
HAL Id: hal-03337243
https://hal.science/hal-03337243v1

Submitted on 7 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probabilistic rule induction for transparent CBR under
uncertainty

Martin Jedwabny, Pierre Bisquert, Madalina Croitoru

To cite this version:
Martin Jedwabny, Pierre Bisquert, Madalina Croitoru. Probabilistic rule induction for transparent
CBR under uncertainty. AI 2021 - 41st BCS SGAI International Conference on Innovative Tech-
niques and Applications of Artificial Intelligence, Dec 2021, Cambridge, United Kingdom. pp.117-130,
�10.1007/978-3-030-91100-3_9�. �hal-03337243�

https://hal.science/hal-03337243v1
https://hal.archives-ouvertes.fr

Probabilistic rule induction for transparent CBR

under uncertainty

Martin Jedwabny,1 Pierre Bisquert,1, 2 Madalina Croitoru1

1LIRMM, Inria, Univ Montpellier, CNRS, Montpellier, France
2IATE, INRAE, Institut Agro, Montpellier, France
martin.jedwabny@lirmm.fr, pierre.bisquert@inrae.fr,

madalina.croitoru@lirmm.fr

Abstract

CBR systems leverage past experiences to make decisions. Recently,
the AI community has taken an interest in making CBR systems explain-
able. Logic-based frameworks make answers straightforward to explain.
However, they struggle in the face of conflicting information, unlike prob-
abilistic techniques. We show how probabilistic inductive logic program-
ming (PILP) can be applied in CBR systems to make transparent deci-
sions combining logic and probabilities. Then, we demonstrate how our
approach can be applied in scenarios presenting uncertainty.

1 Introduction

Case-based reasoning (CBR) [1] is a problem-solving technique that uses pre-
viously encountered experiences to solve a problem. When novel problems are
encountered, similar past cases are retrieved and their solutions are adapted to
the situation at hand. Furthermore, soft case-based reasoning [14] allows for
uncertainty in the form of missing information or when a single description has
been solved using multiple solutions. Here, we focus on this second type of
uncertainty, in which a single problem might have been solved using different
solutions in the past. Indeed, this scenario can easily present itself as a con-
sequence of multiple domain experts providing conflicting solutions, or when a
single one has different confidence levels over the space of possible solutions.

Lately, there has been a major interest from the Artificial Intelligence com-
munity to make systems that provide explanations to their answers, giving birth
to what is known as explainable AI (XAI). Due to several concerns stemming
from the lack of transparency and interpretability [3], several approaches have
been proposed to make up for these issues for various AI subfields, including
CBR systems [20]. Indeed, some literature [19, 12] even includes computing
explanations as part of the fundamental workflow of CBR systems.

1

Past literature in XAI has developed two main ways of achieving explainabil-
ity [3]: transparent systems and post-hoc models to explain black-box systems
[16]. Some authors consider the second type of explanations as limited due
to the fact that they provide reconstructions which might not be really linked
to the actual reasoning process of the black-box system. On the other hand,
transparent systems often sacrifice the quality of the answers or computational
performance, in order to fully offer interpretable results.

Recently, there has been a growing interest in the XAI community in frame-
works that combine symbolic and probabilistic approaches, which allows to both
handle uncertainty in the form of conflicting information, and deliver transpar-
ent results. A state-of-the-art probabilistic rule induction system, called Prob-
FOIL+ [7] allows to infer probability annotated rules from noisy data. However,
this approach will often suffer from time complexity issues when the available
information is too large.

In this paper, we argue that case-based reasoning in conjunction with Prob-
FOIL+ is a feasible and interesting approach to both tackling the time com-
plexity issues of probabilistic rule induction, and providing transparent answers
in soft case-based reasoning problems featuring problems with conflicting solu-
tions.

The following sections are structured as follows. Section 2 introduces the
basic notions required to present our framework. Then, section 3 covers the
general architecture of our framework, the CBR case representation, and the
reasoning mechanism from a theoretical perspective. Section 4 goes into the
implementation details of our system. In section 5, the reader will find a the
results obtained by the implementation of our framework. Finally, section 6
summarizes our results, discusses different perspectives upon which our work
contributes to, and compares our work to previous research.

2 Preliminaries

In this section, we describe the logical language we will use to represent the
cases of our CBR system and some basic concepts of probabilistic inductive
logic programming [7] which our system uses to perform the case adaptation
phase described in the upcoming sections.

2.1 Logic language

We build upon a first-order logic language L composed of constants {a, b, . . .},
variables {X,Y, . . .}, function symbols {f, g, . . .}, and predicate symbols {P,Q,
. . .}. A term t is a constant, a variable or a functor. An atom P (t1, . . . , tn) is a
predicate P of arity n ∈ N0 applied to terms t1, . . . , tn. A rule H ← B1, . . . , Bn
is a construct composed of a head atom H and a finite conjunction of body
atoms B1, . . . , Bn. A fact is a rule with an empty body. A substitution θ =
{X1/t1, . . . Xk/tk} is a mapping from variables to terms. Applying a substitu-
tion θ to an atom a is denoted as aθ and it replaces the variables in the domain

2

of θ with their corresponding terms. In the case aθ contains no variables, we
say that the operation is a grounding of a and we call aθ a ground atom.

2.2 Probabilistic logic language

We can extend logic rules with probabilistic annotations in order to deal with
uncertain information. ProbLog [8] is a probabilistic first-order logic language
that extends the notions presented above with probabilistic rules (and facts)
pi :: ri where pi ∈ [0, 1] denotes a probability and ri is a rule. Its semantics is
based on what is known as a distribution semantics [18] (a well-known semantics
for probabilistic logics).

A ProbLog program T = {p1 :: r1, . . . , pn :: rn} consists of a finite set
of probabilistic rules. Given a finite set of possible grounding substitutions
{θi,1, . . . , θi,mi

} for each probabilistic rule pi :: ri ∈ T , a ProbLog program T
defines a probability distribution over the subsets L ⊆ LT of possible groundings
LT = {r1θ1,1, . . . , r1θ1,n1 , . . . , rnθn,1, . . . , rnθn,mn} of (strict) rules in T as:

P (L | T) =
∏

riθj∈L

pi
∏

riθj∈LT \L

(1− pi)

Moreover, ProbLog defines the success probability of a query q (i.e. finite
conjunction of atoms) as the overall probability that a random subset L ⊆ LT
entails q:

Ps(T |= q) =
∑
L⊆LT

L∪D|=q

P (L | T)

2.3 Probabilistic inductive logic programming

PILP [7] is a subfield of statistical relation learning (SRL) [10] that addresses
the task of inferring a set of logic rules that justify a target predicate from
examples and background knowledge, when the examples and learnt rules may
be annotated with probabilities.

As mentioned before, the PILP setting is the task of finding an hypothesis in
the form of a set of probabilistic rules from which a set of examples of a target
predicate can be derived with minimal loss. More precisely (based on [7]):

Definition 1 (PILP problem) Given the following:

1. A set of examples E, composed of pairs (xi, pi) where xi is a grounding
for the target predicate t and pi its probability,

2. A background theory B containing information related to the examples in
the form of a ProbLog program,

3. A loss function loss(H,B,E), measuring the error of a hypothesis (set of
rules) H w.r.t B and E (in [7]: loss(H,B,E) =

∑
(xi,pi)∈E |Ps(B ∪H |=

xi)− pi|), and

3

4. A space of possible clauses Lh specified as in [13].

Find a hypothesis H ⊆ Lh such that H = argmin
H′⊆Lh

loss(H ′, B,E).

Notice that the definition above accounts for probabilistic rules in the back-
ground theory B and hypothesis H unlike [7], which only accounts for proba-
bilistic facts. However, as mentioned in [8] this definition is equivalently general,
as probabilistic rules can be replaced in this setting by strict rules by adding a
fresh probabilistic fact (with the same probability annotation) to its body. We
modified this definition for ease of use in later sections.

3 Our framework

In this section, we will present our framework from a theoretical perspective,
while the implementation details will be described in the following one. It
utilizes the mechanisms of probabilistic inductive logic programming to adapt
previously encountered cases so that it allows them to have conflicting solutions.

As mentioned before, CBR is a methodology which consists of finding and
reusing past problems to solve novel ones, which present similar features. We
will denote the case base (i.e. the past cases) of a CBR system as a collection of
(possibly non-unique) pairs CB = {(xi, yi)}i where xi ∈ P is called the problem
and yi ∈ S its solution.

Both P the problem space and S the solution space, are typically assigned
a fixed structure by the CBR implementation. More precisely, their structure
should be contained in its prespecified background knowledge BK consisting of
(i) the case base structure, (ii) integrity constraints, (iii) the case base itself,
and (iv) additional knowledge for the many stages of the decision process.

Given a case base and a novel problem xnew, a CBR system should assign
an appropriate solution ynew. More precisely, case-based reasoners suppose that
CB follows an unknown relation Sols ⊆ P × S and its objective is to replicate
its behaviour such that (xnew, ynew) ∈ Sols.

When confronted with a novel case xnew, CBR systems normally follow an
architecture consisting of four distinct steps [1]:

1. Retrieve previously seen cases that are similar to the current one. This
step is often performed by extracting the k cases from CB that maximize a
similarity function (reflexive and symmetric) sim : P×P 7→ [0, 1] between
the case in question and xnew.

2. Reuse the retrieved cases from the previous step by selecting or integrating
their solutions to produce a set of candidate solutions.

3. Revise the candidate solution(s) and adapt it(them) into a solution for
xnew.

4. Retain the new solution after validation into the case base if necessary.

4

3.1 Representation

We will model our cases using a first-order logical language L as the one pre-
sented in section 2.3. The solution space will be characterized by a set of
(reserved) constants S = {s1, s2, . . .}. Then, we say that:

Definition 2 (Case) A case base CB = {(xi, yi)}i is a collection of (possibly
non-unique) cases where yi ∈ S, and xi is a set of ground atoms of the form
P (a1, . . . , an) or P (s, a1, . . . , an) where s ∈ S, P is a predicate and a1, . . . , an
are (non-solution) constants (∀i, j, aj 6= si) of L.

The intuition behind this model is that the atoms of the form P (a1, . . . , an)
describe the scenario of the case, whereas P (s, a1, . . . , an) are used to represent
the properties of each possible solution, denoted by s ∈ S. This representation
will later allow us to encode the adaptation phase of the CBR cycle as a PILP
problem as defined in the previous section.

In order to exemplify our framework, let us consider this example from [2]:

Example 1 (Assisted driver) We set ourselves in the context of an AI-equipped
vehicle which can spontaneously take control from the human driver under dan-
gerous circumstances. As such, each case revolves around either taking control of
the vehicle, or doing nothing. These two options are always mutually exclusive.
The characterization of the problem is given by a set of duties at stake. These
are (i) prevention of collision, (ii) respect for driver autonomy, (iii) keeping
within speed limit, and (iv) prevention of imminent harm to people.

More precisely, each case xi is represented by a set of predicates of the form
Duty(Option, V alue) where Duty ∈ {preventCollision, respectAutonomy,
withinLimit, preventHarm}, Option ∈ {takeControl, doNothing}, V alue ∈
{yes, no}, and each solution yi ∈ {takeControl, doNothing}. For example, if a
case contains the predicate preventCollision(takeControl, yes), it would imply
that taking control of the car in the current scenario guarantees preventing a
collision. If a duty is not present in a case, it’s deemed as irrelevant.

• Case 1: There is an object ahead in the driver’s lane and the driver moves
into another lane that is clear.

x1 ={preventCollision(takeControl, yes), respectAutonomy(takeControl, no),

preventCollision(doNothing, yes), respectAutonomy(doNothing, yes)}

• Case 2: The driver has been going in and out of his/her lane with no
objects discernible ahead.

x2 ={preventCollision(takeControl, yes), respectAutonomy(takeControl, no),

preventCollision(doNothing, yes), respectAutonomy(doNothing, yes)}

5

• Case 3: The driver is speeding to take a passenger to a hospital. The GPS
destination is set for a hospital.

x3 ={respectAutonomy(takeControl, no), withinLimit(takeControl, yes),

preventHarm(takeControl, no), respectAutonomy(doNothing, yes),

withinLimit(doNothing, no), preventHarm(doNothing, yes)}

• Case 4: Driving alone, there is a bale of hay ahead in the driver’s lane.
There is a vehicle close behind that will run the driver’s vehicle upon sud-
den braking and he/she can’t change lanes, all of which can be determined
by the system. The driver starts to brake.

x4 ={preventCollision(takeControl, no), respectAutonomy(takeControl, no),

preventHarm(takeControl, yes), preventCollision(doNothing, no),

respectAutonomy(doNothing, yes), preventHarm(doNothing, no)}

3.2 Reasoning

Having defined our structure for cases, we can now describe our framework us-
ing the classical CBR cycle. As explained before, it’s composed of four distinct
phases, (i) retrieval of similar past cases, (ii) reuse of their solutions by integra-
tion, (iii) revision of candidate solutions, and (iv) retention of the new solution
after validation.

Retrieval

Given a novel case (x, y) defined using our representation above, the reasoner
searches for similar encountered cases in its base. Typically, CBR systems have
a fixed limit K ∈ N of cases to retrieve. The system starts by determining the
K past cases that maximize a similarity function sim : P × P 7→ [0, 1]. There
are numerous ways of defining such a function in the literature [5]. For our
purposes, we’ll use a generic yet general weighted function:

sim(x1, x2) =

∑
p∈A(CB)

wp × simp(x1, x2)∑
p∈A(CB)

wp
(1)

Where x1, x2 ∈ P are two problems, A(CB) is the set of all ground atoms of
L in CB, simp(x1, x2) is a local similarity function, and wp ∈ R>0 is an optional
weight describing the relative importance of p.

For a given case base CB, we denote the K most similar cases to problem
x ∈ P as simK

CB(x) ⊆ P, containing exactly K elements if |CB| ≥ K, or all the
problems in the base otherwise.

6

Adaptation

Then, the reuse and revision steps are implemented by (i) generalizing the
solutions from simCB(xnew) through PILP, and (ii) computing the probability
that an answer is correct for xnew using the ProbLog semantics.

Step (i) reduces generalization to the PILP setting as in Procedure 1.
Given a case base CB, an input problem xnew, and its K most similar cases
simK

CB(xnew), the procedure reduces the adaptation of the these cases to a PILP
problem.

Procedure 1: Generalize results from the retrieval step using PILP

Input: Case base CB, problem xnew, cases C = simK
CB(xnew)

Output: Hypothesis H
1 E ← {(answer(idx, y), py)} such that (x, y) ∈ C are retrieved cases,

‘idx’ maps a problem (set of ground atoms) to a (fresh) constant,

‘answer ’ is the target predicate of arity 2, and py = |{(x,y)∈C}|
|{(x,y′)∈C:y 6=y′}| .

2 B ← P (idx, a1, ..., an) (or, P (idx, s, a1, ..., an)) for each predicate
P (a1, ..., an) (or, P (s, a1, ..., an)) in x, for all (x, y) ∈ C.

3 Define loss(H,B,E) =
∑

(xi,pi)∈E |Ps(B ∪H |= xi)− pi|) as in [7].

4 Define the space of possible clauses Lh such that:

• Only allows the variabilized atom answer(X,Y) in a rule’s head.

• Only allows atoms of the form P (X, a1, . . . , an) or P (X,Y, a1, . . . , an)
where P (a1, . . . , an) or P (s, a1, . . . , an) are atoms appearing in C,
respectively, X,Y are the variables appearing in the rule’s head, and
a1, . . . , an remain as constants (are not replaced by variables).

5 Find a hypothesis H ⊆ Lh such that H = argmin
H′⊆Lh

loss(H ′, B,E).

The intuition behind this transformation is that it allows conflicting solutions
for the same problem by defining pi as the proportion of times the answer was
chosen. In doing so, a PILP solver obtains as output a set of ProbLog rules of
the form:

pi :: answer(X,Y)←Pi1(X, ai1,1 , ..., ai1,n1
), ..., Pim(X, aim,1

, ..., aim,nm
)

Qi1(X,Y, ai1,1 , ..., ai1,n1
), ..., Qit(X,Y, ait,1 , ..., ait,nt

)

Where pi is the probability annotation of the ProbLog rule, answer(X,Y)
the target predicate, P,Q body predicates, X,Y variables, and aij,k constants.

Example 2 (Assisted driver continued) Suppose CB is composed of 1 in-
stance of each pair (x1, doNothing), (x2, takeControl), (x3, doNothing), (x4, takeControl)
and 4 instances of (x2, doNothing), (x3, takeControl), (x4, doNothing). For

7

this case base, a hypothesis that minimizes the loss function is the following:

0.8 :: answer(A,B)←preventHarm(A,B, yes), preventCollision(A,B, no)

0.8 :: answer(A,B)←respectAutonomy(A,B, yes), preventHarm(A,B, yes)

0.2 :: answer(A,B)←withinSpeedLimit(A,B, yes)
0.2 :: answer(A,B)←preventCollision(A,B, yes)

Notice that for ProbLog semantics, the last rule obtained by the solver, i.e:
0.2 :: answer(A,B) ← preventCollision(A,B, yes), doesn’t imply there is 0.2
probability of a solution being correct given that it prevents a collision, but rather,
that there is a 0.2 chance that the rule itself is valid.

It’s also worth mentioning that the space and time complexity of finding H
depends on the PILP implementation. However, our transformation produces a
knowledge base of size linear with respect to the amount of ground clauses in C
(retrieved cases). This in turn is extremely useful as various sizes K of similarity
bounds can be tested at decision-making time. For a experimental analysis of
an existing PILP solver please refer to [7]. A more in depth theoretical analysis
of the time and space complexity of our framework as a whole is left for future
work.

Step (ii) of the adaptation phase consists of executing a ProbLog solver [7]
using the hypothesis H obtained from phase (i), (optional) background knowl-
edge B that can be used to enforce certain behaviour at decision-making time,
and the ground atoms in the current problem xnew. In summary this ProbLog
program consists of:

1. H the hypothesis obtained from step (i), i.e: a set of ProbLog rules with
head answer(X,Y),

2. B the (optional) background knowledge,

3. All facts of the form P (idxnew , a1, . . . , an) or P (idxnew , s, a1, . . . , an) con-
tained in xnew, where idxnew is a (fresh) constant, and

4. A query q = answer(idxnew , Y) where Y is the variable to be grounded.

Example 3 (Assisted driver continued) Consider the novel case 5, char-
acterized by:

x5 ={respectAutonomy(takeControl, no), preventHarm(takeControl, no),

preventCollision(takeControl, yes), respectAutonomy(doNothing, yes),

preventHarm(doNothing, yes), preventCollision(doNothing, yes)}

Computing the query q = answer(x5, Y) for the hypothesis H obtained in the
previous part of the example, and adding the ground facts of x5, gives us:

answer(x5, doNothing) : 0.84

answer(x5, takeControl) : 0.2

8

Figure 1: Overview of the architecture of our CBR system

With the result of step (ii), the response of our CBR framework is determined
by the solution with the highest probability of being correct according to the
ProbLog solver. Notice that the sum of the probabilities don’t have to add up
to 1, because we want to allow multiple solutions to be valid at the same time,
which can be useful depending on the application domain.

Retention

Finally, the last step of the CBR cycle is implemented by adding the case with
the infered solution after validation from a human user, if retention is neces-
sary in the application domain’s context. Because our main focus was on the
adaptation phase, we leave other retention strategies [6] for future work.

4 Implementation

Having defined the overall idea of our framework in the previous section, here
we’ll describe our current implementation and the technologies involved in it.
Figure 1 depicts the high-level architecture of our CBR system.

For the representation of our framework, we used a simplified version of
CBROnto [9], an OWL-based domain-agnostic ontology for representing CBR
systems. CBROnto allows to define cases, complex properties, similarity mea-
sures, and many other useful elements for a CBR system. At the same time,
it can combat the main problem of knowledge-intensive CBR systems, the
‘knowledge acquisition bottleneck’ by reusing knowledge from other ontology

9

libraries to create complex knowledge structures. This choice of design was
useful twofold: (i) it facilitated case and general knowledge elicitation by orga-
nizing the information in a generic yet extensible manner, and (ii) it allowed
the system to reuse previous research work based on CBROnto.

Our system was mainly developed using the Java language, and is comprised
of several subsystems that implement the different phases of the CBR cycle.

The retrieval step is performed by using jColibri [15] as a Java library. jCol-
ibri is an adaptable CBR framework and full-fledged system that offers an over-
arching architecture for the phases of case-based reasoning. In our case, we
mainly used the library version for the retrieval and retention steps. It allowed
us to easily parse and query the OWL knowledge base in order to retrieve the K
most similar cases while being flexible enough to implement our own similarity
measures.

As for the similarity-based retrieval function, we used a modified version of
the one described in Equation 1. In our version, the local similarity measure used
was the fdeep function mentioned in [15]. This method utilizes the hierarchical
description-logics based similarity of the ontology to determine which properties
of two problems are similar. In other words, given a complex hierarchy of types
and subtypes in the OWL knowledge base for the properties of a case base
problem, this local similarity function will characterize properties as having a
higher measure of similarity when they are closer in the hierarchy tree. For
example, two unrelated properties will be less similar than two properties of the
same type, or when the type of one in a subtype of the other.

Next, the adaptation phase was implemented as along the lines of the pre-
vious section:

1. After retrieving the K most similar cases from the base, our program
translates the problems, solutions and their properties to a ProbLog pro-
gram and appends a series of directives to specify the hypothesis con-
straints as in Procedure 1.

2. Then, it runs a version of the ProbFOIL+ algorithm [7] which is publicly
available 1 with minimal modifications for efficiency, such as restricting
the constants inside predicates to their types, enabling symmetry breaking
and a set of generic integrity constraints to prune the search space while
preserving generality. Let us stress that the ProbFOIL+ algorithm is an
approximate algorithm that searches for the optimal hypothesis with some
greedy subroutines and maintaining a bounded approximation of the score
of partial answers. As such, we found that these integrity constraints
had a considerable impact in the efficiency of the algorithm. For more
information, please refer to the implementation link below.

3. Subsequently, our system parses the result of the ProbFOIL+ algorithm
and it appends them with the description of the novel case. This in turn
generates a ProbLog program that is run with its standard implementation

1https://bitbucket.org/problog/prob2foil/.

10

https://bitbucket.org/problog/prob2foil/

2. The mechanism for transforming this information to a ProbLog program
is straightforward, and we only add the queries before execution time.

4. Finally, the result of the ProbLog program is parsed and our system choses
the solution for which the success probability as described previously is
the highest.

The implementation of our system is publicly available 3.

5 Experimentation

For our experiments, we constructed a dataset from an online game-like survey
based on the TV series ‘Breaking bad’, in which users were presented with
various ethically nuanced situations and given a set of possible alternatives to
choose from. Users chose a character from TV series and where tasked to give
a series of 5-7 answers for the series of questions that guided the overall story
leading into one of many possible paths. In total, we acquired over 150 user
histories with an average of 6 answers for each user.

Similar to the running example, we represented the problem x in each case
(x, y) by the duties each solution fulfills. I.e. as a set of valuesDuty(Option, V alue)
where Duty ∈ {fidelity, reparation, gratitude, non-maleficence, beneficence,
self -improvement, justice}, Option a possible solution for the problem, and
V alue ∈ {extremely-bad, really-bad, bad, neutral, good, really-good, extremely-good}.

These duties were inspired by Ross’s [17] theory of prima facie duties:

• Fidelity: strive to keep promises and be honest.

• Reparation: make amends when we have wronged someone.

• Gratitude: repay others when they perform actions that benefit us.

• Non-maleficence: refrain from harming others in any way.

• Beneficence: improve other peoples health and well-being.

• Self-improvement: improve our own health and well-being.

• Justice: be fair and try to distribute benefits and burdens evenly.

Each answer provided by the users was stored using our OWL case base
architecture as a pair (x, y) with x as described before and y the solution chosen
from a predefined set of choices which was described in natural language.

We evaluated our system by in two ways, a quantitative and a qualitative
manner. These tests were performed at least 10 times each and the numbers
depicted in the figures represent averages over these runs. They were performed
in a 1,6 GHz Intel Core i5 computer with 8 GB 2133 MHz LPDDR3 RAM.

2https://github.com/ML-KULeuven/problog.
3https://github.com/martinjedwabny/cbr-edm

11

https://github.com/ML-KULeuven/problog
https://github.com/martinjedwabny/cbr-edm

The first experiment was designed to test the computational cost of the
proposed mechanisms. In particular, we tested for different choices of K, the
added cost of the retrieval and adaptation phases, of which, unsurprisingly the
generalization step inside of the adaptation was the most costly. We can see
the results in Figure 2. For reference, when K = 50 the total amount of facts
produced by our translation of this form was around 250, and over 550 in total
counting past solution examples and data-type predicates. Using our current
system, we can see the adaptation time growing steadily. In practice, the system
could handle cases up until K = 50 in at most around 2 minutes. However,
finer grained experimentation would be required in future work to determine
the acceptable bounds of the execution time.

0 10 20 30 40 50

0

20

40

60

80

K (retrieved cases)

E
x
ec

u
ti

on
ti

m
e

(s
)

Time

Figure 2: Running time assessment

Then second, we tested the quality of the generalizations made by testing
over a reserved dataset containing 16 situations, and inserting the rest in the
case base. An example of an answer obtained during these tests is the one shown
in Figure 3.

0.43877551 :: answer(A,B)←hasDuty(A,B,′ justice′,′ really good′).

0.55555556 :: answer(A,B)←hasDuty(A,B,′ beneficence′,′ really good′).

0.5 :: answer(A,B)←hasDuty(A,B,′ honesty′,′ good′).

0.2 :: answer(A,B)←hasDuty(A,B,′ non maleficence′,′ really good′).

Figure 3: Example result of the adaptation step

We analysed the quality of the answer using the loss equation defined before:

12

K 10 20 30 50
loss 9.581 9.874 12.464 10.224

Table 1: Testing loss as the sum of absolute errors

loss(H,B,E) =
∑

(xi,pi)∈E |Ps(B ∪ H |= xi) − pi|). Table 1 shows the results
obtained. As we can see, the loss is relatively similar for K = 10 and K = 20
and then degrades heavily. For reference, the predicted probabilities were tested
against the 16 situations with 2 possible solutions each, making up for a total of
32 ground atoms to predict, and a maximum loss of 32 (the sum of the absolute
values of their differences). The results, while showing room for improvement,
seem reasonable enough especially considering the complexity of ethical decision
making. With a simple model of ethics as the one presented here, the system
could consistently predict reasonable answers in this domain. However, a greater
K didn’t improve the results, potentially showing that only including the most
related cases in our domain can improve the performance of our system, and
large K values degraded it by including less related ones. Moreover, it would be
interesting to see what results our system would get with a finer characterization
of the domain.

6 Conclusion

We have developed a framework for case-based reasoning which can handle noisy
datasets and provide explainable solutions to novel cases by profiting from the
adaptability of the probabilistic inductive logic programming setting. Then, we
described the implementation of our system, which is publicly available, making
it easier to specify cases and elicit knowledge by utilizing various state-of-the-
art technologies from the representation to the retrieval and adaptation stages
of our system. We have depicted how our system fares against a real-world
inspired scenario in the context of a ethical dilemmas and shown results from
the computational complexity and qualitative viewpoints.

Discussion

As mentioned in [1], CBR differs from machine learning approaches in that it
favours learning from experience as a natural by-product of problem solving,
as opposed to generalizing from it. Our work adds to this research venue by
proposing a further technique with which uncertainty can be handled in CBR
systems. Concretely, we combine the ideas of CBR and probabilistic induc-
tive logic programming by generalizing/learning only after the similarity-based
retrieval step from CBR systems.

By leveraging the noise-handling capabilities of ProbFOIL+, our system can
also be seen as a contribution to soft case-based reasoning [14]. This in turn,
shows the adaptability and generality of the probabilistic logic setting, which has

13

also been previously used to develop explainable AI systems in other subfields,
such as decision-making [21] and recommender systems[4].

The manner in which our framework handles uncertainty is also related
to multi-criteria fuzzy decision making systems [11] in that it allows multiple
decision makers to provide different answers for the same problem, which our
system uses to compute a consensus. However, our CBR adds two layers to
the reasoning process, namely the similarity-based case selection which filters
decisions to the most relevant cases, and secondly the abstraction layer in the
form of background knowledge which can be used to extend the properties of
cases and potentially use different past cases to compute the answer of a novel
one.

From a XAI perspective, our framework is a contribution to transparent sys-
tems [3], by making it easy for the user to understand the reasoning process, and
increasing the confidence in the solution of the system by making the reasoning
steps of the CBR cycle depend on well-defined rules.

Future work

We wish to expand our work in the scale of experimentation and compare the
quality of our results to other similar CBR systems. It would also be interesting
to compare the performance of our reduction of the adaptation step in the CBR
cycle to other different encodings. In addition, other datasets coming from both
knowledge-intensive and knowledge-light CBR domains could be used to test
our implementation.

References

[1] A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues,
methodological variations, and system approaches. AI communications,
7(1):39–59, 1994.

[2] M. Anderson and S. L. Anderson. Geneth: A general ethical dilemma
analyzer. Paladyn, Journal of Behavioral Robotics, 9(1):337–357, 2018.

[3] A. B. Arrieta, N. Dı́az-Rodŕıguez, J. Del Ser, A. Bennetot, S. Tabik, A. Bar-
bado, S. Garćıa, S. Gil-López, D. Molina, R. Benjamins, et al. Explainable
artificial intelligence (xai): Concepts, taxonomies, opportunities and chal-
lenges toward responsible ai. Information Fusion, 58:82–115, 2020.

[4] R. Catherine and W. Cohen. Personalized recommendations using knowl-
edge graphs: A probabilistic logic programming approach. In Proceedings
of the 10th ACM conference on recommender systems, pages 325–332, 2016.

[5] P. Cunningham. A taxonomy of similarity mechanisms for case-based
reasoning. IEEE Transactions on Knowledge and Data Engineering,
21(11):1532–1543, 2008.

14

[6] R. L. De Mantaras, D. McSherry, D. Bridge, D. Leake, B. Smyth, S. Craw,
B. Faltings, M. L. Maher, M. T COX, K. Forbus, et al. Retrieval, reuse,
revision and retention in case-based reasoning. The Knowledge Engineering
Review, 20(3):215–240, 2005.

[7] L. De Raedt, A. Dries, I. Thon, G. Van den Broeck, and M. Verbeke. Induc-
ing probabilistic relational rules from probabilistic examples. In Proceedings
of 24th international joint conference on artificial intelligence (IJCAI), vol-
ume 2015, pages 1835–1842. IJCAI-INT JOINT CONF ARTIF INTELL,
2015.

[8] L. De Raedt and A. Kimmig. Probabilistic (logic) programming concepts.
Machine Learning, 100(1):5–47, 2015.

[9] B. Dıaz-Agudo and P. A. González-Calero. Cbronto: a task/method ontol-
ogy for cbr. Procs. of the 15th International FLAIRS, 2:101–106, 2002.

[10] L. Getoor and B. Taskar. Statistical relational learning, 2007.

[11] D. H. Hong and C.-H. Choi. Multicriteria fuzzy decision-making problems
based on vague set theory. Fuzzy sets and systems, 114(1):103–113, 2000.

[12] J. L. Kolodner. An introduction to case-based reasoning. Artificial intelli-
gence review, 6(1):3–34, 1992.

[13] S. Muggleton. Inverse entailment and progol. New generation computing,
13(3-4):245–286, 1995.

[14] S. K. Pal and S. C. Shiu. Foundations of soft case-based reasoning, volume 8.
John Wiley & Sons, 2004.

[15] J. A. Recio-Gaŕıa and B. Dı́az-Agudo. Ontology based cbr with jcolibri.
In International Conference on Innovative Techniques and Applications of
Artificial Intelligence, pages 149–162. Springer, 2006.

[16] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should i trust you? ex-
plaining the predictions of any classifier. In Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining,
pages 1135–1144, 2016.

[17] D. Ross and W. D. Ross. The right and the good. Oxford University Press,
2002.

[18] T. Sato. A statistical learning method for logic programs with distribution
semantics. In ICLP, 1995.

[19] S. Slade. Case-based reasoning: A research paradigm. AI magazine,
12(1):42–42, 1991.

15

[20] F. Sørmo, J. Cassens, and A. Aamodt. Explanation in case-based
reasoning–perspectives and goals. Artificial Intelligence Review, 24(2):109–
143, 2005.

[21] G. Van den Broeck, I. Thon, M. Van Otterlo, and L. De Raedt. Dtproblog:
A decision-theoretic probabilistic prolog. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 24, 2010.

16

	Introduction
	Preliminaries
	Logic language
	Probabilistic logic language
	Probabilistic inductive logic programming

	Our framework
	Representation
	Reasoning

	Implementation
	Experimentation
	Conclusion

