Probabilistic rule induction for transparent CBR under uncertainty - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Probabilistic rule induction for transparent CBR under uncertainty

Résumé

CBR systems leverage past experiences to make decisions. Recently, the AI community has taken an interest in making CBR systems explainable. Logic-based frameworks make answers straightforward to explain. However, they struggle in the face of conflicting information, unlike probabilistic techniques. We show how probabilistic inductive logic programming (PILP) can be applied in CBR systems to make transparent decisions combining logic and probabilities. Then, we demonstrate how our approach can be applied in scenarios presenting uncertainty.
Fichier principal
Vignette du fichier
_HAL___Paper__EDM_PILP (1).pdf (391.21 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03337243 , version 1 (07-09-2021)

Identifiants

Citer

Martin Jedwabny, Pierre Bisquert, Madalina Croitoru. Probabilistic rule induction for transparent CBR under uncertainty. AI 2021 - 41st BCS SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence, Dec 2021, Cambridge, United Kingdom. pp.117-130, ⟨10.1007/978-3-030-91100-3_9⟩. ⟨hal-03337243⟩
101 Consultations
139 Téléchargements

Altmetric

Partager

More