writing of the population balance. This 

property is verified by the mass or the matter volume: 

1 2 1 2M M M             (7) 

This is almost the case for the inertia tensor if it is evaluated about the centre of mass of 

the resulting cluster. This will appear in this section. 

Let us consider two objects with the inertia tensors 
 1

I  and 
 2

I , each one evaluated about 

its own centre of mass iC . The inertia tensor evaluated about another point 'iC  (the 

vector a  is defined by 'i ia C C ) becomes [12] : 

     2

'
i i

kl kl i kl k lI I M a a a    i=1,2       (8) 

Then the inertia tensor of the object resulting from the collision of two smaller objects 

with the centres of mass separated by 1 2a C C  obeys the equation: 

       21 2 1 2 1 2

1 2

kl kl kl kl k l

M M
I I I a a a

M M



   


      (9) 

One defines the equivalent ellipsoid as the real ellipsoid having the same diagonalized inertia 

tensor as the object (1, 2 or 1+2). Each equivalent ellipsoid has an orientation defined by the 

vector ip . The solid volume of primary particles is smaller than the geometrical volume of 

the equivalent ellipsoid. I assume that the vector 1 2a C C  is such as the equivalent ellipsoids 

of the two colliding clusters are tangent in the sense of the geometry (figure 1). This 
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hypothesis is not trivial and will be discussed later on: as the radius of gyration of fractal 

aggregates is smaller than the geometrical size, one may expect that the distance between the 

centres of the two colliding equivalent ellipses will be shorter than the previously assumed 

one. 

The equivalent ellipsoid of the resulting object is obtained from the diagonalization of the 

tensor 
 1 2

I


; the corresponding tensor is denoted (1 2)

ID  (see Eq.3). The equivalent ellipsoid 

with semi-axes (U1, U2, U3) is such as: 

 

 

 

2 2 2 2

1 2 3 1

2 2 2 2

2 1 3 2

2 2 2 2

3 1 2 3

5

2

5

2

5

2

U R R R

U R R R

U R R R

  

  

  

         (10) 

One will introduce the tensor ED which contains all the geometrical parameters of the 

equivalent ellipsoid: 

2

1

2

2

2

3

0 0

0 0

0 0

E

U

D U

U

 
 

  
 
 

         (11) 

Then, the mathematical treatment of a collision event of two clusters, which are approximated 

as ellipsoids, will follow the sequence: 

1. transform ellipsoid to inertia tensors for defined orientation: 

( ) ( ) ( )ipi i i

E ID D I   with i=1,2 

2. compute new inertia tensor: 

     1 2 1 2
I I I


   

3. determine the geometric properties of the equivalent ellipsoid: 

     1 2 1 2 1 2

I EI D D
  

   
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In practice, aggregation involves a large number of particles; a sub-set of particles has the 

same morphological characteristics, but with different orientations. So the description of a 

collision between two objects with different morphological parameters needs the average over 

all the possible orientations of the two objects
 

 

1 2

1, 2p p

D


. The mean quantities 
pi

are 

performed over all the orientations. The average is applied to 
 1 2

ID


. This procedure has been 

selected for the following reason: 

Specifying the orientation of the ellipsoids for each collision add a unit vector, i.e. its 

components, into the set of internal variables describing the particle. In order to reduce the 

number of internal variables an averaging over orientations and relative positions is done. 

Hence a particle is characterized by only its mass and the lengths of the ellipsoid semi-axes. 

This will be particularly important when solving the corresponding population balance 

equation. 

The orientations of the two colliding objects are assumed non-correlated, i.e. the 

hydrodynamic resistance between two particles moving towards each other is not taken into 

account. The orientation angle distribution of a particle in a fluid depends on its shape and on 

the flow field. The relative position of the centres of mass at impact 1 2a C C  depends both 

on the orientations of the two objects and on the mechanism of collision. The figure 2 

includes some possible events. Finally the inertia tensor of the resulting cluster after the 

collision of two smaller clusters is: 

   

   

1 2 1 2

,
1, 2

1, 2

I m I
C C

p p

D D
 

         (12) 

The two main mechanisms, so-called perikinetic and orthokinetic, for aggregation are 

characterized by different kinetic constants or kernels. From a geometrical point of view: 
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- In the case of perikinetic aggregation, two particles moving thanks to Brownian 

motion have the same collision probability whatever the relative angular position. 

- In the case of orthokinetic aggregation, the probability of encounter is all the higher as 

the two particles are offset to the side in the shear flow. The impact of particles 

moving on the same streamline is unlikely. 

Thus, one may write: 

   

   

 

   

1 2 1 2 1 2

, 12 12
1, 2

1, 2 1, 2
1, 2

/I m I I
C C

p p p p
p p

D D D dk K
  



       (13) 

12K  is the kernel as usual. 12dk  is the contribution of an infinitesimal interception or 

collision area to the kernel. One performs the sum over all the collision area. The whole 

collision area, that depends on the orientations of the two particles, is denoted by 

 1, 2p p . 

As a consequence, the kernel obeys the relation: 

   

12 12

1, 2
1, 2

p p
p p

dk K


          (14) 

This approach will be applied to the case of the orthokinetic aggregation. 

 

2.2. Application in the case of aggregation under shear flow 

 

One considers a shear flow in a three-dimensional space (figure 3): the coordinate system 

is such as the velocity vector of the fluid carrying the particle is    , , ,0,0x y zv v v y .   

is the shear rate. 

A preliminary study concerns the orientation distribution of a single particle, as an 

equivalent ellipsoid, in the shear flow. The particle undergoes both translation and rotation. 
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Considering a prolate spheroidal particle, its orientation is defined thanks to the vector p  

that lies along the major axis of the spheroid. The dynamics of the spheroidal particle in 

any flow has been extensively studied [13-14]. In a shear flow, the end of the vector p  

follows circular (and periodic) trajectories called Jeffery trajectories [15]. The 

characteristics of these trajectories are not sensitive to the environment of the particle like 

walls or other particle. If the particles are non-spheroidal ellipsoids, the motion becomes 

biperiodic and is very sensitive to the deviation from axisymmetry [16]. One may 

conclude that an ellipsoid has no preferred orientation in a shear flow and that, as a rough 

approximation, the orientation angle distribution of a single ellipsoid is uniform. 

Moreover, the hydrodynamic resistance [17-19] will be neglected in the paper.  

Thus, one may calculate the diagonal inertia tensor after averaging over the centre of mass 

position and orientation: 

 

 

 
 

 

 

 

1, 2 , 1, 2

1 2 1 2

, 12

1, 2 , 1, 2
1, 2

/

YM p p ZM y p p

I m I

Ym p p Zm y p p
p p

D D y dzdy K
 

        (15) 

with 

 

 

 

 

 

1, 2 , 1, 2

12

1, 2 , 1, 2
1, 2

YM p p ZM y p p

Ym p p Zm y p p
p p

K y dzdy          (16) 

Zm, ZM, Ym and YM are the integration boundaries: there is no collision event beyond these 

values of the coordinates of the centres of mass. 

The above theory and the developed methodology will be applied to the two-dimensional 

problem, i.e. the aggregation of ellipses moving in a two-dimensional shear flow. 

 

3. Aggregation of ellipses in a two-dimensional shear flow 
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The collision of two ellipses 1 and 2 is studied in a two-dimensional space (x,y) ; The flow 

velocity vector is given by    , ,0x yv v y . 

The diagonalized inertia tensor of the resulting cluster becomes: 

   

 

 

 

1, 2

1 2 1 2

, 12

1, 2
1, 2

/

YM p p

I m I

Ym p p
p p

D D y dy K
 

         (17) 

with 

 

 

 

1, 2

12

1, 2
1, 2

YM p p

Ym p p
p p

K y dy          (18) 

The inertia tensor of an ellipse with semi-axes a and b (a>b) and with the semi-major axis 

inclined by  angle with x axis is given by: 

 
     

     

2 2 2 2
2

3

2 2 22 2
[ ]

sin / cos / sin cos

4 sin cos sin / cos /S

a b a bx xy
I dxdy ab

xy y a b b a

   
 

   

 

 

   
   
      

  

            (19) 

After performing the diagonalization: 

 
2 2

3

2 2

0 / 4 0

4 0 0 / 4
I

b Ma
D ab

a Mb








   
    

   
     (20) 

with  M ab  

 and M are the 2-D density and the mass of the interior of the ellipse. 

 

The steps of the calculation are the following ones: 

- Step 1: fix the orientation vectors for the two ellipses 1 2,p p  

- Step 2 : fix the y-coordinate of the centre of mass of the ellipse 2 

- Step 3: calculate the coordinates of the intersection point (collision impact) of the two 

ellipses 
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- Step 4: deduce the coordinates of the vector a  (between the centres of mass of the two 

ellipses) 

- Step 5: calculate 
 1 2

I


, then 
 1 2

ID


 and 12K  

- Step 6: go to step 1 for a new configuration of the two ellipses 

- Step 7: perform the mean values of 
 1 2

I


, 
 1 2

ID


 and 12K  over all the configurations 

The two elements of 
 1 2

ID


, i.e. the eigenvalues of I , are ordered such as 
   1 2 1 2

11 22D D
 

 . 

The kernel of the two-dimensional shear aggregation is obtained following the work of 

Von Smoluchowski [20] who considered the collision of two spheres. The contribution to 

the kernel due to two colliding ellipses with given orientations ( 1  and 2  angles) and 

parameters ( 1 1 2 2, , ,a b a b ) is: 

 
12,max

2

12 1 2 12,max

0

, 2

y

k y dy y            (21) 

with 

       
2 2 2 2

12,max 1 1 1 1 2 2 2 2sin cos sin cosy a b a b          (22) 

By averaging 12k over all the orientations of the two ellipses: 

2

12 12 12,max 1 221, 2

0 0

p p
K k y d d

 


 


           (23) 

Then, 

     
2 2 2 2

2 21 1 2 2 1 2
12 1 1 2 22

8
1 / 1 /

2 2

a b a b a a
K E b a E b a



  
     

 
   (24) 

where E(m) is the complete elliptic integral of the second kind. 

This kernel has to be compared to the one of two circular disks having the same areas that 

the ellipses: 
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   
2

1/ 2 1/ 2

12 1 1 2 2

disksK a b a b   
 

        (25) 

 

The calculation of the intersection point (step 3) is not trivial and needs some computational 

time. This feature will be particularly critical when studying the tri-dimensional collision 

modelling. As the previous algorithm will be included in a larger program for solving the 

population balance, we have also considered an approximation of the whole sequence (steps 

1-7) in order to reduce the computational time: 

- The continuous variables and functions like the distribution of orientations and the 

relative position of ellipses are replaced by a limited number of configurations. 

- Four simple configurations (denoted q = ) are selected so that the calculation 

of their inertia tensor qI is easy (figure 4). 

- A probability qP  proportional to the y-coordinate of the vector 1 2a C C  is given for 

each configuration: 

 

 

   

  

1 2 1 2 1 2

22 2

1 1 2 2 1 2 1 2 1 2

2 2

1 1 2 2

sup , 0

0 inf ,

/ 2 /

/ 4 / 4 /

/ 4 / 4

u v
I

u v

P b b a a b b

u M a M a M M M M b b

v M b M b

 



 







 
  
 

    

    

 

     (26a) 

 

 

   

  

1 2 1 2 1 2

22 2

1 1 2 2 1 2 1 2 1 2

2 2

1 1 2 2

sup , 0

0 inf ,

/ 2 /

/ 4 / 4 /

/ 4 / 4

u v
I

u v

P b a a a b b

u M a M b M M M M b a
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    

 

     (26b) 
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




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  
 

    

    

 

     (26d) 

appI I P I P I P I P                   (27) 

By construction, the tensor appI  is diagonal. The parameters  ,eq eqa b  of the equivalent 

ellipse of the resulting cluster are deduced from: 

 

 

2

1 2

2

1 2

/ 4 0

0 / 4

eqapp

eq

M M a
I

M M b

 
  

  
 with eq eqa b    (28) 

The accuracy of the approximate method (Eqs.27-28) has been compared to the exact 

method (Eqs.17-20):  ,eq eqa b  have been calculated from appI  and from 
,I mD : 

- Firstly the values of  ,eq eqa b  coming from collisions of identical ellipses in an 

aggregation step (N)+(N)→(2N) were considered. The deviation between the two 

methods is smaller than 5% as the elongation, defined as /eq eqa b , is smaller than 10. 

The good performance of the approximate method may be related to the fact that in all 

four configurations the systems of principal axes were either in parallel or 

perpendicular, and that always one pair of principal axes is on one line. Hence the 

calculation is performed on diagonal tensors. 
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- Then the collisions between two differently sized ellipses were considered. The 

approximate method does not agree with the exact method if the ellipses have very 

different masses. As a consequence, the approximate method has to be corrected: the 

parameters of the resulting ellipse will be the one of the ellipse with the larger mass if 

the ratio between the two masses is larger than 30. By applying this correction, the 

error is smaller than 1% (respectively 5%) in 50% (respectively 90%) of the collision 

events. 

 

4  Results and discussion 

 

One considers an initial monodisperse population of disks (with radius 1 and with density 

1). The aggregation of this two-dimensional suspension is studied. In our case, 

aggregation is a series of collisions between equivalent ellipses; each collision event 

corresponds to: 

          1 2 1 2 1 2(1) (2)

1 11 22 2 11 22 1 2 11 22
12, , , , , ,

K
M D D M D D M M D D

 
      (29) 

The subscript m is withdrawn from the diagonal elements of 
,I mD , considering that the 

equivalent ellipse has forgotten the memory of its construction. 

The collision event may be rewritten as: 

     1 1 1 2 2 2 1 2 1 2 1 2
12, , , , , ,

K
M M M M              (30) 

where  and  are the elongation and the porosity of the object. The elongation is the ratio 

of the major semi-axis over the minor semi-axis ( 1  ): 

11 22/D D            (31) 

The mass density 1    is the ratio of the N disk areas over the ellipse area: 

2

11 22/ 4N D D           (32) 
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The hierarchical aggregation and the polydisperse aggregation will be successively 

examined. 

 

4.1 Hierarchical aggregation 

The sequence of the collision events is the following (written as the number N of primary 

particles in the aggregate): 

1+1→2; 2+2→4; 4+4→8; 8+8→16;….. 

The figures 5-6 represent respectively  N  and  N . One observes that these two 

quantities follow the power laws: 

0.551.26N   

0.78

1/ 0.606Na R N  

2.16   

R1 and aN are respectively the radius of the primary particle and the major semi-axis of the 

equivalent ellipse for the cluster with N primary particles. 

The elongation factor rapidly converges to a constant value. The mass density in the 

ellipse corresponds to a fractal object with a fractal dimension Df equal to 1.29. The 

fractal dimension is calculated from the relation: 

 2 /2 / Df DfDfS N


          (33) 

if  
1/

1/ /
Df

Na R N S where S is a structure factor. 

The simulations of the hierarchical aggregation by using the approximate method are in 

good agreement ( 2.14  , 0.651.4N  ) with the ones obtained with the exact method. 

 

4.2. Polydisperse aggregation 
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In this case, all the collision events are possible (for instance, (3)+(6)→(9)). One starts from a 

monodisperse set of disks (with radius 1). A Monte-Carlo Simulation (MCS) is performed: 

The probability to have a collision between any two particles is proportional to the 

corresponding kinetic constant (kernel) of aggregation. Hence, two objects are randomly 

selected by applying this probability distribution. Then its equivalent ellipse is calculated. The 

process is repeated until clusters with a large number (N=104) of primary particles are built. 

The chosen procedure for MCS was developed by Smith and Matsoukas [21]. At a given time, 

the population of clusters, i.e. equivalent ellipses, can be analysed: distribution of N, 

distribution of elongation, fractal dimension …. 

The simulations obtained by the approximate (Eqs.27-28) and exact (Eqs.17-20) methods are 

in agreement (figure 7). With the approximate method, a power law is observed: 

0.591.1N  and the elongation is distributed within the range [1.0-2.25] (figure 8), whereas, 

with the exact method, the power law is 0.531.1N   (figure 9) and the elongation is 

distributed within the range [1.3-2.25] (figure 10a). The last result is close to the one of 

Pranami ([11] figure 3). The figure 10b has the same content of the figure 10a but with the 

presentation of Pranami. An asymptotic state for the elongation distribution is early reached 

(t<20). The fractal dimension deduced from  N  is close to 1.31. 

The literature contains several results concerning the shear aggregation in a 2-D space: 

- Some authors consider shear aggregation as a ballistic aggregation. However, other 

authors dispute this point (see Elimelech et al. ([22], p.182)) 

- Hentschel [23] recalls that Meakin showed that Df=1.55 for 2-D ballistic cluster-

cluster aggregation. He adds that the anisotropy factor (as the ratio of the two largest 

principal gyration radii) is equal to 2. From dimensional arguments, Hentschel finds 

Df=1.375; This value does not depend on the collision mechanism and is consistent 
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with a very weak interpenetration of clusters 2 0.625DfL R R   and an anisotropy 

factor equal to 2.  

- Meakin [24] performed cluster-cluster simulations in a 2-D space: the value of the 

fractal dimension is 1.50 (Df increases as N is increasing and is close to 1.55 when 

100<N<104). 

It is possible that the deviation between our value of the fractal dimension and the value of 

Meakin (for instance) is due to the interpenetration of the equivalent ellipses. Thus the 

following improvement is proposed: 

The equivalent ellipse consists in a hard core and a penetrable shell with the thickness 

depending on the permeability  of the ellipse. The contact point between the two colliding 

ellipses is at the level of the two core boundaries. Several authors evaluate the penetration 

length of a cluster (see Potanin [14], Veerapaneni et al. [25], Neale et al. [26]). They agree by 

proposing the relation 2L  (valid if the fractal dimension is higher than 1.8 in a 3-D 

space). The permeability of a set of disks or of a bundle of parallel cylinders with radius R1 

has been calculated following Sangani and Acrivos [27]: 

 

   

2 2 3

1

5/ 2
1/ 22 3/ 2

1

0.5ln 0.738 0.887 2.038 / 4 0.28

2 1 4 / / 9 0.28

R

R

      

    

        

   
 

   (34) 

 is the volume fraction of cylinders. 

Then the distance  1 2C C  between the centres of the two equivalent ellipses is reduced due to 

the reciprocal penetration of the two equivalent ellipses: 

     1 2 1 2 1 20
C C C C B             (35) 

B is a proportionality coefficient close to 2. The permeability  is given by the equation 34. 

Other expressions about the dependence of  1 2C C with   lead to similar results. The 

interpenetration leads to a densification that is implicitly handled by the model. 
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As the model described in the paper is not based on the concept of fractality, and thus does 

not consider explicitly the inhomogeneous density inside the object, the permeability is 

calculated for a porous medium with a constant density. The latter one is the mean value of 

density inside the aggregate. This option is chosen because it is consistent along the paper. 

However the permeability (as a function of the density) should be calculated for the density 

valued at the surface of the fractal object. The mean value of the density in the aggregate is 

larger than the density value at the boundary of the aggregate. This is a limitation of the 

model. 

Simulations have been performed with a corrected inter-centre distance (Eq.35). Several B 

values have been tested. Whatever the B value, the density versus N follows a power law. 

However, the function  N has two expressions depending on the number of primary 

particles into the aggregate. The corresponding results are gathered in the table 1 for 

calculations with the approximate method, and in the table 2 for calculations with the exact 

method. As expected the fractal dimension increases if the B parameter increases. This is 

particularly verified for the smallest aggregates. 

Monte Carlo simulations have been performed where the collision of two equivalent ellipses 

is replaced by the collision of two clusters of primary particles (with radius equal to one). The 

algorithm structure is the same as the one used for studying the dynamics of the population of 

equivalent ellipses. However the details of the step of collision are slightly different. The 

clusters are randomly oriented with a fixed orientation whereas the relative position 

(perpendicular to the streamline) of the two particles is fixed as well. The centre of mass of 

the cluster 1 is located at the origin of the coordinate system whereas the one of the cluster 2 

is computationally made to move along a streamline in the shear flow. When two primary 

particles belonged to two different clusters collide, the resulting cluster is a new one in the 

population. The restructuring of the aggregate is not taken into account. So an aggregate is 
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completely defined by the set of the Cartesian coordinates of all the primary particle centres. 

The number N of primary particles per aggregate, the gyration radius Rg and the elongation 

(a/b) of the aggregate for all the cluster set are recorded at several times during a simulation 

run. The kernel, needed in the MCS, obeys the relation: 

2

12 ,1 ,22 g gK R R              (36) 

This equation is consistent with the expression (24) valid for the collision between two 

ellipses with the gyration radii 2 2

, / 2g i i iR a b  . 

An averaging over orientations and positions has been considered in the framework of ellipse-

ellipse collisions. In this paper it is assumed that for cluster-cluster collisions the large number 

of collision events or Monte Carlo runs leads to a behaviour close to the ellipse-ellipse 

collision. 

The figure 11 represents the gyration radius of the clusters as a function of the number of 

primary particles per aggregate for the collisions ellipse-ellipse without interpenetration (B = 

0), collisions ellipse-ellipse with interpenetration (B = 2) and collisions cluster-cluster. The 

selected (time) steps are 700, 1000, 1250 for each kind of collisions. It is observed that the 

agreement is very good between cluster-cluster and ellipse-ellipse (B = 2) collisions. The 

relation  gR N  for cluster-cluster collisions obeys: 

1/ 1/1.5

1/ 0.7fD

gR R kN N   as 3 8000N   

Thus, the fractal dimension is equal to 1.5. 

However there exists a difference between the two kinds of collisions: in the case of cluster-

cluster collisions, it appears very few (<1% of all clusters), but very large clusters. As a 

collision involving a large aggregate is more likely, larger and larger aggregates are produced. 

In our opinion, the main reasons of this behaviour are the use of the Monte Carlo algorithm 

with the kernel (Eq.36) and the microscopic nature of the collision act as well. This 
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phenomenon cannot be ignored when studying aggregation at long time. However, 

experimental results show that the aggregates moving in a shear flow contain a small number 

of primary particles (N<<103); this is due to the fragmentation of large and loose aggregates. 

Ellipse-ellipse collisions do not lead to rare and large aggregate.  

Another difference concerns the elongation distributions (figures 12a-b). In the case of 

cluster-cluster collisions, the distribution has a tail for the large values of elongation. The 

distribution of elongation issued from the equivalent ellipses has no such characteristics. 

However, the peaks of the elongation distributions occur at the same elongation value which 

is smaller than 2 for the two kinds of collisions. 

 

5. Conclusion 

The inertia tensor of a particle is directly related to the gyration radius and the anisotropy 

factors, or the elongation. One may deduce the density or the volume fraction inside the 

particle by knowing the mass or number of primary particles. In our modelling these data are 

used to define an equivalent porous ellipsoid. From this, the variation of the morphological 

parameters during the collision event has been calculated. This result has been applied to the 

entire particle population to simulate the aggregation dynamics in the shear aggregation of 

disks in a two-dimensional space. The resulting aggregate, or ellipse, depends on the location 

of the contact point between colliding ellipses. It has been shown by different ways that the 

aggregates interpenetrate during the collision. The penetration length has been estimated. 

However the mechanism of interpenetration involved for fractal-like aggregates cannot be 

strictly applied to the equivalent ellipses in the current model. By using a weak definition of 

the fractality, one observes that the density of the particles follows a power law as fractal-like 

particles do. The deduced fractal dimension is within the range [1.3-1.5], the larger values 

corresponding to the deeper penetration. Hentschel and Meakin showed that the ballistic 
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cluster-cluster collision leads to a fractal dimension value in the range [1.375-1.55] whereas, 

in this work, cluster-cluster collision in a shear flow leads to a value equal to 1.5. As a 

consequence, the ellipse-ellipse collisions with interpenetration show well the main features 

of the cluster-cluster collisions. This proves the relevance of this approach. The proposed 

modelling gives an important role to the anisotropy factor. It is observed that aggregation 

produces anisotropic particles. Most of particles have a value of elongation close to 2 in 

agreement with the literature. However, elongation distribution issued from cluster-cluster 

collisions is right-skewed unlike the one coming from ellipse-ellipse collision. Anisotropy 

factor is also a relevant parameter for fragmentation: real large aggregate in a real shear flow 

elongates and then breaks up at the most fragile part inside it. 

This approach will be extended to the shear aggregation in a three-dimensional space. As 

expected from first investigations, the calculations related to the ellipsoid-ellipsoid collision 

are slightly more tedious and leads to time-consuming computations of the aggregation 

dynamics. However approximate method like the one developed for the two-dimensional case 

could notably improve this point. 
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Figure 1: collision between two equivalent ellipsoids 

Figure 2: collision between two objects: the object 1 with a given orientation collides the 

object 2 at two different points. Any point on the surface of the object 2 may be a contact 

point with object 1. 

Figure 3: shear aggregation; collision 

Figure 4: the four configurations used for the approximate inertia tensor. 

Figure 5: elongation /a b   as a function of the number of primary particles into the 

aggregate; hierarchical aggregation 

Figure 6: density  as a function of the number of primary particles into the aggregate; 

hierarchical aggregation. Log is the common logarithm. 

Figure 7: distribution in number N of primary particles per aggregate; from left to right: black 

t=0.86 (500); red t=3.19 (1000), green t=26.8 (2000), blue t=201.5 (3000), yellow t=550 

(3500), black t=1500 (4000), green t=1.11 104 (5000). Calculated from the exact method 

(dashed line) and the approximate method (solid line). The value within parentheses is the 

number of steps (MCS). 

Figure 8: elongation distribution (as the ratio of the two semi-axes); from left to right: green 

t=26.8, blue t=201.5, yellow t=550, black t=1500, red t=1.11 104. Approximate Method. 

Figure 9: density as a function of the number N of primary particles; black t=0.86; red t=3.19, 

green t=26.8, blue t=201.5, yellow t=550, black t=1500, green t=1.11 104. The straight line 

(log-log) corresponds to the equation 0.531.1N  . Collision ellipse-ellipse. Exact Method. 

Figure 10a: elongation distribution (as the ratio of the two semi-axes); from left to right: green 

t=26.8, blue t=201.5, yellow t=550, black t=1500, red t=1.11 104. Exact method. 
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Figure 10b: elongation distribution (as the ratio of the two principal inertia moments); from 

left to right: green t=26.8, blue t=201.5, yellow t=550, black t=1500, red t=1.11 104. Exact 

method. 

Figure 11: gyration radius against the number N of primary particle per aggregate. green: 

collisions ellipse-ellipse without interpenetration (B=0); red: collisions ellipse-ellipse with 

interpenetration (B=2); blue: collisions cluster-cluster. 

Figure 12a: elongation distribution (N>2) for three time steps: 

red: 700 ; green : 1000 ; blue: 1250 cluster-cluster collision 

Figure 12b: elongation distribution (N>2) for three time steps: 

red: 700 ; green: 1000 ; blue: 1250 ellipse-ellipse collision 
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Figure 1: collision between two equivalent ellipsoids 
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Figure 2: collision between two objects: the object 1 with a given orientation collides the 

object 2 at two different points. Any point on the surface of the object 2 may be a contact 

point with object 1. 
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Figure 3: shear aggregation; collision 
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Figure 4: The four configurations used for the approximate inertia tensor. 
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Figure 5: elongation /a b   as a function of the number of primary particles into the 

aggregate; hierarchical aggregation 
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Figure 6: density  as a function of the number N of primary particles into the aggregate; 

hierarchical aggregation. Log is the common logarithm. 
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Figure 7: distribution in number N of primary particles per aggregate; from left to right: black 

t=0.86 (500); red t=3.19 (1000), green t=26.8 (2000), blue t=201.5 (3000), yellow t=550 

(3500), black t=1500 (4000), green t=1.11 104 (5000). Calculated from the exact method 

(dashed line) and the approximate method (solid line). The value within parentheses is the 

number of steps (MCS). 
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Figure 8: elongation distribution (as the ratio of the two semi-axes); from left to right: green 

t=26.8, blue t=201.5, yellow t=550, black t=1500, red t=1.11 104. Approximate Method. 
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Figure 9: density as a function of the number N of primary particles; black t=0.86; red t=3.19, 

green t=26.8, blue t=201.5, yellow t=550, black t=1500, green t=1.11 104. The straight line 

(log-log) corresponds to the equation 0.531.1N  . Collision ellipse-ellipse. Exact Method. 
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Figure 10a: elongation distribution (as the ratio of the two semi-axes); from left to right: green 

t=26.8, blue t=201.5, yellow t=550, black t=1500, red t=1.11 104. Exact method. 

 



 40 

 

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Ia/Ib

n

 

Figure 10b: elongation distribution (as the ratio of the two principal inertia moments); from 

left to right: green t=26.8, blue t=201.5, yellow t=550, black t=1500, red t=1.11 104. Exact 

method. 
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Figure 11: gyration radius against the number N of primary particle per aggregate. green: 

collisions ellipse-ellipse without interpenetration (B=0); red: collisions ellipse-ellipse with 

interpenetration (B=2); blue: collisions cluster-cluster. 
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Figure 12a: elongation distribution (N>2) for three time steps: 

red : 700 ; green : 1000 ; blue : 1250 cluster-cluster collision 
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Figure 12b: elongation distribution (N>2) for three time steps: 

red: 700 ; green: 1000 ; blue: 1250 ellipse-ellipse collision 
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List of tables 

Table 1: parameters of the function density-number 
 2 /Df DfnkN kN


  . Effect of the 

penetration parameter B; Approximate method. 

Table 2: parameters of the function density-number 
 2 /Df DfnkN kN


  . Effect of the 

penetration parameter B; Exact method. 
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B k n Df 

0 1.1 0.59 1.26 

1 1   N<500 

1.8   N>500 

0.46 

0.56 

1.37 

1.28 

2 0.9   N<500 

3.5   N>500 

0.36 

0.56 

1.47 

1.28 

3 0.9   N<500 

5   N>500 

0.3 

0.56 

1.54 

1.28 

 

Table 1: parameters of the function density-number 
 2 /Df DfnkN kN


  . Effect of the 

penetration parameter B; Approximate method. 
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B k n Df 

0 1.1 0.53 1.31 

1 1.1   N<150 

1.7   N>150 

0.46 

0.52 

1.37 

1.32 

2 1.1   N<350 

2.1   N>350 

0.41 

0.51 

1.42 

1.33 

3    

Table 2: parameters of the function density-number 
 2 /Df DfnkN kN


  . Effect of the 

penetration parameter B; Exact method. 

 

 

 


