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Lefèvre1
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Abstract. This paper studies a vehicle routing problem, where vehicles
have a limited capacity and customer demands are uncertain and repre-
sented by belief functions. More specifically, this problem is formalized
using a belief function based extension of the chance-constrained pro-
gramming approach, which is a classical modeling of stochastic mathe-
matical programs. In addition, it is shown how the optimal solution cost
is influenced by some important parameters involved in the model. Fi-
nally, some instances of this difficult problem are solved using a simulated
annealing metaheuristic, demonstrating the feasibility of the approach.

Keywords: Vehicle routing problem, Stochastic programming, Chance-
constrained programming, Belief functions.

1 Introduction

The Capacitated Vehicle Routing Problem with Stochastic Demands (CVRPSD)
is a Vehicle Routing Problem (VRP) that asks to determine the set of routes
of minimum cost that can serve a set of customers with stochastic demands,
while respecting the capacity limit of each vehicle [8]. This stochastic integer
linear program can be modeled via the Chance-Constrained Programming (CCP)
approach [2,6], which is one of the main approaches to addressing stochastic
mathematical programs. Modeling the CVRPSD via CCP amounts to having
a constraint, which states that the probability that any route exceeds vehicle
capacity, must be below a given (small) value.

Belief function theory [14] is an alternative uncertainty framework to prob-
ability theory. Uncertainty on customer demands may be naturally represented
by belief functions in various situations; for instance, when sources providing
pieces of information on customer demands, are assumed to be partially reliable
or biased [12]. In such case, a new VRP is obtained, which may be called the Ca-
pacitated VRP with Evidential Demands (CVRPED), where evidential means
that uncertainty on customer demands is modeled by belief functions.
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Few papers [10,15,9] have been dedicated to handling uncertainty within op-
timization problems using belief functions. These papers only addressed the case
of continuous linear programs, which are usually far more easier to solve than
their discrete counterparts. Most notably, Masri and Ben Abdelaziz [9] general-
ized the CCP approach to linear programs involving uncertainty represented by
belief functions, which they coined the Belief-Constrained Programming (BCP)
approach to the belief linear programming problem.

In this paper, we study the extension of the CCP approach to an integer
linear program involving uncertainty represented by belief functions, which is the
CVRPED, leading to what may be called the BCP approach to the CVRPED.
Being a derivative from the large class of VRP, which are NP-hard and may be
tackled using metaheuristics [3], we adapt a simulated annealing metaheuristic [7]
to find solutions to the CVRPED modeled via the BCP approach.

This paper is structured as follows. Section 2 contains a brief reminder of
CVRPSD modeled via CCP, and of necessary belief function theory concepts. In
Section 3, the BCP modeling of CVRPED is presented along with an analysis
of how the optimal solution cost is influenced by the parameters involved in the
belief-based constraints. Experiments on CVRPED instances built from well-
known CVRP instances, are reported in Section 4, before concluding in Section 5.

2 Background

In this section, the CCP modeling of CVRPSD is first recalled, and then some
necessary concepts of belief function theory are reviewed.

2.1 CCP Modeling of CVRPSD

The Capacitated Vehicle Routing Problem (CVRP) is an important variation
of VRP where vehicles have identical capacities, and customers have indivisible
deterministic demands. It can be formulated as follows:

Minimize

n∑
i=1

n∑
j=1

ci,j

m∑
k=1

wi,j,k, (1)

where n is the number of customers including the depot, m the number of ve-
hicles that are initially located at the depot, ci,j the cost for traveling between
customers xi and xj , and wi,j,k a binary variable that is equal to 1 if vehicle k
goes from xi to xj and serves them, and 0 if it does not. Besides, routes must be
designed so that each route starts and ends at the depot and so that each cus-
tomer is visited exactly once by exactly one vehicle; due to lack of space, we refer
to [1] for a formal description of these constraints. In addition, the sum of the
demands of the customers served by a route must not exceed vehicle capacity,
which corresponds to the capacity constraints

n∑
i=1

dxi

n∑
j=1

wi,j,k ≤ Q, k = 1, . . . ,m, (2)
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where dxi is the quantity demanded by customer xi and Q the vehicle capacity.
We are interested by a variation of CVRP, called CVRPSD, which introduces

stochastic demands into CVRP, i.e., dxi
, i = 1, ..., n, are now random variables.

A way to address this problem is via the CCP approach, which corresponds to
the same optimization problem as CVRP except that constraints represented
by (2) are replaced by the following so called chance-constraints:

P

 n∑
i=1

dxi

n∑
j=1

wi,j,k ≤ Q

 ≥ 1− β, k = 1, . . . ,m,

where 1−β is the minimum allowable probability that any route respects vehicle
capacity and thus succeeds.

2.2 Belief Function Theory

Belief function theory was introduced in [14] as a theory of evidence. In this
theory, uncertain knowledge about a variable ω taking its values in a domain
Ω, is represented by a Mass Function (MF) defined as a mapping m : 2Ω →
[0, 1] verifying

∑
A⊆Ωm(A) = 1 and m (∅) = 0. The mass m(A) represents the

probability of knowing only that ω ∈ A. Every A ⊆ Ω such that m(A) > 0, is a
focal element of m. A mass function is called Bayesian if its focal elements are
singletons (in which case it is the usual probability mass function) and categorical
if it has only one focal element. To be consistent with the stochastic case notation
and terminology, we will write m(ω ∈ A) instead of m(A), and a variable ω whose
true value is known in the form of a MF will be called an evidential variable.

Equivalent representations of a MF m are the belief and plausibility functions
defined, respectively, as

Bel(ω ∈ A) =
∑
B⊆A

m(ω ∈ B), ∀A ⊆ Ω, (3)

Pl(ω ∈ A) =
∑

B∩A6=∅

m(ω ∈ B), ∀A ⊆ Ω.

The degree of belief Bel(ω ∈ A) can be interpreted as the probability that the
evidence about ω and represented by m, supports (implies) ω ∈ A, whereas the
degree of plausibility Pl(ω ∈ A) is the probability that the evidence is consistent
with ω ∈ A. We have Bel(ω ∈ A) ≤ Pl(ω ∈ A), for all A ⊆ Ω. Besides, if m is
Bayesian, then Bel(ω ∈ A) = Pl(ω ∈ A), for all A ⊆ Ω, and this function is a
probability measure.

In this paper, belief function theory is used to model uncertain knowledge
about customer demands, which we assume to be positive real numbers. Hence,
we will be dealing with MF defined on Ω = R+. The tools of belief function
theory exposed above remain the same in such case, as long as the number of
focal sets is finite [11], which will be the case in this study. Besides, focal sets of
MF considered in this paper will all be intervals of positive real numbers.
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Let us finally recall the definition provided by Yager [17], of the addition of
evidential variables, which will also be needed in the next section.

Definition 1. Let [w] = [w,w] denote the closed interval of all reals w, such
that w ≤ w ≤ w. Let σ and τ be two independent evidential variables defined on
R+, and having finite numbers of focal sets, which are intervals. Their addition
is the evidential variable σ + τ with associated mass function

m (σ + τ ∈ [u]) =
∑

[s]+[t]=[u]

m (σ ∈ [s]) ·m (τ ∈ [t]) ,

where the addition of two intervals [s] and [t] is defined by [s]+[t] =
[
s+ t, s+ t

]
.

Remark 1. Let σ and τ be the evidential variables in Definition 1. Let σ and τ
be two independent random variables with associated probability mass functions
pσ and pτ defined by pσ(s) = m (σ ∈ [s, s]) and pτ (t) = m

(
τ ∈

[
t, t
])

for any

focal sets [s, s] and
[
t, t
]

of σ and τ , respectively. We will refer to σ and τ as
the upper probabilistic versions of σ and τ . It can easily be shown that we have
Bel(σ + τ ≤ Q) = P (σ + τ ≤ Q), for any Q ∈ R+.

3 BCP Modeling of CVRPED

This section formalizes, and then studies, a means to handle the case where
uncertainty on customer demands in the CVRP is represented by belief functions.

3.1 Formalization

Let us consider the case where customer demands are no longer deterministic
or random, but evidential, i.e., dxi

, i = 1, ..., n, are now evidential variables.
The associated problem is then called CVRPED as already introduced in Sec-
tion 1. Following what has been done in [9] for the case of linear programs
under uncertainty, we may generalize the CCP modeling of CVRPSD into a
Belief-Constrained Programming (BCP) modeling of CVRPED, which amounts
to keeping the same optimization problem as CVRP except that capacity con-
straints represented by (2) are replaced by the following belief -constraints:

Bel

 n∑
i=1

dxi

n∑
j=1

wi,j,k ≤ Q

 ≥ 1− β, k = 1, . . . ,m, (4)

Pl

 n∑
i=1

dxi

n∑
j=1

wi,j,k ≤ Q

 ≥ 1− β, k = 1, . . . ,m, (5)

with β ≥ β and where 1 − β (resp. 1 − β) is the minimum allowable degree of
belief (resp. plausibility) that a vehicle capacity is respected on any route. Note
that in order to evaluate the belief-constraints (4) and (5), the total demand
on every route must be determined by summing all customers demands on that
route, which is done using Definition 1.
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3.2 Particular Cases of the BCP Modeling of CVRPED

It is interesting to remark that depending on the values chosen for β and β as
well as the nature of the evidential demands dxi , i = 1, ..., n, the BCP modeling
of CVRPED may degenerate into simpler or well-known optimisation problems.

The case β = β is particularly important. In this case, constraints (5) can
be dropped, that is, only constraints (4) need to be evaluated (if constraints (4)
are satisfied then constraints (5) are necessarily satisfied due to the relation
between the belief and plausibility functions). As a matter of fact, the BCP
approach originally introduced in [9] is of this form (no constraint based on Pl
is considered). Furthermore, we note that due to Remark 1, the BCP modeling
of CVRPED can be converted into an equivalent optimisation problem, which
is the CCP modeling of a CVRPSD where the stochastic demand of client xi
is defined as the upper probabilistic version dxi

of its evidential demand dxi
. In

particular, if the evidential demands are Bayesian, i.e., we are dealing really with
a CVRPSD, then the BCP modeling clearly degenerates into the CCP modeling
of this CVRPSD. In contrast, if the evidential demands are categorical, i.e.,
we are dealing with a CVRP where each customer demand dxi

is only known to
belong to an interval [dxi

, dxi
], then the belief-constraints reduce to the following

constraints
n∑
i=1

dxi

n∑
j=1

wi,j,k ≤ Q, k = 1, . . . ,m, (6)

since in the case of categorical demands, the total demand on any given route
is also categorical (it corresponds to the interval whose endpoints are obtained
by summing the endpoints of the interval demands of the customers on the
route) and thus for any k = 1, . . . ,m, Bel(

∑n
i=1 dxi

∑n
j=1 wi,j,k ≤ Q) either

equals 1 or equals 0, with the former occurring iff
∑n
i=1 dxi

∑n
j=1 wi,j,k ≤ Q. In

other words, in the case of categorical demands and β = β, the BCP modeling
amounts to searching the solution which minimizes the overall cost of servicing
the customers (1) under constraints (6), i.e., assuming the maximum (worst)
possible customer demands, and thus it corresponds to the minimax optimisation
procedures encountered in robust optimization [16].

Let us eventually remark that the case β = 1 > β is the converse of the case

β = β in the sense that constraints (4) can be dropped (as they are necessarily
satisfied) and only constraints (5) need then to be evaluated. Moreover, as in the
case β = β, the BCP modeling of CVRPED can be converted into an equivalent
optimisation problem, which is the CCP modeling of some CVRPSD (this is due
to the existence of a counterpart to Remark 1 for the plausibility function, which
relies on the lower endpoints of the focal sets rather than the upper endpoints).

3.3 Influence of β, β and Q on the Optimal Solution Cost

In this section, we study the influence of the parameters β, β and Q on the cost
of the optimal solution of the CVRPED modeled via BCP.
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To simplify the presentation, we will denote by ΣQ,β,β the set of solutions to

the CVRPED modeled via BCP and ĈQ,β,β the cost of an optimal solution in

ΣQ,β,β , for some β, β and Q.

The following propositions state how the optimal solution cost changes as Q,
β or β vary.

Proposition 1. The optimal solution cost is non increasing in Q.

Proof. Let us consider a set C = {R1, . . . , Rm} composed of m routes Rk, k =
1, ...,m, such that it is not known whether this set respects the belief-constraints
(4) and (5), but it is known that it respects all the other constraints of the
CVRPED modeled via BCP, in particular each route Rk starts and ends at the
depot and each customer is visited exactly once by exactly one vehicle.

It is clear that for any β and β, as Q increases (starting from 0), it reaches
necessarily a value at which C becomes a solution to the CVRPED modeled via
BCP. Hence, ΣQ,β,β ⊆ ΣQ′,β,β for Q′ ≥ Q, and thus ĈQ′,β,β ≤ ĈQ,β,β . ut

Proposition 2. The optimal solution cost is non increasing in β.

Proof. Let us consider a set C = {R1, . . . , Rm} composed of m routes Rk, k =
1, ...,m, such that it is not known whether this set respects the belief-constraints
(4), but it is known that it respects all the other constraints of the CVRPED
modeled via BCP, in particular constraints (5).

It is clear that for any Q, as β increases from β to 1, it reaches necessarily a
value at which C becomes a solution to the CVRPED modeled via BCP. Hence,
ΣQ,β,β ⊆ ΣQ,β′,β for β′ ≥ β, and thus ĈQ,β′,β ≤ ĈQ,β,β . ut

Proposition 3. The optimal solution cost is non increasing in β.

Proof. The proof is similar to that of Proposition 2.

Informally, Propositions 1–3 show that if a decision maker is willing to buy
vehicles with a higher capacity or to have vehicle capacity exceeded on any route
more often, then he will obtain at least as good (at most as costly) solutions in
theory, i.e., if he uses an exact optimization method. Unfortunately, no such
method exists yet for the CVRPED modeled via BCP. As a matter of fact, the
next section reports an experiment, where solutions to this optimization problem
are sought using a metaheuristic.

4 Experimental Study

Section 3 has introduced the CVRPED modeled via BCP, and has studied some
of its theoretical properties. In this section, a preliminary experimental study
on some CVRPED instances is presented for the case where β = β; for notation

simplicity we introduce the value β such that β = β = β. These instances are first
described, and then the obtained results are discussed. Note that to solve these
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instances, we adapted a simulated annealing algorithm designed for the CVRP,
which was proposed in [5] and that uses a combination of random and greedy
operators based on problem knowledge. However, due to space limitations, we
must refrain from describing this adaptation.

4.1 CVRPED Instances

We have generated CVRPED instances based on Augerat set A instances for
the CVRP [13]. In our instances, the customers coordinates and the capacity
constraints are the same as in Augerat’s. However, each deterministic customer
demand ddet in Augerat instances has been replaced by an evidential demand
dev with associated MF

m(dev ∈ [ddet, ddet]) = α,

m(dev ∈ [ddet − γ · ddet, ddet + γ · ddet]) = 1− α, (7)

with α ∈ [0, 1] and γ ∈ (0, 1). Such a transformation of the original deterministic
demand may be relevant if each customer providing his deterministic demand
is assumed to be reliable with probability α, and approximately (at ±γ ∗ 100%)
reliable with probability 1− α [12].

We note that a deterministic demand is a particular case of an evidential
demand, and thus the BCP approach to the CVRPED can also be applied to
CVRP instances. Although this latter idea may not be very useful in itself, it
leads to an interesting remark based on the following result.

Proposition 4. For any β and Q, the optimal solution to a CVRPED instance
generated from a CVRP instance through transformation (7) and modeled via
the BCP approach, has a higher or equal cost to that of the optimal solution of
the CVRP instance modeled via the BCP approach.

Proof. Let Σev
Q,β,β and Σdet

Q,β,β be the sets of solutions to the CVRPED and
CVRP instances modeled via BCP, for some Q and β. For any route Rk of any
solution S ∈ Σev

Q,β,β , it can easily be shown that we have Bel(devRk
≤ Q) ≤

Bel(ddetRk
≤ Q), where devRk

and ddetRk
are evidential variables denoting respectively

the sum of the evidential and deterministic demands onRk, and thus any solution
S ∈ Σev

Q,β,β also belongs to Σdet
Q,β,β . We have thus Σev

Q,β,β ⊆ Σdet
Q,β,β . ut

The cost difference put forward by Proposition 4 between the optimal solution(s)
of a CVRPED instance generated using (7) and the optimal solution(s) of its
original generating CVRP instance, represents what a decision maker would
loose if the customers were actually totally reliable whereas he was cautious and
thought (wrongly) that they were only partially reliable. More specifically, by us-
ing (7), the decision maker assumes that the customer demands may be actually
higher than they appear, i.e., he believes that the customers may underestimate
their needs, and the price to pay by being cautious in that latter way, is that
the optimal solution he will obtain may have a higher cost than if he had not
made such an assumption.
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4.2 Results Using Simulated Annealing

We have generated CVRPED instances using the procedure described in the
preceding section, where α was set to 0.8, while γ was set to 0.1. We also chose
β = 0.1. The running time for the algorithm was less than an hour in almost all
cases. Each instance was solved 30 times, and the results are given in Table 1.

The column “Best cost CVRP” gives the costs of the best solutions reported
so far for the CVRP instances [13]. We note that for β 6= 1, the optimal solutions
of the CVRP instances modeled via the BCP approach are the same as the
optimal solutions of the CVRP instances, hence the costs in the column “Best
cost CVRP” may be taken as the costs of the best solutions for the CVRP
instances modeled via the BCP approach.

The “Difference with CVRP” column shows that for all instances the cost of
the best solution for the CVRP is better than that of the best solution obtained
for the CVRPED. This latter observation may be seen as an approximation of
the theoretical difference between the optimal solution cost of a CVRP instance
and the optimal solution cost of the CVRPED instance generated from it, which
is predicted by Proposition 4; however, one must be careful since it is not possible
to quantify the quality of this approximation due to the diversity and complexity
of the algorithms involved in computing those values.

5 Conclusions

This paper studied the capacitated vehicle routing problem with evidential de-
mands. We modeled this problem using a belief function based extension of
the chance-constrained programming approach to stochastic mathematical pro-
grams. Furthermore, theoretical results relating variations of the optimal solu-
tion cost with variations of the parameters involved in the model, were provided.
Instances of this difficult optimization problem were also solved using a meta-
heuristic. Future works includes addressing this problem using a recourse-based
approach, which is another main approach to modeling stochastic mathematical
programs [3]. Another perspective is to identify the customers whom more knowl-
edge about their demands would lead to better solutions, that is performing a
sensitivity analysis [4].
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