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ABSTRACT
Dynamical mass estimates of simple systems such as globular clusters (GCs) still suffer from up to a factor of 2 uncertainty. This
is primarily due to the oversimplifications of standard dynamical models that often neglect the effects of the long-term evolution
of GCs. Here, we introduce a new approach to measure the dynamical properties of GCs, based on the combination of a deep-
learning framework and the large amount of data from direct N-body simulations. Our algorithm, π-DOC (Predicting Images
for the Dynamics Of stellar Clusters) is composed of two convolutional networks, trained to learn the non-trivial transformation
between an observed GC luminosity map and its associated mass distribution, age, and distance. The training set is made of
V-band luminosity and mass maps constructed as mock observations from N-body simulations. The tests on π-DOC demonstrate
that we can predict the mass distribution with a mean error per pixel of 27 per cent, and the age and distance with an accuracy of
1.5 Gyr and 6 kpc, respectively. In turn, we recover the shape of the mass-to-light profile and its global value with a mean error
of 12 per cent, which implies that we efficiently trace mass segregation. A preliminary comparison with observations indicates
that our algorithm is able to predict the dynamical properties of GCs within the limits of the training set. These encouraging
results demonstrate that our deep-learning framework and its forward modelling approach can offer a rapid and adaptable tool
competitive with standard dynamical models.

Key words: Methods: numerical – stars: kinematics and dynamics – Galaxy: evolution – globular clusters: general .

1 IN T RO D U C T I O N

One of the key goals of Astrophysics is the understanding of the
constituents of the Universe. Amongst others, the mass content of
stellar systems is fundamental for unveiling the build-up and origin
of galaxies throughout cosmic time, and distinguishing between
baryonic and (non-visible) non-baryonic matter.

Globular clusters (GCs) – being old, gas-free, and almost spherical
– are the critical example of stellar systems for which a mass
measurement is expected to be straightforward. However, state-of-
the-art studies of the dynamics of Milky Way (MW) GCs still suffer
from an uncertainty in their mass determination of up to a factor of
2. As an example, even for the extensively studied and nearby GCs
ω-Centauri and 47 Tuc, the dynamical mass measurements in the
literature range from �2 to 5 × 106M� (Zocchi, Gieles & Hénault-
Brunet 2017) and from �5 to 10 × 105M� (Bellini et al. 2017),
respectively. This uncertainty, together with the uncertainties due to
distance measurements, translates into a factor of 2 uncertainty in the
mass-to-light ratio (M/L). This makes a comparison between mea-
sured M/L and predicted M/L from stellar population models rather
inconclusive and further hinders the search for the possible presence
of non-visible matter (e.g. stellar dark remnants or non-baryonic dark
matter), which is typically encoded in dynamical M/L discrepancies.

The difficulty in obtaining robust mass determinations resides in
GCs rich present-day structures. Some GCs are thought to have

� E-mail: jonathan.chardin@astro.unistra.fr

accreted on to the MW through merger events (e.g. Forbes &
Bridges 2010; Massari, Koppelman & Helmi 2019; Myeong et al.
2019; Pfeffer et al. 2021), others are known to be the remnant of
the nucleus of dwarf galaxies (e.g. M54; Ibata, Gilmore & Irwin
1995; Alfaro-Cuello et al. 2019), possibly containing some left over
dark matter (e.g. Bianchini, Ibata & Famaey 2019; but see Wan
et al. 2021) and exhibiting clear signs of internal rotation (Bianchini
et al. 2018b; Kamann et al. 2018). Moreover, the Hubble time long
interplay between internal processes (stellar evolution and two-body
relaxation) and external processes (tidal interaction with the host
galaxy) leads to subtle dynamical effects such as the evolution
of the stellar mass function (Vesperini & Heggie 1997; Webb &
Vesperini 2016), mass segregation, and partial energy equipartition
(e.g. Spitzer 1987; Trenti & van der Marel 2013; Bianchini et al.
2016), evaporation and formation of tidal tails (Gieles, Heggie &
Zhao 2011; Kuzma et al. 2016; Malhan, Ibata & Martin 2018), and
pressure anisotropy (Baumgardt & Makino 2003; Watkins et al. 2015;
Jindal, Webb & Bovy 2019). The main result of these evolutionary
ingredients is a significant reshaping of a GC mass profile, leading to
a M/L profile that is not constant (Baumgardt 2017; Bianchini et al.
2017a). On top of this, the presence of stellar remnants (neutron stars
and stellar mass black holes; e.g. Breen & Heggie 2013; Zocchi,
Gieles & Hénault-Brunet 2019; Vitral & Mamon 2021) and possibly
intermediate-mass black holes (Lützgendorf et al. 2013) can critically
contribute to the complexity of GCs present-day structure.

A standard technique to measure GCs mass consists in transform-
ing surface brightness profiles into mass density profiles, assuming
a constant M/L ratio typical of their stellar population (McLaughlin
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& van der Marel 2005). However, this quick technique completely
ignores all of the dynamical effects listed above. More sophisticated
dynamical modelling (e.g. Jeans models, distribution function mod-
els, orbit-superposition models) can account for a number of these
ingredients in a simplified way, for example accounting for rotation
(Varri & Bertin 2012; Bianchini et al. 2013), mass segregation and
anisotropy (Da Costa & Freeman 1976; Gunn & Griffin 1979; Gieles
& Zocchi 2015; Torniamenti, Bertin & Bianchini 2019), kinematic
subcomponents and presence of dark remnants (van de Ven et al.
2006; den Brok et al. 2014; Hénault-Brunet et al. 2020; Vitral &
Mamon 2021), at the expense of dealing with a significant number
of degenerate parameters (e.g. mass–anisotropy degeneracy). Often,
these techniques cause biases up to a factor of 2 in mass estimates
(Sollima et al. 2015; Hénault-Brunet et al. 2019). In contrast, direct
N-body simulations, including stellar evolution and the effects of an
external tidal field, naturally take into account all the evolutionary
star-by-star effects that shape the mass content of present-day GCs.
This comes at an incredibly high computational cost (a realistic
simulation can take several months on a GPU machine; Heggie 2014;
Wang et al. 2016), making it unfeasible to directly model MW GCs
one-to-one without rescaling techniques (e.g. Baumgardt 2017).

In the light of these limitations, we wish to introduce a new
modelling technique capable of (1) measuring GCs dynamical mass,
(2) fully incorporating the non-trivial effects of dynamical evolution,
and (3) building on the recent developments of machine and deep
learning techniques. Deep learning techniques have become widely
used to make automatic predictions in the field of astronomy. They
rely on large amount of data to train an algorithm to learn the complex
relationships – the physics at play – in a specific astronomical
context. In particular, the increasing amount of data coming from
large simulations provide an ideal data base on which we apply and
exploit the advantages of such techniques.

In the field of stellar clusters dynamics, machine learning tech-
niques have been applied to a limited number of studies (e.g. Pasquato
& Chung 2016; Askar et al. 2019; Bialopetravičius, Narbutis &
Vansevičius 2019). However, the growing number of GCs dynamical
simulations available to the community makes the applicability of
machine learning currently feasible. A typical GC simulation, such
as a direct N-body simulation of a 13 Gyr old GC, contains ∼103

time snapshots (e.g. Bianchini et al. 2018a). For each of these
snapshots, there is a unique physical connection between observable
quantities (such as surface brightness and velocity dispersion), and
intrinsic quantities, namely the mass distribution, age, and distance
of the cluster. Moreover, all the complex dynamical mechanisms
and physical processes responsible for GCs evolution are encoded
self-consistently. Their highly unexploited predictive power makes
GC N-body simulations the ideal data base to construct an extensive
training set suitable for deep learning.

Our goal is to develop an algorithm, π-DOC (Predicting Images
for the Dynamics Of stellar Clusters), capable of learning the non-
trivial transformation between observable luminosity maps and the
intrinsic mass distribution (and associated M/L), without the need of
constructing complex and multicomponent dynamical models. Our
technique will be directly applicable to observations and includes,
in a forward-modelling fashion, a series of observational effects (i.e.
seeing conditions, distance) by treating the N-body simulations as
mock observations. Additionally, the structure of the algorithm will
be designed to also provide an estimate of the age and distance of a
given GC.

This paper, the first of a series, aims at showing the proof of
concept and highlighting the further development needed for an
extensive application to observations. The basis of the algorithm – a

convolutional encoder–decoder neural network – has been developed
in Chardin et al. (2019) in the context of simulations of reionization
and proved to be particularly suitable for inputs such as 2D maps.
Here we employ a similar structure in order to predict the 2D
mass distribution starting from the luminosity distribution in a given
field of view (FoV). Moreover, we will implement an additional
convolutional neural network (CNN) to predict two scalars (age and
distance) starting from the same luminosity maps.

This paper is organized as follows: In Section 2, we detail the
N-body simulations employed to build the training set as well as
the procedure to generate mock GC observations. Section 3 details
the neural network framework of π-DOC, its architecture and the
training procedure. In Section 4, leveraging on mock observations,
we quantify the performance of the different neural networks.
A preliminary application to a set of observations is performed
in Section 5. We then discuss the success and limitation of π-
DOC in Section 6 before reporting our conclusions and planned
improvements for the near future.

2 SI M U L AT I O N S O F G C S

In this section, we describe the set of GC N-body simulations em-
ployed in this paper and the procedure to generate mock observations,
which will be the basis of the training set of our neural networks.

2.1 N-body simulations of GC dynamics

The GCs simulations used in this paper are run with the direct N-body
code NBODY6tt (Renaud, Gieles & Boily 2011; Renaud & Gieles
2015). This code is an extension of NBODY6 (Aarseth 2003; Nitadori
& Aarseth 2012), which allows for a dynamical evolution of a star
cluster in an arbitrary time-dependent tidal field, and incorporates
stellar evolution and the presence of a stellar mass function. We
specifically use three simulations originally presented in Miholics,
Webb & Sills (2016) and Bianchini, Sills & Miholics (2017b), all
characterized by the same tidal field, namely a circular orbit around
the MW centre at a distance of 15 kpc. The MW is modelled as a
point mass bulge, plus a disc and a logarithmic halo, as described in
Miholics, Webb & Sills (2014).

The initial conditions are drawn from a Plummer (1911) sphere
with N = 50 000 stars and initial half-mass radius of 1.6, 3.2, and 4 pc,
for simulation MW15-R1.6, MW15, and MW15-R4, respectively
(see Table 1). The initial stellar mass function is a Kroupa (2001)
mass function with lower and upper mass limits of 0.1 and 50 M�,
and a metallicity of z = 0.001 ([Fe/H] = −1.3). The stars are evolved
according to the stellar evolution prescriptions implemented in the
code, without considering primordial binaries. All simulations are
evolved until 14 Gyr.

For each simulation we have over 1000 time-snapshots (5781,
2044, 1462, for MW15-R1.6, MW15, and MW15-R4, respectively)
each containing the info on 3D position, velocity, stellar mass, stellar
radius, and bolometric luminosity of each star. We calculate the V-
band magnitudes of each stars using a bolometric correction from
Reed (1998) as in Heggie (2014).1

This set of simulations provide a realistic standard representation
of the long-term dynamical evolution of a GC, despite the relatively
small number of stars employed. Indeed, the three different initial
conditions allow us to explore a wide range of dynamical effects

1As noted in Giersz & Heggie (2003), the effective temperature T in equation
(5) of Reed (1998) should be replaced by 10−4T.
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5658 J. Chardin and P. Bianchini

Table 1. Properties of the different simulations used to train, validate, and test the different neural networks. For each simulation, we give the distance and
PSF we employ to create the mock observations. We also list the number of snapshots used for each simulation to build the training, validation, and test set, as
explained in Section 2.3.

Simulation half-mass radius distances PSF FoV Image size Training set Validation set Test set
(pc) (kpc) (arcsec) (arcsec2) (pixels)

MW15-R1.6 1.6 10-25-50-75-100 0.5–1.5 40 × 40 160 × 160 10 000 1000 0
MW15 3.2 15-20-60-80 1.0 40 × 40 160 × 160 0 0 8172
MW15-R4 4.0 10-25-50-75-100 0.5–1.5 40 × 40 160 × 160 10 000 1000 0

that strongly depend on the initial mass density of a cluster, such as
mass-loss, mass segregation, and velocity anisotropy. At this stage,
this simple configuration is ideal to assess straightforwardly the
performances of our neural networks and the connection with the
physics underneath it.

In the next section, we describe the data treatment procedure to
construct the luminosity and mass maps that will be the basis for
our training.

2.2 Generating mock observations of GCs

From the three simulations described in the previous section, we
generate mock observations in post-processing. The goal is to con-
struct realistic luminosity maps with all the significant observational
effects taken into consideration.

In order to do so, we exploit the codeSISCO (Bianchini et al. 2015)
originally developed to create mock observations of integrated-light
kinematics of GCs starting from a snapshot of a N-body simulation
(Askar et al. 2017; de Vita et al. 2017). We adapted the code in order
to only retrieve the brightness information of a given simulation after
defining the observational specification (see Table 1). In particular,
we choose a FoV of 40 × 40 arcsec2, with a pixel size of 0.25 arcsec,
giving a total image of 160 × 160 pixels.2 Moreover, we define a
point spread function (PSF) with a Moffat distribution (Moffat 1969,
with shape parameter β = 2.5 Trujillo et al. 2001) allowing us to
describe more extended PSF wings than a standard Gaussian PSF.
Given the PSF shape, we further specify the seeing conditions of
a mock observation (i.e. the FWHM of the PSF) as 0.5, 1.0, and
1.5 arcsec (typical values of ground based observations).

We additionally assign the distance of a cluster varying from 10 to
100 kpc (see Section 2.3), allowing us to explore a large range of dif-
ferent surface brightness densities. These specifications are chosen to
be representative of a generic enough case, while carefully including
all the most relevant observational effects. Finally, for each snapshot,
we decide to implement a random shift of the GC centre from 0 to
±5 arcsec (corresponding to a maximum shift of ±20 pixels) and a
random rotation of either 0, 90, 180, or 270◦. This is done to account
for the possibility of off-centre GC observations and avoid that a
neural network algorithm could only learn to predict mass distribu-
tions that are perfectly centred or oriented in a particular direction.
We notice that at this stage we do not take into account the effects of
background contamination. This effect is expected to be negligible
for a standard GC with high stellar density in its central and inter-
mediate regions, which can reach up to 105 M� pc−3. However, this
effect could become relevant for low-density stellar clusters in dense
background regions (see e.g. Bialopetravičius & Narbutis 2020).

2While a pixel scale of 0.25 arcsec can be considered as typical of ground-
based instruments, the actual size of the FoV selected here is relatively small;
this is to avoid memory limitations at this phase of development.

For each snapshots we produce a flux map in the V-band and
an associated intrinsic mass map, with the same FoV and pixels
scale, but without considering the PSF. After producing the mock
observations, we additionally smooth the flux/mass maps (see e.g.
Fig. 1). This allow us to smooth regions of sharp transitions between
individual stars and assure better performances in the training of our
convolutional neural networks, which are known to underperform
with discrete maps. In our case, we choose to Gaussian smooth the
maps in both directions with a standard deviation for the Gaussian
kernel equal to 4 pixels which corresponds to 1 arcsec in our mock ob-
servations. After doing this, we checked that our global properties in
each maps are conserved (e.g. the total luminosity and the total mass).

Our sample covers a total mass in the FoV ranging between ∼103

and ∼ 104.5 M�. These maps are the basis for the training, validation,
and test sets, as described in the following section. We remind that for
each flux/mass map pair considered here, there is also an associated
GC distance and age.

2.3 The training, validation, and test sets

When training a neural network, we first need a training set, which is
composed of the maps that are actually exploited during the training
phase. Secondly, we need a validation set, which is used to monitor
how the current trained version of the network performs at predicting
maps that are not part of the training.

In our case, both the training and the validation sets are built
from the MW15-R1.6 and the MW15-R4 simulations, which have
different initial conditions and therefore represent GCs with different
dynamical evolutions. As summarized in Table 1, for these two sim-
ulations we consider distances of 10, 25, 50, 75, 100 kpc and seeing
conditions of 0.5 and 1.5 arcsec. Therefore, for each simulation we
have 10 times the original number of snapshots to build the training
set and the validation set. This corresponds to 10 × 5781 = 57 810
snapshots for the MW15-R1.6 simulation and 10 × 1462 = 14 620
snapshots for the MW15-R4 simulation.

Since we want to build homogenous training and validation sets,
we choose to keep the same number of snapshots in both simulations.
Therefore, we randomly select 10 000 snapshots in each simulation to
build the training set which finally contains 20 000 luminosity/mass
map pairs. Moreover, we pick 1000 maps from each of the two
simulations to build the validation set which consist of a total of
2000 snapshots. When building the validation set we make sure to
not pick those maps that are included in the training set.

Thirdly, after finishing a training phase, we need a test set, which is
composed of maps not used for neither the training nor the validation
phase and that come from a different simulation. In our case, we select
maps from the MW15 simulation, which have initial conditions (i.e.
half-mass radius) and mock observation conditions (i.e. distance and
seeing conditions) that are intermediate with respect to the other two
simulations (see Table 1). In particular, we select distances of 15, 30,
60, 80 kpc and seeing condition of 1 arcsec. The MW15 simulation

MNRAS 504, 5656–5670 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/504/4/5656/6178860 by C
N

R
S - ISTO

 user on 09 August 2022



The π-DOC algorithm 5659

Figure 1. Architecture of the convolutional encoder–decoder part of π-DOC. This first part of the network takes a GC flux map as an input and gives a mass
map as an output. Images have 160 × 160 pixels sizes both for the input and the output. The encoder (decoder) are built with four convolutions (deconvolutions)
hidden layers.

is discretized in 2043 snapshots covering the 14 Gyr evolution of the
GC. We choose to keep all of these maps to test our algorithm, for
a total number of maps of 4 × 2043 = 8172 when considering the
four different distances. The test set allows us to put at test the neural
network algorithm, ensuring that (1) it is able to generalize well over
a large set of conditions never seen during the training phase, and
that (2) it does not overlearn particular features from the particular
simulations used during the training. Having built these different
sets, we now have to settle the architecture of the neural networks by
trials and errors to obtain the best performances, as detailed in the
next section (Section 3).

3 D E S I G N I N G A N D T R A I N I N G π-DOC

In this section, we explain how we use our set of simulations
to train a deep learning model to predict the mass distribution,
distance, and age of a GC, given its flux map. We first describe
the architecture of the two neural networks constituting our full deep
learning framework, before showing the training procedure and the
performance we can reach.

3.1 π-DOC architecture

The architecture of π-DOC is composed of two distinct neural
networks. The first network is a convolutional encoder–decoder
neural network predicting the mass distribution of a GC in a given
FoV, while the second one is a classical convolutional network
designed to predict the distance and the age.

3.1.1 Convolutional encoder–decoder for mass distribution
prediction

A convolutional encoder–decoder neural network is a deep learning
based architecture that aims at predicting a full physical field (i.e.
mass map) starting from another field taken as an input (i.e. flux map).
In our specific case, the size of the input map and the one of the output
map are the same (160 × 160 pixels). The architecture, divided into
encoder and decoder, is similar (but not exactly the same) to the
well-known U-net architecture (Ronneberger, Fischer & Brox 2015)
used for biomedical image segmentation. The network is composed
of a succession of convolution (encoder part) + deconvolution layers

(decoder part). The encoder and the decoder have the same number
of layers in such a way that the decoder is the symmetrical part
of the encoder. Networks of this type have already been used in
astronomy to predict physical fields (see e.g. Chardin et al. 2019;
Thiele et al. 2020; Villanueva-Domingo & Villaescusa-Navarro 2021
and Wadekar et al. 2020).

In Fig. 1, we report a scheme of such architecture for the specific
case of π-DOC. Precisely, our encoder/decoder is composed of four
convolutional + deconvolution layers. We use the classic Adam
algorithm as an optimizer and a learning rate of 10−2.5 after some
trials. The loss function chosen to minimize the error between
real values and predictions is the perceptual loss (see for example
Johnson, Alahi & Fei-Fei 2016) which is detailed in Appendix A.
In a few words, instead of a per-pixel loss between the output and
ground-truth images, we define and optimize a loss function based on
high-level features extracted from a pretrained neural network. This
procedure has been shown to improve the results in high-quality
image generations for image transformation problems, where an
input image is transformed into an output image (see Simonyan,
Vedaldi & Zisserman 2013; Szegedy et al. 2014; Yosinski et al.
2015 and Nguyen, Yosinski & Clune 2015). In order to avoid
overfitting, we also add a dropout regularization layer after the con-
volution/deconvolution respectively in the encoder/decoder. Dropout
regularization is the process of randomly turning off a given number
of neurons during the training to prevent the network to overlearn
the training set (Labach, Salehinejad & Valaee 2019). The dropout
is coded as a value between zero and one, which is the probability to
shut down certain neurons, and we choose a value of 10−2.5 after trials
and errors. We also add skip connections in the decoder part which is
known to improve the performance for such a kind of neural network
architecture (Oyebade & Djamila 2020). Skip connections are a way
to add informations at the end of a layer in the decoder before entering
the next layer. In our case, we concatenate the current decoded map
and the corresponding map with similar size in the encoder part. In
practice, the combination of these informations is known to improve
the performance of convolutional encoder–decoder.

3.1.2 CNN for GC’s distances and ages estimation

The second neural network in π-DOC is a classical convolutional
neural network (CNN) similar to very well-known neural network
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5660 J. Chardin and P. Bianchini

Figure 2. Architecture of the π-DOC convolutional neural network (CNN) to predict the age and distance of clusters from their observed luminosity maps.

classifiers. As an alternative to classical artificial neural networks
(ANN), CNNs have been shown to be computationally cheaper and
have therefore been used extensively in recent years. A CNN is
composed of a series of successive convolutions and pooling layers
(see Fig. 2) before a last output layer. The last output layer in CNN
architecture can take several forms depending on the task the CNN is
designed for (i.e. classification, recognition, times series, or language
processing).

In our case the CNN architecture is built similarly to the CNN
designed by Gillet et al. (2019). Precisely, our CNN is composed of
four convolutional + maxpool layers. At the end of the last hidden
layer, we flatten the data and we add a last fully connected layer with
a linear activation function to obtain continuous values (i.e. distance
and age) as outputs as opposed to categories in CNN classifiers. The
output of our CNN has the shape of a 2D vector: [a, d], with a the
age and d the distance of the GC. Since it is difficult to train a CNN
with values in the range of ages and distances encountered here we
normalized these data. We subtract the mean from all the values and
we divide by their standard deviation. This ensures that our variables
have mean zero and standard deviation of 1. Each luminosity map is
therefore associated with a unique vector of this kind that the CNN
is aimed to recover once trained. As in the convolutional encoder–
decoder part of π-DOC, we use the Adam optimizer with a learning
rate of 10−4 after some trials. As a loss function, conversely to the
encoder–decoder, we use the classic mean square error (MSE) loss.
We also use dropout regularization to avoid overfitting with a dropout
probability of 10−2.5 after some trials.

3.2 Training the networks

Both neural networks described in the previous sections have been
implemented thanks to the PYTHON API for neural networks Keras
(Chollet 2015). The training of the networks has been done on 4
Tesla V100 GPUs cards on the supercomputer Jean-Zay with HPC
resources CINES and IDRIS under the allocation A0070411049
attributed by GENCI. Training the encoder–decoder for mass maps
predictions takes about 40 GPUs hours while the CNN part to predict
distances and ages takes about 10 h. Both networks use the same
training set composed of 20 000 luminosity maps.

To monitor our neural network training, we use two different
metrics both for the encoder–decoder and the CNN. The first one is
the mean squared error (MSE) between the predicted and the true
values (which is actually the loss function used to train the CNN
but not the one used for the encoder–decoder). The second one is

a commonly used indicator called the coefficient of determination
R2 calculated with the following formula (see Gillet et al. 2019 and
Chardin et al. 2019):

R2 =
∑

(ypred − ytrue)2

∑
(ytrue − ytrue)2

= 1 −
∑

(ypred − ytrue)2

∑
(ytrue − ytrue)2

(1)

,where ypred and ytrue are the predicted and true values and ytrue is the
average of the true parameters. Values of R2 close to 1 represent a
100 per cent match between the true data in the original simulation
and the ones predicted by the model.

Fig. 3 shows the evolution of both indicators for both the convo-
lutional encoder–decoder and the CNN. The curves shown are the
ones corresponding to the best model we kept at the end after trials
and errors (i.e. after varying the number of layers, the values of the
learning rate, the values of the dropout and by using or not skip
connections in both neural networks). The upper panel shows the
evolution of the MSE for both neural networks as a function of the
number of training epochs. The red lines show the evolution of the
curve for the training set while the blue ones show the same evolution
for unseen maps of the validation set.

We observe a quick decrease of the MSE values for both networks
for the first tens of epochs. After ∼ 50 epochs, the validation set
begins to saturate at values of about 0.05 for the MSE for the encoder–
decoder. We report a same kind of ‘plateau’ for the CNN after ∼ 200
epochs with MSE ∼ 0.03. The actual MSE value itself does not give
any insight about the actual performance of a given network because
it depends on a given deep learning experiment. This is why we
observe different values between the two networks when we reach
the ‘plateau’. From these curves we can only conclude that both
networks seem to learn the relation between the input and the output.
In particular, they indicate after how many epochs the training is
assumed to be achieved: this corresponds to the beginning of the
plateau observed for the validation set.

Conversely, the evolution of the R2 metric can directly be used to
compare the training of two distinct networks. In our case, we observe
a quick rise of the value of R2 for both networks with saturating
values of ∼0.95 and ∼0.98 for the encoder–decoder and the CNN,
respectively, after ∼ 100 epochs and ∼ 200 epochs, for the validation
set (blue curves). These values tell us that both networks can reach
very good predictions for unseen maps compared to the ground-truth
in the original simulation. However, this does not guarantee that our
two networks can generalize on new unseen data coming from a
different simulation, different from the training and the validation
set. This is why we have to test our predictions on the test set in
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The π-DOC algorithm 5661

Figure 3. Training performance curves for the whole π-DOC algorithm. Left-hand panel: training curves for the convolutional encoder–decoder for mass map
predictions. Right-hand panel: training curves for the CNN for ages and distances estimation. In both panels the top curves show the evolution of the mean
squared error (MSE) between the predicted values and the real ones as a function of the number of epochs for both the training set and the validation set. The
bottom curves show the evolution with the number of epochs of the coefficient of determination R2 of equation (1). This allows us to monitor how our model
matches the original values and, in particular, how it performs on the unseen data of the validation set. The different horizontal dashed lines show values of R2=
0.7, 0.8, and 0.9.

order to evaluate the performance of our whole model. This is what
we extensively test in the next section.

4 R ESULTS

In this section, we present the tests on the performance of our
deep learning model π-DOC. We first show how the convolutional
encoder–decoder part performs at predicting the mass spatial distri-
bution from the input luminosity map before showing how the CNN
part of π-DOC enables to estimate the distance and age of the GC
from the same input maps. All the results shown from here are done
on the test set, i.e. on maps that were never seen during the training
phase coming from the MW15 simulation (see Section 2.3).

4.1 Mass prediction

We perform different tests to quantify the robustness of our mass
map predictor: first, we focus on its ability to generate a 2D mass
distribution field, then on the ability to predict radial mass profiles
and global mass values (and corresponding M/L) in good agreement
with the expected truth. We use the encoder–decoder to predict all
the 8172 mass maps associated to all the flux maps from the test set:
2043 predictions for each of the four distances of the GC from the
MW15 simulation that we employ here. The prediction of a single
mass map takes about 70 ms on a single Intel Xeon CPU at 2.70 GHz.
Therefore it takes less than three minutes to predicts the whole 8172
maps of our complete test set.

4.1.1 Mass field prediction

In Fig. 4, we show a complete prediction of π-DOC compared to the
ground truth in the original simulation. The first row shows an exam-
ple of four flux maps randomly taken at different stages of the evolu-
tion of the GC in the test set (i.e. different ages of the GC and different
distances). These maps are the input of the encoder–decoder part of
π-DOC. The second row shows the corresponding mass maps di-
rectly from the original simulation, while the third row shows the pre-

diction from π-DOC. We stress that all these maps have distances that
were never employed during the training (Table 1) and we show here a
map for each of the four selected distances. Moreover, the seeing con-
dition (PSF) is of 1.0 arcsec, which is also not part of the training set.

In Fig. 4, the colourmaps of the second and third rows are set to
the same scale, allowing for a direct comparison. At first glance we
can see that the encoder–decoder predicts maps in good agreement
with the ones from the original simulation. This is true independently
from the age of the GC and independently from the concentration of
the mass profiles. Moreover, this holds true whatever the distance,
meaning that our neural network is able to generalize well over a
wide distance range (we will go back to this in Section 4.2).

We can see that the predicted values in each pixel are fully
consistent with the real values throughout the extent of the maps,
either in the centre and at the outskirts of the GC. This illustrates the
ability of the neural network to learn the 2D mass distribution of the
GC at various stage of its dynamical life.

4.1.2 Pixel-by-pixel mass predictions

To go deeply into the analysis, in Fig. 5, we show the 2D histogram
of the true versus predicted mass values for each pixel in all the 8172
maps of the test set. The red line on the figure shows the one-to-
one relation. The bottom and left histograms show the mean and the
standard deviation of the residuals r = Mpredicted − Mtrue along the
vertical and horizontal directions, respectively.

The histogram on the left shows the distribution of residuals as
a function of predictions: μ = P(r|Predicted). Here μ is a measure
of the uncertainties on predictions. The bottom histogram gives the
residuals distribution as a function of true values: ξ = p(r|True).
Here, ξ is a measure of the encoder–decoder error. On the other
hand, μ is the most relevant quantity to assess the performance of the
neural network, since in real life the actual true values are unknown.
Therefore, we are interested in the range of true values we can reach
knowing the prediction of the convolutional encoder–decoder.

In our case, the encoder–decoder shows a good performance: it
predicts values of the mass in each pixel very close to the one-to-one
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5662 J. Chardin and P. Bianchini

(a) (b) (c) (d)

Figure 4. Full prediction of π-DOC. First row: example of four input luminosity maps from the original simulation. Second row: example of four mass
distribution maps from the original simulation corresponding to the luminosity maps from the first row. Third row: example of four mass map predicted by
π-DOC by taking the corresponding luminosity maps from the first row as input of the encoder–decoder part. On the different panels of the second and third
row, we indicate the distances and ages of the original simulation and the ones predicted by the CNN part of π-DOC, respectively.

Figure 5. 2D histogram of the true versus predicted pixel-by-pixel values
of the mass. The histogram is constructed by taking all the pixels over the
8172 mass maps of the test set. The red line shows the one-to-one relation
and the colour map encodes the number count of cells lying in the 2D space
of true versus predicted values. The bottom and left histograms show the
mean and the standard deviation of the residuals r = Mpredicted − Mtrue along
both axes. The bottom histogram is the learning error, p(r|True), while the
side histogram is the recovery uncertainty, p(r|Predicted).

curve. The average value of the residuals in the uncertainties curve
(left-hand side histogram) is fully consistent with the zero residual
value for pixels with mass of log10(M/M�)>−1.5. On the other hand,
the encoder–decoder overestimates the smallest values of log10(M)
for log10(M/M�) < −1.5 and tends to underestimate the largest
values for log10(M/M�) ∼ 1. This is actually an inherent feature
of neural networks, which appear to have difficulty in predicting
the extremum values present in the training set in a deep learning
experiment.

To quantify the errors on our predictions in the left-hand side
histogram, we calculate for each mass bin the mean percentage error:

< per cent error >bin= 100

N

∑ |Mpredicted − Mtrue|
Mpredicted

. (2)

We report an average percentage error of 27.4 per cent over all mass
bins, with a minimum value of 13.7 per cent and a maximum values
of 95.0 per cent. Notice that the highest percentage errors correspond
to the low-values mass bins with log10(M/M�) < −1. Since these
pixels only contain a small fraction of a solar mass, a large error does
not imply any significant bias in the prediction on global properties,
such as total mass or mass profile, as we will show in Sections 4.1.4
and 4.1.4. If we exclude these low mass bins, we obtain a mean error
of 17.6 per cent, with a minimum and a maximum of 13.7 per cent
and 22.1 per cent, respectively, indicating that the encoder–decoder
performs well in this higher mass range.
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The π-DOC algorithm 5663

Figure 6. Left-hand panel: 2D histogram of the total true integrated mass versus total predicted mass. The distribution is calculated over the whole test set with
8172 maps with a single integrated value calculated for each map. Right-hand panel: Total true integrated mass-to-light ratio versus total predicted mass-to-light
ratio. The distribution is calculated over the whole test set with 8172 maps with a single integrated value calculated for each map. In both panels, red lines show
the one-to-one relation and colour maps encode the number count in the 2D space of true versus predicted values. The bottom and left histograms show the
mean and the standard deviation of the residuals along both axes. Bottom histograms are the learning error, p(r|True), while side histograms are the recovery
uncertainty, p(r|Predicted).

4.1.3 Predicted total mass and M/L

As a third test, the left-hand panel of Fig. 6 shows the 2D histogram
of the true total mass Mtot versus the total predicted Mtot for the
whole test set. The right-hand panel shows the 2D histogram of the
true mass-to-light ratio Mtot/Ltot (in V band) versus the predicted
Mtot/Ltot also for the whole test set. Notice that to calculate the M/L
we use the absolute luminosity assuming that the distance is known.
In both cases, we calculate one of these integrated quantities over
one single map and we repeat this for all the 8172 maps of the test
set. Therefore, both 2D histograms are build with 8172 values. As
in Fig. 5, the red line shows the one-to-one relation while the left
histogram shows μ, the measure of the uncertainties on predictions,
and the bottom histogram shows ξ , a measure of the neural network
error.

We first focus on the total mass estimation from the convolutional
encoder–decoder. We observe a very good match between the
predicted Mtot and the real values for the whole range of total masses
(103–104.5 M�). This tells us that the encoder–decoder is really well
suited to predict integrated quantities at all stages of the GC’s life,
either when the GC is massive and young or when the GC is less
massive and older. As in Fig. 5, we focus on μ on the left of each
distribution to evaluate the accuracy of our network. In both panels
of the figure, we observe a residual curve almost falling on the zero
residuals value for the whole range of Mtot and Mtot/Ltot. We observe
a slight underestimate of the total mass at the highest/lowest mass
end, log10(Mtot/M�) > 3.9 and log10(Mtot/M�) < 3.4. This is because
the largest/lowest values of the mass are less frequently encountered
while training the network since they constitute the boundary values
in the training set. The agreement between the predictions and the
expectations is also good when looking at the total mass-to-light
values (right-hand panel). Again, we note some discrepancies at the
highest/lowest M/L range.

We report an average percentage error for the total mass estimate of
15.6 per cent over all the bins, with a minimum value of 6.2 per cent
and a maximum value of 43.5 per cent. For Mtot/Ltot, we obtain a
mean error of 11.8 per cent, with a minimum of 5.1 per cent error
and a maximum of 18.1 per cent. As for the pixel-by-pixel prediction,
we notice again that the largest errors occur for the lowest mass and
M/L values. Given the good performance described, we can conclude

that the current version of the encoder–decoder is already robust in
predicting integrated properties with a good accuracy.

4.1.4 Mass and M/L radial profiles

Finally, we also investigate the mass radial profile of a GC as
predicted by the encoder–decoder part of π-DOC. In the left-hand
panel of Fig. 7, we show an example of four mass radial profiles from
the test set, corresponding to the four different maps in Fig. 4. The
bottom panel of Fig. 7 shows the ratio between true and predicted
curves. The radial mass profile M(r) is computed as the average mass
in each radial bin of size �r as follows:

M(r) =
∑
i

Mi
<r+�r/2
>r−�r/2

∑
i

1
, (3)

where Mi is the mass in each pixel i of a given map. We choose to
use 25 radial bins which translates in �r ∼ 1.2 arcsec.

We observe a very good match between the predicted and real
mass profile for the four maps of Fig. 4, with an excellent match
between the curves in the range 5 to 20 arcsec. This confirms that the
network predicts well the shell between the core and the outskirt of
the GC at different stage of its life. However, depending on the map,
we either somewhat under/over predict the mass in the core or in the
outskirt of the GC in the range r < 5 arcsec and r > 25 arcsec. This
is actually not surprising as we expect the largest/lowest mass values
of individual pixels to be found in the inner/outer parts of the maps.
As already said in the previous sections, it is an inherent feature of
neural network to fail to predict accurately the mass in these ranges
compared to the intermediate mass range. We can therefore conclude
that the model is already very efficient at predicting the shape of the
mass radial profile of a GC never seen during the training phase.

Moreover, in the right-hand panel of Fig. 7, we report the
comparison between true and predicted M/L profiles. Notably, the
encoder–decoder is able to reproduce the shape of these profiles
that are indeed not constant, as contrarily often assumed in standard
dynamical models. This is of particular interests because it directly
shows that our neural network is able to capture the presence of mass
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5664 J. Chardin and P. Bianchini

Figure 7. Examples of mass radial profiles (left-hand panel) and M/L profiles (right-hand panel) for four maps from the test set. The different profiles correspond
to those of the maps of Fig. 4, labelled as in that figure. The solid lines shows the radial profile in the original simulation while the dashed ones show the profile
as predicted by the convolutional encoder–decoder part of π-DOC. The bottom panel shows the ratio of both curves for the four maps. The predicted radial
profiles are in very good agreement with the real ones, and in particular π-DOC is able to reproduce the shape of the non-constant M/L profiles, indicating mass
segregation.

segregation, which causes non-constant M/L profiles as a result of
dynamical relaxation processes.

4.2 Age and distance estimation

In this section, we present our results regarding the second part
of the π-DOC architecture: the classic CNN designed to predict
the age and distance of a GC from its observed luminosity map.
Such predictions can be seen in Fig. 4, where we indicate the real
and predicted ages and distances for the selected four maps. From
this figure, we can already see that this neural network predicts
values of ages and distances in good agreement with values from the
original simulation in a variety of situations (i.e. GCs at different
evolutionary stages and at different distances from the observer).
We first investigate the performance for the age predictions before
looking at the robustness of our distance estimation.

4.2.1 Age prediction

Fig. 8 shows the 2D histogram of the true ages versus the predicted
values for the 8172 maps of the test set. Each point corresponds to
the prediction of the age from an input flux map, resulting in 8172
age predictions in total. At first glance, we report a good agreement
between true and predicted values with a distribution falling almost
perfectly on top of the one-to-one relation.

We focus on the histogram on the left that shows the distribution
of residuals μ as a function of predictions which encodes the neural
network error on the predictions. The average of the residual values
are well centred on the zero value. Again, we somewhat overestimate
the lowest ages and slightly underestimate the largest ages. This is
again due to the inability of neural networks to predict values that
are close to the boundary values of the training set.

Conversely to the mass measurements, we estimate the error on
our prediction calculating the mean absolute error instead of the
mean percentage error in each age:

MAEbin = 1

N

∑
|agepredicted − agetrue|. (4)

Figure 8. 2D distribution of the true versus predicted ages of a GC with the
CNN part of π-DOC. The distribution is calculated over the whole test set
with 8172 maps, in which each map corresponds to an age. The red line shows
the one-to-one relation and the colour bar indicates the number count in the
2D space of true versus predicted values. The bottom and left histograms
show the mean of the residuals r = agepredicted − agetrue and associated mean
average error. The bottom histogram is the learning error, p(r|True), while
the side histogram is the recovery uncertainty, p(r|Predicted).

We report an average value of the mean absolute error of 1.26 Gyr
over all age bins, with a minimum value of 0.33 Gyr and a maximum
value of 1.64 Gyr. Overall, these values show that our CNN is well
suited to predict ages all over the entire life of a GC, starting from a
luminosity map only.

4.2.2 Distance prediction

Finally, we investigate how our CNN neural network performs at
predicting the distance of a GC from its luminosity map. In Fig. 9
we show the 1D probability function of the predicted distance. In
the test set, we created maps at four different distances (15, 30,
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The π-DOC algorithm 5665

Figure 9. Probability distribution functions (PDF) of the distances predicted
with the CNN part of π-DOC. Four different PDF are computed for the four
real distances constituting the test set (see the text for details). The different
solid vertical lines show these four distances with colours corresponding to
the associated PDF.

Table 2. Summary of the accuracy on CNN predictions for
distance estimation.

Real distance (kpc) 15 30 60 80

Mean predicted distance (kpc) 20.3 35.2 60.6 77.6
Standard deviation (kpc) 5.0 8.3 8.8 7.9
Mean absolute error (kpc) 5.6 7.4 6.5 6.0

60, 80 kpc; see Table 1) which are different from those used in the
training set. These four distances are shown on the figure with the
different coloured vertical lines. For each map of the test set we know
the real distance that should be recovered by the CNN. Therefore, we
build four different PDF for the predicted distances by separating the
predicted values according to the real values that should be recovered
for each map.

The PDF of the predicted values are well centred around the real
values for distances of 30, 60, and 80 kpc. We observe an overestimate
of the mean value for the predictions of GC at a 15 kpc. Moreover, we
also report a small underestimate of the mean predicted distance for
the 80 kpc case. This is again due to the fact that values close to the
boundaries of the training set are more difficult to predict compared to
values in the mid-range of the training set. In our case, the training has
minimum/maximum values of distances of 10/100 kpc. Therefore the
network struggles to predict 80 kpc distances and struggle even more
to predict 15 kpc distances since it is closer to the lower boundary.

In Table 2, we summarize the properties of the prediction related
to each distribution. As an example, we observe a very good mean
distance estimation for a GC at 60 kpc, with an average value in
the distribution of 60.6 kpc and a mean absolute error of 6.5 kpc,
corresponding to a ∼ 10 per cent relative error. This illustrates that
our network is particularly robust for distances in the mid-range of
values encountered in the training set. However, we report a mean of
the distribution of 20.3 kpc for GCs with real distances of 15 kpc, with
a mean absolute error of 5.6 kpc (∼30 per cent relative error). Overall,
for all of the four distances at test here, we report distance predictions
consistent with the true value within one standard deviation. We will
discuss in the Section 6 the directions we intend to take in order to
improve the distance predictions.

5 TESTING π-DOC O N O B S E RVAT I O N S

In this section, we test π-DOC directly on real observations. This
test has to be considered as exploratory, since our algorithm is
currently limited by a training set composed of simulations with
initial number of particles of 50 000 stars, which is a factor of
∼10 smaller than the number of stars in the majority of GCs. This
considerably limits the number of GCs for which π-DOC can be
applied on, and, in particular, it excludes the most massive and
commonly studied GCs. Based on the Harris (2010) catalogue (Harris
1996, 2010 edition3), we collect a set of GCs with properties in
the range of those used in our training: (i) total luminosity less
than 105 L�, and (ii) distances between 10 and 100 kpc. We further
focus on those GCs for which an homogenous set of observations
is available. We use the data from the Pan-STARRS1 Survey (PS1,
data release 1; Chambers et al. 2016) delivering observations of the
sky north of declination −30◦ in five broad-band filters (g, r, i, z,
y). We are left with the following 17 GCs, with old ages (>11 Gyr;
VandenBerg et al. 2013) and distances between ∼10 and 40 kpc,
for which we summarize the properties in Table 3: NGC 5053,
Pal 11, NGC 7492, NGC 5466, NGC 6517, NGC 4590, NGC 6638,
NGC 6981, NGC 4147, NGC 7099, NGC 6284, NGC 1904,
NGC 5634, NGC 5024, NGC 7006, NGC 5694, NGC 6229.

PS1 has a pixels scale of 0.25 arcsec and a median seeing between
1 and 1.3 arcsec, consistent with the pixel scale and seeing conditions
used in our algorithm. To obtain the observed maps, we select a FoV
of 40 × 40 arcsec2 around the GCs centres from PS1 stacked images
(Waters et al. 2020), and for each cluster, the photometry in g- and
r-bands is transformed into V-band photometry using the empirical
relation described in Kostov & Bonev (2018).4 Finally, following the
procedure used for the mock observations, we smooth the GCs flux
maps. Before applying π-DOC on these maps, we estimate the total
luminosity enclosed in the FoVs, using the distance from the Harris
(2010) catalogue (see Table 3). This allows us to directly compare the
FoV luminosities employed in the training set and those observed,
as a way to preventively assess for which GCs we could expect
to obtain reliable predictions. In Fig. 10 we show this comparison
highlighting the dependence of our training set on age and distance.
In the age and distance range of our observations (>11 Gyr and 10–
40 kpc), the luminosity of the training set is in the range of ≈300–
5000 L�, with an average of 1754 L�. Only five clusters in our sample
match this luminosity regime, namely NGC 5053, Pal 11, NGC 7492,
NGC 5466, and NGC 6517. For these clusters we expect π-DOC to
give satisfactory predictions. The other GCs can instead be used to
test the ability of π-DOC to generalize on data outside of the training
set limits and to point out the limitation of the current training set.

In order to compare the results of π-DOC with the literature,
we collect the distance from the Harris (2010) catalogue, the age
from VandenBerg et al. (2013)5 and the global M/L in the V-band
from Baumgardt et al. (2020). Notice that mass profiles are not
available for our selected sample of GCs, but there are only global
estimates of the total mass.6 These total masses are not suitable for
a direct comparison with our results, since the current version of π-
DOC gives the mass enclosed in a relatively small FoV (with a size
smaller than the typical half-light radius, see Table 3). We therefore

3http://physwww.mcmaster.ca/∼harris/Databases.html
4This transformation is based on the calibration of the PS1 photometric system
and Stetson’s BVRI standard star catalogue (Stetson 2000).
5If an age estimate is not available we assume an age of 12 Gyr.
6Mass profiles only exists for a handful of clusters, namely the most massive
and extensively studied GCs.

MNRAS 504, 5656–5670 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/504/4/5656/6178860 by C
N

R
S - ISTO

 user on 09 August 2022

http://physwww.mcmaster.ca/~harris/Databases.html


5666 J. Chardin and P. Bianchini

Table 3. Properties of the GCs on which we apply π-DOC using the Pan-STARRS1 Survey data. We report the V-band luminosity in the observed FoV, the
distance to the cluster, its core and half-light radius, the age, the metallicity, and measured M/L ratio. Distance, age, M/L, and mass in the FoV predicted by
π-DOC are also reported. The literature values of the clusters are from: (1) Harris (2010) catalogue; (2) VandenBerg et al. (2013); (3) Baumgardt, Sollima &
Hilker (2020).

LFoV d Rc Rh Age [Fe/H] M/L d Age M/L log(M/M�)
(L�) (kpc) (arcmin) (arcmin) (Gyr) (M�/L�) (kpc) (Gyr) (M�/L�)

(1) (1) (1) (2) (1) (3) π-DOC π-DOC π-DOC π-DOC

NGC 5053 341.23 17.4 2.08 2.61 12.25 -2.27 2.60 ± 0.59 16.8 13.7 1.756 2.78
Pal 11 681.17 13.4 1.19 1.46 − -0.40 1.13 ± 0.49 16.2 14.9 0.772 2.72
NGC 7492 1067.21 26.3 0.86 1.15 − − 1.78 1.40 ± 0.41 21.9 15.1 1.022 3.04
NGC 5466 1876.25 16.0 1.43 2.30 12.50 − 1.98 1.44 ± 0.30 17.3 8.5 1.217 2.87
NGC 6517 2026.29 10.6 0.06 0.50 − − 1.23 2.27 ± 0.67 30.1 4.5 6.995 4.15
NGC 4590 5224.34 10.3 0.58 1.51 12.00 − 2.23 2.01 ± 0.22 21.4 2.1 1.365 3.85
NGC 6638 7366.47 9.4 0.22 0.51 − − 0.95 1.34 ± 0.35 12.4 0.4 1.755 4.11
NGC 6981 9888.63 17.0 0.46 0.93 11.50 − 1.42 1.60 ± 0.31 25.6 1.2 0.779 3.89
NGC 4147 10269.37 19.3 0.09 0.48 12.25 − 1.80 1.66 ± 0.41 27.6 0.4 1.190 4.09
NGC 7099 11351.31 8.1 0.06 1.03 13.00 − 2.27 2.04 ± 0.17 17.4 − 1.9 1.094 4.09
NGC 6284 16612.68 15.3 0.07 0.66 − − 1.26 1.53 ± 0.39 16.9 0.2 0.884 4.17
NGC 1904 25315.31 12.9 0.16 0.65 − − 1.60 1.47 ± 0.15 17.0 − 1.0 0.513 4.11
NGC 5634 32111.04 25.2 0.09 0.86 − − 1.88 1.91 ± 0.46 26.7 1.8 0.412 4.12
NGC 5024 37269.46 17.9 0.35 1.31 12.25 − 2.10 1.74 ± 0.17 16.8 − 0.5 0.241 3.95
NGC 7006 42293.77 41.2 0.17 0.44 11.25 − 1.52 1.52 ± 0.40 37.9 3.5 0.320 4.13
NGC 5694 50432.94 35.0 0.06 0.40 − − 1.98 2.08 ± 0.42 27.3 1.9 0.272 4.1
NGC 6229 68421.00 30.5 0.12 0.36 − − 1.47 1.89 ± 0.63 20.3 0.4 0.220 4.18

Figure 10. V-band luminosity enclosed in the FoV versus age of the
snapshots employed in the training set (coloured points) and of the observed
GCs (black points). Different colours for the training set refer to the different
distances used (10 to 100 kpc, in red, orange, yellow, and green). Out of
the 17 GCs selected for observations, 5 low-luminosity GCs fall within the
luminosity limit of the training set, given their ages and distances (>11 Gyr
and 10–40 kpc). We expect π-DOC to perform satisfactorily for these 5 GCs
(NGC 5053, Pal 11, NGC 7492, NGC 5466, and NGC 6517).

concentrate on a comparison with the M/L literature values which
only weakly depend on the size of the FoV. However, as seen in
Section 4.1.4, we stress that the M/L profile is expected to be non-
constant due to mass segregation, which induces lower values of M/L
in the centre, due to the preferential presence of massive, low-M/L,
stars. Therefore, at this stage, the M/L values obtained by π-DOC
could be considered as central values, possibly underestimating the
global M/L from the literature.

We report the results from π-DOC in Table 3 and, in Fig. 11, we
show the comparison between the predictions and literature values,
for the M/L, age, and distance of the 17 GCs. In the same figure,
we show the residuals between literature and predicted values as a

function of the GCs luminosity enclosed in the FoV. Moreover, in
these plots, we indicate with red symbols those five low-luminosity
GCs for which our algorithm is expected to work. For these five GCs,
π-DOC is able to obtain M/L values fully consistent with the literature
for 4 out of 5 GCs: NGC 5053, Pal 11, NGC 7492, and NGC 5466.
The corresponding maps are presented in Fig. 12. For these 4 clusters
the distance estimate is also fully consistent with the literature, and
for the three least massive GCs, we are also able to obtain consistent
age estimates. We notice that for NGC 6517, we obtain a M/L value
of M/L = 6.995 M�/L�, a factor of ≈3 times larger than the expected
values. Interestingly, also the distance estimate is a factor of 3 higher,
therefore if we rescaled the luminosity accordingly, we would obtain
a value of M/L consistent with the literature.

From Fig. 11, it is evident that π-DOC performs well within the
limits of the training set and, as a consequence, for the GCs with
high FoV luminosities we are not able to obtain values consistent
with the literature. For these clusters, the algorithm interprets their
high-luminosity as a sign of young age (at a fixed number of stars,
young clusters are more luminous because of stellar evolution) and,
as a result, the M/L values are severely underestimated. The trend
of worse performances with higher luminosity is confirmed by the
M/L residuals plot in Fig. 11, in which the residuals correlate with
the FoV luminosity. This clearly points out the limit of the current
training set of π-DOC and highlights the need for larger N-body
simulations. Finally, we notice that the distance estimates, with the
exception of NGC 6517, are consistent even for those clusters with
luminosity outside the range of the training set. However, a large
scatter remains, as already discussed in Section 4.2.2.

6 D I SCUSSI ON AND C ONCLUSI ONS

In this work, we have developed a new method to predict the
dynamical mass distribution, the age, and the distance of a GC,
starting from its luminosity map only, and leveraging on the
application of machine learning techniques in combination with
dynamical N-body simulations of GCs. The algorithm, π-DOC,
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Figure 11. Top panels: Predicted M/L, age, and distance versus literature values for the 17 GCs analysed; the dashed lines represent the one-to-one relations.
Bottom panels: Residuals between literature and predicted M/L, age, and distance as a function of the luminosity enclosed in the FoV. The 5 GCs with the least
luminous FoVs are reported as red points and represent those GCs for which the algorithm π-DOC is expected to better perform.

Figure 12. Predictions of π-DOC for the four least luminous GCs (NGC 5053, Pal 11, NGC 7492, NGC 5466) for which M/L, age, and distance values
consistent with the literature are retrieved. The first row reports the input V-band flux from PS1 observations, with associated age and distances (from Table 3).
The second row reports the mass maps obtained by π-DOC, the associated mass and M/L in the FoV and the age and distance predictions.

consists of a combination of two neural networks (a convolutional
encoder–decoder and a convolutional neural network) trained on
N-body simulations of GCs. The algorithm is capable of learning
the underlying physics involved in the transformation between flux
maps and the intrinsic mass distribution in the given FoV and,
simultaneously, it predicts for each map the distance and the age
of a GC.

Our technique introduces several advantages:

(i) The dynamical effects that play a fundamental role in
shaping the mass distribution of a GC (e.g. mass segrega-
tion, anisotropy, mass loss) are directly taken into considera-
tion without the need of developing complex multicomponent
dynamical models, since π-DOC is trained on direct N-body
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simulations that naturally include all dynamical and evolutionary
effects.

(ii) Observational biases are directly taken into consideration in
our forward modelling approach, since the algorithm is trained on
mock observations derived from simulations, which include, for
example, seeing effects and a large range of distances. This makes
π-DOC a very flexible tool potentially applicable to a variety of GCs
observations (both nearby and far).

(iii) The prediction of a dynamical mass map is extremely fast and
only takes about 70 ms.

(iv) The growing number of direct N-body simulations being
developed by the community makes it feasible to extend such
an algorithm in the future, in order to sample more realistic and
comprehensive ranges in the parameter space.

The current version of the algorithm has been trained on a limited
set of simulations with 50 000 stars, which translates in FoVs with
dynamical masses of 103–104.5 M�. Despite the low-number of
particles, these simulations provide us with a standard description
of the long-term evolution of a GC and its dependence on initial
conditions (e.g. different initial half-mass radii and densities). We
specifically tested our algorithm on a test set taken from a simulation
never seen during the training and treated as a mock observation.
The test set includes intermediate initial density, distances, and
seeing conditions not employed for the training. As a result, we
demonstrated that π-DOC is able to generalize over a large range of
parameters never seen during the training. This is a very important
feature for planning a future extension of the training set and for
future applications to observations.

The performance of the mass-prediction part of the algorithm,
the convolutional encoder–decoder, is very satisfactory: π-DOC
is able to predict the mass pixel-by-pixel with a mean error of
∼27.4 per cent within the entire range sampled, and the total mass
in an FoV with an error of ∼15.6 per cent. In both cases the
maximum percentage errors occur in the low-value regimes of the
sampled ranges, at log10(M/M�) < −1.5 and log10(Mtot/M�) < 3.2,
respectively. The mean performance excluding these low values is
significantly better (e.g. mean error of 17.6 per cent for the pixel-by-
pixel mass prediction).

As a direct consequence, we are also able to recover the total
M/L for each map with an average error of ∼11.8 per cent, without
any significant systematics. This makes π-DOC a competitive tool
that can offer the prospect of performing accurate measurements
of dynamical M/L, which are today still missing (Sollima et al.
2015; Bellini et al. 2017; Zocchi et al. 2017). Moreover, we
demonstrated that we are able to obtain accurate predictions for the
mass profiles (and associated M/L profiles), which allow one to study
the spatial distribution of stars (and possibly stellar remnants) due to
mass segregation, the direct consequence of dynamical relaxation.
Importantly, we stress that the accuracy of all our mass predictions
does not depend on neither the age, distance, nor evolutionary stage
of the cluster.

Furthermore, the CNN part of π-DOC is able to correctly predict
age and distance with a mean error of ∼1.5 Gyr and ∼6 kpc,
respectively. The performance in this case is not yet competitive
with other standard techniques and it is likely due to the fact that
we only use photometric information in a single band (the V-band
in our case). Moreover, concerning the distance, we notice that the
algorithm is trained on a set of only five distance values, which
is likely the main limiting factor for accurate predictions. Despite
this limitation, π-DOC is able to generalize for the distances never
seen in the training, as reported in Fig. 9. A simple increase of the

number of distances employed in the training would improve the
performances.

A general drawback that we highlighted for both the encoder–
decoder and the CNN part of the algorithm is the inability of the
neural network to predict values too close of the boundary values
employed in the training set. This is an inherent problem of neural
network training experiments extensively discussed in the literature
(see Gillet et al. 2019 and Chardin et al. 2019 for example), and it is
due to the fact that a trained neural network cannot predict values that
overshoot or undershoot values from the training set. Therefore, this
generates a sort of pile-up of the predictions just below the maximum
value and just above the minimum value from the training set. One
way to palliate this issue is to include a larger range of values in
the training set and use the final algorithm only within a restricted
parameter range that excludes the boundaries.

As discussed above, the performances of π-DOC tested on mock
observations are successful and demonstrate that the neural network
architecture used here is well suited for the task of measuring
dynamical mass, age, and distance of a cluster. As a further test,
we applied π-DOC to a set of observations with the goal of both
analysing the actual performance on real data of the current version
of the algorithm and highlight the points that still need improvement.
We selected 17 low-luminosity GCs in order to match as much as
possible the range of the physical properties included in the training
set. Using the Pan-STARRS1 Survey, we extracted for each of the
clusters the associated flux maps and applied our algorithm on them.
π-DOC is able to simultaneously recover M/L, age, and distance
consistent with the ones reported in the literature only for the GCs
with the lowest luminosities enclosed in the FoV. This is explained
by the fact that higher FoV luminosities are not included in the
training and therefore the algorithm fails at predicting correctly
the mass and the age. However, we notice that π-DOC is able to
recover satisfactory distance values also for those GCs with high
FoV luminosities.

Our analysis demonstrates that π-DOC performs well within the
limits of the training set, that for the moment only includes small
GCs simulations. Before a systematic application to a large set of
observations, a series of improvements to both the training set and
the code structure are needed, as highlighted by the limitations that
emerged in this work. For this reason, we summarize here the main
future developments that we anticipate to address in a follow-up
work:

(i) Extension of the training set, including more comprehensive
simulations with high number of stars (up to 106), a variety of
strengths of the tidal field, and different metallicities, as a way to
reproduce densities and mass scales typical of observed GCs.

(ii) Select a set-up of the FoV (e.g. FoV size, pixel scale) that is
adaptable to a wide set of observational conditions, possibly includ-
ing the features of both galactic and extragalactic GC observations.

(iii) Include a photometric colour information as a way to improve
age and distance predictions. This could be done, for example, by
using as an input a luminosity map in the B-band simultaneously to
the V-band map.

(iv) Include kinematic information, for example the velocity
dispersion in a given FoV. Since the mass is directly proportional
to the square of the velocity dispersion (virial theorem), accounting
for kinematics in the input will improve the performance of the
dynamical mass prediction and even open up the possibility of
predicting the presence of non-visible mass, with possible application
to dark-matter dominated systems and systems containing dark
remnants.
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(v) Consider the possible presence of background contamination,
which could have a non-negligible effect especially for low-density
GCs situated in high density regions.

In this work we demonstrated that the current neural network
architecture of π-DOC is suitable for learning the physics underlying
N-body dynamics occurring in the evolution of GCs, in particular for
learning the transformation between dynamical mass and luminosity.
Our encouraging results, tested both on mock observations and
real data, indicate that π-DOC can represent a viable new and
fast approach for the determination of GCs properties, extremely
competitive, and independent of the classical dynamical modelling
techniques.
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APPENDIX A : PERCEPTUA L LOSS FUNCTI ON
F O R TH E C O N VO L U T I O NA L
E N C O D E R – D E C O D E R

Here we detail the loss function used in the convolutional encoder–
decoder neural network part of π-DOC for the spatial mass distri-
bution predictions. When training neural networks, it is a common
feature to use the mean square error loss function between ground-
truth and predictions. Some more exotic loss functions, such as

the mean absolute error, the binary cross-entropy (for binary clas-
sification tasks), categorical cross-entropy (for multiple categories
classification tasks) or even more complicated functions, are also
used depending on the deep learning problem we are facing. Overall,
such loss functions aim at calculating a single number evaluated
from the current prediction of the model and the actual ground
truth we want to recover. Then the deep learning machinery aims
at minimizing this number for all examples in the training set thanks
to the optimizer.

Such loss functions are known to work well for scalar predictions
such as parameter estimations. This is why we are using the mean
square error for the convolutional neural network part of π-DOC
when we aim to predict age and distances of GCs. However, when
we try to train an encoder–decoder, such a number will be calculated
over the whole maps and we are left with a per-pixel loss function
that does not guarantee to capture the perceptual differences between
predictions and ground-truth images. For example, two identical
images offset from each other by only one pixel have a high degree
of perceptual similarity but could have a very different per-pixel loss.
In order to focus more on spatial pattern recovery, perceptual loss
functions have been introduced to compare two different images that
look similar.

Johnson et al. (2016) among others have shown that perceptual
loss functions are more accurate in generating high quality images.
In our case we build a perceptual loss function in the exact same
spirit of Johnson et al. (2016) who were inspired by Simonyan et al.
(2013), Szegedy et al. (2014), Yosinski et al. (2015), and Nguyen
et al. (2015). The main idea behind such methodology is to use
a convolutional neural network pre-trained for image classification
that has already learned to encode perceptual informations. In our
case we use the well-known VGG16 neural network developed by
Simonyan & Zisserman (2014). VGG16 is an image classification
convolutional neural network that achieves 92.7 per cent accuracy in
ImageNet, which is a data set of over 14 million images belonging
to 1000 classes.

The methodology is then to feed this network one time with the
current output image of our encoder–decoder and one time with the
ground truth image we aim to predict. Then, we take the output
image of VGG16 in a convolutional layer of the network that we
chose for both images. We are then left with two images and
we compute the mean square error between these two images. In
practice we can compute a mean square error value for each of the
outputed images in the different convolution layers in VGG16. We
can then build a perceptual loss function which is the sum of all
these mean square values. Because the output images at the end of
each convolutional layer enlight different spatial informations, we
then add informations in the final loss function compared to a single
per-pixel loss functions. In our case, we add the mean square error
between the true output and predicted output of three convolutional
layers in VGG16 which have the following names: block1 conv1,
block1 conv2, and block2 conv2.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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