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Abstract  

The scattering of an electromagnetic wave by a particle is directly related to its Chord Length 

Distribution (CLD) in certain cases. Whereas the CLD of convex bodies, e.g. sphere, 

ellipsoids, cylinders…, can be easily calculated, few studies have been conducted on the CLD 

of non convex bodies which are more difficult to ascertain. Two non convex bodies built from 

two spheres, i.e. dumbbells and diabolos, were considered. Firstly, we describe original 

algorithms designed for calculating the intersection between a straight line and these particles. 

Then the corresponding CLDs are calculated by using the Monte-Carlo method. Analysis of 

the deviation of these CLDs from the CLD of the sphere can identify precisely the main 

features due to some local non convexity. The corresponding items are expressed as a 

function of a non convexity parameter. 
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1. Introduction  

Many manufacturers use solid micro-particles in suspension for various applications: 

ceramics, paintings, pharmaceutics, cosmetics, food and chemicals. Particle size can be 

evaluated by physical methods based on the scattering of an incident electromagnetic wave as 

it strikes the particle. The scattered wave depends on the particle morphology as well as on 

the ratio between the refractive indices of both the material and suspension medium. 

Depending on the material, the particle morphology and the selected method, the signal 

measured may be straightforwardly related to the Chord Length Distribution (CLD) of the set 

of the randomly orientated particles. This is applied for Small-Angle Scattering (SAS) 

measurements [1, 2], Focused Beam Reflectance Measurements (FBRM) [3], Spectral 

Turbidimetry, i.e extinction measurement [4]. 

Whereas a straight line passes just once through a convex body, it may intersect more than 

one time across a non convex body. As a consequence, there are two chord length 

distributions which can be defined as: 

- The Multiple Chord Distribution (MCD) where each segment interval on the same line is 

considered as one chord length separately. FBRM measurements and experiments in the field 

of SAS are associated with MCD. 

- The one chord distribution (OCD) where the sum of chord lengths for all intersected 

intervals is used as the definition of the chord length. Turbidity measurements are associated 

with OCD. 

The CLD of convex and non-convex bodies has been studied mathematically [5-7]. Explicit 

expressions have been obtained for bounded 2D or 3D convex domains: disc, triangle, 
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rectangle, regular polygon [8], sphere, hemisphere [9], cylinders of various cross sections [10-

11], spheroids [12], polyhedron [13-14]. 

However, to the best of our knowledge little attention has been paid to non convex bodies 

compared to convex ones. Mazzolo et al. [15] discussed the CLD in the context of reactor 

physics. They showed that some relations between lower moments of CLD and simple 

geometric properties as volume, surface, … of the body remain valid for non-convex bodies 

whereas higher CLD moments do not obey the simple relations valid for convex bodies. Gille 

[16] studied the CLD of an infinitely long circular hollow cylinder that is a special case of non 

convex body; the corresponding calculation was based on basic mathematics. Vlasov [17] 

introduced the notion of signed chord distribution for convex and non-convex bodies. He 

started from the work of Dirac to reduce the six-dimensional integral of pairwise interaction 

potential for a convex body into a simpler expression including the CLD; then he extended 

this to a non convex body, showing that the expression of the integral is much more 

complicated than the one for a convex body. In the case of non convex body the integral can 

be decomposed into several terms (integrals), each related to the various segments of the 

given chord inside the non convex body. Vlasov formally deduced the expression of the CLD 

for the non-convex case. Gruy et al. analytically calculated the CLD of a two-sphere cluster 

[18] and a dumbbell [19]. 

There are some results linking CLD’s with scattering experiments, particularly SAS-

measurements, for non convex particles. This aspect has been analysed by Gille [20]. The 

geometric and physical quantity directly related to the SAS-intensity is the correlation 

function  r . The function  2r r is proportional to the distance distribution function. For 

instance, using cylindrical models, Gille [21] has studied the relation between non-convex 

particles and SAS. He derived explicitly the correlation function for two touching circular 

cylinders and deduced the second derivative ''  that is proportional to the CLD for convex 
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particles. When analysed he found five contributions for '' : each corresponding to a chord 

crossing a given sub-space: either traversing a sole cylinder, both cylinders or the space 

between the two cylinders... Therefore, this example proves that the CLD is related to the 

scattering intensity in a more complex manner for the case of non convex particles as opposed 

to convex particles. Kaya [22], Kaya and De Souza [23] have studied barbells and dumbbells 

and the related convex particles, i.e. capped cylinders. They calculated the corresponding 

form factors. Senesi and Lee [24] have indirectly studied non convex bodies. They presented 

a general method to calculate the scattering functions of polyhedra. These are calculated by 

breaking the body into sets of pieces. This work included the calculation of concave bodies. 

Ciccariello et al. [25a-b] have considered the small-angle scattering from anisotropic samples 

and have found a simple expression between the scattering intensity and the absolute values 

of Gaussian curvature at particular surface points. They show that this equation is also valid 

for non convex particles. This corpus of work emphasizes the links between scattering theory 

and stochastic geometry, integral geometry and differential geometry. 

Among the particle shapes observed in suspensions during a precipitation or crystallization 

process, small clusters of spherical particles are often present [19]. The contact between the 

two spheres in the cluster can be a single point or a neck due to sintering. This type of particle 

is one of the simplest cases of non convex bodies. Therefore, in this paper, we explore the 

properties of their CLD’s and the relationship between CLD and convexity. Due to the 

complexity and difficulty of exact analytical calculation, CLD’s will be obtained from Monte-

Carlo Simulations (MCS). 

The rest of the paper is organized as follows: section two introduces the algorithms used for 

MCS. The data issued from MCS for some non convex bodies are presented and discussed in 

the section three, followed by a conclusion and perspectives for future work in section four. 
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2. Chord length distributions by Monte-Carlo Simulations 

Our work focuses on OCD calculations with 3D uniform flow of lines.  

Note: throughout the paper and the literature, the chord length distribution (density) is written 

 lD l  where max0 l l  .  lD l dl  is the number of chords within the l-range  ,l l dl .  lD l  

is usually presented as normalized, i.e  
max

0

1

l

lD l dl  . 

In this article three kinds of particles are considered and compared, that are bodies of 

revolution along the x-axis. They are composed of spheres or parts of a sphere. The centres of 

spheres are symmetrically located along the x-axis. The origin of the coordinate system is the 

symmetry centre of the particle. The three particles are:  

- sphere with radius R1 (figure 1a) 

- cluster of two overlapping spheres (figure 1b); the radius of spheres is R1 and the 

distance between the two centres is denoted . This type of cluster will be designated 

dumbbell [19]. A particular case is the cluster of two touching spheres: 12R  . 

- a cluster of two touching spheres where the neck (or overlap) is partially filled with 

matter (figure 1c); the radius of spheres is R1 and the upper boundary of the neck is a 

part of a torus with a minor radius R2; as the torus is tangentially linked to the spheres, 

the major radius R3 obeys the expression 
2

3 2 2 12R R R R  . This type of cluster will 

be called a diabolo. An example is the convex body corresponding to 2R  , i.e. a 

capsule. The cluster of two touching spheres corresponds to 2 0R  . 

A MCS software was employed to generate an isotropic uniform random line across the 

geometric object, and to collect the chord length segments. The same framework for the 

Monte Carlo Simulations (MCS) of the different particle shapes has been used. 

All the distances are normalized by R1 (then, R1=1). Consider a sphere with radius 2 and its 

centre located at the origin. The way used to define the random straight line is the following: 
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A direction and a point belonging to the plane orthogonal to that direction and tangent to the 

sphere are considered. The coordinate system of the plane is composed of the point of 

tangency and the vectors from the usual spherical coordinate system. The line will be defined 

by the two angles, polar  and azimuthal , and the two coordinates xP, yP of the point in the 

plane. Four random numbers [26] are chosen for the values of the variables cos, , xP and yP. 

The line intersects the sphere at two points denoted M1 and M2. This algorithm is known to 

provide a translation and rotation invariant density [27]. 

Depending on the particle, the straight line between M1 and M2 may intersect the particle 0, 2, 

4 or 6 times. The intersection points will be analytically determined and the corresponding 

distances calculated. The details of these calculations based on the analytic geometry are 

reported in appendix A (for the sphere), Appendix B (for the dumbbell) and Appendix C (for 

the diabolo).  

The MC sampling distribution may be visually represented as a discrete probability 

histogram. The chord length between zero and the maximal possible length is divided on m-

bins with the equal size of l. The chord lengths are normalized by the radius of spheres 

( 0 4l  ). The value of the l-step l is 0.01. All simulation runs have been carried out by 

generating NT=108 unbiased random lines. Only a smaller number Nl lines cross the body. 

The sampling error is smaller than 10-4. 

We have compared our new MC algorithm with the previous [19] and with analytical 

calculations (sphere, ellipsoid, cylinder and dumbbells with various inter-centre distance ) 

coming from the same paper. 

As the interaction between the random line flow and different bodies (sphere, dumbbell and 

diabolo) are compared by using the same process, we may present the CLD as non-

normalized: 

   /i iD l N NT l            (1) 
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where Ni is the number of chord with the length li. 

As already mentioned, the CLD is usually presented as normalized: 

   /l i iD l N Nl l            (2) 

The random variable chord length, denoted by l, was made dimensionless by dividing the 

chord value by the radius R1 of the sphere in Eqs. 1-2. 

The number Nl depends on NT and the characteristics of the body following: 

/ / TNl NT Sp S           (3) 

where Sp  and TS  are the averaged projected area of the body and the area of the sphere 

with radius 2. Table 1 reports the values of Nl/NT for dumbbells with various -values and for 

diabolos with various R2- values. The validity of Eq. 3 has been successfully verified. 

These two definitions of the CLD will be used in the section three. 

 

3. Results and discussion 

 

3.1. Distribution density function 

The figures 2a-b represent the CLDs of dumbbells with various inter-centre values  whereas 

the figures 3a-b represent the CLDs of diabolos with various neck sizes expressed as R2. The 

CLD’s of two touching spheres [18] and dumbbells [19] are analytically known; the 

comparison between analytical expressions and MCS shows a very strong agreement. 

The main contribution to the CLD’s for the two shapes comes from the constitutive spheres 

(0<l<2). The contribution of large chord length (l>2) is always minor.  

In the two cases a discontinuity for l=2 is observed. However this is more pronounced for the 

dumbbell. This seems related to the details of the concavity of the body: the curvature varies 

smoothly for the diabolo whereas there is a discontinuity of the curvature for the dumbbell. 
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A parameter for quantifying the non convexity of the two objects was needed. Therefore we 

chose the depth PC of the concavity divided by the radius R1 of the sphere: 

21 1 / 4CP      for the dumbbell      (4a) 

2

2 2 21 2CP R R R     for the diabolo       (4b) 

By comparing the CLD’s of a sphere, a dumbbell and a diabolo, the following features are 

observed: 

- The value of the distribution density Dl is equal to zero at l=0 for the three shapes. The 

slope of the tangent line at l=0 is 0.44±0.01 for the dumbbells within the -range 

studied. The slope of the tangent line at l=0 is 0.38±0.06 for the diabolos within the 

R2-range studied. 

- A discontinuity of the derivative of the CLD Dl at l=lmax is observed for dumbbells 

and diabolos whereas  max 0lD l  . 

- A discontinuity of the derivative of the CLD Dl in the range [0; 2] of chord length 

values. This appears at a length value denoted l1 and the discontinuity of the curve 

slope is characterized by an angle jump denoted 1. The angle jump is positive in the 

case of the dumbbell whereas it is negative in the case of the diabolo. 

- A discontinuity of the CLD Dl at l=2, denoted 2. 

- The curve slope when 2l  , also corresponding to a slope discontinuity. The curve 

slope is characterized by the angle 2 between the tangent line and the x-axis. 

- The curvature of the curve when l>2. The curvature is negative in the case of the 

dumbbell whereas it is positive in the case of the diabolo. 

All the parameters 1 1 2, , 2,l    depend on the non convexity parameter PC. Now, let us 

examine the corresponding empirical relations. Unfortunately, the Monte-Carlo 

simulations are not precise enough to determine 1  and 2 with accuracy. 
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Whatever the shape of the objects, there exists a simple expression between l1 and PC: 

 1 2 1 Cl P            (5) 

This shows that l1 corresponds to the chord crossing the concavity perpendicularly to the 

line joining the sphere centres. The comparison of the angle jumps 1  (calculated from Dl) 

only shows qualitative trends: 

- The angle jump is within the range [0; /2] in the case of the dumbbell. It is a 

decreasing function of PC. 

- The angle jump is within the range [-; 0] in the case of the diabolo. It is an increasing 

function of PC. 

Whatever the shape of the objects, the relation between 2  (calculated from Dl) and PC 

is: 

 
max

2 0.2 3 T
C

P

S
P

l S
           (6) 

The comparison of the 2  angles (calculated from Dl) only shows rough trends: 

- In the case of the dumbbell 2  is within the range [-/2; ]. It is a strongly increasing 

function of PC. 

- In the case of the diabolo 2  is within the range [-; ]. It is a weakly increasing 

function of PC. 

Most published studies concern convex bodies. Any convex body may be considered as an 

equivalent spheroid or ellipsoid, i.e. a body with a smooth shape, modified by specific 

geometrical features. These features are important for the shape of the CLD curve. They 

consist in flat faces as crystal facets, parallel (flat or curved) surfaces, parallel tangent 

planes, edges and corners. They correspond to discontinuities of the distribution density or 

its derivative. Here are the main results from the literature: 
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i) Begin by investigating the effect of the curvature on CLD. For a convex body with a 

smooth surface the series expansion of CLD around l=0 does not contain even terms. The 

first order term is an explicit function of the mean principal curvatures of the body [28, 

29]: 

  3

1 3 ...lD l Dl D l           (7a) 

With  
2

1 1 2 1 2

1 3

2 16
D k k k k          (7b) 

k1 and k2 are the principal curvatures at some point on the surface of the body. < > is the 

averaging over all the surface area. The terms with order higher than 1 have no tractable 

expression. D3 is equal to zero for an ellipsoid. 

ii) The presence of edges leads to additional terms for ( )lD l  at l=0. Ciccariello et al. [30-

31] and Sobry et al. [32-33] have shown that  0lD  is a simple function of the dihedral 

angle and edge length. All the edges contribute to  0lD . Edges (and corners) also 

contribute to 
0

( ) /l l
dD l dl


 [34]. However, it seems difficult to systemize this contribution. 

iii) Chords intersect the surface at two points in a convex body; some chords are 

perpendicular to the tangent planes at the two end points and thus the planes are parallel. 

These chords are termed extremal chords. For instance, spheroids [35] have two extremal 

chords: one for l=2a and the other for l=2b, a and b being semi-axes. A discontinuity of 

( ) /ldD l dl  will occur at these values. Wu and Schmidt [36] have investigated the properties of 

( )lD l  when the chord is in the neighbourhood of an extremal chord. They give expressions 

for ( )lD l  around the extremal chord values denoted L. The authors also show that ( )lD l  is 

continuous for l=L whereas ( ) /ldD l dl  is not. 

iv) Ciccariello [30, 37, 38] generalized the work of Wu and Schmidt: he considered the 

property of parallelism between some parts of body boundaries. He studied the case where 
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the locus of the extremal chord ends is a surface. For instance, this surface is a sphere for 

L=l=2R if the particle is a sphere with radius R. One can show that ( )lD l  becomes 

discontinuous for this chord length value. If the parallelism occurs between two partial 

surfaces of the body, a discontinuity of ( )lD l  occurs at l=L, L being the distance between 

the two parallel surfaces. The contribution of the parallelism to ( )lD l  for l L  is given 

by Ciccariello. 

Diabolos and dumbbells are rounded bodies with curved surfaces and tangent planes that are 

both parallel, but without edges. The circular junction between the two spheres of the 

dumbbell cannot be considered as an edge. The edges considered in the literature are the ones 

occurring in convex crystals with facets or finite cylinders. In this case, the grazing lines cross 

the edge more frequently than the smooth surface. Therefore, Dl(0) is not equal to zero. In the 

case of the dumbbell, the lines crossing the circular edge do not correspond to l=0. Rather, the 

lines crossing the circular edge correspond to a large range of chord length values (≠0). 

Hence, the value of the distribution density at l=0 is equal to zero. For a smooth convex body 

the slope D1 of ( )lD l  at l=0 depends on the mean values of principal curvatures. The mean 

values are obtained after averaging over all the surface area. One may expect that the Eqs.7a-b 

hold only for the convex boundaries of non convex bodies. However, some lines cross the 

body twice with one segment length close to 0 and the other one having a finite value: these 

(OCD) lines do not contribute to 1D . Thus, in the case of OCD, it seems difficult to interpret 

further the 1D  data. Nevertheless, one observes that D1 is a very weak function of  or R2; the 

corresponding averaged value is slightly smaller than 0.5 which is the corresponding value for 

a sphere. 

Diabolos and dumbbells contain extremal chords at several values of the chord length; we will 

investigate the corresponding situations: 
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- L=l1: corresponds to the diameter of the circle that is the intersection of the object and 

the symmetry plane perpendicular to the axis of revolution. This is similar to the 

intersection of a prolate spheroid with a plane containing the two minor axes [35]. One 

observes in the two cases a discontinuity of the derivative of the distribution density. 

This is due to the occurrence of a set of tangent planes at each end point of the 

diameter. However, such tangent planes are difficult to define for dumbbells. The 

theory of Wu and Schmidt does not apply to these non convex bodies. 

- L=2: the corresponding chord is the diameter of each constituting spheres. The locus 

of the chord ends is a part of the sphere surfaces. Following Ciccariello [30, 37, 38], a 

discontinuity of the CLD density is expected: 

 2 2 /iS LS            (8) 

where S and Si are respectively the surface area of the body and the surface area swept 

by a line passing through the centre of each sphere and crossing only the surface of 

this sphere. 

The corresponding expressions for dumbbells are: 

 
2

1

1

1 /
2 2

/ 2

R

R






  


 if 1/ 2R       (9a) 

 1

1

/ 2
2 2

/ 2

R

R




  


  if 1/ 2R       (9b) 

Whereas for the diabolos: 

 
1

2 2 2

1 1 2 2 3

sin
2 2

sin

R

R R R R R



 
  

  
 with  1 1 2sin /R R R     (10) 

The Monte-Carlo simulations are in agreement within 5% with these expressions. The 

accuracy given is expected because one has to take into account the discretization of 

the chord length domain in the distribution curve coming from MC simulations. 
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Hence, the expression of Ciccariello works for non convex body considering that the 

expressions are applied to the convex sub-surface of this body. 

- L=lmax: the corresponding chord is perpendicular to the tangent planes at the two end 

points; Following Wu and Schmidt [36], the distribution density obeys the relation: 

 

 

2

1 max

max max 1

8
( )

2
l

R l l
D l

l l R S

 



 maxl l        (11) 

The corresponding expression for dumbbells is: 

 

 
1 1

2

1

4 2
( )

2
l

R R l
D l

R



 

 



        (12) 

Whereas for the diabolos: 

 

   
1

2

1 2 3 2

4
( )

4 1 sin 4 sin
l

R l
D l

R R R R  




  
     (13) 

The simulations are in agreement within 5% for the dumbbells and 1% for the 

diabolos. Therefore, the expression of Wu and Schmidt works for the non convex 

bodies considering that the expressions are applied to the convex sub-surface of these 

bodies. 

The angle 2 is related to the convexity of the particle. Surprisingly, the shape of the CLD 

when 2l   looks like the non convex part of the particle shape. The chords with l>2 (l 

close to 2) correspond mainly to lines including the diameter of a given sphere. In the case of 

the diabolo, the other part of the line crosses the neck between the two spheres; hence a 

correspondence between CLD shape and the local curvature of the particle is expected. In the 

case of dumbbells, the other part of the line belongs to the other sphere; the CLD shape when 

2l  depends on the other sphere. However in the two cases the calculation of the CLD 

when 2l   has proven difficult. As a consequence, the angle 2 is not a simple function of 

the geometrical parameters of the particle. 

 

3.2. Distribution moments 
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Moments of CLD are related to some integral characteristics, e.g. surface area, volume, mean 

curvatures, of the body. It is well known that the first and the fourth order moments can be 

expressed as a function of S and V for convex bodies. It has been shown [15] from the study 

of a special category of non convex bodies that the fourth order moment cannot be expressed 

as a function of simple geometric properties. Thus, the following discussion focuses to the 

first order moment that is the mean chord length. The mean chord length of a convex body is 

related to V and S by means of the Cauchy formula: 

4 /l V S            (14) 

Mazzolo et al. [39] cite the book of Solomon [5] where this author showed that a modified 

Cauchy equation holds for a non convex body: 

*4 /OCDl V S            (15) 

Where S* is the surface area of the convex hull of the body. 

Mazzolo et al. [39] calculates MCDl  for various non convex bodies. Monte Carlo simulations 

are used to validate the expressions given for 
MCDl (Table I in [39]). The figure 7 (in [39]) 

corresponds to the CLD for two touching spheres in the MCD case. Hence, there is no 

confirmation in [39] that the modified Cauchy (OCD) equation holds for non convex bodies. 

Moreover, Gille ([20], pages 125-126) mentions that the mean chord length for any two 

touching spheres obeys the relation: 

11.44236OCDl R and 11.333MCDl R  

This is in agreement with our calculations. On the other hand, equation 15 leads to 

11.333OCDl R . Hence, equation 15 is not valid for the particle class studied herein. 

Additional calculations lead to the following results: 

- The equation 4 /MCDl V S  has been tested and found to hold for dumbbells with 

various -values. 
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- In addition, equation 15 has been tested for both dumbbells and diabolos. We have 

compared the mean chord lengths (OCD) coming from Monte-Carlo simulations 

MCl and from the equation 15, named thl (=
OCDl ). Figures 4a and 4b represent the ratio 

/th MCl l  versus   for dumbbells and versus 
2R  for diabolos respectively (red circles). 

We conclude that the equation 15 does not hold in these cases. Calculating /th MCl l  

with 4 /thl V S  also shows a slight deviation from 1 (the green pluses on figures 4a-

b). On the other hand, the expression /th Pl V S  leads to a very good agreement 

with MCl . PS  is the average projected area over all the orientations of the body. The 

analytical expression for PS  is in the case of the dumbbells: 

 
/ 2

2 2 2

1

0

2 sin cos sin 2 sin 1 sinPS R a u u u d



         
     (16) 

with  1/ 2u R  

Searching a relation between the distribution moments and geometrical quantities of 

the body and its convex hull is natural in the field of stochastic geometry. Hence, the 

empirical expression   * *4 / 3 /thl V V V S    was considered. V* is the volume of the 

convex hull of the body. This means that the volume to be considered is the sum of the matter 

volume and one-third of the hollow volume inside the convex hull. This is correct at least for 

these two different particle shapes. It should be underlined that the non convex part of the 

particle is not a closed porosity as studied by Mazzolo et al.[15, 39]. Our result should be read 

as a numerical experiment only valid for these two cases. This seems an interesting 

approximation knowing that V and S for the convex hulls can be much easier calculated than 

those of non convex particles. 
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3.3. (OCD) CLD and scattering properties 

Rayleigh-Debye-Gans (RDG) theory is a scattering theory for light that is valid for 

optically soft material [2]. It may be applied to small soft particles with a small phase shift, 

namely: 2 / 11d m   . d, , 2 /k   , m are respectively the characteristic length of 

the scatterer, wavelength, modulus of the wave vector, ratio of the refractive indices of the 

particle and surrounding medium. Nota bene: SAS methods are based on RDG theory. 

Within the RDG approximation, the differential scattering cross section per unit incident 

intensity (unpolarized light) is related to the amplitude form factor R. Considering that the 

object (scatterer) can randomly orientate, this optical property is thus obtained after 

calculating an average value over all the orientations of the object: 

4 2 2
2 2

2

1 cos
1

4 2
diff sca

k V
C m R






        (17) 

with 

 
 

max
2

0

sin
l

P

qr
R D r dr

qr
          (18) 

 and q (  2 sin / 2q k  ) are the scattering angle and modulus of the scattering vector, 

respectively. PD  is the distance distribution function. The distance r is the length of the 

line segment connecting two points inside the scatterer. PD  is proportional to  2r r  

where  r  is the correlation function. 

Following the theory of stochastic geometry [6], there exists a relation between the two 

normalized distributions DP and Dl for a convex particle: 

      max24 /
l

P l
r

D r r D l l r dl V l         (19) 
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By introducing Eq.19 into Eq.18, one expresses 
2

R  and the differential scattering cross 

section as a function of the CLD [9]: 

      
max

2

4

0

4
2 sin 2cos

l

lR ql ql ql D l dl
lV q

  
   

  
      (20) 

 

The equivalence between Eqs. 18 and 20 is strictly valid for convex particles [40]. We will 

compare the data issued from Eqs.18 and 20 for non convex particles. The figure 5 represents 

2
R  as a function of qR1 for a diabolo with various R2 values. The diabolo with R2=100 

looks very much like a convex body (capsule); as expected the two data sets fit. The diabolo 

with R2=0.01 is similar to a dumbbell with 12R  : the two data sets are surprisingly close to 

each other. This result is also verified for R2=1. One may conclude that Eq.20 using CLD 

(OCD) represents a zeroth-order approximation for the calculation of scattering properties. 

Numerical experiments show that 
2

R  is much more sensitive to numerical errors on DP 

than on Dl. Hence it will be better to use Dl instead of DP. 

 

4. Conclusion 

The CLD of non convex bodies contains specific features which could lead to an easier 

identification of their shape. These are discontinuities of the distribution function or of its 

derivative. Such discontinuities of CLD are known in the literature. They concern several 

convex bodies. In our case of dumbbells and diabolos, the CLD is the superposition of the 

CLD of a sphere (or a capsule) and of the specific features related to some local non 

convexity. These features depend on a single parameter that characterizes the non convexity. 

Our results confirm some mathematical properties of CLD and its moments. Theses results 

deal with the convex parts of concave bodies. Specific features related to non convexity have 
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been also investigated. Thus we are able to qualitatively reconstruct the CLD of such concave 

bodies, as this has been recently performed for convex bodies [41]. Furthermore, the use of 

CLD-OCD for the calculation of the scattering properties provides a correct estimate of the 

differential scattering cross section. 

The results depend on the shape of the convex hull of the body which is the main contribution 

to the CLD. If the body shape is the geometrical superposition of the convex hull and cavities 

located on its surface, it may be easy to extend the results to such a body. This will be 

investigated in the future. This study has centred on rounded bodies. It would be interesting to 

investigate the influence of non convexity on the CLD of clusters composed of facetted 

crystals in up coming research. 
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Appendix A: Algorithm for a sphere 

The radius of the sphere is equal to 1 and its centre has a x-coordinate denoted a. We consider 

the intersection between the sphere and a straight line as defined by the vector relation: 

1 1 2M M M M  where  is a real number to determine (Figure A.1). There are 0 or 2 

intersection points. The coordinates of Mi points (i=1, 2) are denoted by , ,i i ix y z . 

The coordinates of the intersection points obey the system of algebraic equations: 

 

 

 

 

2 2 2

1 2 1

1 2 1

1 2 1

1x a y z

x x x x

y y y y

z z z z







    

   


  


  

         (A.1) 

Thus,  is a solution of the polynomial: 

   2 2 0A B a C a             (A.2) 

with 

     
2 2 2

2 1 2 1 2 1A x x y y z z       

         2 1 1 2 1 1 2 1 1 2 1B a x x x y y y z z z a x x             (A.3) 

  2 2 2 2

1 1 1 12 1C a x y z ax a       

If 2 0B AC   there is no intersection point 

If 2 0B AC   there are two intersection points characterized by the real numbers + and -: 

 2 /B B AC A              (A.4) 

The chord length will be: 

l A              (A.5) 

 

Appendix B: Algorithm for a dumbbell 
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Let us consider the projection Pj of the two sphere centres Oj on the plane perpendicular to 

1 2M M  and containing M1 (Figure B.1) The corresponding coordinates are: 

     2 1 /px a a x x B a A    

     2 1 /py a y y B a A           (B.1) 

     2 1 /pz a z z B a A   

Then, let us define the quantities (Figures B.1 and B.2): 

 

 

1

2

/ 2

/ 2

Q Q

Q Q





 


          (B.2) 

With 

          
2 2 22

1 1 1 11 1j p p pQ a M P x a x y a y z a z            (B.3) 

and 

              
2 2 22

12 1 2 / 2 / 2 / 2 / 2 / 2 / 2p p p p p pQ PP x x y y z z                

            (B.4) 

The chord length l is a function of 1Q , 2Q , 12Q  and . 

Then, 

If 1Q <0 and 2Q <0 then l=0         (B.5) 

If 1Q >0 and 2Q <0 then l= 12 Q         (B.6) 

If 1Q <0 and 2Q >0 then l= 22 Q         (B.7) 

If 1Q >0 and 2Q >0 then 

 

 

1/ 2
2

1 2 12

1 2

1 2

2 2

sup 2 ,2

d Q Q Q

D Q Q

S Q Q

    



 





 

 If D>d then  sup ,l S d         (B.8) 
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 If D d  then l=D         (B.9) 

2 iQ  is the length of the chord in the sphere i. d is the distance between the two end points of 

the line crossing the two spheres. 

 

Appendix C: Algorithm for a diabolo 

Consider the intersection of the straight line with the two spheres and the torus fragment. Ns 

(=0, 2 or 4) is the total number of intersection points with the spheres. Nt (=0, 1, 2) is the 

number of intersection points with the torus fragment. 

The intersection with each sphere, when and if it occurs, is characterized by the  values: 

 2 /B B AC A              (C.1) 

The possible intersection with the torus is characterized by the  values that are the roots of a 

quartic polynomial: 

4 3 2

4 3 2 1 0 0a a a a a                (C.2) 

With 

    

      

      

 

2
2 2 2 2 2

0 3 2 3 1 2

2 2 2

1 3 2 3 2 1 1

2 22 2 2

2 3 2 3 2 1

3

2

4

0 1 4

4 0 0 1 8

4 0 2 0 1 4

4 0

a C R R R x R

a B C R R R x x x

a B A C R R R x x

a AB

a A

     

     

      





     (C.3) 

As only a part of the torus is considered, select the -values that obey the inequality: 

       
2 2 22

1 2 1 1 2 1 3 2/ 1y y y z z z R R             (C.4) 

With this condition, there are 0, 1 or 2 real values for . 

Then, all the real -values (from the two spheres and torus) are classified in increasing order. 

One gets a series of -values ( 1 2 ,... Ns Nt     ). Figure C.1 represents the various situations 
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occuring as the straight line goes across the body. Each point in this figure represents an 

intersection between the line and the body. A connection between two points indicates the 

crossing of the body by the straight line; the lack of connection corresponds to the crossing of 

the outer of the body by the straight line. The symbols t, S1, S2 correspond to the torus, the 

first sphere encountered and the second sphere encountered respectively. The symbols C1 and 

C2 correspond to the conditions or inequalities: 

C1:    1 2 2 1 2 2/ 1x x x R R            (C.5) 

C2:            
2 2 2

1 1 2 1 2 1 1 1 2 1 2 1 3 2/ /y x y y x x z x z z x x R R          

If all the points are connected, the chord length obeys: 

1Ns Ntl A             (C.6) 

If an interruption in the point sequence occurs between the points i and i+1, the chord length 

obeys: 

 1 1i Ns Nt il A                (C.7) 
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Captions for figures 

Figure 1: Sphere (a), Dumbbell (b) and the Diabolo (c) 

Figure 2a: CLD  D l  of dumbbells for various -values: =2 dash-dot line (black); =1.6 

dotted line (red); =1 dashed line (blue); =0.4 solid line (green) 

Figure 2b: CLD  lD l  of dumbbells for various -values: =2 dash-dot line (black); =1.6 

dotted line (red); =1 dashed line (blue); =0.4 solid line (green) 

Figure 3a: CLD  D l  of Diabolos for various R2-values: R2 =0 dash-dot line (black); R2=1 

dotted line (red); R2=4 dashed line (blue); R2=100 solid line (green) 

Figure 3b: CLD  lD l  of Diabolos for various R2-values: R2 =0 dash-dot line (black); R2=1 

dotted line (red); R2=4 dashed line (blue); R2=100 solid line (green) 

Figure 4a: /th MCl l  against  for dumbbells. Red circle: 
*4 /thl V S ; green plus: 4 /thl V S ; 

Blue star:   * *4 / 3 /thl V V V S   ; black plus: /th Pl V S . 

Figure 4b: /th MCl l  against 2R for diabolos. Red circle: 
*4 /thl V S ; green plus: 4 /thl V S ; 

Blue star:   * *4 / 3 /thl V V V S   ; black plus: /th Pl V S . 

Figure 5: 
2

R  as a function of qR1 for a diabolo. Dotted line: calculated from distance 

distribution (MCS); line: from CLD (MCS). red: R2=100; blue: R2=1; black: R2=0.02. 

=450nm. R1=0.2µm. 

 

Figure A.1: intersection between a straight line and a sphere 

Figure B.1: intersection between a straight line and a dumbbell (view 1) 

Figure B.2: intersection between a straight line and a dumbbell (view 2) 

Figure C.1: intersection points and chords: straight line crossing the Diabolo. See the text for 

the explanation. 
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Figure 1: Sphere (a), Dumbbell (b) and the Diabolo (c) 
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Figure 2a: CLD  D l  of dumbbells for various -values: =2 dash-dot line (black); =1.6 

dotted line (red); =1 dashed line (blue); =0.4 solid line (green) 
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Figure 2b: CLD  lD l  of dumbbells for various -values: =2 dash-dot line (black); =1.6 

dotted line (red); =1 dashed line (blue); =0.4 solid line (green) 
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Figure 3a: CLD  D l  of Diabolos for various R2-values: R2 =0 dash-dot line (black); R2=1 

dotted line (red); R2=4 dashed line (blue); R2=100 solid line (green)



 32 

 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

l

D
l

 
Figure 3b: CLD  lD l  of Diabolos for various R2-values: R2 =0 dash-dot line (black); R2=1 

dotted line (red); R2=4 dashed line (blue); R2=100 solid line (green) 
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Figure 4a: /th MCl l  against  for dumbbells. Red circle: *4 /thl V S ; green plus: 

4 /thl V S ; Blue star:   * *4 / 3 /thl V V V S   ; black plus: /th Pl V S . 
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Figure 4b: /th MCl l  against 2R for diabolos. Red circle: *4 /thl V S ; green plus: 

4 /thl V S ; Blue star:   * *4 / 3 /thl V V V S   ; black plus: /th Pl V S . 
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Figure 5: 
2

R  as a function of qR1 for a diabolo. Dotted line: calculated from distance 

distribution (MCS); line: from CLD (MCS). red: R2=100; blue: R2=1; black: R2=0.02. 

=450nm. R1=0.2µm. 
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Figure A.1: intersection between a straight line and a sphere 
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Figure B.1: intersection between a straight line and a dumbbell (view 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.2: intersection between a straight line and a dumbbell (view 2) 
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Figure C.1: intersection points and chords: straight line crossing the Diabolo. See the text for 

the explanation. 
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Caption for table 

 

Table 1: ratio Nl/NT of chord numbers for various values of  (dumbbells) and R2 (diabolos) 
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 0.4 0.8 1 1.2 1.6 2   

Nl/NT 0.3000 0.3480 0.3709 0.3930 0.4324 0.4622   

R2 0.02 0.2 0.5 1 2 4 10 100 

Nl/NT 0.4623 0.4636 0.4669 0.4720 0.4789 0.4859 0.4931 0.4992 

 

Table 1: ratio Nl/NT of chord numbers for various values of  (dumbbells) and R2 

(diabolos) 

 

 


