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Abstract
Purpose: Fully Convolutional neural Networks (FCNs) are the most popu-
lar models for medical image segmentation. However, they do not explicitly
integrate spatial organ positions, which can be crucial for proper labeling in
challenging contexts.

Methods: In this work, we propose a method that combines a model repre-
senting prior probabilities of an organ position in 3D with visual FCN pre-
dictions by means of a generalized prior-driven prediction function. The prior
is also used in a self-labeling process to handle low-data regimes, in order to
improve the quality of the pseudo-label selection.

Results: Experiments carried out on CT scans from the public TCIA pancreas
segmentation dataset reveal that the resulting STIPPLE model can signifi-
cantly increase performances compared to the FCN baseline, especially with
few training images. We also show that STIPPLE outperforms state-of-the-art
semi-supervised segmentation methods by leveraging the spatial prior infor-
mation.

Conclusion: STIPPLE provides a segmentation method effective with few
labeled examples, which is crucial in the medical domain. It offers an intu-
itive way to incorporate absolute position information by mimicking expert
annotators.
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1 Introduction

Organ segmentation in medical images is a challenging but important task for
many clinical applications like computer-aided diagnosis. It is a powerful tool
for intervention planning and other computer-assisted applications.

In the last few years, deep learning and Convolutional Neural Networks
(ConvNets) [8] achieved a breakthrough in visual recognition. In semantic
segmentation, Fully Convolutional Networks (FCNs) [10,2,17] achieve state-
of-the-art performance, while being computationally efficient. In medical image
segmentation, the most common architectures include an encoder-decoder net-
work with the recovery of absolute position information, e.g. skip connections
[17,11,3]. Despite the huge performance gain brought by deep learning and
modern FCN, medical image segmentation remains a very challenging task,
due to low contrasts between organs, and visual ambiguities. In many cases,
the local visual context of an image is insufficient to perform a clear decision
and external knowledge is required.

In this paper, we tackle the problem of including prior knowledge about the
spatial position of organs to improve the quality of the segmentation. It is a
particularly strong and relevant prior for medical images since there are some
conventions on how the image should be, e.g. the position of a patient. Using
prior knowledge is common for practitioners, which perform segmentation not
only by using the visual appearance of medical images, but also leverage their
strong knowledge on the position of organs or relative layout between them.

We introduce STIPPLE, a method that incorporates SpaTIal Priors and
Pseudo LabEls. The spatial prior is a probability map of the organ presence
at a given position. This map is merged with the visual information extracted
by the FCN through a prior-driven prediction function. We also propose a
semi-supervised extension of our model with an iterative self-labeling process.
It forms a virtuous circle where the 3D prior is leveraged for selecting rele-
vant pseudo-labels, leading to refined interactions between visual and prior
predictions.

We perform experiments on a pancreas segmentation dataset and show that
our method outperforms the performances of other state-of-the-art approaches
for both semi-supervision and integration of position information.

The main contributions of this paper are as follow:

– We introduce STIPPLE, a 3D spatial prior that explicitly incorporates
knowledge in a deep FCN for medical image segmentation. The prior is
added in the final activation function via a prior-driven softmax.

– We show the relevance of such a prior in a fully-supervised setting and
how it could be leveraged for semi-supervised within a pseudo-labeling
scheme. For the latter, our prior helps to select new labels by limiting the
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incorporation of wrong predictions, especially outliers that could ruin the
training.

– Experiments show that our prior is particularly powerful when very few
labels are available. Moreover, compared to other state-of-the art methods,
STIPPLE shows better results for every proportion of missing labels.

2 Related Work

Including absolute position information to bias a FCN is not straightforward
in semantic segmentation. FCNs are by design equivariant to small transfor-
mations and thus unable to directly encode spatial location information to
bias predictions as shown in [9]. The authors show that FCNs are unable to
model a coordinate transform task. Then, they show that adding the absolute
coordinated of the pixels in a feature map could fix this issue. However the Co-
ordConv layer is added in the first layer contrary to STIPPLE which explicitly
integrates the absolute position information by biasing the visual prediction.

Locally Connected Networks (LCNs) are able to model absolute position
information. LCNs learn prediction models specific to each spatial position,
and have been successfully applied to face recognition, e.g. DeepFace [19].
However, LCNs significantly increase the number of parameters of the model
(compared to their convolutional counterparts), and thus require huge labeled
datasets to be robust to overfitting. LCNs are consequently not adapted for
medical image segmentation where only few labeled data are available.

In the medical image analysis literature, cascaded networks [18,7] include
absolute position information by relying on the selection of a Region of In-
terest (RoI) by a first model, which is subsequently refined by a second one
which performs a more accurate segmentation. Although these approaches are
efficient, they are intrinsically limited by the quality of the first RoI selec-
tion step. Some works simply take cropped images of the expected RoI [5,14]
which is in fact a very strong prior about the organ position. However, it does
not use the whole image and is very limited to the selected region. Thus, each
class should be learned independently [5] which drastically increases the model
complexity and computational burden.

Other methods try to incorporate spatial prior information by biasing the
learning of internal deep representations in an implicit manner [20,4,13]. In
the same way, attention mechanisms have gained popularity in the last few
years. New parameters bias the intermediate representations to focus on a
specific region of an image. For example, in [14] the method integrates an
additive attention block in the decoder part of a U-Net model. The attention
coefficients are learned during training and are completely implicit. Thus, we
cannot assure that the model actually learns a prior on the spatial position.
Moreover, despite the reasonable improvements shown by these methods in
fully-supervised settings, they are intrinsically limited to 2D absolute position
information, which may arguably be inaccurate for organ segmentation with a
complex shape varying in 3D. In STIPPLE, we use a spatial prior that captures
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the complete organ shape in 3D and explicitly bias the visual prediction to
leverage the depth information.

Medical image analysis often faces the problem of limited amounts of la-
beled data. Semi-supervised methods allow training models on a large dataset
of unlabeled images. There are three main categories of methods: using adver-
sarial training, consistency and pseudo-labeling.

In adversarial training, a model in trained to fool a discriminator that is
trained to distinguish true and generated examples. In [12], the authors use
the strategy of [6] which consists in building a generator which produces a seg-
mentation of an input image. Then, the discriminator takes the segmentation
map and produces a confidence map which is used to select pixels that could
be used in the segmentation loss. This work is further improved in [23] which
uses a 3D deep atlas prior to weight the pixels in the loss function with a
focal loss. This method is very different from ours, the prior is used to weight
examples based on their difficulty through the focal loss and is not directly
integrated to the network.

The consistency approaches [22], e.g. mean teacher, are purely designed for
semi-supervision. The main idea is to train two similar models in parallel: a
student network which is trained directly on the labeled data and a teacher
model which is trained by using the moving average of the student weights.
On top of that, a consistency loss leverages the fact that the same input under
different transformations or noises should give the same result. This loss could
be computed both with labeled data and unlabeled data.

Finally pseudo-labeling is a large category of methods which aims to as-
sign labels to unlabeled examples before fine-tuning or training a new model.
Those methods are state-of-the-art in semi-supervised learning. For example,
in [1], all the unlabeled images are pseudo-labeled and added to the train set.
However it could add too many wrong predictions.

STIPPLE follows state-of-the-art pseudo-labeling methods for semi-supervised
segmentation, and leverages the proposed spatial prior to improve the auto-
matic selection of pseudo-labels. We also use an iterative approach which se-
quentially adds more pseudo-labels and retrains the model from the augmented
training set.

3 Organ segmentation with 3D spatial priors and pseudo-labeling

In this section, we introduce our STIPPLE model dedicated to leverage spatial
priors and pseudo-labeling for semantic segmentation of medical images. The
overall prediction model of STIPPLE is depicted in Figure 1.

A given input volume V is processed by the backbone FCN segmentation
model which outputs a probability prediction volume S = {sk}k∈{1;K} where
K in the number of classes. Our approach is agnostic to the choice of the FCN:
in our experiments we use 2D U-Net [17] due to hardware limitations and for
experiment efficiency, but it could easily extend to 3D models [3].
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Fig. 1 The input volume V is sliced along the axial view. The segmentation network outputs
a visual prediction S. The 3D spatial prior P is aligned to the slice before being combined
through a prior-driven prediction function. The result is the final prediction Ŷ.

Formally, let us consider a volume V ∈ RW×H×Z composed of Z axial
slices, i.e. V = {xz}z∈{1;Z}, with xz ∈ RW×H . The semantic segmentation

problem consists in predicting a label among K organ classes (including the
background) for each voxel of the volume V(w, h, z)1. The FCN segmentation
network computes posterior probabilities, e.g. s(w, h)z,k = Pr (Yw,h,z = k | N(x(w, h)z),W)
for our case with a 2D model, where W represents the model parameters and
N(x(w, h)z) is the voxel neighborhood in a given slice z, characterized by the
FCN receptive field.

As previously mentioned, the computation of s(w, h)z,k doesn’t incorporate
any absolute position information. We propose to define a 3D spatial prior P
which represents the probability of an organ presence given its 3D position.
The final prediction of STIPPLE Ŷ consists in merging P and S, as described
in section 3.2.

3.1 3D spatial prior design and computation

To overcome the lack of absolute position information encoded in our FCN pre-
dictions s(w, h)z,k = Pr (Yw,h,z = k | N(x(w, h)z),W), we propose to model
the prior probabilities of the organ position, i.e. with P = {pk}k∈{1;K},
p(w, h)z,k = Pr (Yw,h,z = k | (w, h, z)), independently of the visual input
N(x(w, h)z) and model parameters W.

1 Here we choose to designate the coordinates with (w,h,z) so it is a different notation
than the model’s output and input, x and y.
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The construction of the proposed 3D spatial prior is based on the following
assumptions: (1) the 3D volumes are given in the axial direction (z), with the
patient lying on the back ; (2) In the axial (z) direction, there might be strong
variations in the organ position, i.e. the [zmin; zmax] interval where the organ
is visible might significantly change. On the other hand, the variability in the
(w,h) plane for a given z value is supposed to be much smaller, such that we
can accumulate the organ positions in this plane across the dataset to obtain
relevant statistics of organ position.

Note that these assumptions are valid in many clinical cases, since acqui-
sitions in the axial direction are common. Moreover, it is also common for
anatomical structures to be visible in variable [zmin; zmax] values in the z
direction because of differences in acquisition procedures.

Our prior P is estimated on a training dataset of labeled organs {Yi}i∈{1;N}
where N is the number of examples, by computing statistics of the organ pres-
ence in a 3D rectangular volume of size (Wp×Hp×∆z) with Wp, Hp and ∆z

being respectively the width, the height and depth of the rectangular volume.
This size is determined by taking the maximum width, height and depth of
the considered organ in the training set such that every example fits into it.
We observed that the position of the organs are relatively stable in the (w, h)
coordinates, but may largely vary in the z direction. So we decide to discretize
the prior over the z axis such that the prior P itself is of size (Wp ×Hp ×B)
; where B bins aggregate the ∆z slices, with B < ∆z to gain invariance with
respect to misalignment of organs in the z direction, but B > 1 to capture or-
gan shape variations. Eventually, p(w, h)z,k is estimated from the full training
dataset by a non-parametric estimation, i.e. histogram estimation:

p(w, h)z,k = Pr (Yw,h,z = k | (w, h, z)) =
1

Ztot

Ztot∑
z=1

1(Yw,h,z = k) (1)

where Ztot is the total number of slices in a given bin b.
In practice, the training volumes are first aligned with the center of the

organ segmentation masks and then a sub-volume of size (Wp ×Hp ×∆z) is
cropped around this center.

The prior computation is illustrated in Algorithm 1. An example of a 3D
prior map with B = 3 bins is shown in Figure 2. We can see that each bin
results in an average of multiple neighboring slices from the input volume. The
bin (1) corresponds to the top of the segmentation mask whereas the bin (3) is
the bottom of the pancreas. For those two bins the corresponding probabilities
are localised in very different regions.

3.2 Prior-driven prediction function

The prior probabilities are introduced through a prior-driven prediction func-
tion which explicitly integrates our 3D spatial prior in a late fusion manner.
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Fig. 2 Prior computation visualisation on one volume with B = 3 bins in the z axis

Algorithm 1: Prior construction for a given organ. yi designates a
volume label and N the total number of training volumes. Then B
is the number of expected bins for the final prior and Wp, Hp are
respectively the prior’s Width and Height when ∆z is the maximum
depth observed for the organ in the training set.

Data: {(yi)}N , B,Wp, Hp,∆z

Result: Prior
N ← number of label maps y;
Prior ← zeros(w, h,B);
for i← 1 to N do

cw, ch, cz ← get organ center(yi);
wmin ← cw −Wp/2;
wmax ← cw +Wp/2;
hmin ← ch −Hp/2;
hmax ← ch +Hp/2;
zmin ← cz −∆z/2;
zmax ← cz +∆z/2;
for s = zmin to zmax do

idx in prior ← B×(s−zmin)
zmax−zmin

;

Prior[:, :, idx in prior]+ = yi[xmin : xmax, ymin : ymax, s];

Prior ← normalize bins(Prior) ← normalize the values between 0 and 1 by
dividing by the number of slices added in a given bin;

For the sake of clarity we remove the notation of the dependency in (w,h,z).
The main intuition which is presented in Figure 1 is to take the visual pre-
dictions of the FCN S ∈ RW,H,Z,K where K in the number of classes, so
S = {sk}k∈{1;K} and apply a Hadamard product with the prior probabilities

P = {pk}k∈{1;K}. Then we normalize to rescale the values between 0 and 1.

When combining those operations, the final formulation (Equation 2) is

denoted as a “prior-driven softmax”, which outputs Ŷ = {ŷk}k∈{1;K}.

ŷk =
sk � pk

K∑
c=1

sc � pc
=

es̃k pk
K∑
c=1

es̃c pc

=
es̃k+ln(pk)

K∑
c=1

es̃c+ln(pc)

(2)

S̃ = {s̃k}k∈{1;K} are the values before activation, usually denoted as “log-
its”.
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Interestingly, we can notice that our prediction function in Equation 2 is a
consistent generalization of the standard softmax, since it reduces to it when
the prior is uniformly distributed through the classes, i.e. when pk = pc =
1
K ∀k ∈ {1..K}.

When the prior P is not uniform, it can be used to bias the prediction of a
given class k based on its visual input es̃k , depending on its spatial location.
For example, if pk is close to 1 (resp. 0), the prediction of class k is made close
to 1 (resp. 0) whatever the es̃k value. Our prior-driven softmax prediction
function in Equation 2 can thus be leveraged to overcome visual ambiguities
between organs and the background.

This formulation is obviously applicable in binary segmentation using a
sigmoid (σ) as shown in Equation 3. It becomes a “prior-driven sigmoid”.

ŷk =
sk � pk

sk � pk + (1− sk)� (1− pk)
= σ(s̃k − ln(1− pk) + ln(pk)) (3)

Positioning the prior in a volume During training, we can use the position
of the organ label to position the prior in the image. However, for unlabeled
volume and test volumes we need to find the position. We first take the out-
put probabilities of a segmentation network on the target (unlabeled) volume,
which gives a first but coarse position of the organ. Then, a reference vol-
ume is randomly selected among the labeled volumes in the training set. For
that volume, we have a segmentation map and the true position of the con-
sidered organ. With that, we compute the KL divergence between the two
with different small translations applied to the probabilities obtained on the
target volume. We can finally keep the translation that gives the lowest KL
divergence value and adjust the position of the organ for the target volume.

3.3 Integration in a semi-supervised context

We propose a semi-supervised extension of our model, dedicated to leverage
unlabeled data. We use a self-training strategy based on pseudo-labeling, which
recently showed very good performances for medical image segmentation [6,
15,23]. Pseudo-labeling is a technique which consists in automatically labeling
unlabeled examples. State-of-the-art segmentation methods in computer vision
and medical imaging for semi-supervised learning use those kinds of methods
in addition to other techniques. The selection of the examples is crucial and
should be properly performed. In our case, we select the pseudo-labels by
taking the most confident pixels. Concretely, we consider that a prediction
with a high probability is more certain than another with a lower probability.
Then, for a given volume, we select among the predictions of the organ the top-
k most confident voxels that will be selected as pseudo-labels. Our STIPPLE
method actually provides a “prior-driven uncertainty measure”, in the sense
that our 3D prior is leveraged to improve the selection of pseudo-labels by using



3D Spatial Priors for Organ Segmentation with Deep ConvNets 9

3D absolute position information. The pseudo-labeling schema is illustrated
in Algorithm 2.

Algorithm 2: Iterative Pseudo-labeling strategy used in STIPPLE.
(xi, yi) is a training example with xi the image and yi the ground
truth (which could be partially-labeled). γt is the number of voxels
to relabel at iteration t, T the number of iterations, mt the model at
iteration t.
Data: {(xi, yi)}, γmax, T , m0

Result: mT

yi,0 = yi;
for t← 1 to T do

γt = t
T
γmax;

for i in {unlabeled image indices} do
ŷi ← mt(xi) // Predict image xi;

y+i,t ← select γ most confident predictions(ŷi, γt) // Select γt new target

labels from the prediction ŷi by taking the most confident;

yi,t = yi,t−1∪ y+i,t // Augment training set by adding the pseudo-labels;

mt = train({(xi, yi,t)}) // Re-train model with the augmented dataset

4 Experiments and Results

4.1 Experimental setup

Evaluation dataset. We evaluate our method on the publicly available dataset
TCIA [16] for pancreas segmentation in CT-scans. It is composed of 82 CT-
scans with manual labels of the pancreas. In all our experiments, we performed
5 fold cross-validation and reported the standard deviation between the folds.
For each fold, a different spatial prior is computed.

Implementation Details We carried out experiments in a semi-supervised set-
ting. Thus, we randomly removed labels (uniform sampling without replace-
ment) at a patient level to reach proportions (α) like 70%, 50%, 30% and 10%
of labeled volumes in the training set such that the test set remains the same
across the experiments. We also report the results for a fully-supervised set-
ting, i.e. a label proportion of 100%. In practice we use one step of relabeling
for the low proportions from 50% to 10% and two steps at 70%.

The input volumes are preprocessed by clipping the Hounsfield Units (HU)
values in the abdominal organ range [-160,300]. Then the values are normalized
to have zero mean and unit variance. In all the experiments, we use a backbone
2D U-Net. The models are trained using the Adam optimizer with standard
data augmentation techniques, i.e. random translations, random rotations.

The spatial prior is estimated with the available training examples only.
We choose B = 5 for every proportion, and study its impact in section 4.5.
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4.2 Pancreas segmentation results

The results on the TCIA pancreas dataset are given in Figure 3. STIPPLE is
compared with a U-Net baseline for every proportion. In each case, our method
shows significant gains which are validated with a paired t-test, see Table 1.
At a label proportion of 100%, we see an improvement of +1.4pts, at 70%:
+4.0pts, at 50%: +3.7pts, at 30%: +5.9pts and finally at 10%: +9.9pts. The
gains are more pronounced when the proportion α is low. It is validated by
the p−values shown in Table 1. The gains increase and the p−values decrease
when α decreases.

Table 1 p−values given by a paired t-test between the baseline and STIPPLE

Proportion (α) 100% 70% 50% 30% 10%
p values 4.51% 3.00× 10−4% 5.53× 10−2% 6.40× 10−6% 2.60× 10−7%

Fig. 3 Segmentation results for STIPPLE (B = 5) compared to the baseline. Values are
Dice Scores (DSC) for every proportion of missing labels from 100% (every image is labeled)
to 10% (only 10% of the images are labeled). Error bars show the standard deviations of
the results between the folds

The images could be ambiguous due to the low contrast between the ob-
jects and because of the reduced size of the organ region. In medical image
segmentation, it is common that the local visual content is insufficient, such
that one needs external knowledge for proper segmentation. Moreover, the low
balance of labeled pixels makes the model naturally under-segment, and this
effect is exacerbated when very few labeled images are provided.

All this causes multiple kinds of errors which are addressed by the prior.
Firstly, it reinforces the probabilities in the most probable region and allows to
recover missed predictions. Secondly, it reduces false positives by cleaning out
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errors far from the region of interest. Finally, the prior stabilizes the relabeling
step by selecting only the pixels in the correct region which avoid potential
errors that could cause drops in performances.

To illustrate how the spatial prior acts on the predictions, we show in
Figure 4 two examples. The first row is a missed prediction which has been
correctly recovered thanks to the prior. In that case the visual prediction has
been reinforced by the spatial prior shown in the last column. The second row
shows how the prior removes improbable segmentation and more generally
false positives out of the organ region. We see that the wrong prediction of the
baseline is out of the high prior probabilities in the last column. The visual
prediction was not sufficient to correctly decide in this area but with STIPPLE
the prior has removed the ambiguity and filtered out those errors. In this case,
the prior combined with the visual prediction reduces the false positives and
has a positive impact on the relabeling step by preventing adding errors.

Fig. 4 Examples of two behaviours induced by the spatial prior. First row: recovery of a
missed prediction. Second row: cleaning of a wrong prediction in an unexpected area. The
last column represents the spatial prior on top of the input image to illustrate where the
prior influences the prediction.

To show that our method is agnostic to the choice of the backbone, we
carry out experiments using a patch-based 3D U-Net. We choose a fixed fold
and add the prior using the same method as explained. At 50%, we observe
an improvement for the baseline of +3pts from 68% in DSC to 71% for the
3D U-Net. Then, with the spatial prior we observe an improvement of +1pt
validating the relevance of our method. At 10%, our spatial prior with a 3D
U-Net gets a 58% DSC outperforming both the baseline (+6pts) and our prior
(+3pts) with the 2D U-Net. Our method can easily be extended to other
backbones and our 3D spatial prior still improves the final results even with a
strong baseline, e.i. 3D U-Net.
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4.3 Ablation study

To understand how the different parts of STIPPLE act on the final perfor-
mance, we show in Table 2 an ablation study of the method. The results are
given for the different stages: the 2D U-Net baseline which is also the back-
bone in our experiments; after adding the 3D prior but without relabeling; the
complete method, including the prior and the relabeling step.

Table 2 Ablation study of STIPPLE. The reported values are Dice Similarity Scores
(DSC,%).

Proportion (α) 100% 70% 50% 30% 10%
Baseline 76.13 (± 0.94) 72.12 (± 2.01) 70.43 (± 3.38) 64.48 (± 2.13) 44.57 (± 5.24)
STIPPLE w/o relab 77.53 (± 1.44) 75.02 (± 2.21) 71.74 (± 2.02) 65.99 (± 1.71) 47.41 (± 8.40)
Baseline w relab - 75.12 (± 1.91) 73.71 (± 2.59) 69.00 (± 2.04) 51.91 (± 7.77)
STIPPLE 77.53 (± 1.44) 76.10 (± 1.23) 74.08 (± 1.39) 70.37 (± 1.88) 54.45 (± 6.37)

Adding the prior alone outperforms the baseline for every proportion.
The relative gains are +1.41pts at 100%, +2.90pts at 70%, +1.32pts at 50%,
+1.50pts at 30%, and finally +2.84pts at 10%. The information brought by
the spatial prior allows to increase the results consistently through the propor-
tions. This shows the relevance of exploiting the absolute position for organ
segmentation. Then, the relabeling step boosts the performances as we can see
in the last row. This step is particularly interesting for the low proportions.
As discussed in section 4.2, the gains are more and more important when the
proportion α is decreasing.

Using a prior impacts positively the performances in the two contexts: with
or without relabeling. We can also notice that the relabeling step boosts the
results especially for the low αs.

4.4 State-of-the art comparison

We compare our method with other semi-supervised approaches in addition to
a method that includes an attention mechanism. In [1], the unlabeled images
are completely relabeled before training a new model. [12] propose an adver-
sarial training to incorporate unlabeled images during training. Finally, [22],
use a mean teacher method where the unlabeled images are used through the
consistency loss. We also compare our method with an attention model from
[14]. It uses an additive attention gate in the decoder part of the U-Net before
the concatenation of the skip-connections.

Table 3 shows the results of the comparison. For every row, we implement
the method with the same backbone 2D U-Net. STIPPLE shows better results
for every proportion with a more pronounced gain in the low αs, e.g. at 10%,
STIPPLE is better by 2.4pts than the best method (the adversarial). The
pseudo-labels method [1] is the closest to ours but we see that STIPPLE stays
above for every proportion thanks to the spatial prior and the progressive
adding of pseudo-labels.
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Table 3 State-of-the-art comparison on TCIA

Proportion (α) 100% 70% 50% 30% 10%
Baseline 76.13 (± 0.94) 72.12 (± 2.01) 70.43 (± 3.38) 64.48 (± 2.13) 44.57 (± 5.24)
Pseudo-labels ([1]) - 75.12 (± 1.91) 73.71 (± 2.59) 69.00 (± 2.04) 51.91 (± 7.77)
Adversarial ([12]) - 75.41 (± 1.78) 73.91 (± 2.27) 67.60 (± 1.84) 52.09 (± 6.00)
Consistency ([22]) - 74.53 (± 2.10) 72.68 (± 3.05) 66.99 (± 1.38) 46.04 (± 3.70)
Attention U-Net [14] 76.38 (± 1.27) 74.18 (± 1.57) 71.37 (± 1.73) 64.25 (± 2.49) 41.28 (± 6.47)
STIPPLE (Ours) 77.53 (± 1.44) 76.10 (± 1.23) 74.08 (± 1.39) 70.37 (± 1.88) 54.45 (± 6.37)

Concerning the attention model in [14], we can see that compared to the
baseline, it helps consistently from α = 100% to α = 50%. Then, the scores
drop below the baseline. STIPPLE is better for every proportion and especially
for the low αs. It could be explained by the fact that our prior exploits the
three dimensions unlike the attention module which is 2D. Moreover it is
built beforehand by following a specific method which is adapted to low label
proportions.

4.5 Further Analysis

(a) b = 0 (b) b = 1 (c) b = 2 (d) b = 3 (e) b = 4 (f) 2D prior

Fig. 5 Visualization of a spatial prior with B = 5. We can see how it captures the depth
information compared to (f) which is a 2D prior.

Impact of the prior size B The number of bins, B, of the prior impacts the final
results and the best value may depends on the available data. As an example,
Figure 5 shows a spatial prior with B = 5 and B = 1, i.e. 2D prior. At B = 5,
we can see how the spatial position evolves through the 3D prior bins. As a
contrary, the 2D prior (B = 1) doesn’t encode the depth information and is
thus less informative.

We evaluate STIPPLE without relabeling with different B values (1, 2, 5,
7, 10 and 90) at 10% and 70% of labeled images, see Figure 6. B = 90 means
that there is no discretization in z, i.e. the spatial prior is complete.

We observe that the best value at 70% is 5 but for every B there is a
significant improvement compared to the baseline. At 10%, the best results
are given for 5, 7 and 10 with an optimal value at 7. In our experiments in
section 4.3, we choose a standard value of B = 5. Though it is good in practice,
it means that we could get better results by increasing B for lower proportions.

For both proportions, we can see that the prior has better results than the
baseline. Using a 2D prior (B = 1) is effective but using more bins boosts the
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Fig. 6 Dice score versus the number of bins B at 70% and 10% of labeled images. In blue,
STIPPLE without relabeling. In dotted red, the baseline.

performances. Then, with a complete prior, B = 90, the scores decrease which
shows that discretizing the z axis is relevant.

Impact of the prior positioning As explained in section 3.2, the prior has to
be positioned in the test volumes. We use the predicted position refined by
an adjustment step. Table 4 shows the results with the naive method of using
only the center given by the segmentation model. Then, with the adjustment
step used in STIPPLE.

As we can see the naive approach is not sufficient and alters the final
results. The adjustment step is necessary and allows to reach optimal results
comparable to the one obtained by using the true organ position.

Table 4 Impact of the prior positioning on the final results

Proportion 100% 70% 50% 30% 10%
Naive 74.48 (± 2.53) 72.84 (± 3.15) 69.90 (± 1.85) 61.82 (± 3.49) 41.80 (± 9.94)
Ours 77.53 (± 1.44) 75.02 (± 2.21) 71.74 (± 2.02) 65.99 (± 1.71) 47.41 (± 8.40)

5 Discussion and Limitations

STIPPLE relies on assumptions such that the position of an organ in (w,h)
varies slightly compared to the variations in z. Thus, there could be an issue
when strong rotations (e.g. of the patient) occur, or for data mixing vari-
ous acquisition directions (axial/coronal/sagittal). In this case, our approach
would require a (manual or automatic) method to register with respect to
those variations.

A second problem could emerge for atypical cases. For examples, for pa-
tients with situs inversus where the major abdominal organs are reversed
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from their normal positions. With STIPPLE we define a spatial prior which
translates the observed average position of the organs. However, with certain
conditions, it could not apply and a human professional is needed. We must
point out that those conditions represent a fraction of the cases and most of
the available segmentation datasets do not contain any atypical cases.

However, our method could be adapted to other imaging modalities by
adapting the prior computation or the prior positioning depending on the
problem. The main idea is the same when a segmentation dataset with dense
labels is provided.

6 Conclusion and perspectives

This paper introduces STIPPLE, a method that integrates a 3D spatial prior
and pseudo-labels for training FCNs in a semi-supervised context. STIPPLE
shows very important gains especially when few images are available making
it particularly relevant in the medical field where labeled data are limited and
very expensive to obtain. Comparisons with state-of-the-art methods further
highlight the relevance of our method compared to attention models and semi-
supervision techniques. Future works could be to transfer a prior computed on
a large external dataset to another dataset with less data. For example from
a modality to another (e.g. CT to MRI). Another idea that could be explored
is to integrate our spatial prior at different stages of the network. It could be
done by combining the prior with a specifically designed attention module. For
example a transformer [21].
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A Details on the network used in the study

Table 5 Details of the network’s blocks and layers used in STIPPLE. This architecture
comes from U-Net [17]. Convolutions are given by conv(kernel size, filters). The model has
32M parameters.

block name output size layer’s parameters
input 512× 512× 1

encoder block 1 256× 256× 64
conv(3× 3, 64) + relu

conv(3× 3, 64) + BN + relu → res 1
max pool(2× 2)

encoder block 2 128× 128× 128
conv(3× 3, 128) + relu

conv(3× 3, 128) + BN + relu → res 2
max pool(2× 2)

encoder block 3 64× 64× 256
conv(3× 3, 256) + relu

conv(3× 3, 256) + BN + relu → res 3
max pool(2× 2)

encoder block 4 32× 32× 512
conv(3× 3, 512) + relu

conv(3× 3, 512) + BN + relu → res 4
max pool(2× 2)

decoder block 4 64× 64× 1024

conv(3× 3, 1024) + relu
conv(3× 3, 1024) + BN + relu

upsampling(2× 2)
conv(2× 2, 512) + BN + relu

concat(res 4)

decoder block 3 128× 128× 512

conv(3× 3, 512) + relu
conv(3× 3, 512) + BN + relu

upsampling(2× 2)
conv(2× 2, 256) + BN + relu

concat(res 3)

decoder block 2 256× 256× 256

conv(3× 3, 256) + relu
conv(3× 3, 256) + BN + relu

upsampling(2× 2)
conv(2× 2, 128) + BN + relu

concat(res 2)

decoder block 1 512× 512× 128

conv(3× 3, 128) + relu
conv(3× 3, 128) + BN + relu

upsampling(2× 2)
conv(2× 2, 64) + BN + relu

concat(res 1)

final prediction 512× 512× 64
conv(3× 3, 64) + relu
conv(3× 3, 64) + relu

output probabilities 512× 512× nb classes conv(1× 1, nb classes) + {softmax;sigmoid}

B Additional training details

In this work we use a 2D U-Net as our main backbone FCN. It was trained with a batch
size of 6. The learning rate was 1e−4 with an inverse time decay scheduler and a decay rate
set to get a learning rate of 1e− 5 at the end of training. We train the model for 25 epochs
which corresponds to the observed convergence in all the experiments.
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The data augmentation consists of small random translations (e.g. between -15 and
+15), small rotations (e.g. -6 to +6 degrees) and zooms (e.g. 0.9 to 1.1). This augmentation is
applied to the image and label but also to the prior. Moreover, we have another augmentation
on the prior to simulate imperfect positioning by using an additional translation.

The code was developed with tensorflow and the training performed on Nvidia RTX
2080Ti GPU cards.


